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The direct removal of surface vegetation during surface coal mining has a
negative impact on the surrounding ecological environment. Effective
vegetation restoration is essential to mitigate these impacts. Therefore,
accurate monitoring and assessment of vegetation restoration following
mining disturbance is critical for ecological protection in mining areas. This
study employs the Detecting Breakpoints and Estimating Segments in Trend
(DBEST) to map the historical patterns of vegetation disturbance and subsequent
recovery at the Shendong coal base. This is the first large-scale application of
DBEST for such purposes. To examine the spatio-temporal trends in post-mining
vegetation restoration, the Years to Recovery (Y2R) and amount of NDVI recovery
were calculated based on the Normalized Difference Vegetation Index (NDVI)
time-series. The results show that the DBEST has an accuracy of 0.90 in detecting
vegetation destruction and 0.78 in detecting restoration. These findings highlight
the substantial potential of this algorithm for monitoring vegetation disturbance
inmining areas. The total area of vegetation destructionwithin the Shendong coal
base is 449.65 km2, and the restoration area is 156.62 km2. Between 1992 and
2017, 46.90% of the disturbed areas achieved 80% of the pre-mining vegetation
level, exceeding the average restoration level in China. The average Y2R was
4.68 years. Furthermore, NDVI restoration showed an initial increase followed by
a decline with longer Y2R values, suggesting that while early restoration efforts
were more effective, long-term restoration efficiency decreased. This finding
emphasizes the necessity of concentrating on the restoration process at each
stage of the planning and implementation of revegetation projects, particularly
regarding the difficulties associated with long-term restoration. This is crucial for
the development of more comprehensive and sustainable strategies.
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1 Introduction

As one of the world’s most significant energy resources, coal
plays a crucial role in the global energy structure (Bilgen, 2014; Sun
et al., 2020; Ming et al., 2024). The acceleration of industrialization
and urbanization has led to an increased demand for coal, driving
the development and utilization of coal resources on a global scale
(Li et al., 2022). However, coal mining, particularly surface mining,
has significantly disrupted surface ecosystems and adversely affected
vegetation (Fang et al., 2021; Mason et al., 2021; Li et al., 2023). To
effectively address the ecological impacts of coal mining, monitoring
the spatio-temporal processes of vegetation disturbance have
become a major focus for governments and scholars (Johansen
et al., 2019; Ali et al., 2022). A thorough analysis of the spatio-
temporal patterns of vegetation restoration after surface mining
disturbances is essential for optimizing ecological restoration
strategies and ensuring the sustainable development of mining
regions (Silvia et al., 2021; Yang et al., 2024).

Since the end of the 20th century, remote sensing imagery has
become a prominent tool for monitoring ecological environments
(Shan et al., 2019). Numerous studies have utilized this technology
to monitor vegetation disturbance in mining areas (Zhang et al.,
2022). However, traditional research methods are often face
technological and data limitations. For instance, post-
classification comparison, image ratioing, trend analysis, etc.
Post-classification comparison and image ratioing typically
analyzing remotely sensed images taken at long intervals and
comparing them to derive information on vegetation changes
and their spatial distribution (Mugiraneza et al., 2020; Ang et al.,
2021; He et al., 2021; Du et al., 2023). Trend analysis identifies the
increase or decrease in vegetation by analyzing temporal trends in
vegetation change. However, these approaches may oversimplify the
time-series data, which is crucial for a comprehensive understanding
of the dynamics of change. It may also lead to the omission of
significant disturbance events and the introduction of biases in
monitoring vegetation changes and restoration efforts (Huang
et al., 2018a; Nguyen et al., 2018).

In recent years, numerous studies worldwide have investigated
the spatial and temporal trends of vegetation restoration in mining
areas, particularly in regions such as Inner Mongolia, Xinjiang, and
Shaanxi in China, as well as coal mining areas of Australia, Canada,
and South Africa. Remote sensing techniques and time-series
analysis methods have been widely employed in these studies,
especially for long-term monitoring (Lastovicka et al., 2020; Zerai
et al., 2023). Time-series data effectively capture the dynamic change
in vegetation throughout the monitoring period (DeVries et al.,
2015; Liu et al., 2024). Researchers have developed several
algorithms for analyzing vegetation index time-series utilizing
remote sensing, which can be broadly categorized into two
groups. The first group includes methods focused on analyzing
and predicting long-term vegetation change trends, such as the Sen
+ Mann-Kendall trend analysis (Han et al., 2021), vegetation
stability analysis (Liu et al., 2016), and future trend prediction
(Zhou et al., 2020). These methods frequently employ linear
regression with least squares fitting, which may overlook short-
term vegetation changes. Consequently, new approaches that
segment and fit time-series trajectories have been proposed
(Vorovencii, 2021; Myroniuk et al., 2022). These methods

identify mutation points in time-series trajectories, predict
potential mutations, and extract critical information, such as the
time, magnitude, and geographic location of vegetation changes. For
example, Landsat-based Detection of Trends in Disturbance and
Recovery (LandTrendr, Kennedy et al., 2010), Breaks for Additive
Season and Trend (BFAST, Verbesselt et al., 2010), Continuous
Change Detection and Classification (CCDC, Brown et al., 2020),
Detecting Breakpoints and Estimating Segments in Trend (DBEST,
Jamali et al., 2015), and others. This new automated monitoring tool
shows promise for analyzing long-term vegetation changes. Tools
such as LandTrendr and CCDC have been applied to monitor
vegetation disturbances caused by mining (Yang et al., 2018;
Zhang et al., 2021). However, Wang et al. (2017) identified
limitations in these methods related to satellite sensors, data
types and lengths, and their overall versatility. Xu et al. (2023)
found that while CCDC generally outperforms LandTrendr in
monitoring vegetation disturbance in mining areas, it still
encounters difficulties in accurately and adaptively identifying the
time of large-scale vegetation destruction accurately and adaptively,
particularly in a coal base. In contrast, the DBEST offers advantages
by explaining seasonal changes and decomposing time-series data. It
is widely used in large-scale scenarios, such as forests monitoring
(Rhif et al., 2022; Jamali et al., 2023; Jamali et al., 2024; Müller et al.,
2024), and performs better with both periodic and non-periodic
remotely sensed time-series data (Shen et al., 2018).

This study applies the DBEST algorithm on a large-scale to more
accurately detect vegetation destruction and restoration, as well as to
calculate the time required for recovery. To the best of our
knowledge, this is the first application of the DBEST in a large-
scale surface coal mining area. Additionally, the study assesses the
spatio-temporal trends of vegetation restoration following mining
disturbance and reveals a trend of decreasing restoration efficiency
over the long term, an aspect that often overlooked in other studies.
This research provides a scientific foundation and decision support
for environmental protection and ecological restoration strategies in
mining areas.

2 Materials and methods

2.1 Study area

The Shendong coal base is located at the intersection of Shanxi,
Shaanxi, and Inner Mongolia provinces, with geographic
coordinates of 38°54’ - 39°37′ N and 109°42’ - 110°41′ E, as
shown in Figure 1. The Shenfu Coal Field, which encompasses
the Shendong Coal Base, is one of the seven largest coal fields in the
world, with proven reserves of 223.6 billion tonnes. It is also the
largest coal field in China, accounting for 15% of the country’s total
coal reserves. The study area is situated in the transitional zone
between the Loess Plateau and the Maowusu Desert in northern
Shaanxi. This region has a continental semi-arid climate,
characterized by limited water resources, an average annual
precipitation of approximately 400 mm, and relatively sparse
vegetation. It is a crucial area for national soil erosion
monitoring and ecological management. Since 2008, the
Shendong coal base has undergone a process of significant
urbanization and expansion of industrial and mining areas due
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to extensive coal mining activities. Since 2013, the development of
coal mining and large-scale ecological restoration efforts have
pursued concurrently.

2.2 Extraction of spatio-temporal processes
of vegetation disturbance in mining areas

The Normalized Difference Vegetation Index (NDVI) is a
validated index of satellite imagery. It has been widely used as a
reliable proxy for vegetation biomass, cover, and vigor, effectively
reflecting ecosystem conditions (Huang et al., 2018b; Forkel et al.,
2013). Analyzing ecosystem changes through NDVI time-series data
is both practical and valuable. To evaluate the impact of surface coal
mining on vegetation, this study employs the DBEST to reconstruct
historical patterns of vegetation destruction and restoration. The
DBEST consists of two main components: time-series
decomposition and trend segmentation (Meshkini et al., 2024).
Time-series decomposition separates the NDVI time-series into
three components: trend, seasonality, and residuals. Since the
long-term NDVI data used in this study capture inter-annual
changes without cyclical variations, trend segmentation was
applied directly to the NDVI time-series. This method focuses on
identifying horizontal change points that characterize the trajectory
of the time-series.

2.2.1 Trend segmentation and
breakpoint detection

The candidate change point (i) in the NDVI time-series is
estimated based on three parameters: the level shift threshold
(θ1), the second level shift threshold (θ2), and the duration
threshold (ψ) (see Table 1). This candidate change point,
designated as the candidate mutation point, represents the most
significant change feature in the time-series. Candidate change point
need to satisfy three conditions: (1) The absolute value of the NDVI
difference between candidate change point and the successive points
must exceed θ1; (2) the change needs to be persistent within the set
duration ψ, and the difference in the mean value needs to be greater
than θ2; and (3) the time distance between candidate change point
and neighboring candidate mutation points must be at least ψ. The
output of the DBEST is illustrated in Figure 2.

For the NDVI time series, the peak/valley detector function (f) is
calculated at each time point i as described in the following equation.
Specifically, the peak/valley detector function is set to 1 at the
beginning of the time-series and 0 at the end. The points where
f = 1 represent peaks or valleys in the time-series, while the points
where f = 0 indicate either significant changes or no substantial
change in the data.

f i( ) � 1, if sign ΔNDVI i−1,i( )( ) � −sign ΔNDVI i,i+1( )( )
0, else

{

FIGURE 1
Geographic location of Shendong coal base.
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where, ΔNDVI (i-1,i) = NDVIi- NDVIi-1; ΔNDVI (i, i+1) = NDVIi+1
- NDVIi.

A second turning point detector function (g) is calculated for all
points in the time-series based on the peak/valley detector function
and an iterative criterion. For each consecutive peak or valley, the
perpendicular distance from the farthest data point to the straight
line connecting each pair of successive peak and valley points is
calculated. This distance is then compared to a predefined threshold.
Any point at which the perpendicular distance exceeds the specified
threshold is selected as a potential turning point. The corresponding
turning point detection function is provided in the
following equation.

g i( ) �
1, f i( ) � 1

1, f i( ) � 0 andd i( )> ε
0, f i( ) � 1 andd i( )< ε

⎧⎪⎨⎪⎩
where d (i) is the perpendicular distance from the point i to the line
connecting the peak and valley; ε is the distance threshold set in

Table 1. The calculation is iterated continuously until no more
points with g(i) = 1 is generated. All points with g(i) = 1 is
turning points.

The DBEST uses Bayesian information criterion (BIC) to
determine the number of turning points. Local trends based on
the h-function are used to calculate the differences in NDVI trends
between consecutive turning points, as demonstrated in the
following equation.

h i( ) � 0, if g i( ) � 0
NDVIZ −NDVIi, if g i( ) � 1

{
where,NDVIz andNDVIi represent the NDVI values at two different
turning points. TLC refers to the difference in NDVI between two
neighboring turning points, while the TLC value for non-turning
points is zero.

Finally, the least squares method is used to fit the trend and
obtain the results of the segmented trend. Prior to fitting, the turning

TABLE 1 Thresholds used in DBEST.

Threshold Description Set in this
paper

First level shift threshold (θ1) The lowest absolute difference between the break point and next point in NDVI time-series 0.1

Second level shift
threshold (θ2)

The lowest absolute difference in mean values over the duration before and after the break point in the NDVI time-
series

0.2

Duration threshold (ψ) The lowest time step between two neighboring break points 3

Distance threshold (ε) The lowest perpendicular distance from farthest data point to the straight line passing through every pair of
successive

default

Change magnitude (β) The lowest magnitude of change in trend segmentation and breakpoint detection 0.11/0.14

Statistical significance level (α) Statistical significance level used for testing significance of detected changes 0.05

FIGURE 2
The output of the DBEST. The black curve represents the original NDVI curve. The blue curve represents the fitted trend of the NDVI time-series. The
orange color highlights the segments of the time-series where breakpoints are detected. The red line segment represents themagnitude of change in the
NDVI time-series at each breakpoint and are labeled as “Trend Local Change”. Both the “Data” and “Trend Local Change” values are dimensionless.
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points are arranged in descending order based on the absolute value
of h(i). In this order, the turning points are sequentially added for the
fitting of the original trend segments and for the BIC calculation.
The turning points that are used in the fitting when the BIC reaches
its minimum are identified as the breakpoints.

2.2.2 Accuracy assessment
To evaluate the accuracy of DBEST in recognizing vegetation

destruction and restoration in surface mining areas of the Shendong
coal base, 5,000 pixels were randomly and uniformly selected as samples
within the study area. These sample pixels were then subjected to a
visual interpretation based on high-resolution remote sensing images
and Unmanned Aerial Vehicle (UAV) images. The actual time of
vegetation destruction for each sample pixel was determined by visual
interpretation of historical high-resolution images in Google Earth,
which served as the true value for accuracy assessment. To
quantitatively assess the accuracy of DBEST, a confusion matrix was
constructed using the reference dataset. Based on this matrix, three
widely used accuracy metrics were calculated: overall accuracy (OA),
producer accuracy (PA) and user accuracy (UA). The results of the field
research are presented in Figure 3.

2.3 Measures of vegetation restoration
effectiveness

To further analyze the changes and effects of vegetation restoration at
each pixel following the initial restoration event, this study utilizes the
NDVI to compute restoration metrics after mining disturbance (Xulu
et al., 2021). In accordance with the methodology proposed by Joanne
et al. (2022) for the assessment of spectral restoration techniques in forest
ecosystems, this study utilizes the Year to Recovery (Y2R) and amount of
NDVI recovery (ΔNDVIregrowth) to describe the process of vegetation

restoration inmining areas (Kennedy et al., 2012). The term “Y2R” refers
to the number of years it takes for a pixel to be restored to 80% of its pre-
mining vegetation level (i.e., NDVI value). In this context, the term “pre-
miningNDVI” is defined as the average value from the 2 years preceding
the disturbance. Achieving 80% of the pre-mining NDVI value is
considered reaching the Y2R level. ΔNDVIregrowth characterizes the
absolute change in NDVI in the 5th year after the disturbance,
relative to the year of the disturbance, and is calculated as follows.

ΔNDVIregrowth � NDVIy5 −NDVIy

where, NDVIy5 refers to the NDVI value at 5th years after
disturbance, while NDVIy represents the NDVI value in the year
when the disturbance occurred. Since these two metrics require a 2-
year temporal window before disturbance and 2 years after
disturbance, the time-series analyzed for vegetation restoration in
this paper spans from 1992 to 2017.

To generate a reference value of vegetation restoration in the
Shendong coal base, we calculated the mean Y2R and associated
standard scores (z-scores) as follows.

Z � x − μ

σ

where, Z represents the standard score, x denotes the Y2R value of
the pixel, μ is the mean and σ is the standard deviation of the Y2R
values for the pixel.

3 Results

3.1 Accuracy assessment

Figure 4 illustrates the accuracy and error of vegetation
disturbance detection in surface mining areas using the DBEST.

FIGURE 3
Field photos of some mine features at Shendong coal base. (A) Open-pit. (B) Open-pit and dumping sit. (C) Vegetation restoration area. (D)
Impounding reservoir.
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Figures 4A, B present the OA, PA, and UA for detecting destruction
and restoration times, respectively. The OA for detecting destruction
and restoration time is 0.90 and 0.78, respectively, with PA and UA
being closely aligned in both cases. Overall, the DBEST is more
effective at detecting vegetation destruction than restoration in
mining areas. To address the potential overlap in disturbance
times across adjacent years, an error matrix was created to
measure the discrepancy between the algorithm’s identified
disturbance time and the actual value (see Figures 4C, D). For
detecting vegetation destruction, the error rate within 1 year of the
actual disturbance is 4.15%, while for restoration detection, the error
rate within 1 year is 9.86%. The incorporation of a 1-year margin of
error enhances the precision of DBEST, elevating its accuracy in the
detection of destruction and restoration to 0.94 and 0.88,
respectively. These findings indicate that DBEST is an effective
tool for the detection of both vegetation destruction and
restoration in the Shendong coal base.

3.2 Spatio-temporal characteristics of
mining disturbance and restoration

Figure 5 presents a statistical analysis of the relationship between
the area of vegetation destruction and restoration over time in the
surface mining area of the Shendong coal base. The data show a
significant increase in vegetation destruction within the mining
rights after 2008. This upward trend continued, peaking in

2013 with a destruction area of 91.55 km2. By 2022, the
cumulative area of vegetation destruction had reached
449.65 km2. Most vegetation restoration activities occurred after
2013, following a pattern of initial growth and subsequent decline.
Specifically, 5 km2 of vegetation was restored in 2013. From 2013 to
2016, the area of restoration increased annually, reaching 44.53 km2

in 2016, representing the highest level recorded during the study
period. However, from 2017 to 2018, the restoration area sharply
declined, with only 7.12 km2 restored in 2017 and 5.54 km2 in 2018.
This representing an 84.01% reduction compared to 2016. After
2018, the restoration area fluctuated, with 32.77 km2 restored in
2019, the highest value since 2016. By 2022, the cumulative
restoration area reached 156.62 km2.

The DBEST was utilized to identify the time-series data of
vegetation in the surface mining area of the Shendong coal base.
The spatial distribution of vegetation destruction is illustrated in
Figures 6A–C. The data demonstrate that the extent of vegetation
destruction in the surface mining area is considerable, spanning
seven county-level administrative divisions: Shenmu City,
Dongsheng District, Yijinholo Banner, Dalat Banner, Jungar
Banner, Hequ County and Baode County. Furthermore, the
spatial distribution of the vegetation destruction is notably
heterogeneous. Table 2 provides a detailed breakdown of
vegetation restoration proportions within each administrative
division, based on the combined data for destruction and
restoration. In all county-level units, the proportion of vegetation
restoration remains below 50%. The highest restoration ratio is

FIGURE 4
Accuracy of vegetation destruction and restoration. (A, B) Producer accuracy and User accuracy for vegetation disturbance and restoration. As there
is no data available for 2012, any disturbance to vegetation that occurred in 2012 will be categorized as occurring in 2013. Accuracy of vegetation
destruction and restoration was 0 in 2005. (C, D) Identification errors (in years) for vegetation destruction and restoration.
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observed in Dongsheng District, reaching 44.07%, indicating
relatively favorable restoration progress. In contrast, Hequ
County has a low vegetation restoration ratio of only 13.03%,
highlighting an urgent need for enhanced restoration efforts.

The intensity of vegetation destruction and restoration is
characterized by the degree of change in NDVI. Figures 6D, E
illustrate the spatial distribution of vegetation destruction and
restoration intensities. The data indicate that the majority of
vegetation destruction in the surface mining area falls within the
NDVI range of −0.36 to 0, accounting for 90.44% of the recorded
destruction incidents. Similarly, the majority of vegetation
restoration activities occur within the NDVI range of
0.178–0.447, representing 76.89% of all restoration events in
the region.

3.3 Evaluation of vegetation restoration
effect in surface coal mining area

3.3.1 The time required for vegetation restoration
in surface coal mining areas

Mining activities disturbed approximately 449.65 km2 of
vegetation in the Shendong coal base between 1990 and 2022.
To calculate the ΔNDVIregrowth, data from the 5 years following
the disturbance were utilized. The analysis focused on vegetation
destruction that occurred between 1992 and 2017, during which
approximately 284.1 km2 of vegetation was lost, accounting for
63.18% of the total vegetation disturbance over the entire study
period. Figure 6F illustrates the spatial distribution of Y2R.
Figure 7 illustrates the relationship between the area of
vegetation restoration and Y2R, which indicates the time
required to restore 80% of the pre-mining NDVI levels. The
average Y2R for the restored areas was 4.68 years (standard
deviation = 3.2 years). Overall, the percentage of restored
areas initially increased and then declined with rising Y2R.
The highest percentage of areas restored to 80% of their pre-
mining NDVI level, was observed in the fifth year after

disturbance, with a peak of 7.68%. By 2022, 46.09% of the
affected areas had been effectively restored, while 53.91% had
either not undergone restoration or failed reached 80% of the pre-
mining vegetation levels.

To facilitate a more detailed analysis of the variation in the
proportion of images reaching the Y2R level versus those not
reaching it across different latitudes, this study divides the area
into five regions, each analyzed in 0.2° latitude intervals, as
illustrated in Figure 8. The data indicate that the proportion of
ecological restoration in the surface mining area of the Shendong
coal base reaching the Y2R level varies with latitude. The highest
proportion of vegetation restoration, 51.51%, occurs between 39.6°N
and 39.8°N. Conversely, the lowest proportion, 27.81%, is observed
between 39.8°N and 40°N.

3.3.2 Comprehensive analysis of vegetation
restoration metrics

For the pixels that reached the Y2R level, the relationships
between Y2R and both ΔNDNIregrowth and the magnitude of
NDVI destruction were statistically analyzed, as shown in
Figure 9. Figure 9A shows that ΔNDNIregrowth in the surface
mine area initially increases and then decreases as Y2R increases.
The ΔNDNIregrowth for Y2R between 2 and 5 were higher than those
for Y2R equal to 1 year, which indicated that vegetation restoration
wasmore rapid during the early stages. However, the restoration rate
subsequently declined. In contrast, Figure 9B shows that the
magnitude of NDVI destruction showed an increasing and then
decreasing trend with Y2R. For values of Y2R between 1 and 5, the
destructionmagnitude increased with Y2R, which implies that pixels
experiencing greater initial disturbance require a longer
recovery time.

In this paper, the open-pit mines in the Shendong coal base are
divided by county. The relationship between the Y2R of the seven
different counties involved in the Shendong open-pit mines and the
average of Y2R within the study area is then statistically calculated,
as shown in Figure 10. The information indicates that the average
Y2R values for Dongsheng District, Yijinholo Banner and Shenmu

FIGURE 5
Inter-annual variation in the area of vegetation destruction and restoration.
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City are lower than the overall average value of the study area,
suggesting that the ecological restoration in these three regions
occurs at a faster rate. Dongsheng District exhibits the fastest
restoration speed, with a Y2R value 0.22 years faster than the
study area’s average. Conversely, the average of Y2R in Baode

County, Hequ County, Jungar Banner and Dalat Banner were
higher than the overall average, indicating a slower rate of
ecological restoration in these counties. The slowest ecological
restoration area is observed in Hequ County, where the Y2R is
0.66 years slower than the study area’s average.

FIGURE 6
Spatio-temporal distribution of vegetation disturbance in Shendong coal base.

TABLE 2 Statistics on vegetation destruction and restoration proportions within each administrative division.

Shenmu Dongsheng
district

Ejin horo
banner

Dalad
banner

Jungar
banner

Hequ Baode All

Vegetation Destruction
Area

31.1 km2 105.5 km2 50.6 km2 45.8 km2 188.2 km2 22.8 km2 5.7 km2 449.65 km2

Vegetation Restoration
Area

8.4 km2 46.5 km2 19.1 km2 15.0 km2 62.7 km2 3.0 km2 1.9 km2 156.62 km2

The Ratio of Vegetation
Restoration

27.16% 44.07% 37.75% 32.73% 33.30% 13.03% 34.34% 34.83%
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Within the Shendong coal base, the z-scores for different
counties were calculated and counted pixel by pixel, as shown in
Figure 11. The results indicate that the area of regions that
recovered more rapidly (i.e., z-score <0) than the average for
the study area was smaller than the area of regions that
recovered more slowly (i.e., z-score >0). This accounted for
43.22% and 56.78% of the total area, respectively. Furthermore,
it should be noted that the spatial distribution of Y2R z-scores
differed between counties. In Hequ County, which exhibited the
slowest vegetation restoration, only 37.60% of the area had a

z-score <0. In contrast, Dongsheng District, which
demonstrated the fastest restoration, had 54.81% of its area
with a z-score >0. This highlights the spatial heterogeneity in
ecological restoration across the region.

4 Discussions

A significant difference in vegetation changes can be observed in
remotely sensed imagery both within and outside mining claims.

FIGURE 7
Relationship between the area of vegetation restoration and Y2R.

FIGURE 8
Percentage of area under vegetation restoration (reaching Y2R level) in different latitudinal.
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This suggests that mining activities have a considerable impact on
the ecosystem. However, it is important to recognize that other
factors, such as climate change, agricultural development,
urbanization and forest fires, may also contribute to vegetation
changes. Consequently, it is essential to differentiate between
vegetation disturbances caused by mining and those triggered by
other factors. Distinguishing the impacts of mining is crucial for a
more accurate assessment of the ecological consequences of mining
activities. Furthermore, this differentiation will provide a solid
scientific foundation for the development of targeted ecological
restoration and protection measures.

This paper demonstrates the capability of the DBEST to monitor
vegetation disturbances across a large-scale surface mining region
using the NDVI. The findings indicate that DBEST is highly effective
in detecting breakpoints in surface mining operations at the

Shendong coal base. The accuracy of identifying vegetation
destruction and restoration was 0.90 and 0.78, respectively. This
approach provides a valuable technical reference for other mining
areas and countries. The adoption of similar methodologies will
facilitate accurate monitoring of ecological restoration process,
providing a solid scientific foundation for policy development
and ecological protection.

Notably, DBEST was more effective at detecting destruction
than restoration (Figure 4). This discrepancy is due to the smaller
magnitude of NDVI change associated with vegetation restoration in
the mining area compared to that of vegetation destruction, which
hampers the effective recognition of all restoration events. Despite
this, DBEST remains a rapid and efficient monitoring tool. One
limitation of the method is that it tends to identify the time of
destruction and restoration independently. Due to the presence of

FIGURE 9
Variation of ΔNDNIregrowth and destruction magnitude with Y2R.

FIGURE 10
Difference in Y2R between different county zoning districts, relative to the study area, with positive values indicating that Y2R is higher than the study
area average and negative values indicating that Y2R is lower than the study area average.
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data noise, this can result in instances where restoration is recorded
before destruction. To enhance the detection accuracy, the focus
should be on data quality, model complexity, and parameter
optimization: (1) Utilizing multi-source remote sensing data to
improve the algorithm’s adaptability to complex environmental
factors. (2) Classifying vegetation disturbance types in the mining
area before breakpoint monitoring helps more accurately identify
destruction and restoration events. (3) Dynamically adjusting the
hyperparameters of the algorithm to adapt it to different modes at
various stages of restoration, thereby improving the accuracy of its
predictions.

As of 2022, the area of vegetation destruction in the Shendong
coal base identified by the DBEST was 449.65 km2, while the area of
vegetation restoration was 156.62 km2, which is consistent with
previous study (Xu et al., 2024). The destruction of vegetation
within the surface mining rights intensified after 2008, which is
closely linked to the large-scale coal mining activities in the
Shendong coal base that began in that year. The extensive
excavation and land occupation associated with these mining
activities are the primary factors contributing to the significant
reduction in surface vegetation. Vegetation restoration were
predominantly concentrated after 2013, with the overall area of
vegetation restoration first increasing and then decreasing. This
trend is likely attributable to the implementation of an ecological
management plan by the Shendong coal base, which features a “three
phases and three circles” layout. This approach incorporates
substantial government financial support, enhancements to mining
processes, and a combination of engineering and biological measures,
with a particular emphasis on biological sand fixation and
supplementary engineering protection. The availability of adequate
funding, advanced technology and a well-designed management
strategy have collectively facilitated the vegetation restoration
process within the surface mines of the Shendong coal base.

The primary objective of vegetation restoration in areas affected
by surface coal mining is to restore the vegetation to its pre-mining

level (Zhang et al., 2023). To assess this progress, we calculated the
time required to restore vegetation in the Shendong coal base to 80%
of its pre-mining level. This calculation was based on the average
NDVI of vegetation in the 2 years prior to mining. The Y2Rmetric is
a measure of both the effectiveness of vegetation restoration and the
time required for recovery. Figure 7 illustrates the relationship
between the vegetation restoration area and Y2R. On average, it
takes 4.68 years to restore vegetation in the Shendong coal base to
80% of its pre-mining level. Approximately 46.09% of the area meets
the Y2R level, which is significantly higher than the national land
reclamation rate in China, which is about 20% (Hu, 2019). This
suggests that the restoration efforts in the Shendong coal base are
highly effective. As Y2R increases, indicating a longer recovery time,
ΔNDNIregrowth initially rises and then declines (see Figure 9). This
pattern suggests that vegetation restoration is more rapid during the
initial stages but subsequently declines. This deceleration may result
from multiple factors, including the diminishing effectiveness of
ecological restoration measures, deteriorating soil quality, or
suboptimal environmental conditions impeding long-term
recovery. Over time, the impact of restoration efforts may
weaken. While initial interventions, such as human-assisted
techniques, can effectively promote vegetation growth, their long-
term success depends on maintaining soil fertility. A slowdown in
recovery often occurs when soil nutrients are depleted due to
insufficient fertilizer application or inadequate soil amendments.
Additionally, restoration efficacy is further limited if the restored
vegetation cannot adapt to fluctuating environmental conditions.
This trend in ΔNDNIregrowth draws key challenges in sustaining the
long-term recovery process, including issues with the durability of
restoration measures, adverse environmental changes, or other
ecological barriers that prevent vegetation from fully returning to
near pre-mining level. To address these challenges, it is essential to
rely on the combination of policy support, funding, technological
innovation, and social participation. Enhancing the adaptability and
durability of restoration measures is key, which may include soil

FIGURE 11
Percentage of Z-Scores for different county.
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improvement, ecological planting, and a diverse range of vegetation
choices to support effective vegetation recovery under external
pressures such as climate change. The regular monitoring and
evaluation of restoration strategies are crucial, as they provide
data that can be used to dynamically adjust strategies throughout
different phases of the restoration process. Based on monitoring
results, comprehensive and flexible strategies should be developed,
taking into account the specific needs of each stage. The
implementation of these measures will enhance ecosystem
resilience and facilitate the recovery of vegetation to pre-mining
conditions.

In subsequent studies, biodiversity and biomass will be
incorporated as additional assessment indicators to further evaluate
species richness, evenness, and the restoration of ecosystem functions.
This expanded approach is expected to improve the overall
comprehensiveness and reliability of ecosystem health evaluations.
Moreover, it is crucial to incorporate the impacts of climate change
and soil quality into future research frameworks, as these factors play a
pivotal role in influencing vegetation recovery, particularly over
the long term.

5 Conclusion

In this study, the DBEST was applied to the Shendong coal base
to assess its efficacy in monitoring vegetation disturbance caused by
large-scale surface mining. On this basis, the spatio-temporal trends
of vegetation restoration after mining disturbance in the mining
areas were further mapped and interpreted. The following
conclusions were drawn.

(1) DBEST was demonstrated to be a valuable tool. The
recognition accuracy of vegetation damage and restoration
in the surface coal mining area reached 0.90 and 0.78,
respectively. These results indicates that the DBEST can
provide another reliable option for monitoring vegetation
disturbance in the mining areas, which has high
application value.

(2) Historical reconstruction and assessment of vegetation
destruction and restoration process under surface mining.
The total area of vegetation destruction caused by surface
mining in the Shendong coal base is 449.65 km2, and most of
the vegetation destruction occurred after 2008. The
restoration area after vegetation destruction was
156.62 km2, which mainly occurred after 2013.

(3) Further evaluation of the restoration level of pixels in the
surface mining area revealed that 46.90% of the area disturbed
by mining during 1992–2017 met Y2R level at the end of the
time-series. The average Y2R was 4.68 years, which exceeds
the average for land reclamation in China. This indicates that
the restoration of vegetation in the Shendong coal base has
been effective.

(4) As Y2R value increased, ΔNDNIregrowth followed a pattern
of initially rising and then declining, indicating that
vegetation recovered more rapidly in the early stages
of restoration. However, the restoration rate tends to
slow down with time. This trend suggests that all
stages of the restoration process should be carefully

considered when planning and implementing
vegetation restoration projects. Addressing the
challenges associated with long-term restoration is
crucial for developing more comprehensive and
sustainable restoration strategies.
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