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Biodegradable mulch film (BDM) residues in farmland have attracted extensive
concern due to their low degradation rate in soil after the service period.
However, different reactions of the bacterial and fungal communities to
LDPEM and BDM residues have been confusing. A pot experiment was
implemented to explore the influences of 0.5% and 2.0% (w/w) LDPEM and
BDM residues on soil physicochemical properties and bacterial and fungal
communities in the present study. The results indicated that BDM residues
significantly increased soil pH and SOC to an increasing degree under the
treatment with a higher mulch film residue amount, while LDPEM residues did
not. The dissimilarities of the bacterial community between the treatment groups
and the control ranged from 0.24 to 0.27, while the dissimilarities of the fungal
community were higher, with the variation ranging from 0.43 to 0.46. Higher
variations in the internal correlation coefficient were observed in the fungal
community than in the bacterial community under the treatment groups. In
addition, the modules of the bacterial community network increased from 2 to
3 under the BDM 0.5% and BDM 2.0%. Comparatively, the treatments with BDM
residues doubled the modules of the fungal community network from 2 to 4.
Structural equation modelling indicated that mulch film residues had a higher
negative direct effect on fungal community structure (−0.752) than on bacterial
community structure (−0.600). However, soil physicochemical properties had no
significant influences on either bacterial or fungal communities. Overall, soil fungi
respond more violently to mulch film residues than bacteria do.

KEYWORDS

mulch film residues, soil fungi, soil bacteria, low-density polyethylene mulch film,
biodegradable mulch film

1 Introduction

Plastic film mulching technology is widely promoted worldwide due to its superiority in
maintaining soil temperature and moisture (Zhang et al., 2016). Plastic mulch film usage
was approximately 0.3 million tons in 1991 in China, and the number rapidly increased to
1.30 million by 2021 (Ren et al., 2023), and it will continue to grow in the future (Yang et al.,
2021). However, plastic mulch film residues in farmland have been a global concern due to
their long application history and low degradation rate (Mak-Mensah et al., 2021).
Numerous studies have demonstrated the significant harm of plastic film residues to

OPEN ACCESS

EDITED BY

Lyudmyla Symochko,
University of Coimbra, Portugal

REVIEWED BY

Yuan Li,
Lanzhou University, China
Ruimin Qi,
Southern University of Science and Technology,
China

*CORRESPONDENCE

Xiangqun Zheng,
zhengxiangqun@caas.cn

Lianfeng Du,
dulianfengyzs@163.com

Dongsheng Liu,
2243019559@qq.com

†These authors have contributed equally to
this work

RECEIVED 24 November 2024
ACCEPTED 13 March 2025
PUBLISHED 20 May 2025

CITATION

Liu L, Li L, ZouG, Gu J, ZuoQ, Zheng X, Du L and
Liu D (2025) Soil fungi respondmore violently to
both polyethylene and PBAT biodegradable
mulch film residues than bacteria do.
Front. Environ. Sci. 13:1533441.
doi: 10.3389/fenvs.2025.1533441

COPYRIGHT

© 2025 Liu, Li, Zou, Gu, Zuo, Zheng, Du and Liu.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 20 May 2025
DOI 10.3389/fenvs.2025.1533441

https://www.frontiersin.org/articles/10.3389/fenvs.2025.1533441/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1533441/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1533441/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1533441/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2025.1533441&domain=pdf&date_stamp=2025-05-20
mailto:zhengxiangqun@caas.cn
mailto:zhengxiangqun@caas.cn
mailto:dulianfengyzs@163.com
mailto:dulianfengyzs@163.com
mailto:2243019559@qq.com
mailto:2243019559@qq.com
https://doi.org/10.3389/fenvs.2025.1533441
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2025.1533441


soil environment and crops (Hua et al., 2024; Li et al., 2023a; Li et al.,
2023b). To alleviate residual pollution from plastic mulch,
researchers have developed biodegradable mulch film (BDM),
which can be degraded easily by microorganisms under
composting conditions (Song et al., 2021; Giordano et al., 2020).
Currently, the main component of BDM with the largest promotion
area currently is poly (butylene adipate-co-butylene terephthalate)
(PBAT). Although the degradation rate of commercially available
BDM derived from PBAT at present is faster than that of
polyethylene mulch films (Anunciado et al., 2021; Wang et al.,
2022). The soil-biodegradable plastic films do not decompose in a
lake sediment over 9 months of incubation (Van and Carsten, 2023).
The investigation of Deirdre et al. (2022) found that up to 58 months
were required to realize a degradation rate of approximately 90% in
soil according to modelling data forecasting. Therefore, BDM can
also cause residues in farmland before being degraded completely.

Soil harbours highly diverse microorganisms including bacteria,
fungi, archaea, viruses, protozoa, andmicroalgae, which are involved
in processes such as nitrogen fixation, decomposition of organic
matter, and the breakdown of toxic substances, helping to maintain
ecosystem functions and plant productivity (Bardgett and Van,
2014; De Vries et al., 2018). Plastic mulch residues can negatively
impact soil bacterial communities by several ways. Firstly, they
physically block soil pores, reducing aeration and water
infiltration, which favors anaerobic bacteria and inhibits aerobic
bacteria (Cao et al., 2022). The slow breakdown of plastics also
releases harmful chemicals, such as plasticizers and stabilizers,
which can leach into the soil and disrupt bacterial growth,
potentially harming microbial diversity (Cheng et al., 2024; Souza
et al., 2019). In addition, bacteria have been proven to actively
participate in the geochemical processes of low-density polyethylene
mulch film (LDPEM) residues, including migration, fragmentation
and degradation (Yuan et al., 2020; Dong et al., 2024). Soil bacteria
and their relationships with environmental factors in different soil
types contaminated with LDPEM residues have also been studied
(Hu et al., 2022; Fan et al., 2022; Dong et al., 2024). In addition to
various concentrations and sizes of LDPEM residues, pH and soil
organic carbon have been demonstrated to be the main
environmental factors influencing the structure of the bacterial
community (Song et al., 2023; Wilhelm et al., 2023). Besides
some bacterial groups that are sensitive to LDPEM residues,
potential LDPEM microplastic-degrading bacteria were also
identified in the study of Wu et al. (2022). Despite great
achievements brought about during the years of efforts regarding
the bacterial community in LDPEM residue-contaminated soil, the
responses of the bacterial community to BDM residues
remain unclear.

Fungi are indispensable soil microbes and perform crucial
functions in the transformation of soil nutrients (Khan et al.,
2024; Li et al., 2023). However, our knowledge about how soil
fungi respond to mulch film residues is extremely limited compared
with that of bacteria (Romano et al., 2024; Jiao et al., 2024). Some
toxic substances present in plastic materials may inhibit fungal
metabolic processes, thereby reducing fungal activity and altering
community composition (Francioni et al., 2024). Additionally, the
presence of plastic residues may affect the decomposition rates of
organic matter, as fungi play a crucial role in this process (Qi et al.,
2022). It has been demonstrated that 14% polyethylene and

polyvinyl chloride mulch film residues addition in aquic soil can
significantly decrease the diversity of the soil fungal community (Fan
et al., 2022). The relative abundance of Ascomycota, which is a
crucial decomposition agent in farmland, significantly increased by
20.1% with 14% LDPEM residues addition compared with control
(Fan et al., 2022). Mulch film residues could alter the abundance of
arbuscular mycorrhizal, which is highly dependent on the mulch
film material types, dose, and cultivation environment (De Souza
et al., 2019). Moreover, endophytic fungi could provide protection
for host plants in mulch film residue-contaminated soil (Fan et al.,
2022). Despite the studies mentioned above, fungal communities in
soil with LDPEM and BDM residues are far less studied.

Despite the involvement of both bacteria and fungi in the
degradation of organic matter, bacteria are generally regarded as
significant regulators of the rapid carbon metabolism pathways of
soils, whereas fungi are well known for their performance in the
decomposition of refractory and highly polymeric organic matter
(Wengel et al., 2006; Perkins et al., 2019; Fierer et al., 2007). Despite
the distinct roles of bacteria and fungi in soil functions, they regulate
soil biogeochemical processes jointly and cooperate closely (Zhang
et al., 2021a). This is because the different contributions and close
cooperation of bacteria and fungi on nutrient cycling and energy
flow of the soil food web guarantee the stability of the soil nutrient
supply (Rashid, et al., 2016; Li et al., 2016). Multiple studies have
demonstrated that the optimum environmental conditions for the
reproduction of fungi and bacteria are different (Xu et al., 2023; Fan
et al., 2022), and their sensitivities to environmental disturbances are
also different. For example, soil bacteria are more susceptible to
long-term throughfall reduction than fungal communities in warm-
temperate forests (Zhang et al., 2021b). While, the study of Chen
et al. (2020) revealed that soil fungal networks are more sensitive to
grazing exclusion than bacterial networks. Variations in the soil
micro-environment induced by LDPEM and BDM residues (Gao
et al., 2021) could stimulate differential responses of bacteria and
fungi, which have not been studied to our knowledge.

To this end, a well-controlled pot experiment planting Chinese
cabbage with different levels of LDPEM and BDM residues was
conducted to examine the influences of mulch film residues on soil
bacterial and fungal communities.

2 Materials and methods

2.1 Experimental design and sampling

The soil applied in the present study was collected in farmland in
the plough layer (0–20 cm) with a alluvial soil texture in Beijing,
China, which had never been mulched by LDPEM or BDM. The
collected soil was air-dried and passed through a 2-mm sieve for
experiment. The main component of the LDPEM low density
polyethylene. The color of the LDPEM is white with the
thickness of 0.014 mm. The applied BDM was the most widely
promotedmulch film in China, with themain component being poly
(butylene adipate-co-butylene terephthalate) (Su et al., 2020). There
are also Poly lactic acid (PLA) and inorganic materials such as
calcium carbonate. The color of the mulch is black with the thickness
of 0.01 mm. Both the LDPEM and BDM were cut into three sizes by
scissors, namely, 10 mm× 10mm, 5mm × 5mm and 1mm× 1mm,
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to imitate residues in farmland according to the literature (Huang et al.,
2020; Liu et al., 2018; Zhou et al., 2020). The three particle sizes were
mixed in equal proportions. Five treatments with three replicates
planting Chinese cabbage were conducted with ceramic planting
containers (L: 45 cm × W: 23 cm × H: 17 cm), namely: 1) CK, no
mulch film fragment addition; 2) LDPEM 0.5%, 0.5% (w/w) of LDPEM
fragments added to soil; 3) LDPEM 2.0%, 2.0% (w/w) of LDPEM
fragments added to soil; 4) BDM 0.5%, 0.5% (w/w) of BDM fragments
added to soil; and 5) BDM 2.0%, 2.0% (w/w) of BDM fragments added
to the soil. The pots were installed the smart greenhouse at Beijing
Academy of Agriculture and Forestry. The temperature and humidity
during the experiment were recorded every 10 min, as shown in the
Supplementary Figure S1. It lasted for 54 days from sowing to
harvesting. The irrigation amount was 500 mL for each time with a
frequency of twice a week. No fertilizers were applied in the present
study to avoid the interference of fertilization on soil microbial
community. Other management measures for all treatments were
consistent. Soil samples were collected and divided into two parts in
parallel after crop harvesting. One part was applied to determine the
soil’s physicochemical properties with air drying. The other part was
stored at −80°C before the measurements of soil microbes.

2.2 Analysis of soil physicochemical
properties and enzymes activities

The soil property indices determined in this study included pH, soil
electrical conductivity (EC), soil organic carbon (SOC), available
nitrogen (AN), available phosphorus (AP), and available potassium
(AK) following the description of Bao, (1999). In briefly, pH and EC
were determined by electrode method with the soil to water ratio of 1:
2.5 and 1:5 respectively. SOC was determined by oxidizing organic C
with potassium dichromate. AN, AP and AK were determined by
Kjeldahl digestion, Olsen method and flame photometry respectively.

Benzene disodium phosphate colorimetric method was applied to
determined the activity of phosphatase (AKP). The AKP activity is
expressed in micromolar (μmol) of phenols in 1.0 g of soil after 24 h
(Peng et al., 2022). Urease (UE) activity was determined using the
sodium phenate-sodium hypochlorite colorimetric method. The UE
activity is expressed in microgram (μg) of NH4

+-N in 1.0 g of soil after
24 h (Lu and Chen, 2022). Themethod of pyrogallol oxidation was used
to determine the activity of peroxidase (POD). The POD activity is
expressed in milligram (mg) of quinone in 1.0 g of soil after 24 h (Li
et al., 2022).

2.3 Analysis of soil bacterial and fungal
communities

According the instructions of the soil DNA kit (Omega Bio tek,
Norcross, GA, U.S.) to extract the total genomic DNA, whose quality
was detected by 1% agarose gel electrophoresis and spectrophotometry
(optical density at 260 nm/280 nm ratio). Bacterial 16S rRNA and
fungal ITS1 gene were sequenced for bacterial and fungal communities
with the bacterial primer set 338F (5′-ACTCCTACGGGAGGCAGCA-
3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) and fungal
primer set ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and
ITS2 (5′- GCTGCGTTCTTCATCGATGC-3′) Wang et al. (2022).

The PCR reaction system were performed in triplicate 25 mixtures
including 4 μL of 5 × TransStart FastPfu buffer, 2 μL 2.5 mM dNTPs,
0.8 μL upstream primer (5uM), 0.8 μL downstream primer (5uM),
0.4 μL TransStart FastPfu DNA polymerase. The amplification
procedure is as follows: pre denaturation at 95°C for 3 min, 27
cycles (denaturation at 95°C for 30 s, annealing at 55°C for 30 s,
and extension at 72°C for 30 s), followed by stable extension at 72°C for
10 min, and finally stored at 4°C. The 2% agarose gel and DNA gel
recovery and purification kit (PCR Clean Up Kit, China Yuhua) was
applied to recover PCRproducts and purify the recovered products. The
detection and quantify of the recovered products was by Qubit 4.0
(Thermo Fisher Scientific, USA). The library of purified PCR products
was build byNEXTFLEXRapidDNA SeqKit. Illumina PE300 platform
was applied for sequencing (Majorbio Bio-pharm Technology Co., Ltd.,
Shanghai, China).

2.4 Data analysis

To obtain the species classification for each operational taxonomic
unit (OTU), the Bayesian RDP classifier was used for taxonomic
analyses at a 97% similarity level. One-way analysis of variance
(ANOVA) was applied to analyse soil physicochemical properties,
composition of bacterial and fungal communities on phyla level.
The structure of bacterial and fungal communities at the OTU level
was calculated by principal component analysis (PCA) by the software
of R. The correlations of bacterial and fungal communities at OTU level
was calculated by by “hmisc” in R. The distribution of correlation
coefficients was analyzed to clarity the distribution patterns of bacterial
community and fungal community respectively. Absolute value of all
correlation coefficients was calculated to clarity the absolute distribution
patterns of bacterial community and fungal community respectively.
The networks of bacterial and fungal communities were performed by
“igraph” in R (R > 0.80, P < 0.01). The significant differences between
groups were determined based on network topological indices were
determined by Kolmogorov-Smirnov test (Banerjee et al., 2019). The Z
score analysis among mulch film residues, physicochemical properties
and microbial community structure was carried out by Origin 2021.
Furthermore, the relationships among mulch film residues,
physicochemical properties and microbial community structure were
calculated by a structural equation model (SEM) by the software of R
(Zhang et al., 2022). The Jaccard dissimilarity index is calculated using
the following formula, where a is the number of species shared between
the two samples, and b and c are the numbers of species that appear
only in the first and second samples, respectively.

Jdis � 1 − a
a + b + c

3 Results and discussion

3.1 Soil physicochemical properties and
enzymes activities

Variations in pH, EC, SOC and available nutrients under the
stress of different concentrations and types of mulch film residues
are shown in Figure 1. Soil pH showed no significant responses to
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LDPEM residues, which was in accordance with the result of Wu
et al. (2022). Comparatively, the BDM residues increased the soil
pH significantly, and the enhancement degree increased with the
increasing residual amount (Figure 1a). The degradation of
biodegradable polymers in solution could generate acidic
monomers and oligomers, which accounted for the decrease in
solution pH (Wei et al., 2022). It would be taken for granted that the
soil pH would decrease due to the release of organic acids similar to
the solution. Unexpectedly, no decrease but a substantial increase in
soil pH was determined under 0.5% BDM and 2.0% BDM. The
discrepant responses of pH in soil and solution might be induced by
differences in degradation progress and mechanisms (Wei et al.,
2022; Deirdre et al., 2022). Compared with CK, there was no
significant difference in EC in the treatment groups (Figure 1b).
Studies have demonstrated that soil EC is mainly affected by ion
concentration and charge, including Cl−, Na+, and K+ (Yan and
Petra, 2013; Yasenjiang et al., 2019). The main elements contained in
LDPEM and BDM were carbon, hydrogen and carbon, and
hydrogen and oxygen (Pei et al., 2020; Zhang et al., 2021), and
these elements made little contribution to soil EC. The two
treatments with BDM residues significantly increased SOC by
7.66% and 12.45%, while LDPEM residues did not (Figure 1c).
No significant influence of LDPEM residues on SOCwas also proven
in a previous study (Wu et al., 2022); rather, the influence was
induced mainly by the inertness of LDPE hindering the release of

carbon (Restrepo-Flórez et al., 2014). There have also been studies
indicating that LDPEM residues decrease SOC (Dong et al., 2015).
Different influences of LDPEM residues on SOC might be induced
by the various soil types and culturing durations. Different from
LDPEM, the carbon in BDM could be easily metabolized by
microorganisms, which could replenish the soil carbon pool.

Overall, all three types of available nutrients showed a
downtrend in the four treatment groups (Figures 1d–f). In detail,
LDPEM 2.0%, BDM 0.5% and BDM 2.0% decreased soil AN by
4.50%, 7.42%, and 8.14%, respectively, compared with CK
(Figure 1d). The four treatment groups significantly decreased
the soil AP content by 6.29%, 7.17%, 8.14% and 7.99% compared
with the control, as shown in Figure 1e. In terms of AK, a significant
difference was found between the control and BDM 2.0%
treatments, with an 11.49% reduction in the BDM 2.0%
treatment (Figure 1f). The downtrend of available nutrients,
especially for AN and AP, under the treatments with mulch film
residues was in line with the findings of Dong et al. (2015) and
Koskei et al. (2021). There could be several reasons accounting for
these results. First, there was almost no nitrogen, phosphorus or
potassium in either LDPEM or BDM (Zhang et al., 2021; Pei et al.,
2020). Moreover, film residues had adverse effects on soil physical
properties, including bulk density and water holding capacity, which
are closely related to soil available nutrients (De Souza et al., 2018).
On the other hand, studies have indicated that soil enzyme activities,

FIGURE 1
Soil physicochemical properties under different treatments. Note: EC, soil electrical conductivity; SOC, soil organic carbon; AN, available nitrogen;
AP, available phosphorus; AK, available potassium; CK, no mulch film fragment addition; LDPEM 0.5%, 0.5% (w/w) of LDPEM fragments added to soil;
LDPEM 2.0%, 2.0% (w/w) of LDPEM fragments added to soil; BDM 0.5%, 0.5% (w/w) of BDM fragments added to soil; BDM 2.0%, 2.0% (w/w) of BDM
fragments added to the soil. Different letters (a-f) denote significant differences.
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which act as mediators and catalysts to realize the biochemical
processes of soil ecosystems, would be inhibited by mulch film
residues, resulting in a decrease in nutrient conversion efficiency (Yu
et al., 2020).

The variations of alkaline phosphatase (AKP), urease (UE), and
peroxidase (POD) was determined as shown in the Figure 2. The
addition of BDM residues significantly decreased soil AKP activities
by 11.96% and 15.99% under the treatments of BDM 0.5% and BDM
2.0% respectively, which was in accordance with the study of Awet
et al. (2018). On the contrary, the addition of mulch film residues for
both LDPEM and BDM significantly increased the activities of UE
and POD. Compared with CK, the activities of UE significant
increased by 4.43%–6.37% under the four treatments with mulch
film residues as shown in the Figure 2b. Studies have demonstrated
the mulch film residues can stimulate soil UE activity and affect soil
carbon and nitrogen content (Huang et al., 2019; Judy et al., 2019).
While, the activities of POD increased by 9.37%–12.5% under the
four treatments with mulch films residues. Researches have
confirmed that soil POD is significantly positively correlated with
soil aerobic microorganisms (Huang et al., 2019; Liu et al., 2017a).
Mulch film residues could increase the abundance of soil aerobic
microorganisms by increasing soil porosity, further enhancing POD
activity (Qi et al., 2020b; Gao et al., 2021).

3.2 Structure and composition of bacterial
and fungal communities

The structures of both bacterial and fungal communities were
strongly, but differently, affected by mulch film residues (Figure 3).
The PCA at the OTU level of the bacterial and fungal communities
indicated significant differences among the different treatments
(Figures 3a, e). For bacteria and fungi, the five treatments were
distributed in the whole quadrants, with the sum explanation
proportions of 67.62% and 86.61% for the first two principal
components, respectively. The results of LDPEM 2.0% and BDM
2.0% were farther from CK compared with those of LDPEM 0.5%

and BDM 0.5% for bacteria and fungi, in line with previous studies
that indicated greater influences in the groups with higher
concentrations of residues on the microbial community (Fan
et al., 2022), which highlights the dose-dependent nature of
mulch film residue impacts on soil microbial ecosystems.

LDPEM 0.5%, BDM 0.5% and BDM 2.0% significantly
decreased microbial community richness and evenness compared
with the control, as shown in Figures 2f, 3b. The richness in BDM
2.0% was the lowest, with reductions of 6.25% and 4.75% for the
bacterial community and fungal community, respectively.
Compared with the control, BDM 2.0% decreased the evenness
of the bacterial and fungal communities by 1.15% and 7.34%,
respectively, as shown in Figures 3c, g, indicating that a high
concentration of BDM residues significantly influenced the
structure of the microbial community, which has also been
demonstrated by Hu et al. (2022). However, no significant
difference was observed in the richness and evenness between the
control and 0.5% LDPEM for both bacteria and fungi, which was
attributed to the certain buffer capacity of the soil (Malczyk et al.,
2008). In addition, the same concentration of BDM residues had a
stronger effect on soil microorganisms than that of LDPEM residues,
which was mainly induced by the different compositions of the two
types of mulch film (Liu et al., 2022). BDM can be degraded by
microorganisms, while LDPEM is rarely utilized by microbes
(Tribedi and Samrat, 2017).

To further clarify the influences of mulch film residues on soil
bacteria and fungi, Jaccard dissimilarities between the control and
each treatment for the bacterial and fungal communities were
calculated, as shown in Figures 3d, h. The dissimilarities of the
bacterial community between the treatment groups and the control
ranged from 0.24 to 0.27. The dissimilarities of the fungal
community varied from 0.43 to 0.46 (Figure 3h), and the
dissimilarities under the 0.5% LDPE treatment were significantly
lower than those under the other three treatments. The
dissimilarities of the fungal community were higher under the
same treatment than the bacterial community, as shown in
Figures 3d, h, which indicated that fungi were more sensitive to

FIGURE 2
Soil enzymes activities under different treatments. Note: AKP, alkaline phosphatase; UE, urease; POD, peroxidase; CK, no mulch film fragment
addition; LDPEM 0.5%, 0.5% (w/w) of LDPEM fragments added to soil; LDPEM 2.0%, 2.0% (w/w) of LDPEM fragments added to soil; BDM 0.5%, 0.5% (w/w)
of BDM fragments added to soil; BDM 2.0%, 2.0% (w/w) of BDM fragments added to the soil. Different letters (a-c) denote significant differences.
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FIGURE 3
The response of the bacterial and fungal communities to mulch film residues. PCA of bacterial (a) and fungal (e) communities. Richness of bacterial
(b) and fungal (f) communities. Evenness of bacterial (c) and fungal (g) communities. Jaccard dissimilarity of bacterial (d) and fungal (h) communities
between the control and treatments. Note: LDPEM 0.5%, 0.5% (w/w) of LDPEM fragments added to soil; LDPEM 2.0%, 2.0% (w/w) of LDPEM fragments
added to soil; BDM 0.5%, 0.5% (w/w) of BDM fragments added to soil; BDM 2.0%, 2.0% (w/w) of BDM fragments added to the soil.
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mulch film residues. Previous studies have demonstrated that the
influences of long-term application of nitrogen fertilizer on the
UniFrac distance of the fungal community were greater than those
of the bacterial community (Wang et al., 2019), which was attributed
to the higher resistance to interference of bacteria from its higher
growth rate and unicellular properties (Powell et al., 2015).
Moreover, the lower habitat niche breadths of fungi than bacteria
resulted in a lower tolerance of fungi to environmental variation
(Zhao et al., 2019). At lower concentrations (0.5%), LDPEM is more
stable and resistant to microbial degradation, so its impact on soil
microorganisms is relatively small. Bacterial communities are
generally better able to adapt to this stable environment, with
their metabolic activity being less affected by the mulch film
residues. While fungal communities also show some adaptability,
they are more sensitive to environmental changes compared to
bacteria. Therefore, under the 0.5% LDPEM treatment, the
response of the fungal community is more subtle compared to
that of the bacterial community. However, at the higher
concentration of BDM 2.0%, the differences in the responses of
bacteria and fungi become more pronounced. This is primarily due
to the biodegradability of BDM. The degradation of BDM residues
in the soil releases more organic matter, providing rich carbon
sources for microorganisms. However, the degradation process of
BDM may also promote the rapid growth of specific microbial
groups. For fungal communities, although the degradation products
of BDM provide additional nutrients, the excessive stimulation may
disrupt the balance of the fungal community. As a result, the impact
of BDM 2.0% on bacteria is milder compared to fungi, with a
significant decrease in the evenness of the fungal community,
demonstrating stronger niche competition and changes in
community structure.

As the dominant strains of soil bacteria (Delgado-Baquerizo
et al., 2018), the bacterial phyla Actinobacteriota, Proteobacteria,

Acidobacteriota, Chloroflexi, and Firmicutes were the top five
bacterial phyla, accounting for 81.75%–86.12% of the total soil
bacterial community (Figure 4a; Supplementary Table S1).
Actinobacteriota and Proteobacteria, which are capable of
decomposing microplastics (Wu et al., 2022), increased by
24.38% and 24.32% in BDM 2.0% compared with the control,
accelerating the degradation of BDM suggesting that BDM may
stimulate the growth of specific microbial communities that
facilitate its degradation. The increased abundance of
Actinobacteria and Proteobacteria could be associated with
their enhanced metabolic activity, particularly in degrading
complex organic compounds such as plastic polymers (Liu
et al., 2022). However, the relative abundance of
Acidobacteriota decreased significantly by 40.88% in BDM
2.0%. The increased soil pH under the 2.0% BDM treatment
could explain the decrease in the relative abundance of
Acidobacteria. Acidobacteria are generally more competitive in
low pH environments (Liu et al., 2020), and their reduced
abundance suggests that soil pH changes have a profound
effect on microbial community structure. Moreover, LDPE
2.0%, BDM 0.5%, and BDM 2.0% significantly decreased the
relative abundance of Gemmatimonadota and Myxococcota,
which is in line with the previous work of Liu et al. (2021).
Gemmatimonadota and Myxococcota are typically involved in
organic matter decomposition and carbon and nitrogen cycling
in the soil ecosystem (Ning et al., 2024). The changes in the
relative abundance of Gemmatimonadota and Myxococcota may
be due to changes in soil organic matter content or microbial
interaction patterns induced by the presence of these plastic
materials, which in turn affect the growth and metabolic
activity of these bacterial groups.

Regarding the fungal community, the top five determined phyla
were Basidiomycota, Ascomycota, Mortierellomycota,

FIGURE 4
The community composition for bacteria (a) and fungi (b) at the phylum level. Note: LDPEM 0.5%, 0.5% (w/w) of LDPEM fragments added to soil;
LDPEM 2.0%, 2.0% (w/w) of LDPEM fragments added to soil; BDM 0.5%, 0.5% (w/w) of BDM fragments added to soil; BDM 2.0%, 2.0% (w/w) of BDM
fragments added to the soil.
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Olpidiomycota, and Chytridiomycota, making up 87.98%–99.35%
of the fungal sequences (Figure 4b; Supplementary Table S2),
which was consistent with the findings of the majority of studies
(Paungfoo-Lonhienne et al., 2015; Feng et al., 2019; Pan et al.,
2020), indicating the governing position of these phyla in soil
fungal communities. The relative abundances of Basidiomycota
were 18.33%, 24.99% and 24.21% lower in the LDPEM 0.5%,
LDPEM 2.0% and BDM 2.0% treatments than in the control, but
no significant difference was observed in the relative abundance
of Basidiomycota between the BDM 0.5% and CK treatments
(Figure 4b). The reduction in Basidiomycota in the treatments
with plastic residues might be due to the inability of these fungi
to degrade the plastic film residues, which highlights the
potential inhibitory effects of plastic materials on key
decomposition agents in agricultural soils, affecting microbial
diversity and functioning. Studies have indicated that
Basidiomycota are key decomposition agents in agricultural
soil for phenolic compounds (Martínková et al., 2016). The
combination of its inability to degrade mulch film residues and
the enhancement of the relative abundance of fungal phyla
enabling the degradation of mulch film residues resulted in a
decrease in Basidiomycota.

The relative abundances of Ascomycota in LDPEM 2.0% and
BDM 2.0% were 34.25% and 32.86%, respectively. However, the
LDPEM 0.5% and BDM 0.5% treatments had no significant effect
on the relative abundance of Ascomycota. The significant increase
in Ascomycota in the higher concentration treatments may reflect
the role of this microbe in breaking down plastic film residues. A
similar finding was recorded by Fan et al. (2022), whose study
indicated that high concentrations of mulch residues could
stimulate the abundance of Ascomycota because Ascomycota
can produce hydrolase and promote mulch film degradation
(Phosri et al., 2012). This supports the idea that the presence
of higher concentrations of mulch residues encourages the
growth of specific fungal groups, which are involved in the
degradation process, providing further insight into the
microbial adaptation to plastic pollution. Apart from BDM
2.0%, which increased Mortierellomycota significantly by
86.08%, the other three treatments with residues showed no
significant influence on Mortierellomycota compared with the
control. Yuan et al. (2020) indicated that diseased soils harboured
a higher relative abundance of Mortierellomycota, which has a
strong decomposition ability (Wu et al., 2021). The significant
increase inMortierellomycota in the BDM 2.0% treatment may be
linked to its specific metabolic pathways or the ability to adapt to
the presence of BDM, enhancing its growth and activity in
degrading organic matter. The four treatment groups had no
significant influence on the abundance of Olpidiomycota, in
agreement with the works of Zhang et al. (2020) and Liu et al.
(2020), which revealed that Olpidiomycota was not sensitive to
external disturbances. LDPEM 2.0% and BDM 2.0% significantly
increased the relative abundance of Chytridiomycota, which was
approximately five and four times that of the control, respectively
(Figure 4b; Supplementary Table S2). Studies have demonstrated
that most Chytridiomycota are complex compounds-degrading
including cellulose- and chitin (Letcher et al., 2008). Therefor,
Chytridiomycota might be responsible for mulch film residue
degradation.

3.3 Networks of bacterial and fungal
communities

To clarify the internal relationships of the bacterial and fungal
communities under different treatments, the correlations of the
bacterial community and fungal community at the genus level
were calculated. Similar to the study of De Vries et al. (2018), the
distribution of the correlation coefficients for both bacteria and
fungi presented a trend similar to the normal distribution for all
correlations, as shown in Supplementary Figure S1A. When
considering correlation coefficients greater than 0.6, which was
regarded as the cut-off of significant correlation, the negative
correlation coefficients of the bacterial community showed an
increasing trend in the treatments with mulch film residues,
especially for the treatment of BDM 2.0%, which significantly
increased the negative correlation by 45.68% (two side x2 - test of
proportion; P < 0.05). The competitive and antagonistic interactions
among bacterial communities may be enhanced with the increase of
mulch film residues due to the increase of the negative correlation.
In particular, the treatment of BDM 2.0% significantly intensified
this antagonism, likely due to the chemical composition of BDM,
which bacteria might find less adaptable. This phenomenon
suggested that ecological niche overlap between bacteria may
decrease, resulting in stronger resource competition within the
bacterial community. In contrast, the treatments of LDPEM
0.5%, LDPEM 2.0%, BDM 0.5% and BDM 2.0% significantly
(two-sided x2 - test of proportion; P < 0.05) decreased the
positive correlation more than 0.6 for the bacterial community
by 13.92%, 19.46%, 22.52% and 38.49%, respectively, compared
with the control, which indicated that BDM residues had a greater
impact on bacterial internal relationships than LDPEM residues
(Supplementary Figure S1A). This finding was supported by Liu
et al. (2022), revealing that microorganisms were more perceptive of
the chemical compositions of BDM than of LDPEM. On the other
hand, the decrease in the positive correlation and increase in the
negative correlation indicated that mulch film residues enhanced the
antagonism among bacteria. The presence of mulch film residues
likely altered the soil microenvironment, intensifying competition
among bacteria. Particularly in the BDM treatment, this competitive
relationship became more pronounced. Due to the environmental
stress posed by the mulch film residues, bacteria may have been
forced to increase negative interactions as a strategy to outcompete
one another. Compared with the control, the negative correlation
coefficients for the fungal community were significantly increased by
40.71% under BDM 2.0% (two-sided x2 - test of proportion; P <
0.05). However, no significant difference was observed among
LDPEM 0.5%, LDPE 2.0%, BDM 0.5% and the control (two-
sided x2 - test of proportion; P > 0.05) suggesting that BDM
residues have a more significant effect on the fungal community.
The BDM likely exerted a strong influence on fungal communities,
promoting increased antagonism between fungal species.

For the positive correlation coefficients, the LDPEM 0.5%,
LDPEM 2.0%, BDM 0.5% and BDM 2.0% treatments
significantly increased the positive correlation coefficients by
43.06%, 47.59%, 47.91% and 49.15%, respectively, compared with
the control (two-sided x2 - test of proportion; P < 0.05), which
suggesting that mulch film residues enhanced cooperative
relationships within the fungal community. Notably, higher
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variations in the correlation coefficients of fungi under the
treatments with mulch film residues were observed compared
with bacteria, indicating greater changes in internal relations in
the fungal community than in the bacterial community. This could
be explained by the lower habitat niche breadths of fungi than
bacteria, which resulted in a lower tolerance of fungi to
environmental variation induced by interference than bacteria
(Zhao et al., 2019).

Networks at the genus level for different treatments of the
bacterial community and fungal community are shown in
Figure 5. Overall, the network density of bacterial networks was
significantly higher than that of fungal networks under the same
treatment, indicating stronger interactions in the bacterial
community, which was supported by the study by De Vries et al.
(2018). To deeply determine network structure variations, the

distribution patterns of the bacterial community and fungal
community under different treatments were analysed. As shown
in Figure 5, the module numbers of the bacterial community and
fungal community also responded to mulch film residues. In detail,
there were 2 modules in the networks of the bacterial community for
the CK, LDPEM 0.5% and LDPEM 2.0% treatments. However, there
were 3 modules of the bacterial community in BDM 0.5% and BDM
2.0%, and they increased by a ratio of 50.0% compared with the
control, indicating that BDM residues could disturb the soil bacterial
community further (Liu et al., 2022). Modules of the fungal
community doubled from 2 to 4 in BDM 0.5% and BDM 2.0%
compared with the control. Stronger module variation for the fungal
community network probably resulted from the stronger structural
variation of the fungal community than that of the bacterial
community, as shown in Figures 3, 4.

FIGURE 5
Networks of the bacterial community and fungal community at the genus level. The significant difference between groups based on network
topological indices (*: p <0.05). Note: LDPEM0.5%, 0.5% (w/w) of LDPEM fragments added to soil; LDPEM 2.0%, 2.0% (w/w) of LDPEM fragments added to
soil; BDM 0.5%, 0.5% (w/w) of BDM fragments added to soil; BDM 2.0%, 2.0% (w/w) of BDM fragments added to the soil.
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FIGURE 6
Z scores of the pH, EC, SOM, AN, AP, AK, richness and evenness for the bacterial community (a) and fungal community (b) Partial least squares path
model for the bacterial community (c) and fungal community (d) Path coefficients were calculated after 1000 bootstrap replicates and are reflected by
the width of the arrow, with blue and red indicating positive and negative effects, respectively. Dashed arrows show that the coefficients did not
significantly differ from 0 (P > 0.05).
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3.4 The relationship among mulch film
residues, physicochemical properties,
enzyme activities, and microbial
community structure

To synthetically evaluate how mulch film residues influenced
physicochemical properties, enzyme activities, and microbial
community structure, Z score analysis was carried out. The Z
scores of richness, evenness, AK, AP, AN, and AKP decreased
for bacterial communities in the treatment groups compared with
CK. However, pH, EC, SOC, UE and POD showed adverse trends, as
shown in Figure 6a. The Z-score of soil physicochemical properties
in fungal community structure is different from bacterial
communities. Specifically, the Z scores of evenness, AK, AP, AN
and AKP decreased in the treatments with mulch films compared
with CK, especially for BDM 2.0% (Figure 6b). However, the
richness, pH, EC, SOC UE and POD scores increased in the
treatment groups. Differences in the results of the Z scores for
the bacterial and fungal communities also indicated the various
reactions of the bacterial and fungal communities to mulch film
residues. To further determine the complex interrelationships of
mulch film residues on soil bacterial and fungal community
structures, SEMs were established, as shown in Figures 6c, d,
respectively. The results indicated that mulch film residues
significantly influenced soil physicochemical properties and
enzymes activities (P < 0.05), which are closely related to the
growth and development process of crops (Mandal et al., 2003),
in line with the study of Wang et al. (2020). This suggests that the
degradation and accumulation of mulch residues can alter the basic
soil environment, potentially hindering plant growth by affecting
nutrient availability and soil structure, similar to how previous
studies have pointed out the role of soil properties in crop
performance. Consequently, urgent actions are needed to tackle
film mulch pollution to ensure global food security, whether for
LDPEM residues or BDM residues. Mulch film residues had a
significantly negative direct influence on the structure of the
bacterial community (−0.600) and fungal community structure
(−0.752), which indicated that mulch film residues had a greater
impact on soil fungal communities. Fungi often play more
specialized roles in decomposition and nutrient cycling, may be
more sensitive to the presence of mulch film residues, leading to a
more pronounced alteration in their community composition
compared to bacteria. The influences of soil enzymes activities on
bacterial community and fungal community structure were
significant with path coefficient
of −0.724 and −0.765 respectively. The close relationship between
enzyme activities and microbial structure suggests that enzymatic
processes are key drivers of microbial community composition.
However, the soil physicochemical properties had no significant
influences on the bacterial and fungal communities (P > 0.05), which
indicates that while physical and chemical soil properties are
important, mulch film residues appear to exert a more direct and
pronounced effect on microbial community structures,
overshadowing the influence of other soil characteristics. This
finding was supported by the study of Wu et al. (2021), who also
revealed that residues of mulch film significantly influenced soil
microbial communities but did not alter soil physicochemical
properties. Therefore, mulch film residues directly affected soil

microbial communities, though not by influencing soil
physicochemical properties.

3.5 The significance of soil bacterial ad
fungal community for agricultural
environmental protection and sustainable
development

Promote the circulation of soil organic matter: Soil bacteria and
fungi decompose organic matter, converting it into nutrients that
can be absorbed and utilized by plants, which could improve soil
fertility and provides a continuous supply of nutrients for
agricultural production (Puškarić et al., 2021; Chen et al., 2023).
Improve soil structure: Bacteria and fungi promote aggregation of
soil particles, and form a good soil structure, which improves soil
aeration and water retention and provides a good soil environment
for plant growth (Navas et al., 2021; Rashid et al., 2016). Promote
plant growth: Some soil bacteria and fungi can form symbiotic
relationships with plants, helping them absorb nutrients, resist
diseases and pests, and promote plant growth, which improve
plant stress resistance and allow plants to grow normally under
adverse conditions (Feng et al., 2023). Decompose residual plastic
film: Soil bacteria and fungi can decompose residual plastic film,
converting it into small molecular substances, thereby reducing its
negative impact on the soil. The microplastics produced by the
residual film after degradation will increase the soil microbial
biomass carbon (Liu et al., 2022; Xiang et al., 2024).

4 Conclusion

The present study investigated the different reactions of bacterial
and fungal communities as well as soil physicochemical properties to
LDPEM and BDM residues. The results indicated that BDM
residues significantly increased soil pH and SOC, with greater
enhancement observed in higher residue treatments, while
LDPEM residues did not. Both film types residues reduced AN,
AP, and AK levels. The dissimilarities of the fungal community
between the treatment groups and the control were greater than
those of the bacterial community. Higher variations in the internal
correlation coefficient were observed in the fungal community than
in the bacterial community under the treatments with mulch film
residues compared with CK. Modules of the bacterial community
network increased from 2 to 3 under the BDM 0.5% and BDM 2.0%.
Comparatively, BDM 0.5% and BDM 2.0% doubled the modules of
the fungal community network from 2 to 4. Notably, SEM indicated
that residues of mulch film and soil enzymes had a higher negative
direct effect on fungal community structure than on bacterial
community structure. The soil physicochemical properties had no
significant influences on the bacterial and fungal communities (P >
0.05), suggesting that the effects of mulch residues on soil bacterial
and fungal communities were not produced through the changes of
soil physicochemical properties. In summary, our findings
underscore the differential microbial responses to mulch residues,
particularly emphasizing the heightened respond of soil fungi to
mulch film residues compared to bacteria, thus enhancing our
understanding of the broader environmental impacts of mulch
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residues on soil ecosystems. Future research could focus on
elucidating the long-term effects of mulch residues on soil
microbial communities across different agricultural systems.
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