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The rapid acceleration of urbanization, coupled with intensified human activities,
has exacerbated the tension between human development and the ecological
environment. This issue is particularly pronounced in Jiangsu Province, a major
economic and commercial hub in China. Achieving a balance between ecological
environmental quality and urbanization levels is critical for promoting regional
sustainable development, with significant implications for both ecosystem
management and urban planning. To investigate the intricate interactions
between the ecological environment and urbanization in Jiangsu Province, we
employed theModified Remote Sensing Ecological Index (MRSEI) model, utilizing
Google Earth Engine (GEE) and MODIS imagery to construct an ecological
environmental quality assessment for the province from 2002 to 2022.
Concurrently, the Population–Economic–Sociology–Space (PESS) model,
combined with socioeconomic data and the Analytical Hierarchy
Process–Criteria Importance Through Intercriteria Correlation (AHP-CRITIC)
weighting method, was used to develop the Urbanization Level Index (ULI).
The coupling coordination degree (CCD) model was applied to analyze the
coordination relationship between the ecological environment and
urbanization, while the Geodetector was used to identify the key factors
influencing the MRSEI. The findings include: (1) the MRSEI incorporates more
comprehensive indicator information than the RSEI and demonstrates greater
sensitivity in capturing greenness and dryness variations in Jiangsu Province; (2)
the ecological environment in northern Jiangsu has shown steady improvement,
whereas southern Jiangsu experienced significant deterioration from 2002 to
2010, followed by recovery and stabilization from 2010 to 2022; (3) the
urbanization level in southern Jiangsu is higher and has grown rapidly, while
urbanization in northern Jiangsu accelerated after 2014 but remains at a lower
level compared to the south; (4) the urbanization lag in northern Jiangsu and the
eco-environment lag in southern Jiangsu have both improved, enhancing the
overall coordination between ecological environment and urbanization; and (5)
Jiangsu Province exhibits a significant heat island effect, with improvements in
greenness, heat, and dryness having a positive influence on the MRSEI. This
research provides an analytical framework and theoretical insights to address the
persistent conflict between urbanization and ecological sustainability. The
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findings offer a scientific basis for policy formulation, supporting regional
sustainable development strategies and urban planning in rapidly urbanizing areas.
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AHP-CRITIC weighting method, coupling coordination degree model, geodetector

1 Introduction

Rapid economic development has accelerated urbanization in
China, with the urbanization rate increasing from 39.09% in 2002 to
65.22% in 2022, reaching an average annual growth rate of
3.3 percentage points. Such rapid development has significantly
positively impacted economic structure adjustment and resource
optimization. However, traditional urbanization has focused
primarily on development speed, leading to severe urban issues
such as ecological destruction, environmental pollution, and
resource shortages (Boori et al., 2021). The ecological
environmental problems caused by rapid urbanization have
become increasingly prominent, ultimately constraining further
urbanization. To some extent, the ecological environment and
urbanization process form a mutually restrictive relationship
(Song et al., 2022). On one hand, a healthy ecosystem provides
essential conditions for urban development, including water
resources, air quality, and a favorable living climate, all of which
are fundamental to advancing urbanization. However, ecosystems
have a limited carrying capacity, and excessive urban expansion can
lead to water shortages, land degradation, and biodiversity loss,
ultimately constraining a city’s potential for further development
(Seifollahi-Aghmiuni et al., 2022). On the other hand, urbanization
often negatively affects the ecological environment, particularly
when effective environmental protection measures are lacking.
The process of urbanization involves large-scale land use
changes, which not only disrupt the structure and function of
ecosystems but also cause ecological problems such as soil
erosion, environmental pollution, and the urban heat island
effect, further intensifying pressure on the ecological environment
(Asabere et al., 2020). The coupling between the ecological
environment and urbanization can be understood as a nonlinear
interaction (Fang et al., 2021). Environmental pressures arising from
urbanization affect the speed and direction of urban growth through
feedback mechanisms, while ecological restoration and
improvement, in turn, foster high-quality urban development
(Feng et al., 2021). In this dynamic, achieving coordinated
development is especially critical. Therefore, quantitatively
assessing the coupling coordination development between the
ecological environmental quality and urbanization level and
exploring the driving mechanisms of eco-environmental changes
are essential for optimizing regional development strategies and
enhancing environmental management capabilities (Wu
et al., 2021).

In recent years, there has been a growing recognition of the
importance of the ecological environment for sustainable
development, driven by an enhanced understanding of the
relationship between this environment and human society. In
2006, China formulated the “Technical Criterion for Ecosystem
Status Evaluation”, aiming to unify national ecological environment

evaluation standards (Ministry of Ecology and Environment of the
People’s Republic of China, 2006). With the rapid advancement of
remote sensing technology, new ecological environment monitoring
and assessment approaches have become significant in various fields
and at different scales. Examples include the Normalized Difference
Vegetation Index (NDVI) for describing vegetation changes
(Gillespie et al., 2018), the Normalized Difference Water Index
(NDWI) for assessing vegetation moisture (Taloor et al., 2021),
and the Forest Disturbance Index (FDI) for evaluating forest
ecosystem changes (Healey et al., 2005). However, these methods
have limitations, such as data collection difficulties, reliance on
single evaluation indicators, and incomplete information reflection.
To address these issues, the Remote Sensing Ecological Index (RSEI)
uses a principal component analysis to extract representative
principal components from four key indicators: greenness, heat,
wetness, and dryness (Xu, 2013; Chen et al., 2023). This approach
constructs a more comprehensive evaluation index. The RSEI has
been effectively implemented in various regions, providing robust
support for monitoring, assessing, and predicting regional ecological
environmental quality (Yuan et al., 2021; Li et al., 2022; An et al.,
2022). Nonetheless, the ecological environments of different regions
have unique characteristics, necessitating appropriate modifications
to the RSEI to meet specific regional and task requirements. For
instance, Zhang et al. (2023) introduced salinity and water network
density into the RSEI model, enhancing its ability to reflect
ecological environmental changes in the arid regions of
Northwest China. Li et al. (2023) incorporated the soil erosion
factor into the model, allowing for a comprehensive and objective
assessment of the ecological environment in Shanxi Province and
national coal planning mining areas. Cheng et al. (2021) proposed
using the entropy weight method to assess each ecological factor
comprehensively, applying it successfully to the ecological
environmental analysis of the Mentougou District. These various
RSEIs have been modified based on actual situations. In densely
forested areas, optimizing the greenness index calculation to account
for vegetation’s significant impact on the ecological environment
can improve result accuracy. Conversely, in urban built-up areas,
using more accurate identification methods to address the issue of
misidentifying building land can enhance the representation of the
dryness index and minimize the uncertainty in RSEI calculation.

As global urbanization accelerates, urban issues have become
increasingly complex and diverse. Traditional evaluations of
urbanization primarily focus on demographic factors, specifically
the proportion of the urban population relative to the total
population. However, a single demographic indicator no longer
fully captures the complexities of urban development. Modern
urbanization evaluations emphasize developing comprehensive
indicator systems, such as “population-economy” (Wang et al.,
2021), “population-economy-society-space” (Liang et al., 2019),
and “economy-society-ecology-urban-rural coordination” (Yang
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et al., 2021). For example, Tang et al. created an indicator system
based on “population-economy-society-space” to examine the
relationship between urbanization level and ecological vulnerability
in Hunan Province (Tang et al., 2024). Similarly, Yin et al. (2022)
established a “population-land-economy-society-ecology” indicator
system to explore the spatiotemporal changes and influencing
factors of ecological urbanization in the Yangtze River Delta. In
developing these indicator systems, scholars commonly use the
Analytical Hierarchy Process (AHP)–entropy weight and principal
component analysis (PCA) to assess the contribution of each
indicator. The entropy weight method focuses on the internal
variability of indicators but overlooks their interrelationships, while
a principal component analysis may lead to ambiguous interpretations
(Gou et al., 2021). The Criteria Importance Through Intercriteria
Correlation (CRITIC) weighting method improves upon the entropy
weight method by calculating indicator weights based on the
information flow within the original data, considering conflicts and
differences between indicators. This method has been widely adopted,
including in Zhu et al.’s (2024) study of ecological vulnerability changes
and their causes in Tianshui City from 2000 to 2022. Employing the
AHP-CRITIC weighting method, which integrates both subjective and
objective weights, can minimize weighting bias and improve both
scientific and rational accuracy.

Jiangsu Province occupies a pivotal position within the Yangtze
River Economic Belt and the Yangtze River Delta urban
agglomeration. In recent decades, the province has experienced
rapid economic growth and accelerated urbanization (Liu et al.,
2022) due to the reform and opening-up policies and its strategic
location. However, this urban expansion has also brought about a
series of severe ecological challenges, profoundly affecting Jiangsu’s
ecosystem (Huang et al., 2015; Wu et al., 2020). In this context,
studying the coupling coordination between urbanization and the
ecological environment in Jiangsu Province is not only regionally
representative but also provides valuable insights for the sustainable
development of other economically developed regions. This study
innovatively integrated satellite remote sensing data with
socioeconomic data, enhancing the objectivity and accuracy of
the results through the use of multi-source data. Furthermore, by
employing the Modified Remote Sensing Ecological Index (MRSEI)
and the AHP-CRITIC weighting method, the study established a 20-
year time series evaluation system for ecological environmental
quality and urbanization level, revealing the conditions and
trends in Jiangsu over different periods. Through an in-depth
analysis of the coupling coordination relationship between these
two evaluation systems at the county level as well as an exploration
of the driving mechanisms behind ecological environmental
changes, the study uncovered the unique characteristics of
various regions in the interaction between urbanization and the
ecological environment, thus providing a foundation for
formulating region-specific sustainable development policies.

2 Study area and materials

2.1 Study area

Jiangsu Province is located in the eastern coastal region of China,
downstream of the Yangtze and Huai Rivers (Figure 1). Covering

107,200 square kilometers, the province includes 13 prefecture-level
cities and 96 districts and counties. Its diverse terrain, featuring
plains, mountains, hills, and lakes, results in a variety of ecosystems.
As a crucial part of the Yangtze River Delta urban agglomeration,
Jiangsu includes major urban centers such as Nanjing, Suzhou,
Wuxi, and Yangzhou. These cities lead China’s rapid
urbanization and play a vital role in the national development
strategy. By 2023, the province’s Gross Domestic Product (GDP)
reached CNY 12,822.22 billion, with an urbanization rate of 75.04%.

2.2 Data sources

2.2.1 MODIS data
Calculating the MRSEI requires four key components:

greenness, wetness, heat, and dryness. For research needs, we
selected corresponding MODIS data products. It is worth
mentioning that the Land Processes Distributed Active Archive
Center (LPDAAC) is an affiliate of the United States Geological
Survey (USGS), offering an extensive suite of remote sensing data
products. These products include the surface temperature, surface
reflectance, radiation, and vegetation index, adhering to Level 1B
data standards and suitable for a wide range of applications (Xiong
et al., 2021).

In this study, Google Earth Engine was used to process MODIS
data products and calculate the MRSEI. We employed the
MOD13A1 dataset to derive the greenness component of the
MRSEI, the LST-Daytime band of the MOD11A2 V6 dataset to
extract heat, and the MOD09A1 dataset to extract wetness and
dryness. To mitigate the impact of different imaging times and pixel
scales on the MRSEI components, MODIS images from July to
September of each year were synthesized at four-year intervals, and
the results were uniformly resampled to 500 m. MODIS data
parameters are detailed in Table 1.

2.2.2 Socioeconomic data
Urbanization, as a reference for regional development, is a

complex and dynamic process that encompasses population,
industry, society, space, and ecology (Yang et al., 2017). Its
connotations include population size, industrial structure,
residents’ living standards, and the provision of public services.
In the context of Jiangsu Province, factors related to urbanization
include population and GDP growth, rising per capita income,
increased consumption capacity, and infrastructure construction
such as hospitals, schools, and highways. Moreover, evaluating the
level of urbanization not only focuses on the growth of built-up areas
but also emphasizes the overall development of these areas and their
surrounding regions. Drawing on existing research (Xiong and Xiao,
2021; Liu and Ba, 2020), urbanization is categorized into four
subsystems. Population urbanization captures the process of
rural-to-urban migration and the subsequent settlement of these
populations in urban areas. Economic urbanization highlights the
rise in urban economic development and the shift from an
agriculture-dominated economy to one primarily driven by
industry and services. Social urbanization reflects changes in
social structure, lifestyle, social relations, and public services, as
urbanization fosters a shift from traditional rural lifestyles to
modern urban living. Spatial urbanization focuses on the
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transformation of urban spatial layouts, morphological structures,
and land use. With the advance of urbanization, urban spaces
expand and optimize, while infrastructure and public services
improve, leading to a more rational spatial structure. Considering
the Population–Economic–Sociology–Space (PESS) model and the
specific context of Jiangsu Province, we selected 16 socioeconomic
indicators to evaluate these four dimensions of urbanization,
ultimately constructing an urbanization-level evaluation system,
as presented in Table 2. The relevant data from 2002 to
2022 were sourced from the National Bureau of Statistics website
(https://www.stats.gov.cn, accessed on 27 October 2023), the Jiangsu
Provincial Bureau of Statistics website (https://tj.jiangsu.gov.cn/

index.html, accessed on 30 October 2023), and the websites of
local statistical bureaus at various levels. For missing data, a
comprehensive growth rate estimation method was used to
supplement the missing data based on the long-term historical or
segmented average growth rate.

2.2.3 Influencing factor data
To better understand the driving mechanisms of ecosystems and

promote the harmonious coexistence of urban and ecological
environments, we selected eight categories of data at four-year
intervals to analyze the factors influencing ecological
environmental quality in Jiangsu Province, considering data

FIGURE 1
The location of Jiangsu Province.

TABLE 1 MODIS data parameters from 2002 to 2022.

Product Dataset Time period Overpass time Spatial resolution Temporal resolution

Multispectral data MOD09A1 7.15–9.15 AM 500 m 8 days

LST MOD11A2 7.15–9.15 AM 1 km 8 days

NDVI MOD13A1 7.15–9.15 AM 500 m 16 days
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availability and existing research (Aizizi et al., 2023). These
categories include MRSEI component indicators: kNDVI, LST,
WET, and ENDISSI; natural factors: precipitation (PCP) and
temperature (TEMP); and anthropogenic factors: nighttime lights
(NTL) and population density (POP). The kNDVI serves as a key
indicator of ecological environmental quality, reflecting ecosystem
health and sustainability. LST is closely linked to regional climate
change and land use, assessing the impact of human activities on
ecosystems. WET affects watershed cycles, thereby influencing
ecological health. The ENDISSI measures water scarcity and its
pressure on ecosystems, aiding in evaluating climate change’s
potential environmental impacts. PCP, a core indicator of water
supply, directly influences ecosystem health. As an indicator of
climate change, TEMP shows how rising temperatures can
exacerbate environmental degradation, including ecological
decline and biodiversity loss. NTL measures the intensity of
human activities, particularly economic and urbanization
processes, and their effect on ecosystems. Finally, POP reflects
human demand for natural resources and the associated pressure
on the environment, making it a crucial factor in determining
ecological environmental quality. The kNDVI, LST, WET, and
ENDISSI were calculated using MODIS images on the GEE cloud
platform. Data on PCP and TEMP were derived from the monthly
precipitation grid data and monthly average temperature grid data
from the Tibetan Plateau National Data Center (https://data.tpdc.ac.
cn, accessed on 14 November 2023). The NTL data were obtained
from the annual corrected data integrated from DMSP-OLS and
SNPP-VIIRS datasets by Wu et al. (2021). The POP data were
sourced from the annual population distribution product developed
by the U.S. Department of Energy’s Oak Ridge National Laboratory
(https://landscan.ornl.gov, accessed on 17 November 2023).

3 Methodology

This study utilized MODIS data products to establish the
MRSEI, analyzing the spatiotemporal evolution characteristics of
ecological environmental quality in Jiangsu Province from
2002 to 2022. Additionally, based on the PESS model and the
AHP-CRITIC weighting method, we constructed the
urbanization level index (ULI) for evaluating urbanization
progress using socioeconomic data. We investigated the
coupling coordination relationship and its evolution trend
between MRSEI and ULI at the county level using the
coupling coordination degree (CCD) model. Finally, the
primary factors influencing the ecological environment were
identified using the Geodetector, providing valuable references
for the sustainable development of Jiangsu Province. The
methodology flowchart is illustrated in Figure 2.

3.1 Construction of MRSEI

The MRSEI offers unique advantages over traditional ecological
observation methods. It provides an efficient and convenient means
to identify ecological conditions and monitor environmental
spatiotemporal characteristics in specific areas. In the realm of
natural factors that signify ecological environmental quality,
greenness, wetness, heat, and dryness are crucial to human
survival and ecosystem stability. Consequently, these factors are
widely used by scholars to evaluate and analyze ecosystem
conditions. MRSEI can be regarded as a function of these four
key components, specifically expressed as Equation 1 (Yang
et al., 2021):

TABLE 2 Evaluation index system of urbanization level in Jiangsu Province.

Evaluation system Subsystem Specific indicator

Urbanization level Population urbanization Urbanization rate

Population density in built-up areas

Proportion of population in the secondary industry

Proportion of population in the tertiary industry

Economic urbanization Per capita GDP at constant prices

Proportion of GDP from secondary and tertiary industries

GDP growth rate

Per capita government revenue

Per capita profits of industrial enterprises above designated size

Sociology urbanization Per capita retail sales of consumer goods

Number of beds in hospitals and health centers per 10,000 persons

Number of university and college students per 10,000 persons

Per capita disposable income of urban permanent residents

Space urbanization Proportion of land used for construction

Per capita highway mileage

Road network density
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RSEI � f Greenness,Wetness,Heat, Dryness( ) (1)

Where kNDVI represents greenness, Wet represents wetness,
LST represents heat, and ENDISSI represents dryness. Detailed
information related to data processing and collection for each
component is as follows.

(1) Greenness: NDVI is commonly used to reflect the vegetation
growth status of an area and is the most widely used indicator.
However, the NDVI formula, based on the ratio of NIR and
Red, reduces atmospheric influence at the cost of easy
saturation. This limitation is mainly reflected in its limited
handling of atmospheric disturbances, its susceptibility to soil
background and vegetation canopy in areas of sparse
vegetation, and its tendency to saturate in areas of dense
vegetation (Chen et al., 2024). To avoid the shortcomings
of NDVI, we selected the kernel NDVI (kNDVI) to
represent greenness. By applying machine learning and
kernel method theory, kNDVI better addresses the
saturation effect and provides more accurate vegetation
cover information. The calculation Equation 2 is as follows
(Wang et al., 2023):

kNDVI � tanh
NIR − Red

2σ
( )2[ ] (2)

Where NIR and Red represent the reflectance of the near-
infrared (NIR1) and red bands, respectively. σ denotes a length
scale parameter that can be adjusted to reflect the nonlinear
sensitivity of NDVI to vegetation density. A reasonable choice is
to set σ to the average value, σ = 0.5(NIR + RED). The hyperbolic
tangent function (tanh) is then applied. Thus, the Equation 3 for
kNDVI is as follows:

kNDVI � tanh NDVI2( ) (3)

This study used the NDVI band from the MODIS13A1 dataset
to calculate kNDVI.

(2) Heat: This study employed the LST-Daytime band from the
MOD11A2 LST product to measure heat. As this product
expresses temperature values in Kelvin, it is essential to
convert the original LST (LST0) into Celsius units. The
specific Equation 4 is as follows (Gong et al., 2023):

LST � 0.02LST0 − 273.15 (4)
Where LST and LST0 are the land surface temperature and

original land surface temperature, respectively.

(3) Wetness: The wetness component was derived from the
MOD09A1 dataset through the Kauth–Thomas
transformation, which correlates significantly with surface
moisture and vegetation conditions. The Equation 5 for
calculating wetness is as follows (Peng et al., 2023):

Wet � C1ρ1 + C2ρ2 + C3ρ3 + C4ρ4 − C5ρ5 − C6ρ6 − C7ρ7 (5)

Where C1 to C7 are the wetness coefficients, with values C1 =
0.1147, C2 = 0.2489, C3 = 0.2408, C4 = 0.3132, C5 = 0.3122, C6 =
0.6416, and C7 = 0.5087. Reflectance for the MOD09A1 image is
denoted by ρi (i = 1–7), corresponding to the bands 1 to 7.

To accurately characterize the wetness in Jiangsu, we utilized the
Modified Normalized Difference Water Index (MNDWI) to extract
water bodies from the imagery and apply masking. The specific
Equation 6 is as follows (Yang et al., 2023):

MNDWI � ρ4 − ρ6
ρ4 + ρ6

(6)

(4) Dryness: In the original RSEI, dryness is represented as the
average of the Index-based Built-up Index (IBI) and Soil
Index (SI). IBI is typically used to identify and quantify
building density in urban areas. It combines various
spectral indices to enhance the signal of buildings while
suppressing the interference of vegetation and water
bodies. However, IBI is susceptible to the effects of spectral
mixing and, in low-resolution data, struggles to distinguish

FIGURE 2
The methodology flowchart.
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buildings from other features, such as vegetation, bare soil,
and water bodies. Additionally, IBI has a limited dynamic
range and sensitivity in identifying high-reflectance building
materials. In contrast, the Enhanced Normalized Difference
Impervious Surface Index (ENDISI) integrates information
from visible light, NIR, and SWIR bands. It effectively
reduces the impact of spectral mixing, decreases
interference from vegetation and water bodies, and
provides more accurate impervious surface identification
results (Chen et al., 2019). Therefore, we innovatively
combined ENDISI and SI, introducing an advanced
dryness index, the Enhanced Normalized Difference
Impervious Surface and Soil Index (ENDISSI). The
specific Equations 7–10 are as follows:

α � 2 × ρ3( )mean

ρ6
ρ7

( )
mean

+ MNDWI( )2[ ]mean

(7)

ENDISI �
ρ3 − α × ρ6

ρ7
+ MNDWI( )2[ ]

ρ3 + α × ρ6
ρ7
+ MNDWI( )2[ ] (8)

SI � ρ6 + ρ1( ) − ρ2 + ρ3( )
ρ6 + ρ1( ) + ρ2 + ρ3( ) (9)

ENDISSI � ENDISI + SI( )/2 (10)

Where ρ1, ρ2, ρ3, ρ6, ρ7 are the corresponding bands
of the MODIS09A1 dataset. The ()mean is the mean value of
the image.

Following the acquisition and normalization of the four
components, their values were constrained within the range
between 0 and 1. Subsequently, we applied the PCA for the
integration of these four components into the MRSEI’s
construction. The first principal component was designated as
the original MRSEI (MRSEI0). For ease of measurement and
comparative analysis, MRSEI0 underwent normalization, and the
normalization Equation 11 is as follows:

MRSEI � MRSEI0 −MRSEI0 min( )/ MRSEI0 max −MRSEI0 min( )
(11)

WhereMRSEI is constructed from the MODIS dataset. Its value
range is between 0 and 1. Ecological environment conditions
improve as the MRSEI approaches 1; conversely, lower MRSEI
values indicate poorer conditions.

3.2 Construction of ULI

(1) Indicator normalization: Considering that there are
differences in the magnitude of the original data during
the actual computation process, the Min–Max
normalization Equation 12 was used to standardize the data:

Yij
* � Yij − Yj min( )/ Yj max − Yj min( ) (12)

Where Yij, Yj_mxn, and Yj_min represent the original indicator
value, the maximum value of the original indicator, and the
minimum value of the original indicator, respectively. Y*ij
denotes the normalized indicator value, which ranges from 0 to 1.

(2) CRITIC weighting method: The CRITIC weighting method
is based on strong mathematical principles, and the
calculation process involves four steps: standard
deviation, correlation coefficient, indicator information
quantity, and objective weight. The standard deviation
reflects the variability of indicator values; higher
variability indicates greater distinguishability in the
evaluation system, which in turn suggests that the
indicator should be assigned a higher weight. The
correlation coefficient measures the interrelationship
between indicators. When two indicators are strongly
correlated, it means they provide similar information, and
their weights should be relatively lower. CRITIC calculates
the information quantity for each indicator by combining its
standard deviation with its correlation to other indicators. A
higher information quantity leads to a higher weight.
Through normalization, the information from each
indicator is converted into a weight, ensuring the total
weight sums to 1. This method considers both the
discriminative power of the indicators (via standard
deviation) and the redundancy of information between
them (via correlation coefficient), achieving a balanced
weighting system. Unlike methods that depend on
subjective expert judgment, the CRITIC approach derives
weights from the inherent characteristics of the data
(variability and correlation), minimizing the impact of
human factors. The specific calculation Equations 13–16
are as follows (Zhou et al., 2023):

Sj �
������������������
1

m − 1
× ∑m

i�1
Yij

* − �Yj( )2√
(13)

Where Sj represents the standard deviation of the jth indicator,
m is the number of indicator values, and Yj is the mean value of the
normalized indicator, j = 1, 2, . . . , n.

Rij � cov Xi, Xj( )/ Si, Sj( ) (14)

Where Rij represents the correlation coefficient between the ith
and jth indicators and Xi and Xj are the ith and jth columns of the
normalized matrix X, i (j) = 1, 2, . . . , n.

Cj � Sj∑n
i�1

1 − Rij( ) (15)

Where Cj represents the information quantity of the jth
indicator. The larger Cj is, the greater the role of the indicator in
the overall evaluation system; thus, it should be allocated a
higher weight.

Wj � Cj∑n
j�1Cj

(16)

Where Wj denotes the objective weight of the jth indicator.

(3) Comprehensive objective–subjective weighting method: In
this study, objective weighting is determined using the
CRITIC method, while subjective weighting employs the
AHP method. The AHP method determines weights based
on expert knowledge and existing research findings (Wang
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et al., 2023), addressing the importance of cross-comparing
various indicators. Objective weights represent the relative
importance of each indicator without the influence of
subjective human intervention, and their values change
dynamically with the progress of urbanization. In contrast,
subjective weights reflect experts’ rankings and preferences
for the importance of each indicator in assessing
urbanization level and remain constant across different
years. To balance the objectivity and temporal consistency
of the comprehensive weights, this study combined both
weighting methods, as illustrated by the following Equation
17 (Chen, 2020):

W* � αWi + 1 − α( )Wj (17)

Where W*, Wi, and Wj represent the comprehensive,
subjective, and objective weight values, respectively. To ensure
the objectivity of the calculation results, α is set to 0.5 for the
computation.

(4) Urbanization level index: Referring to previous studies, we
calculated the urbanization level index (ULI) for each county
using the standardized values of urbanization indicators and
their corresponding weights. The calculation Equation 18 is
as follows (Li et al., 2023):

ULI � ∑n
i�1
Y*

i × W*
i (18)

Where ULI represents the urbanization level index, Y*i
represents the standardized score of the ith indicator, W*i
represents the corresponding comprehensive weight, and n is the
number of indicators. A higher ULI denotes a greater level of
urbanization, while a lower ULI signifies a lesser level of
urbanization in the region.

3.3 Exploration of coupling coordination
relationship

Coupling refers to the interaction and influence between two or
more elements, reflecting the development trend from disorder to
order within a system. It is widely used in studies examining the
relationship and stress between urbanization and the ecological
environment. However, in some cases, coupling degrees may not
fully capture the overall benefits and synergies between urbanization
and the ecological environment in a region. This is particularly true in
comparative studies of multiple regions, where relying solely on
coupling degrees can be misleading due to the intertwined,
dynamic, and unbalanced nature of urbanization and the
ecological environment in each region. To objectively assess the
level of regional coordinated development, this study employs a
coupling coordination model for urbanization level and ecological
environmental quality. The calculation Equations 19, 20 are follows
(Lei et al., 2024):

CD � 2 ×
�����������������
U × M( )/ U +M( )2

√
(19)

CCD �
���������������
αU + βM( ) × CD

√
(20)

Where U represents ULI, M represents MRSEI, and CD
represents the coupling degree between ULI and MRSEI. A
higher CD signifies a stronger coupling between the ecological
environment and urbanization. The CCD measures the level of
coordinated development between these components, with a
higher value reflecting a higher level of coordination. α and β are
weight coefficients, and since ecological environmental
improvement and urbanization level enhancement are considered
equally important, both are set to 0.5. Drawing on existing research
(Tang et al., 2021), the CCDwas categorized into four types: extreme
coordination, basic coordination, on the verge of disorder, and
severe imbalance. Based on the characteristics of synchronous
coordination and lagged imbalance and integrating the system
scores of MRSEI and ULI, the coupling coordination category
was further divided into 12 subcategories (Table 3).

3.4 Geodetector

Spatial heterogeneity is intrinsic to geographic phenomena. The
Geodetector serves as a statistical methodology to identify and
elucidate the determinants of this heterogeneity (Zhu et al.,
2020). In this study, we employed the single factor, interaction,
and risk detectors of Geodetector to explore the influence of diverse
factors on MRSEI.

Considering that the ecological environmental quality changes
in Jiangsu result from both natural factors and human activities, this
study designatedMRSEI as the dependent variable (Y), with kNDVI,
LST, WET, ENDISSI, PCP, TEMP, NTL, and POP as independent
variables (X). Nevertheless, these independent variables originated
from disparate data sources, exhibiting differences in spatial
resolution. To obtain the integer data required by the
Geodetector and unified spatial units, we used the natural breaks
method to reclassify each independent variable into seven categories
and constructed a 1 km × 1 km fishnet to determine the central
sampling points. We finally obtained 91,044 sampling points and
subsequently extracted the values of each variable for different years.

(1) The single-factor detection primarily measures how well a
variable X explains the spatial heterogeneity of variable Y. It
quantifies this influence using the metric q, which helps in
identifying the contributing factors. The mathematical
Equation 21 for this method is detailed below (Wang
et al., 2016):

q � 1 − 1
Nσ2

∑L
h�1

Nhσ
2
h (21)

Where q represents the degree of influence on MRSEI, reflecting
the explanatory capability, h is category levels ranging from one to L,
and L signifies the number of classifications for the factors.Nh andN
are the sample sizes of the classified and total areas, respectively,
while σ2 and σ2 h are the variances of MRSEI within the classified
regions and the overall region. A q value closer to one implies a
stronger influence on MRSEI.

(2) The interaction detector assesses how different factors jointly
affect a dependent variable. The interaction results can be
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divided into nonlinear weaken, univariate weaken, bivariate
enhanced, nonlinear enhanced, and independent (Wu and
Zhang, 2021).

(3) The risk detector is utilized to determine if significant
disparities exist in the spatial distributions of the variable
Y, among different variables X (Liu et al., 2021).

4 Results

4.1 Analysis of MRSEI results

Through the PCA of the component indicators in Jiangsu
Province from 2002 to 2022, the PC1 loadings and
PC1 contribution rates for each indicator in the RSEI and

MRSEI were obtained (Table 4). The indicator loadings in the
RSEI and MRSEI show the same characteristics on PC1: the
loadings of the NDVI/kNDVI and WET are positive on PC1,
while those of LST and the NDBSI/ENDISSI are negative.
Additionally, the absolute value of the loading of the NDVI/
kNDVI is the largest, followed by the NDBSI/ENDISSI, LST, and
WET. Compared to the RSEI, the contribution rate of PC1 in the
MRSEI is higher by 7.99%, 9.32%, 8.28%, 7.65%, 8.40%, and 9.04%
across the respective periods, with an average value reaching 79.57%.
This indicates that the MRSEI covers most of the indicator
information and better represents the ecological environment
characteristics.

Taking 2022 as an example, the correlation between each
indicator and the MRSEI was analyzed using sampling point data
(Figure 3). The results indicate that the kNDVI (Pearson’s r =

TABLE 3 Classification principles of coupling coordinated development of urbanization and ecological environment.

Coupling coordination
category

Coupling coordination
level

Systematic exponential
comparison

Subcategory Type

Extreme coordination 0.8 ≤ CCD ≤1 MRSEI-ULI >0.1 urbanization lag E1

|MRSEI-ULI| ≤ 0.1 Synchronous
development

E2

MRSEI-ULI < −0.1 eco-environment lag E3

Basic coordination 0.6 ≤ CCD <0.8 MRSEI-ULI >0.1 urbanization lag B1

|MRSEI-ULI| ≤ 0.1 Synchronous
development

B2

MRSEI-ULI < −0.1 eco-environment lag B3

On the verge of disorder 0.4 ≤ CCD <0.6 MRSEI-ULI >0.1 urbanization lag V1

|MRSEI-ULI| ≤ 0.1 Synchronous hysteresis V2

MRSEI-ULI < −0.1 eco-environment lag V3

Severe disorder 0 ≤ CCD <0.4 MRSEI-ULI >0.1 urbanization lag S1

|MRSEI-ULI| ≤ 0.1 Synchronous hysteresis S2

MRSEI-ULI < −0.1 eco-environment lag S3

TABLE 4 The loadings of each indicator and the contribution rate of PC1 for the RSEI/MRSEI.

RSEI/MRSEI Indicator 2002 2006 2010 2014 2018 2022

RSEI NDVI 0.4975 0.6281 0.5751 0.6636 0.6178 0.5896

LST −0.3004 −0.3482 −0.3645 −0.4197 −0.3902 −0.3708

WET 0.2774 0.3352 0.3109 0.3574 0.3329 0.3163

NDBSI −0.3041 −0.3268 −0.3597 −0.4163 −0.3859 −0.3665

PC1 contribution 67.36% 71.23% 68.88% 73.71% 74.49% 71.05%

MRSEI kNDVI 0.5521 0.7761 0.6549 0.7535 0.7074 0.6732

LST −0.2681 −0.3094 −0.3083 −0.3455 −0.3214 −0.3053

WET 0.1605 0.2348 0.1854 0.2132 0.1983 0.1884

ENDISSI −0.3969 −0.5104 −0.4564 −0.5246 −0.4868 −0.4626

PC1 contribution 75.35% 80.55% 77.16% 81.36% 82.89% 80.09%
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0.9599) andWET (Pearson’s r = 0.3264) exhibit positive correlations
with theMRSEI, while LST (Pearson’s r = −0.5941) and the ENDISSI
(Pearson’s r = −0.8515) display negative correlations with the
MRSEI. This situation is logical given the actual ecological
conditions of the study area. The magnitude of the correlation is
kNDVI > ENDISSI > LST >WET, which is consistent with the PCA
results. All correlations were statistically significant with p < 0.01,
suggesting that the MRSEI is more representative and
comprehensive compared to any single indicator.

4.2 Spatiotemporal change characteristics
of ecological environmental quality

The MRSEI distribution in Jiangsu from 2002 to 2022 is
presented in Figure 4. On the temporal scale, the MRSEI exhibits
a fluctuating trend over the 20 years. On the spatial scale, the MRSEI
shows a clear north-south differentiation.

In 2002, the mean MRSEI was 0.5713. By 2006, this value had
increased to 0.6295. However, in 2010, the mean MRSEI reached
its lowest point, dropping to 0.5492. Following this decline, the
mean MRSEI rose significantly to 0.6697 by 2014, marking a
21.94% increase from 2010. The value experienced a slight rise
again in 2018, peaking at 0.6728, before decreasing to
0.6072 in 2022.

In 2002, due to the more favorable natural conditions in
southern Jiangsu, the MRSEI was significantly higher in the
south compared to the north, with low-value areas concentrated
in Xuzhou and Lianyungang. By 2006, economic development and
urbanization had led to a decline in the MRSEI in southern Jiangsu,
notably in Nanjing, Changzhou, Suzhou, and Wuxi, while northern
Jiangsu experienced an increase. This trend persisted in 2010 when
the MRSEI in the northern region surpassed that of the south. In
2014, increased environmental awareness and national policy
guidance helped mitigate the decline in southern Jiangsu, while
northern Jiangsu began to show a downward trend due to
accelerated development. By 2018 and 2022, the MRSEI in the
southern region stabilized, whereas the northern region continued a
slight downward trend, with the most significant decline occurring
in Xuzhou.

To more accurately understand the changes in the MRSEI of
Jiangsu over various periods, the MRSEI was divided into five levels
using the equal interval classification method: excellent (0.8–1),
favorable (0.6–0.8), moderate (0.4–0.6), mediocre (0.2–0.4), and
poor (0–0.2). The proportions of areas with each ecological
environmental quality level over the 20 years are presented
in Table 5.

From 2002 to 2022, the MRSEI level in Jiangsu Province has
been predominantly favorable and moderate. The favorable area
proportion increased from 47.49% in 2002 to 54.19% in 2022,

FIGURE 3
The point density map of the MRSEI with four indicator components.
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representing an increase of 6,359 km2. Conversely, the proportion of
moderate areas decreased from 44.41% in 2002 to 32.16% in 2022,
indicating a reduction of 11,628 km2. The proportion of excellent
areas increased significantly from 0.18% to 6.61%, showing a growth
of 3,485% over 20 years. The proportions of mediocre and poor areas
showed little change, remaining at relatively small percentages.
Notably, in 2010, the proportion of favorable areas declined
rapidly, while the proportion of moderate areas increased
quickly. This shift caused the proportion of moderate areas to
exceed that of favorable areas for the first time. However, in
2014, this situation was reversed, and the favorable areas
regained the largest proportion.

Due to the diversity of natural, economic, and policy factors in
different regions of Jiangsu Province, there is significant
geographical differentiation in ecological environmental quality.
In China’s administrative system, districts and counties are
crucial links between local and central governments, essential for
governance and development. To more intuitively identify the
spatiotemporal changes in Jiangsu Province’s ecological
environmental quality, this study used districts and counties as
units to derive the distribution of the mean MRSEI (Figure 5).

In 2002, there were 56 moderate units, accounting for 58.33% of
the total; 37 favorable units; and 3 mediocre units, located in
Nanjing, Wuxi, and Xuzhou, respectively. There were no
excellent or poor units. In 2006, the ecological environment in
the north improved, leading to an increase in the number of
favorable units. In contrast, the ecological environment in the
south deteriorated, which reduced the number of favorable units
and increased the number of mediocre units to 6. As a result, the
total number of favorable units decreased to 33. This trend of
ecological environmental change became more pronounced in
2010. All favorable units were distributed in the north, reducing
to 25, while the number of mediocre units in the south continued to
increase to 16. Even the ecological environmental quality in the
Liangxi District of Wuxi deteriorated to poor. However, by 2014, the
overall ecological environment in Jiangsu Province had significantly
improved. The number of excellent and favorable units reached 53,
accounting for 55.21% of the total, while the number of moderate
and mediocre units was 43, accounting for 44.79%. In 2018 and
2022, the ecological environment remained relatively stable. The
proportion of favorable units was 59.38% and 54.17%, respectively.
Moderate and mediocre units were mainly concentrated in Nanjing,

FIGURE 4
Ecological environmental quality distribution in Jiangsu Province.

TABLE 5 Statistical table of different ecological environmental quality levels in Jiangsu Province.

MRSEI level 2002 2006 2010 2014 2018 2022

Area (km2) Ratio (%) Area Ratio Area Ratio Area Ratio Area Ratio Area Ratio

Excellent 175 0.18 3,562 3.75 276 0.29 18,126 19.09 14,583 15.36 6,274 6.61

Favorable 45,087 47.49 54,968 57.90 34,216 36.04 48,871 51.48 54,394 57.29 51,446 54.19

Moderate 42,160 44.41 29,565 31.14 48,871 51.48 21,929 23.10 20,894 22.01 30,532 32.16

Mediocre 7,172 7.55 6,468 6.81 10,863 11.44 5,476 5.77 4,832 5.09 6,528 6.88

Poor 347 0.37 378 0.40 715 0.75 539 0.57 238 0.25 161 0.17
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Suzhou, and Wuxi in southern Jiangsu and Xuzhou in northern
Jiangsu. These areas have relatively developed economies, larger
populations, and higher levels of urbanization, which to some extent
hinder the restoration and improvement of the ecological
environment.

4.3 ULI weighting system and
urbanization process

Based on the actual urbanization development situation in
Jiangsu Province, this paper utilized the PESS model and selected
16 types of socioeconomic data. The AHP-CRITIC weighting
method was then utilized to obtain the comprehensive weights of
each indicator, as presented in Table 6.

Using the ULI formula, the urbanization level index for each
district and county unit in Jiangsu Province was calculated. The ULI
was categorized into five levels using equal interval classification:
high level (0.8–1), relatively high level (0.6–0.8), moderate level
(0.4–0.6), relatively low level (0.2–0.4), and low level (0–0.2). The
results are shown in Figure 6.

Urbanization levels in Jiangsu Province have exhibited a
consistent upward tendency from 2002 to 2022. However, there
is a significant disparity between the southern and northern regions,
with more rapid growth in southern Jiangsu and relatively slower
growth in northern Jiangsu. In 2002, the majority of units in Jiangsu
Province were at the low level, with 56 units accounting for 58.33%.
Urbanization levels in the southern region were significantly higher
than those in the northern region, aligning with the practical
situation. Notably, Nanjing, Wuxi, and Suzhou, as important
components of the Yangtze River Delta urban agglomeration,
had higher initial urbanization levels, with 6 high-level units. By
2014, significant urbanization progress was observed in southern

Jiangsu, with an increase in high-level and relatively high-level units.
In contrast, northern Jiangsu, constrained by factors such as
transportation, climate, and investment, showed limited self-
development capacity, leading to only modest improvements in
urbanization levels. At this time, there were 42 low-level units
(43.75%) mainly distributed in the north, while 26 high-level
units (27.08%) were primarily located in the south, radiating
from major cities to surrounding areas. Starting from 2014,
supported by poverty alleviation policies, a significant number of
low-level units transitioned to relatively low and moderate levels,
with this trend being particularly pronounced in northern Jiangsu.
By 2022, all units had reached at least a relatively low level of
urbanization, with a notable increase in high-level units, totaling
31 and accounting for 32.29%.

4.4 Analysis of the coupling coordination
relationship between MRSEI and ULI

To analyze the coordinated development pattern between
ecological environmental quality and urbanization level in
Jiangsu Province, the coupling coordination degree model was
used in conjunction with the MRSEI and ULI to determine the
distribution of coupling coordination types, as shown in Figure 7.

The results showed that from 2002 to 2022, the overall CCD in
Jiangsu Province has significantly improved, high-value areas are
centered around the Yangtze River Delta urban agglomeration. In
2002, the Yangtze River Delta urban agglomeration and its
surrounding areas, where both the ecological environment and
urbanization level were higher, exhibited a relatively high CCD.
District and county units in this area achieved basic coordination,
with a predominant type of urbanization lag. Conversely, in the
northern region, where urbanization and ecological environment

FIGURE 5
MRSEI mean value distribution of district and county units in Jiangsu Province.
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levels were lower, severe disorder units were predominantly
observed, and the type was urbanization lag. By 2010,
improvements in both the ecological environment and

urbanization in the north led to an increased CCD. The number
of severe disorder units decreased from 13 in 2002 to 6 in 2010.
Meanwhile, in the Yangtze River Delta urban agglomeration,

TABLE 6 Comprehensive weights of each indicator from 2002 to 2022.

Subsystem Specific indicator Comprehensive weight of indicators in each
period

2002 2006 2010 2014 2018 2022

Population urbanization Urbanization rate 0.1040 0.1183 0.1007 0.1070 0.1053 0.1027

Population density in built-up areas 0.1010 0.1138 0.1017 0.0995 0.0962 0.0898

Proportion of population in the secondary industry 0.0277 0.0315 0.0268 0.0285 0.0282 0.0274

Proportion of population in the tertiary industry 0.0382 0.0436 0.0370 0.0393 0.0386 0.0378

Economic urbanization Per capita GDP at Constant Prices 0.0604 0.0510 0.0626 0.0713 0.0656 0.0596

Proportion of GDP from secondary and tertiary industries 0.0753 0.0755 0.0509 0.0579 0.0644 0.0743

GDP growth rate 0.0167 0.0140 0.0172 0.0195 0.0173 0.0165

Per capita government revenue 0.0252 0.0213 0.0262 0.0298 0.0265 0.0249

Per capita profits of industrial enterprises above designated Size 0.0664 0.0690 0.0746 0.0631 0.0701 0.0655

Sociology urbanization Per capita retail sales of consumer goods 0.0610 0.0489 0.0679 0.0670 0.0718 0.0701

Number of beds in hospitals and health centers per 10,000 persons 0.0645 0.0527 0.0446 0.0454 0.0523 0.0637

Number of university and college students per 10,000 persons 0.0915 0.0778 0.0941 0.0928 0.0901 0.0971

Per capita disposable income of urban permanent residents 0.0853 0.0798 0.0894 0.0867 0.0921 0.0902

Space urbanization Proportion of land used for construction 0.0650 0.0586 0.0537 0.0601 0.0603 0.0641

Per capita highway mileage 0.0549 0.0719 0.0711 0.0616 0.0567 0.0542

Road network density 0.0629 0.0723 0.0815 0.0705 0.0645 0.0621

FIGURE 6
ULI value distribution of district and county units in Jiangsu Province.
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ecological environmental deterioration coupled with ongoing
urbanization led to a shift from urbanization lag to synchronous
development and eco-environment lag. In 2014, with a significant
overall improvement in the ecological environmental quality of
Jiangsu, the CCD in southern Jiangsu also improved,
characterized by an increase in both basic and extreme
coordination units. The Yangtze River Delta urban agglomeration
and its surrounding areas are mainly classified as extreme
coordination with eco-environment lag and basic coordination
with eco-environment lag units. In contrast, northern Jiangsu
experienced a significant increase in severe disorder with
urbanization lag units, reaching 18 due to a mismatch between
lower urbanization levels and higher ecological environmental
quality. From 2014 onwards, with stable overall ecological
environmental quality and steady urbanization growth, the CCD
continued to improve. Northern units increased at a faster rate. By
2022, most units had reached basic or extreme coordination,
accounting for 98.96%. Northern units were predominantly
classified as basic coordination with urbanization lag, while
southern central cities had units classified as extreme
coordination with eco-environment lag, and surrounding units
were classified as basic coordination. Overall, despite the rapid
urbanization in Jiangsu over the past 20 years, the
implementation of environmental protection and ecological
restoration measures has led to a high level of overall coupling
coordination. Furthermore, there are regional differences between
the south and north. In the south, urbanization exerts significant
pressure on the ecological environment, while in the north, the
ecological environment imposes a more pronounced constraint on
urbanization.

As presented in Figure 8, over the past 2 decades, the
proportions of V1 and S1 units have significantly decreased,
while E3 and B1 units have notably increased, reaching a total

proportion of 73.96% in 2022. This indicated that although Jiangsu
Province has not fully achieved synchronous development between
the ecological environment and urbanization, there has been
substantial improvement in coupling coordination. The mean
MRSEI exhibited an overall decreasing trend from 2002 to
2010 and a sharp increase from 2010 to 2014, and then, it
remained relatively stable from 2014 to 2022. This suggested that
the ecological environment in Jiangsu Province initially deteriorated
due to urbanization but subsequently recovered due to
environmental protection measures, eventually reaching a stable

FIGURE 7
Coupling coordination type distribution of district and county units in Jiangsu Province.

FIGURE 8
Proportion of each type and mean values of MRSEI/ULI/CCD in
district and county units of Jiangsu Province.
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level. The mean ULI exhibited a steady upward trend from 2002 to
2014, with a noticeable acceleration in growth from 2014 to 2022,
eventually reaching a high level. This indicated that urbanization in
Jiangsu Province has been progressing steadily, with its pace
accelerating further due to policies such as poverty alleviation.
The mean CCD maintained a relatively fast growth rate except
for the period from 2010 to 2014. This reflected that with
improvements in the MRSEI and increases in the ULI, the
interaction between the ecological environmental quality and
urbanization level has become more coordinated, achieving a
relatively balanced development state.

Based on existing research, the 20-year changes in the MRSEI,
ULI, and CCD at the county level in Jiangsu Province are categorized
into five levels: change >0.3 as Dramatic Increase (DI), 0.3 >
change >0.1 as Slight Increase (SI), 0.1 > change > −0.1 as
Remain Stable (RS), −0.1 > change > −0.3 as Slight Decrease
(SD), and change < −0.3 as Dramatic Decrease (DD). The spatial
autocorrelation of these changes is analyzed using the local Moran’s
I index, as presented in Figure 9.

The results indicated significant spatial autocorrelation in the
changes in the MRSEI, ULI, and CCD in the study area. Specifically,
the high–high clusters of MRSEI changes are concentrated in the
northern part of Jiangsu Province, while the low–low clusters are
concentrated in the southern part. This suggested significant
improvement in the ecological environment in northern Jiangsu,
whereas southern Jiangsu showed less improvement or even

deterioration. The low–low clusters of ULI changes were
identified in Huaian, Suqian, and Taizhou in the north and
Nanjing in the south. The slow urbanization in the northern
region was attributed to development constraints, while the
limited progress in the southern region resulted from its already
high initial level of urbanization. A similar pattern was observed in
the high–high clusters, where central urban areas in the south
showed less improvement in urbanization compared to their
surrounding regions. The high–high clusters of CCD changes
were mainly located in northern Jiangsu, while the low–low
clusters were primarily in large cities such as Nanjing, Suzhou,
and Wuxi. This indicated that over the past 20 years, northern
regions with initially low ecological and urbanization levels have
shown significant improvement. In contrast, economically
developed and ecologically superior southern cities have
experienced ecological degradation and excessively high
urbanization, hindering the coordinated development of these
two factors.

4.5 Investigation of factors affecting
the MRSEI

The single-factor detector results showed that all influencing
factors in this study have p-values below 0.01, indicating significant
effects of the independent variables on the MRSEI’s spatial

FIGURE 9
Changes in MRSEI/ULI/CCD and their local spatial autocorrelation distribution in Jiangsu Province.

Frontiers in Environmental Science frontiersin.org15

Luo et al. 10.3389/fenvs.2025.1537903

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1537903


heterogeneity. The q values for the kNDVI, LST, WET, ENDISSI,
PCP, TEMP, NTL, and POP were 0.82, 0.47, 0.26, 0.61, 0.12, 0.11,
0.23, and 0.09, respectively. Over the past 20 years, the kNDVI, the
ENDISSI, and LST have had the most significant impact on MRSEI,
serving as critical determinants of the ecological environment in
Jiangsu Province (Figure 10). Notably, in 2002, the q value of the
kNDVI was relatively low, while that of WET was high. Given that
Jiangsu Province experienced severe flooding in 2002, which adversely
affected vegetation growth, this situation is understandable.

In this study, the interaction detector was employed to evaluate
the joint impact of two independent variables on the MRSEI,
obtaining 28 interaction results (Figure 11). The results show that
from 2002 to 2022, the interactions involved bivariate enhancement
and nonlinear enhancement. The interaction analysis offers more
deterministic insight than the two independent variables alone, better
elucidating the study area’s ecological driving force.

Specifically, in 2002, the study identified 19 instances of bivariate
enhancement and 9 instances of nonlinear enhancement, with
WET∩kNDVI presenting the greatest explanatory capability (q =
0.91), followed by ENDISSI∩LST (q = 0.89). By 2006, the number of
bivariate enhancements had increased to 22, while the number of
nonlinear enhancements had declined to 6, where LST∩kNDVI
demonstrated the greatest explanatory capability (q = 0.96), followed
by WET∩kNDVI and ENDISSI∩kNDVI (q = 0.94). By 2010,
instances of bivariate enhancement rose to 27, along with one
nonlinear enhancement, with LST∩kNDVI maintaining the
greatest explanatory capability (q = 0.97) and ENDISSI∩LST
following (q = 0.82). In 2014, there were 22 bivariate
enhancements and 6 nonlinear enhancements, again with
LST∩kNDVI showing the greatest explanatory capability (q =
0.97). This year also saw a relatively great explanatory capability
for the kNDVI combined with other influencing factors (q = 0.96).
By 2018, there were 25 instances of bivariate enhancement and
3 instances of nonlinear enhancement, with LST∩kNDVI remaining
the most significant (q = 0.97), followed by ENDISSI∩kNDVI (q =
0.96). Finally, in 2022, there were 25 instances of bivariate

enhancement and 3 instances of nonlinear enhancement, with
LST∩kNDVI still demonstrating the greatest explanatory
capability (q = 0.95), followed by ENDISSI∩kNDVI (q = 0.94).

This study utilized the risk detector to identify factors that
positively influence ecological environmental quality, specifying
their range (Figure 12). The risk detector results revealed that the
highest MRSEI mean values occurred within 0–0.52 LST,
0.54–0.8 WET, 0.77–1 kNDVI, and 0–0.52 ENDISSI ranges.
Furthermore, the digital values of NTL and POP reflected
urbanization level and population density based on their
respective characteristics. In this study, Jiangsu Province’s highest
MRSEI mean values were observed within the NTL range of
0–18 and POP range of 0–987, indicating that higher levels of
urbanization and human activity negatively impact the ecological
environment. The study area also exhibited the highest MRSEI mean
values within the PCP range of 747–1,030 mm and TEMP range of
12.86°C–15.11°C. Notably, WET and PCP demonstrated similar
effects on the ecological environment within the same year. In
2010 and 2014, the lowest MRSEI mean values were associated
with higherWET and PCP ranges, whereas in other years, the lowest
mean values corresponded to their lower ranges.

5 Discussion

5.1 Advantages of MRSEI and ULI

This paper introduced the MRSEI and the ULI, which were
utilized to characterize the ecological environmental quality and
urbanization level in Jiangsu Province, respectively. The MRSEI
replaced the NDVI with the kNDVI and the IBI with the ENDSI.
The traditional NDVI is susceptible to factors such as soil background
and atmospheric conditions, leading to saturation effects in areas with
high vegetation cover (Li et al., 2022), which can distort calculation
results. By introducing a kernel function, the kNDVI captured more
complex nonlinear relationships in vegetation reflectance data,
enhancing the accuracy and sensitivity of vegetation cover
measurements. While the IBI primarily reflects human
constructions in a region, its calculation method is relatively
simple and can be easily disturbed by bare land and water bodies
(Sun et al., 2015). The ENDSI, on the other hand, comprehensively
considers the spectral characteristics of various land features, allowing
formore accurate identification of buildings and reducing interference
from other land features, thus providing more reliable building
information. By incorporating the kNDVI and ENDSI, the MRSEI
can more accurately reflect the actual status of vegetation cover and
human constructions, providing more reliable ecological
environmental quality assessment results. Based on the PESS
model, we selected 16 urbanization evaluation indicators to
calculate the ULI. Economic development is the core and driving
force of urbanization, while population concentration in cities serves
as its fundamental catalyst. The improvement of living standards
enriches urbanization’s meaning, and changes in land use along with
infrastructure development directly reflect its progress level (Wu et al.,
2018). Using the AHP-CRITIC weighting method to determine the
comprehensive weights of various indicators effectively integrated
subjective and objective information, thereby enhancing the scientific
validity and applicability of the evaluation results.

FIGURE 10
The q value of each influencing factor on the MRSEI in
Jiangsu Province.
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5.2 Analysis of changes in ecological
environmental quality in Jiangsu Province

Studies have shown that in 2002, Jiangsu Province’s ecological
environment exhibited a spatial pattern characterized by better
conditions in the south and poorer conditions in the north.
Higher MRSEI values were mainly concentrated in the Jianghuai

Plain and the southwestern low hills and mountains (Dong et al.,
2020), regions characterized by favorable water and heat conditions,
abundant rainfall, and minimal human interference. In contrast,
lower MRSEI values were predominantly found in the Huanghuai
Plain, which experienced less rainfall, a drier climate, more arable
and industrial land, and less natural vegetation (Li et al., 2022).
However, with economic development, the ecological environment

FIGURE 11
The interaction results of various influencing factors on the MRSEI in Jiangsu Province.
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of the Yangtze River Delta Plain in the south, particularly within
the Yangtze River Delta urban agglomeration, rapidly
deteriorated (Xu and Yin, 2021). Meanwhile, the north, which
experienced slower development, gradually improved and
recovered its ecological environment, eventually surpassing the
south by 2010. The prioritization of ecological civilization
construction following the 18th National Congress of the
Communist Party of China in 2012 led to various measures
aimed at curbing further ecological deterioration. These
measures included formulating environmental supervision
methods (Ministry of Ecology and Environment of the People’s
Republic of China, 2012) and addressing prominent

environmental issues (Jiangsu Provincial People’s Government,
2014). By 2014, these efforts significantly improved Jiangsu’s
ecological environment and maintained this level until 2022.
Additionally, in 2021, China invested CNY 949.18 billion in
environmental pollution control, representing 0.8% of the
GDP. This investment, which has increased 5.96 times since
2002, reflected an average annual growth rate of 10.75%
(Ministry of Ecology and Environment of the People’s Republic
of China, 2022). This substantial increase in investment supports
the inference that government intervention has effectively
reversed the trend of ecological deterioration, leading to the
rise and stabilization of the MRSEI in Jiangsu Province.

FIGURE 12
The adaptability of various influencing factors on the MRSEI in Jiangsu Province.
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5.3 Analysis of urbanization process in
Jiangsu Province

From 2002 to 2022, Jiangsu Province experienced a significant
growth in urbanization, with the urbanization rate rising from 44.70%
in 2002 to 75.04% in 2023 (Jiangsu Provincial Bureau of Statistics,
2024). This growth has been primarily driven by economic
development and government policies, with varying characteristics
of urbanization across different regions. Southern Jiangsu, which
includes economically developed areas such as Nanjing, Suzhou,
Wuxi, and Changzhou, exhibits the highest urbanization levels. This
region is a key part of the Yangtze River Delta urban agglomeration,
crucial for regional economic growth and central to Jiangsu’s
urbanization process. In contrast, northern Jiangsu has historically
had a weaker economic foundation, lower industrialization levels, and a
slower urbanization process. However, since 2015, the Chinese
government’s poverty alleviation campaign has provided increased
support to these northern areas, leading to a notable acceleration in
urbanization. By 2022, urbanization levels in the north had significantly
improved. Despite these advancements, the negative impacts of
urbanization on regional ecosystems are well documented (Li et al.,
2021; Shen et al., 2022). Research showed that the degree of ecological
degradation in the Yangtze River Delta urban agglomeration is
considerably higher compared to other regions, as supported by
studies such as those by Shi et al. (2023). Urbanization contributed
to ecological degradation through land use changes and pollutant
emissions, while the large volumes of greenhouse gases produced
further exacerbate climate change. These effects have significant
implications for both regional and global environments.

5.4 Analysis of coupling coordination
between ecological environment and
urbanization in Jiangsu Province

As urbanization advances, the tension between urban development
and ecological preservation intensifies, making sustainable development
a critical concern. Both the Millennium Development Goals (MDGs)
and Sustainable Development Goals (SDGs) emphasize the need to
balance economic growth with ecological protection (Eisenmenger
et al., 2020). Over the past 20 years, Jiangsu Province has seen
significant improvements in the coupling coordination between
ecological environmental quality and the urbanization level. This
enhancement has been particularly notable since 2014, reflecting a
strengthening of the coordinated development between these two
aspects. The analysis revealed that this positive change can be
attributed to two main factors. First, the implementation of
ecological protection measures has improved and stabilized the
previously deteriorating ecological environment in southern Jiangsu,
addressing the issue of eco-environment lag. Second, poverty alleviation
policies have accelerated urbanization in northern Jiangsu, mitigating
the urbanization lag that had previously slowed progress. Research
indicates that the comprehensive policy measures adopted by Jiangsu
Province have yielded significant results in advancing regional
sustainable development (Hu et al., 2022). These measures have not
only improved ecological quality and mitigated the adverse effects of
rapid urbanization but also fostered economic growth and social
progress. Looking ahead, Jiangsu Province should emphasize

sustainability and inclusiveness to find a balance between ecological
preservation and urban development. This approach will ensure
comprehensive and coordinated development and offer valuable
insights for other regions seeking to achieve similar goals.

5.5 Analysis of influencing factors on
ecological environmental quality in
Jiangsu Province

According to the Geodetector analysis results, the kNDVI and
ENDISSI are the two most significant factors affecting the ecological
environmental quality in Jiangsu Province. Thisfinding alignedwith the
characteristics of Jiangsu’s ecological environment, which is closely
related to vegetation cover and human-made structures (Zheng et al.,
2020; Jiang et al., 2021). It reflected the validity of the modified
calculation methods for greenness and dryness in this study. LST
also significantly impacted the MRSEI of the study area, which is
logical given the influence of the heat island effect and land use changes
on surface temperature. Furthermore, the kNDVI, LST, and ENDISSI
exhibit the greatest explanatory capability. We believe that dryness and
heat indirectly affected the ecological environmental quality of Jiangsu
Province by influencing greenness. The reliability of this finding is
corroborated by urban heat island research conducted by Rehman et al.
(2022) and Wang et al. (2022). Additionally, the kNDVI demonstrated
a strong explanatory capability with WET, PCP, and TEMP, consistent
with the characteristics of Jiangsu’s subtropical monsoon climate. The
study indicated that LST, ENDISSI, TEMP, NTL, and POP are
significantly negatively correlated with the MRSEI, while the kNDVI
showed a significant positive correlation with the MRSEI. Notably,
excessively high or lowWET and PCP result in a decline in the MRSEI.
This may be attributed to extreme weather events, such as floods or
droughts, which disrupt the ecological balance and negatively impact
Jiangsu’s ecological environment (Wang et al., 2020; Zhu et al., 2020).

5.6 Limitations and potentials

Considering the study area’s characteristics, this paper utilized
MODIS images with high temporal resolution and quality to
construct a long-term series of ecological environmental quality in
Jiangsu based on the MRSEI model. However, the spatial resolution of
MODIS images is limited, hindering the detection of subtle changes in
the ecological environment. Therefore, using higher spatial resolution
remote sensing data for a detailed analysis of specific areas can improve
analytical precision and reveal more subtle ecological changes.
Although the MRSEI model can effectively characterize the
ecological environmental quality in Jiangsu, it remains dependent on
the quality of remote sensing images and the applicability of the
algorithms. The evaluation results are limited by the capabilities of
remote sensing information acquisition. To overcome this limitation,
Zhang et al. (2024) utilized the Continuous Change Detection and
Classification (CCDC) algorithm to construct a time-series model and
developed a dynamic remote sensing ecological index. This approach
refined the time scale of the RSEI in regional ecological quality
monitoring and was applied to assess the spatiotemporal changes in
ecological quality in Ningbo City. Introducing the CCDC algorithm in
future research is crucial for meeting the requirements of ecological
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environmental quality monitoring across different regions and periods.
Additionally, the CCD model may not fully capture all potential
complex interactions and nonlinear relationships. Integrating the
CCD model with other ecological models, such as the ecological
footprint model (Wei et al., 2023) and the biodiversity model
(Oskar, 2023), can provide a more comprehensive evaluation of the
interactions between the ecological environment and urbanization.

6 Conclusion

(1) This study advanced the original remote sensing ecological
index by introducing the MRSEI model, which improved the
PC1 contribution rate by an average of 8.45% compared to the
RSEI. Additionally, the absolute load values of the greenness
and dryness components increased by 15.27% and 31.42%,
respectively, indicating that the MRSEI integrates a broader
range of indicator information. Furthermore, the incorporation
of kNDVI and ENDISSI enhances sensitivity in representing
ecological attributes in Jiangsu Province.

(2) By leveraging MODIS data on the GEE platform, this study
conducted a detailed, long-term assessment of ecological
environmental quality changes in Jiangsu Province from
2002 to 2022. Notably, the work uniquely documented a
reversal in the spatial distribution pattern—from “better in the
south and worse in the north” to “better in the north and worse in
the south”—providing new insights into the region’s evolving
environmental dynamics and the effectiveness of government
interventions.

(3) Using the PESS model and 16 diverse socioeconomic
indicators, this study innovatively assessed urbanization
levels through the AHP-CRITIC weighting method. Over
the past 20 years, urbanization in southern Jiangsu has been
higher and has increased rapidly, forming a pattern centered
around the Yangtze River Delta urban agglomeration and
radiating outward. Conversely, northern Jiangsu has
experienced lower urbanization levels with slower growth.
This approach not only tracks urbanization trends but also
integrates environmental and socioeconomic dimensions.

(4) The application of the CCD model to analyze the coupling
coordination between the ecological environment and
urbanization over the past 20 years is a distinctive feature of
this study. From 2002 to 2022, the coupling coordination
relationship in Jiangsu Province improved significantly. This
study underscores how enhanced government interventions
havemitigated the adverse impacts of rapid urbanization on the
ecological environment, particularly by addressing the
urbanization lag in northern Jiangsu and the eco-
environment lag in southern Jiangsu.

(5) The application of the Geodetector to identify the primary
drivers of ecological environmental quality—specifically
kNDVI, ENDISSI, and LST—alongside an analysis of the
heat island effect, introduced a novel dimension to this
research. The study’s findings highlight the significant
positive impact on MRSEI of improvements in greenness,
heat, and dryness, while revealing negative correlations with
LST, TEMP, NTL, and POP, providing critical insights for
targeted environmental management.
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