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Introduction: This study investigates the impact of urban digital economy
development on pollution emissions across 285 Chinese cities from 2002-2022.

Methods: Utilising threshold regression, spatial autoregressive, and mediation
models, we identify a nonlinear inverted U-shaped relationship where initial
digital expansion initially elevates emissions before mature digital ecosystems
drive reductions.

Results: Spatial heterogeneity reveals significant emission reductions in eastern/
central regions versus limited effects in western/northeastern areas, while spatial
spillover effects necessitate inter-regional policy coordination. Mediation analysis
highlights green technology innovation and industrial upgrading as critical
mitigating mechanisms.

Discussion: Findings advocate context-specific policies prioritising energy
efficiency during digital emergence and advanced technology promotion in
mature contexts, providing empirical groundwork for balancing digital
economic benefits with environmental sustainability objectives.
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1 Introduction

The digital economy, underpinned by transformative technologies such as the Internet,
big data analytics, and artificial intelligence (AI), has emerged as a pivotal driver of modern
economic growth and structural transformation. By fostering innovation ecosystems,
enhancing operational efficiencies, and redefining industrial value chains, digital
technologies have significantly bolstered the competitiveness of urban economies
worldwide (Bai et al., 2022; Song et al., 2022; Chen and Qi, 2023). For instance, the
integration of “digital+” solutions into manufacturing, logistics, and service sectors has
enabled real-time optimisation of resource allocation, streamlined supply chains, and
created new markets, thereby elevating productivity and GDP performance across
metropolitan regions. However, this technological revolution has unfolded alongside
escalating concerns over its environmental footprint, particularly concerning
pollution emissions.

The environmental paradox of urban digitalisation lies at the intersection of
infrastructure expansion and operational energy demands. Rapid proliferation of data
centres, fibre-optic networks, and IoT devices—while essential for sustaining digital
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economies—has amplified energy consumption, with data centre
electricity use projected to exceed 8% of global demand by 2030,
accompanied by carbon emissions rivalling aviation (Andrae, 2020).
Concurrently, resource-intensive hardware production exacerbates
environmental degradation through energy-intensive
manufacturing and mineral extraction under ecologically
damaging conditions (Song et al., 2022; Meinhold et al., 2025).
Urban centres, as digital innovation hubs, concentrate demands for
connectivity, frequent device turnovers, and energy-intensive
cooling systems, further intensifying these pressures. Operational
phase challenges persist, as blockchain operations, AI training, and
streaming services generate indirect emissions via fossil fuel-
dependent electricity generation, while shortened electronics
lifespans escalate toxic e-waste streams (Serpe et al., 2024). This
dual environmental burden—scaling infrastructure and operational
energy use—underscores the imperative for quantifying
digitalisation’s pollution trade-offs to enable policymakers to
design mitigation frameworks balancing technological
advancement with ecological integrity, ensuring cities harness
digital dividends sustainably.

A substantial body of literature has addressed the trade-offs
between a city’s digital economic development and environmental
stressors, highlighting the dual realities of technological
advancement and ecological impact. While studies like Chen and
Qi (2023) have underscored the role of GDP per capita and digital
infrastructure in driving this expansion, a critical paradox persists:
the environmental repercussions of its infrastructure. The
proliferation of data centres, fibre-optic networks, and IoT
devices—while indispensable for digital service delivery—has
engendered substantial energy consumption and electronic waste
(Andrae, 2020). For instance, Google’s 2024 Environmental Report
revealed a 13% year-on-year increase in greenhouse gas emissions,
largely attributable to escalating data centre energy demands. Such
trends highlight the tension between digital innovation and
ecological sustainability, particularly in developing economies
where infrastructure deficits exacerbate energy inefficiencies
(DCO, 2024).

Scholarly discourse on pollution emissions has traditionally
centred on industrial activities, with the Environmental Kuznets
Curve (EKC) hypothesis dominating debates (Grossman and
Krueger, 1995; Dinda, 2004; Shahbaz et al., 2014). This
hypothesis posits an inverted U-shaped relationship between
economic growth and pollution levels, yet its applicability to the
digital economy remains contested. More recent studies have shifted
focus to the spatial dynamics of pollution, emphasizing cross-
regional spillover effects (Xu et al., 2022; Cheng and Yang, 2023).
For example, Zhai et al. (2024) demonstrated how pollution levels in
one region can be influenced by neighbouring jurisdictions due to
industrial clustering and policy diffusion. This spatial lens is further
validated by the 2025 Global Risks Report, which advocates for
transboundary collaboration to mitigate environmental hazards
(Elsner et al., 2025).

Attempts to reconcile the digital economy’s environmental
impact have yielded mixed conclusions. Proponents argue that
digital technologies enhance resource efficiency and promote
clean energy transitions (Han et al., 2022; Yang et al., 2023).
Conversely, critics highlight the rebound effect, wherein energy
savings from digital optimisation are offset by increased

consumption from expanded infrastructure (Yuan et al., 2024).
This dichotomy is exemplified in studies of urban
agglomerations, where concentrated digital demand amplifies
energy use and electronic waste (Song et al., 2022).
Methodologically, spatial econometric frameworks have been
deployed to disentangle these effects, with Shen et al. (2022) and
Wang et al. (2022) demonstrating significant spatial autocorrelation
in digital-pollution linkages across Chinese cities. However, such
analyses often overlook non-linear thresholds and cross-national
heterogeneities.

Recent literature has yielded critical insights into the impact
mechanism between a city’s digital economy development and
pollution emissions, with particular emphasis on the mediating
roles of technological innovation and industrial structural
transformation (Gao et al., 2024; Yang et al., 2024). A growing
body of research posits that digital transformation fosters
environmental improvements through dual pathways: enhancing
technological innovation capabilities and facilitating structural shifts
towards greener economies (Mai et al., 2025; Yue and Han, 2025).
For instance, digital innovation not only directly reduces pollution
through optimised resource allocation and smart monitoring
systems but also indirectly through green technological
advancements that mitigate environmental footprints (Xiong
et al., 2022). Concurrently, industrial structural upgrading, often
catalysed by digital penetration, sees traditional high-pollution
industries gradually replaced by knowledge-intensive and service-
oriented sectors, thereby lowering overall emission intensities (Gao
et al., 2024; Yang et al., 2024). Notably, while some studies highlight
the bidirectional causality between digitalisation and environmental
outcomes—with pollution levels conversely impeding digital
transition progress in certain contexts (Wang et al., 2024)—the
dominant narrative underscores digital economy’s transformative
potential in steering sustainable urban development. Contextual
factors such as urban agglomeration economies and regulatory
frameworks further modulate these relationships, creating
complex non-linear effects that warrant nuanced empirical
investigations (Xiong et al., 2022; Yue and Han, 2025). This
study builds upon this evolving discourse to unravel the intricate
mechanisms through which digital economy development
influences pollution trajectories in Chinese cities.

While existing scholarship has significantly advanced
understanding of the digital economy’s environmental footprint
by illuminating the tension between technological progress and
ecological degradation—particularly through insights into energy
consumption patterns, spatial spillover effects, and methodological
frameworks like the Environmental Kuznets Curve hypothesis
(Grossman and Krueger, 1995; Zhai et al., 2024)—critical gaps
remain in three dimensions. First, the overwhelming focus on
high-income economies has obscured how digitalisation in
developing regions, such as China’s rapidly urbanising cities,
amplifies pre-existing vulnerabilities like inefficient infrastructure
and lax regulatory frameworks (Song et al., 2022). Second, prevailing
linear and static analytical models inadequately capture the dynamic
feedback loops between digital expansion, pollution emissions, and
technological adaptation, particularly across heterogeneous
geographic contexts (Shen et al., 2022). Finally, limited attention
has been paid to the multidimensional nature of digital pollution,
which extends beyond energy use to encompass electronic waste,

Frontiers in Environmental Science frontiersin.org02

Lan and Ma 10.3389/fenvs.2025.1538077

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1538077


water scarcity impacts, and cross-border supply chain emissions.
This study addresses these lacunae by integrating the Spatial
Autoregression Model with threshold regression analysis,
leveraging granular cross-country datasets to disentangle non-
linear relationships and regional heterogeneities. By doing so, it
not only refines theoretical frameworks for digital-environmental
synergies but also equips policymakers with actionable insights,
thereby bridging the divide between innovation imperatives and
sustainability imperatives.

This study investigates the complex interplay and mechanistic
linkages between a city’ economy development and pollution
emissions within China’s dual realities of rapid digital
transformation and mounting environmental pressures.
Utilising a comprehensive dataset from 285 Chinese
municipalities, we empirically validate the presence of an
inverted U-shaped relationship between digital economy
development and pollutant emission intensities. Incorporating
spatial econometric methodologies, our analysis reveals
significant positive spatial autocorrelation in emission patterns,
highlighting the systemic interconnectivity of environmental
degradation across administrative boundaries and accentuating
the need for collaborative governance frameworks spanning
regional divisions. Beyond direct effects, we explore the
mediating influences of green technological advancements and
structural shifts within industrial ecosystems. Employing rigorous
mediation analysis, we disentangle the indirect pathways through
which digital integration affects emission trajectories. This
multifaceted investigative strategy not only clarifies the
environmental consequences of digitalisation but also provides
policymakers with actionable insights to leverage technological
transitions as catalysts for sustainable development. Our findings
introduce novel evidence into global discussions on the digital-
environmental nexus while proposing region-specific policies to
decouple economic growth from environmental costs.

This study makes three interrelated contributions while
acknowledging the foundational work of prior scholars and the
collaborative efforts involved. First, it seeks to advance theoretical
understanding by tentatively integrating the dynamics of urban
digital economy development with pollution emission intensities
within a unified analytical framework. Building upon existing
literature that often examines these elements in isolation, this
approach aims to shed light on the complex interplay between
technological advancement and environmental sustainability in
China’s rapidly urbanizing context. Second, recognizing
methodological limitations in conventional single-model analyses,
the study employs a multi-method econometric
strategy—incorporating fixed effects, threshold regression, spatial
autoregressive, and mediation analysis models—to more robustly
examine non-linear relationships and spatial spillover effects. While
acknowledging the challenges inherent in longitudinal analyses
spanning 21 years (2002–2022) across 285 Chinese cities, the
study’s comprehensive dataset enables preliminary exploration of
digitalization’s evolving environmental impacts across diverse
urbanization stages. Third, the research attempts to unpack the
mediating roles of green technological innovation and industrial
structural transformation, recognizing these as critical yet under-
examined pathways through which digital penetration may
influence environmental outcomes. By tentatively proposing a

mechanism linking digitalization to structural change, the study
aims to inform policy discussions around targeted interventions that
harness technology’s dual potential as economic driver and
environmental steward. Collectively, these contributions represent
exploratory steps toward a more nuanced understanding of digital
economy-environment interactions, inviting further research to
refine theoretical models and empirical approaches.

The remainder of this paper is organised as follows: Section 2
reviews the relevant literature and formulates our research
hypotheses. Section 3 describes the empirical methods used in
our study and provides an overview of our dataset. Section 4
presents the results of our empirical analysis. Section 5 focuses
on robustness testing to ensure the reliability of our findings. Section
6 summarises our research conclusions and discusses the limitations
and the direction of future research in this field.

2 Research hypothesis

With its inherent benefits of transcending temporal information
dissemination, facilitating data sharing, and minimising transaction
costs, a city’s digital economy development exerts both direct and
indirect influences on environmental pollution through industrial
structural upgrading and green technological innovation (Xu and Li,
2022; Yang et al., 2023; Yuan et al., 2024). Furthermore, the pace of
marketisation impacts the digital economy’s emission reduction
efficacy (Jiang and Deng, 2022; Yuan et al., 2024). This study
focuses on examining the influence of a city’s digital economy
development on its pollution emissions and the underlying
mechanisms.

2.1 The direct effect of digital economy
development on pollution emissions

To understand the impact of digital economy development on
pollution emissions, it is imperative to delineate the bipartite aspects
of digital economic development: industrial digitalisation and digital
industrialisation (Shi Y. et al., 2022; Shi et al., 2023). This
classification could provide a framework for understanding the
nuanced relationship between digital economy development and
environmental impact. In the early stages of digital economic
development, the focus is shifting towards digital
industrialisation. This phase is characterised by the rapid
construction and operationalisation of digital infrastructure,
which includes a wide range of facilities and networks. This
phase, marked by technological advancements, also poses
significant environmental challenges. The construction and
maintenance of infrastructure require considerable energy, mainly
derived from non-renewable sources, leading to increased pollution
emissions and heightened environmental degradation.

However, as the digital economy matures and evolves, a shift
occurs in its focal point, with industrial digitisation taking
precedence. This transition means the integration of digital
technologies into traditional industries, facilitating productivity
enhancement by stimulating technological innovations, including
green technologies. By leveraging the capabilities of digital tools and
platforms, traditional industries are able to optimise their processes,
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reduce waste, and mitigate pollution. Adopting such practices aligns
with the principles of sustainable development, fostering a more
environmentally friendly industrial landscape and reducing
pollution emissions.

Considering the interplay between those two aspects of the
digital economy development, we hypothesised a non-linear
relationship between the digital economy development
development and pollution emissions. Specifically, we proposed
an inverted U-shaped impact: In the short term, pollution
emissions are expected to increase due to the energy-intensive
nature of constructing and operating digital infrastructure.
However, in the long term, as the economy evolves and
industrial digitisation takes precedence—along with the adoption
of advanced digitalised technologies and improvements in
productivity—we anticipate a reduction in pollution emissions.
Thus, we propose Hypothesis 1 as follows:

Hypothesis 1: Digital economy development has an inverted
U-shaped impact on pollution emissions.

2.2 The spillover effect of the
pollution emissions

When examining the impact of the digital economy
development on pollution emissions, it is imperative to consider
the intricate mechanism through which pollution emissions exhibit
spatial spillover effects (Shi F. et al., 2022; Xu et al., 2022). This
phenomenon suggests that the pollution emissions in one city are
not solely determined by its own economic activities and
environmental policies but are also influenced by the pollution
emissions of neighbouring cities.

The underlying mechanism for this spatial spillover
phenomenon can be elucidated through several intertwined
factors. Firstly, cities’ geographical proximity often results in the
sharing of atmospheric and water resources, facilitating the
dispersion of pollutants across city boundaries. For instance,
industrial emissions from a heavily industrialised city can easily
travel via wind or waterways to nearby cities, thereby contributing to
their pollution levels.

Secondly, economic integration and regional cooperation
among cities can increase trade and mobility of goods, services,
and people. This, in turn, can exacerbate pollution levels as the
transportation sector, a significant source of emissions, becomes
more active. By fostering interconnectedness and facilitating
transactions across vast distances, the digital economy,
especially digital trades, may inadvertently intensify this
regional economic activity, leading to higher pollution
emissions in neighbouring cities.

Furthermore, the spillover effect can also be attributed to
imitating and adopting production practices and environmental
standards. Cities with lax environmental regulations may serve as
“pollution havens”, attracting industries from more stringently
regulated cities. As digital technologies enable more accessible
access to information about such regulatory differences, firms
may relocate to these less regulated cities, resulting in increased
pollution emissions that spill over to adjacent regions. Thus, we
propose the following Hypothesis:

Hypothesis 2: Pollution emissions exhibit spatial spillover effects,
meaning that neighbouring cities’ pollution emissions positively
influence a given city’s pollution emissions.

2.3 The indirect effect of digital economy
development on pollution emissions

In examining the indirect effect of digital economy development
on pollution emissions, previous research has found that digital
economy development exerts its influence through two primary
mediation channels: green technology innovations and industrial
structure upgrading (Xu and Li, 2022; Yang and Liang, 2023; Yuan
et al., 2024). This study delves into these indirect effect mechanisms,
focusing on green technology innovations and industrial structure
upgrading dimensions.

2.3.1 Through green technological innovation
Digital economy development exerts an indirect influence on

pollution emissions, mediated through the pivotal role of green
technology innovations (Han et al., 2022; Jiang and Deng, 2022;
Wang et al., 2022). As the digital economy explosions, it fosters an
environment conducive to creating and adopting novel,
environmentally friendly technologies. These green innovations,
encompassing a wide array of sustainable practices and solutions,
are crucial in mitigating pollution emissions. By enhancing
efficiency, reducing resource consumption, and enabling cleaner
production processes, green technologies effectively buffer against
the potentially detrimental environmental impacts associated with
digital economic growth.

Furthermore, the digital economy facilitates the dissemination
and scaling up of these green innovations through enhanced
connectivity, data analytics, and the sharing of best practices.
This, in turn, accelerates the pace of technological progress in the
environmental sector, leading to a reduction in pollution emissions.
The interplay between digital economy development and green
technology innovations thus underscores the complexity of the
relationship between economic development and pollution
emissions, highlighting the need for integrated policies that
harness the synergies between the two to achieve a more
sustainable future. So, we propose the following Hypothesis:

Hypothesis 3.1: Digital economy development indirectly affects
pollution emissions through green technology innovations.

2.3.2 Through industrial structure upgrading
Industrial structure upgrading plays another mediator in the

digital economy development’s impact on pollution emissions (Li Y.
et al., 2022; Yuan et al., 2024). The digital transformation of
economies often catalyses a shift from pollution-intensive
industries to those that are more knowledge- and technology-
intensive. The digital economy development promotes the
emergence and growth of industries such as digital services,
e-commerce, and clean technology manufacturing. These
industries typically have lower pollution intensities than
traditional sectors like heavy manufacturing or fossil fuel
extraction. As these new industries gain prominence, they
contribute to an upgrading and rebalancing of the economic
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structure, reducing the overall pollution emissions of the economy.
Furthermore, digital technologies enable traditional industries to
undergo a process of greening. By adopting digital tools and
technologies, these industries can improve resource consumption
efficiency, reduce waste, and thus minimise emissions. Therefore, we
present the following hypothesis:

Hypothesis 3.2: Digital economy development indirectly affects
pollution emissions through Industrial Structure Upgrading.

3 Methodology and data

3.1 Econometric model

3.1.1 Baseline model
In this paper, we construct the baseline model as follows:

lnpestop it � β0 + β1lndigifacit + CVitB + μi + γt + εit (1)
where the subscript i denotes the city, t denotes the year. lnpestop
denotes the logarithm of pollution emission calculated by the
entropy Technique for Order Preference by Similarity to the
Ideal Solution (TOPSIS). lndigifac denotes the core explanatory
variable, the logarithm of the digital economy development level
estimated by the Principal Component Analysis (PCA). CV denotes
the vector of control variables, B is the vector of the parameter of the
control variables. μ denotes the error term of individual-fixed effect.
γ denotes the error term of time-fixed effect. ε denotes the error term
of random effect.

This model accounts for both time-fixed and individual-fixed
effects, with the coefficient β1 providing an estimate of the overall
effect of the digital economy’s impact on pollution emissions. To
delve deeper into the non-linear relationship between digital
economy development and pollution emissions, an extension of
the baseline model is employed, incorporating higher-order terms of
the digital economy’s development. This refinement allows us to
capture the nuanced nonlinear relationship of digitalisation on
environmental outcomes more accurately, facilitating a
comprehensive understanding of the complex dynamics at play
as follows:

lnpestop it � β0 + β1lndigifacit + β2lndigifac
2
it + β3lndigifac

3
it

+ CVitB + μi + γt + εit

(2)

3.1.2 Threshold model
To more precisely delineate the non-linear relationship between

the level of digital economy development and pollution emissions,
this study employs a threshold regression model as an enhancement
over merely introducing higher-order terms. The threshold
regression model offers a refined approach to fitting the intricate
non-linear relationship between the two variables, providing greater
accuracy than Formula 2. This methodology allows a more nuanced
understanding of how digital economy development impacts
environmental pollution levels. The specific formulation of the
threshold regression model is as follows:

lnpestop it � β0 + β1lndigifacit lndigifacit ≤T1( ) + β2lndigifacit lndigifacit >T1( )
+CVitB + μi + γt + εit (3)

In the model (3), the coefficients β1 and β2 represent the slopes
preceding and following the threshold point T1. By incorporating
such a threshold mechanism, the model achieves more precision
than merely introducing higher-order terms. It enables the model to
accurately fit scenarios where β1 and β2 share the same sign, thereby
capturing the nuanced relationship between digital economy
development and pollution emissions. Thus, the threshold
regression framework provides a more robust and precise
analytical tool for our investigation.

3.1.3 Spatial Autoregression Model
As previously discussed, pollution emissions inherently exhibit

spatial spillover effects, whereby the pollution emissions of
neighbouring cities can significantly impact those of the city in
question. This phenomenon underscores the importance of
considering inter-city connections in assessing environmental
outcomes. Consequently, this study employs a Spatial
Autoregression (SAR) Model to investigate the influence of a
city’s digital economy development on its pollution emissions.
This model is specifically designed to capture the spatial
dependencies that exist among cities, allowing for a more
nuanced analysis of the relationship between digital economic
development and pollution emissions.

The SAR model incorporates a spatial weights matrix, which
accounts for the geographical proximity and potential interaction
between cities. Doing so enables us to assess not only the direct
effects of digital economy development on local pollution emission
levels but also the indirect effects that arise from interactions with
neighbouring cities. The specific SAR model is as follows:

lnpestop it � β0 + β1lndigifacit + λWlnpestopit + CVitB + μi + γt

+ εit

(4)
where λ denotes the spatial effect of pollution.W denotes the spatial
weight matrix. Through this approach, we aim to comprehensively
understand how the digital economy development, as a key driver of
modern economic growth, interacts with and influences pollution
emissions across urban landscapes. Ultimately, our findings will
contribute to the development of more effective policies aimed at
mitigating pollution emissions in the context of an increasingly
digitised economy.

3.1.4 Mediating effect model
We delve into the intricate mechanisms through which a city’s

digital economy development influences pollution emissions,
specifically focusing on the intermediary roles of green
technology innovation and industrial structure upgrading. Our
investigation aims to dissect these pathways to provide a
comprehensive understanding of how digital transformation can
foster environmentally sustainable outcomes.

We firstly scrutinise the mediation effect of green technology
innovation on the impact of digital economy development on
pollution emissions. To this end, we construct the mediating
model to test the mechanism of green innovation as follows:
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lnpestop it � c0 + c1lndigifacit + CVitA + μi + γt + εit (5.1)
lngreinno it � a0 + a1lndigifacit + CVitB + μi + γt + εit (5.2)

lnpestop it � b0 + b1lngreinno it + c1
′lndigifacit + CVitΘ + μi + γt

+ εit

(5.3)
where lngreinno represents the logarithmic transformation of the
green technology innovation. The parameters matrix A, B, and Θ
constitute the matrix for the control variables incorporated within
the model.

To test the role of industrial structure upgrading as a crucial
channel through which the digital economy development impacts
pollution emissions, we formulate this model as follows:

lnpestop it � c0 + c1lndigifacit + CVitA + μi + γt + εit (6.1)
lnindup it � a0 + a1lndigifacit + CVitB + μi + γt + εit (6.2)

lnpestop it � b0 + b1lnindup it + c1
′lndigifacit + CVitΘ + μi + γt

+ εit

(6.3)
For the models (Equations 5.1–5.3), and (Equations 6.1–6.3)

should the regression analysis reveal statistical significance for c1, a1,
and b1, this would provide compelling evidence that green
innovation and industrial structure upgrading act as a mediating
factor in the impact of the digital economy development on
pollution emissions, respectively.

However, when estimating (Equations 5.1, 5.3), and (Equations
6.1, 6.3) directly and testing the significance of a1, b1 respectively,
namely the stepwise regression approach, to examine mediation
effects, it is noteworthy that this method’s statistical power to detect
such effects is relatively low, particularly when themediation effect is
weak (MacKinnon et al., 2002; Mackinnon et al., 2007; Hayes, 2009).
Consequently, relying solely on the stepwise inspection of regression
coefficients becomes somehow inadequate for establishing the
significance of the mediation effect (MacKinnon et al., 2002).

This study proceeds to employ the Bootstrap method for the
mediation effect test. It examines the null hypothesis H0: a1b1 = 0.
To calculate the theoretical concept of standard errors, a large
sample is treated as the population, and 1000 Bootstrap
resamples are drawn with replacement. This process provides a
more accurate estimation of standard errors. The Bootstrap method
is favoured over other mediation effect tests due to its statistical
power and is widely recognised as a valid alternative to the Sobel
method for directly testing the product of coefficients, offering a
more reliable assessment of mediation effects (Preacher et al., 2007;
Preacher and Hayes, 2008).

3.2 Variables and data

3.2.1 Dependent variables
We use the pollution emissions index as the dependent variable

to evaluate a city’s pollution emission strength. This index is
calculated by the entropy TOPSIS method, using three pollutants
emission data from 281 prefecture-level cities and 4 municipalities,
and spans 21 years from 2002 to 2022. We use three main pollutant
emission data, industrial wastewater discharge, industrial sulphur

dioxide (SO2) emissions, and industrial smoke and dust emissions,
from the China City Statistical Yearbook. These indicators were
selected based on their significance in contributing to overall
environmental pollution and their availability within the chosen
dataset. This extensive dataset provides a robust foundation for
analysing temporal and spatial variations of pollution levels.

The entropy TOPSIS method was employed to integrate and
standardise these diverse pollution metrics into a single composite
index—the Pollution Emission Strength (PES). This method ensures
that each pollutant’s contribution to the overall index is
appropriately weighted according to its relative importance and
variability, specifically in the following steps:

Firstly, to normalise the original pollution emission data using
Equation 7, as follows:

Ps
ijt �

Pijt −minPjt

maxPjt −minPjt
(7)

where the subscript i denotes the city, j represents the specific
pollutant (i.e., wastewater, SO2, or industrial dust), and t
indicates the year. Pijt represents the emission level of pollutant j
in province i during year t. The terms maxPjt and minPjt represent
the maximum and minimum emissions of pollutant j across all
provinces in year t, respectively. Ps

ijt denotes the standardised
emission value of pollutant j in province i in year t.

Secondly, to calculate the weight of each pollutant using
Equation 8:

Wijt � Pijt

Pjt

(8)

where Wijt represents the weight of pollutant j in province i during
year t, and Pjt denotes the average emission level of pollutant j across
all 285 cities in year t. This weighting mechanism ensures that
pollutants with higher emission levels contribute more significantly
to the composite index.

Finally, to calculate the final pollution emissions, which serve as
our proxy for the overall pollution emission strength, was computed
as the weighted average of the standardised emission values for each
pollutant. This was done using Equation 9:

pestopit � 1
3
∑
3

j�1
WijtP

s
ijt (9)

The petopit provides a holistic and quantifiable measure of
pollution emissions, facilitating comparisons across different
provinces and years. Figure 1 illustrates the Pollution Emission
Index across 285 prefecture-level cities in China, spanning the
period from 2002 to 2022, and unveils distinct temporal trends
and spatial variations in pollution levels. A discernible pattern
consistently emerges across all years: major urban agglomerations
and industrial hubs in eastern and central China, such as the Beijing-
Tianjin-Hebei region, the Yangtze River Delta, and the Pearl River
Delta, exhibit elevated pollution emissions, denoted by darker
shades on the maps. This phenomenon can be attributed to the
intensive industrial activities and high population densities inherent
to these areas. In contrast, western China, comprising provinces like
Xinjiang, Qinghai, and Tibet, consistently displays lighter shades,
indicative of lower pollution emissions. This disparity is likely due to
the regions’ lesser degree of industrialisation and lower population
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densities, resulting in a less pronounced impact on pollution levels
compared to their eastern and central counterparts.

Despite this overall trend, there are discernible differences in
pollution patterns across the years. In 2002, the map highlights
significant pollution hotspots in central and eastern China, with
major urban and industrial centres marked by darker blue shades.
By 2007, the pollution discharge in these regions remains high, with
several clusters of high-pollution cities evident, particularly around
major economic hubs. The 2012 map continues to show higher
pollution levels in eastern and central China, with deep blue shades
indicating substantial emissions in key cities and industrial regions.
In 2017, the trend persists, with eastern China’s industrialized
regions, such as Shandong, Jiangsu, and parts of Zhejiang,
exhibiting significantly higher pollution levels. However, by 2022,
while major urban areas in eastern and northern China still show
significant pollution, there is a noticeable shift, with some western
regions maintaining lower pollution levels, indicating potential
improvements or stable conditions in these areas.

In summary, the maps illustrate a consistent spatial variability in
pollution levels across China’s prefecture-level cities from 2002 to
2022. Eastern and central China, with their intensive industrial
activities and high population densities, consistently experience
higher pollution levels compared to western China. Although
there are variations in pollution patterns across the years, the
overall trend remains consistent, highlighting the need for
targeted interventions in high-emission areas to improve air
quality and environmental sustainability. Meanwhile, lower
emission regions may focus on maintaining or improving their

current pollution levels through effective pollution control measures
and sustainable development practices. It is worth mention that we
take the logarithm of pestop in the regression, denoted as lnpestop.

3.2.2 Explanatory variables
Referring to Li J. et al. (2022), this study assesses the digital

economy development level in two First-level indicators: Internet
development level and digital financial inclusion.

The Internet development level is based on four Second-level
indicators: Internet penetration, employment in related fields,
related output, and mobile phone penetration rate. To evaluate
these indicators, we use the Number of Internet broadband users per
100 people, the proportion of employees in the computer services
and software industry to total urban employees, per capita total
telecommunications business volume, and the Number of mobile
phone users per 100 people respectively. For Digital Financial
Inclusion, we adopt the China Digital Financial Inclusion Index
developed by Guo et al. (2020). This index, jointly compiled by the
Peking University Digital Financial Research Centre and Ant
Financial Services Group, provides a holistic and robust measure
of digital financial access and usage across various dimensions.

To precisely quantify the Digital Economy development index
(digifac), this study employs PCA to analyse the aforementioned
five indicators and ascertain their respective weights. This
methodological approach enables the computation of the
digifac, reflecting the multifaceted nature of digital economic
development. A detailed list of the variables utilised in this
analysis, along with corresponding explanations, is presented in

FIGURE 1
The pollution emission index of Chinese 285 cities from 2002–2022.
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Table 1. By adopting PCA, we ensure a robust and data-driven
determination of the relative importance of each indicator, thereby
enhancing the accuracy and reliability of our digifac calculation.

The spatial distribution and temporal evolution of China’s
digital economy development across the years 2002, 2007, 2012,
2017, and 2022 are visually represented in Figure 2. A striking
commonality observed throughout these maps is the pronounced
concentration of digital economy activities in the eastern coastal
regions of China. Urban hubs such as Beijing, Shanghai, and
Guangzhou consistently stand out, marked by the darkest hues of
red and orange, indicative of the most intense levels of digital
economy engagement. This phenomenon underscores the

effective utilisation of technological advancements by cities
endowed with robust economic infrastructures. The eastern
coastal areas are distinguished by their superior internet
connectivity, advanced technological infrastructure, and vibrant
ecosystem, which have collectively fostered a proliferation of
digital endeavours, encompassing e-commerce, digital financial
transactions, and technological innovations.

Despite this overall trend, there are notable differences in digital
economy development levels across different regions and over time.
In 2002, the map reveals significant variation in digital economy
development, with many cities in eastern China shaded in darker
reds, while western and northern China exhibit lighter shades. This

TABLE 1 The component of digital economy development.

First-level
indicator

Second-level
indicator

Indicator meaning Weight Data source

Internet
Development

Internet Penetration
Rate

Number of internet broadband users per 100 people 0.2070 The China City Statistical Yearbook

Employment in
Related Fields

Proportion of employees in computer services and
software industry to total urban employees

0.2029

Related Output Per capita total telecommunications business volume 0.2058

Mobile Phone
Penetration Rate

Number of mobile phone users per 100 people 0.2057

Digital Financial
Inclusion

Digital Financial
Inclusion Index

Digital Financial Inclusion Index 0.1786 Jointly compiled by the Peking University Digital
Financial Research Center and Ant Financial Group

FIGURE 2
The digital economy development levels of Chinese 285 cities from 2002–2022.
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disparity persists through the subsequent years, although some
regions in the west and north show gradual improvements. By
2022, the map indicates that while clusters of cities in eastern and
southern China continue to exhibit high levels of digital economy
development, there are also pockets of relatively high development
in certain cities in the northeastern part of China. These cities,
historically industrial powerhouses, have transitioned and invested
in digital sectors, contributing to their improved standing in the
digital economy landscape. In contrast, the western region of China,
characterized by vast geographies and sparse populations, faces
challenges in data collection and digital infrastructure
development, resulting in relatively low digital economy
development levels. Additionally, some western cities lack
comprehensive statistical data, complicating efforts to accurately
assess and compare their digital economy growth.

In summary, the descriptive statistics derived from the
choropleth maps reveal significant regional disparities in digital
economy development across Chinese cities from 2002 to 2022. The
eastern coastal regions consistently exhibit the highest levels of
digital economy activity, driven by favorable economic and
infrastructural conditions. In contrast, the western and northern
regions lag behind, with some improvement observed over time. The
northeastern region shows a unique pattern of relatively high digital
economy development, reflecting historical industrial transitions
and investments in digital sectors. These spatial heterogeneities
underscore the need for tailored policies and interventions to
promote sustainable digital economy growth while mitigating
environmental impacts. As we delve into the analysis of the
impact of digital economy development on pollution emissions in
subsequent sections, it will be crucial to consider these regional
disparities to gain a comprehensive understanding of the
relationship between digital economy and environmental
sustainability in Chinese cities.

3.2.3 Mediating variables
To thoroughly explore the mediating role of green innovation in

the context of our research on the impact of the digital economy
development on pollution emissions, we employ the logarithm of the
aggregate number of green patent applications within a city as a
proxy variable for green innovation, denoted as lngreinno. This
could provide a comprehensive and robust indication of the extent
and intensity of green technology innovations in a city.

This study also incorporates the index of industrial structure
upgrading (lnindup), which is calculated as the ratio of the value
added by the tertiary industry to that of the secondary industry. This
index serves as a proxy for a city’s structural transformation and
upgrading, reflecting the shift towards more knowledge-intensive
and environmentally friendly sectors to some degree.

3.2.4 Control variables
In this study, we have controlled for several variables that may

have influenced a city’s pollution emissions, ensuring a
comprehensive and nuanced analysis. These variables are as follows:

3.2.4.1 Gross domestic product (gdp)
This variable serves as an indicator of a city’s economic

development level. It is posited that GDP has a positive impact
on pollution emissions, as heightened economic activity often leads

to increased industrial production and, consequently, greater
pollution emissions.

3.2.4.2 Foreign direct investment (fdi)
FDI measures the level of foreign capital utilisation in a city. Its

impact on pollution emissions is multifaceted and can be both
positive and negative. On the one hand, FDI may introduce
advanced technologies and environmental management practices
that reduce pollution. On the other hand, it could also lead to
increased industrial activity and, subsequently, higher emissions.

3.2.4.3 Year-end loan balance (loan)
This variable reflects the level of financial support and, by

extension, the overall economic vitality of a city. Similar to FDI,
the impact of loan balance on pollution emissions is ambivalent,
potentially contributing to both increased emissions through
enhanced economic activity and decreased emissions through the
financing of eco-friendly projects.

3.2.4.4 Science and technology expenditure (sciexp)
This metric gauges a city’s investment in and commitment to

scientific and technological advancement. In the short term, such
expenditure may lead to increased pollution due to the initial stages
of research and development. However, in the long run,
technological innovations are expected to facilitate more
sustainable practices, thereby reducing pollution emissions.

3.2.4.5 Population density (popd)
Population density provides insights into the distribution of a

city’s populace. It is hypothesised that a higher population density
correlates positively with pollution emissions, as a denser population
often results in greater demand for resources and energy, leading to
increased environmental degradation.

3.2.4.6 Energy consumption (lnenergy)
This encompasses the conversion of electricity consumption,

artificial gas, natural gas, and liquefied petroleum gas into standard
coal equivalents, serving as a pivotal indicator of both national
economic development and living standards. The greater the
energy consumption, the higher the pollution emissions are
anticipated to be. For the sake of precision, the conversion
factors used are as follows: 0.1229 kg of standard coal per
kilowatt-hour for electricity (equivalent to 1.229 tonnes of
standard coal per 10,000 kilowatt-hours), 1.33 kg of standard
coal per cubic meter for natural gas (equivalent to 13.3 tonnes
of standard coal per 10,000 cubic meters), and 1.7143 kg of
standard coal per kilogram for liquefied petroleum gas
(equivalent to 1.7143 tonnes of standard coal per tonne).

By controlling for these variables, this study aims to provide a
more accurate and holistic understanding of the digital economy
development’s impact on pollution emissions in urban areas.

3.2.5 Spatial matrix
In this study, a spatial matrix is constructed utilising the inverse

distance matrix of 285 cities to capture the geographical proximity
and potential interaction effects among these urban centres in the
context of the development of digital economy influence on
pollution emissions. The matrix is calculated as follows:
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Wr � wij( )
285×285

�
1
dij

i ≠ j

0 i � j

⎧⎪⎪⎨
⎪⎪⎩ (10)

where i and j denote the city, dij denotes the distance between city i
and city j. This methodological approach is grounded in the
understanding that the spatial distribution of cities, which is the
distance between them, can significantly impact environmental
outcomes, particularly when considering the effects of digital
technologies on industrial processes, consumption patterns, and
regulatory frameworks.

By employing the inverse distance matrix, we aim to quantify the
degree of spatial correlation and spillover effects, acknowledging
that cities closer to each other are likely to experience more
pronounced influences due to shared resources, transportation
networks, and policy implementations. The selection of 285 cities
ensures a comprehensive and representative sample, allowing for a
robust analysis of how the proliferation of digital technologies across
diverse urban landscapes correlates with changes in pollution levels.

3.3 The descriptive statistics

To facilitate subsequent analyses and construct a balanced panel
dataset, we have undertaken the following methodological
adjustments to address missing values and zero entries:

Firstly, in order to mitigate the impact of incomplete data,
interpolation techniques were employed to estimate and fill in
missing values encountered within the China City Statistical
Yearbook. This approach ensures that the dataset remains as
comprehensive as possible, minimising the disruption caused
by data gaps.

Secondly, considering the inherent non-negativity of the
variables under investigation, any negative values resulting from
the interpolation process, as well as any remaining empty entries,
were systematically replaced with the mean of the respective
variable’s original non-zero observations for each city. This step
preserves the integrity of the data by maintaining realistic and
representative values where direct observations are lacking or
inaccurate.

Thirdly, to stabilise data fluctuations and enhance the
robustness of analytical outcomes, all variables underwent a
logarithmic transformation. It is noteworthy that the application
of the logarithm function to zero values would result in errors,
leading to their exclusion from subsequent regression analyses by
computational algorithms. To circumvent this issue, all zero entries
were substituted with a value equal to one-thousandth of the
smallest non-zero value observed for that particular variable. This
strategy strikingly balances the need to maintain data logic and
sequence integrity while avoiding the loss of crucial data points.

Moreover, the Digital Economy development index (digifac)
was computed using PCA to determine the appropriate weights for
each component. However, given that the raw data included
negative and zero values, the computed digifac scores also
exhibited such values. To address this challenge, a decision was
made to shift all values in the digifac dataset to two units to the
right, ensuring that all observations became positive. This
adjustment was crucial for enabling the application of

logarithmic transformation and subsequent statistical analyses
without the complications associated with non-positive data points.

These preprocessing steps have been meticulously implemented
to enhance the quality and reliability of the dataset, thereby laying a
solid foundation for the rigorous exploration of the impact of digital
economy development on pollution emissions. By managing
missing data, outliers, and stabilising distributions, the descriptive
statistics were presented in Table 2.

4 Empirical results

4.1 Baseline regression results

The baseline regression specified by Formula 1 is employed to
assess the direct impact of digital economy development on
pollution emissions. The results presented in Table 3, offer a
comprehensive view at both the nationwide level and across
diverse economic regions.

In the initial phase of our investigation, Regression (1) was
employed to provide an unadulterated assessment of the impact of
digital economy development on pollution emissions, without the
inclusion of any control variables. The results obtained indicated a
significantly negative coefficient for digital economy development,
suggesting an inherent tendency for digital economy development to
reduce pollution emissions. To further refine our analysis, Regression
(2) was subsequently conducted, incorporating a comprehensive set of
control variables. This adjusted model allowed for a more accurate
exploration of the relationship, accounting for other influential factors
that might confound the association. Notably, the findings from
Regression (2) were consistent with those of the initial regression,
reinforcing the robustness of the observed inhibitory effect of digital
economy development on pollution emissions. This consistency
across models underscores the stability and reliability of our
results, providing compelling evidence for the potential of digital
economy growth to mitigate pollution emissions.

Then, our research endeavours shift towards exploring the
regional heterogeneity inherent in the impact of digital economy
development on pollution emissions. Adopting the classification
methodology outlined by the China National Bureau of Statistics, we
segment the nation into four distinct economic regions: the Eastern,
Central, Western, and Northeastern regions. The regression results
are summarised in Columns (3)–(6):

Columns (3)–(4) show in the Eastern and Central regions, the
impact of digital economy development on pollution emission levels
is markedly negative, suggesting a beneficial role in mitigating
emissions. However, Columns (5)–(6) show that within the
Western and Northeastern regions, the coefficients associated
with digital economy development are statistically insignificant.
This heterogeneity in different economic regions in outcomes
may be attributed to a multitude of factors. For instance, the
relatively limited sample sizes in the Western and Northeastern
regions may contribute to the statistical insignificance, as smaller
datasets can be less representative and more susceptible to
variability. Moreover, the digital economy development level in
these regions is at a nascent stage of development compared to
the Eastern and Central regions, potentially limiting its immediate
environmental impact.
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Based on Hypothesis 1, this study first employs higher-order
terms in the regression to empirically validate the nonlinear impact
of digital economy development on pollution emissions. Building

upon Formula 2, we incorporate higher-order terms of the digital
economy development indicator (lndigifac), the specific regression
results are presented in Table 4.

TABLE 2 Descriptive statistics of variables.

Catagories Variable Meaning Obs Mean Std. Dev Min Max

The dependent variable lnpestop The logarithm of pollution emissions strength 5985 −2.932 1.972 −24.481 3.569

The Independent Variable lndigifac The logarithm of digital economy development 5985 0.718 0.456 −0.933 1.902

The Control Variables lngdp The logarithm of GDP 5985 15.863 1.067 12.202 19.428

lnfdi The logarithm of FDI 5985 11.096 2.447 −4.285 16.465

lnloan The logarithm of Year-End Loan Balance 5985 15.666 1.314 12.48 20.199

lnsciexp The logarithm of Science and Technology Expenditure 5985 4.452 2.07 −7.396 10.518

lnpopd The logarithm of Population Density 5985 5.549 1.567 −5.227 8.1

lnenergy The logarithm of Energy Consumption 5985 13.598 1.358 9.263 17.711

The Mediating Variables lngreinno The logarithm of green innovation 5985 3.623 2.88 −6.908 10.301

lnindup The logarithm of the index of industrial upgrading 5985 −0.146 0.476 −2.509 1.732

TABLE 3 The results of Baseline Regression in different regions.

Variables (1) (2) (3) (4) (5) (6)

lnpestop Nationwide Eastern Central Western Northeastern

lndigifac −0.478*** −0.318*** −0.639** −0.755*** 0.0255 0.271

(0.0518) (0.121) (0.275) (0.218) (0.204) (0.374)

lngdp 0.568*** 1.009*** 0.738*** 0.190 0.0580

(0.0770) (0.170) (0.156) (0.136) (0.190)

lnfdi −0.0625*** −0.0669* −0.0624** −0.0322* −0.00311

(0.0130) (0.0403) (0.0295) (0.0184) (0.0371)

lnloan −0.539*** −0.479*** −0.766*** −0.384*** −0.694***

(0.0562) (0.126) (0.0934) (0.100) (0.162)

lnsciexp −0.0538*** −0.0655* 0.00620 −0.0195 0.0609

(0.0196) (0.0376) (0.0351) (0.0368) (0.0618)

lnpopd 1.356*** 1.192*** 1.584*** 0.344 2.945***

(0.207) (0.373) (0.303) (0.486) (0.984)

lnenergy 0.119*** 0.0378 −0.0814 0.260*** 0.0933

(0.0281) (0.0628) (0.0504) (0.0430) (0.109)

Constant −2.590*** −11.49*** −16.89*** −9.997*** −5.236** −9.855*

(0.0394) (1.314) (2.729) (2.304) (2.621) (5.612)

Time Fixed Fixed Fixed Fixed Fixed Fixed Fixed

Individual Fixed Fixed Fixed Fixed Fixed Fixed Fixed

Observations 5,985 5,985 1,827 1,680 1,764 714

R-squared 0.015 0.043 0.031 0.192 0.028 0.098

Number of cities 285 285 87 80 84 34

Note: The values in brackets are the standard errors; ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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Table 4 presents the regression results of Formula 2 after
incorporating quadratic and cubic terms of digital economy
development with regional heterogeneity. These findings reveal a
notable regional heterogeneity in the impact of digital economy
development on pollution emissions levels. Columns (1)–(2) show
the regression results by adding the quadratic and both quadratic
and cubic terms for the nationwide sample respectively. It can be
seen that the coefficients of the higher-order terms of the digital
economy development are statistically significant, along with all
control variables, providing initial evidence of a nonlinear impact on
the digital economy development on pollution emission, validating
Hypothesis 1.

Regionally, the findings exhibit considerable variation. Within
the Eastern region, the quadratic term demonstrates statistical
significance, albeit this diminishes upon inclusion of the cubic
term. Both Central and Western regions diverge from the

nationwide pattern, with both quadratic and cubic terms
attaining marginal significance. In contrast, neither term achieves
significance in the Northeastern region, where the insensitivity to
digital economy effects stems from structural peculiarities. The
region’s industrial structure, heavily reliant on capital-intensive
heavy industries with inherently high emission intensities,
establishes a baseline of persistent pollution that overshadows the
moderating effects of digital transformation. Concurrently, the
digital economy in this region remains underdeveloped compared
to coastal areas, with digital infrastructure penetration and
e-commerce adoption lagging significantly. This dual
reality—high industrial emission rigidity coupled with digital
development deficits—creates a unique scenario where
conventional industrial paradigms dominate environmental
outcomes, rendering statistical detection of digital economy
impacts challenging within the model’s timeframe. Collectively,

TABLE 4 The results of regression with higher-order terms in different regions.

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

lnpestop Nationwide Eastern Central Western Northeastern

lndigifac 0.466*** 0.257* 3.043*** 0.628 0.718** 1.849*** 0.313 −0.313 0.447 0.427

(0.143) (0.147) (0.729) (2.029) (0.331) (0.696) (0.201) (0.238) (0.653) (1.142)

lndigifac2 −0.634*** −1.162*** −1.836*** 0.588 −1.157*** −3.162*** −0.842*** −1.477*** −0.103 −0.0753

(0.0623) (0.112) (0.337) (1.929) (0.197) (1.104) (0.0860) (0.157) (0.312) (1.300)

lndigifac3 0.431*** −0.767 0.976* 0.745*** −0.0105

(0.0757) (0.601) (0.529) (0.155) (0.485)

lngdp 0.446*** 0.472*** 0.783*** 0.819*** 0.720*** 0.697*** 0.0716 0.119 0.0441 0.0443

(0.0773) (0.0772) (0.173) (0.176) (0.154) (0.154) (0.133) (0.132) (0.194) (0.195)

lnfdi −0.0739*** −0.0671*** −0.0620 −0.0557 −0.105*** −0.107*** −0.0247 −0.0233 −0.00327 −0.00323

(0.0130) (0.0130) (0.0400) (0.0403) (0.0301) (0.0301) (0.0179) (0.0178) (0.0371) (0.0372)

lnloan −0.431*** −0.436*** −0.431*** −0.453*** −0.689*** −0.670*** −0.156 −0.165* −0.683*** −0.683***

(0.0567) (0.0566) (0.126) (0.127) (0.0934) (0.0938) (0.100) (0.0997) (0.166) (0.166)

lnsciexp −0.0468** −0.0325* −0.0994*** −0.0951** −0.00408 −0.00735 −0.00965 0.00256 0.0594 0.0593

(0.0194) (0.0195) (0.0378) (0.0380) (0.0348) (0.0348) (0.0358) (0.0356) (0.0620) (0.0621)

lnpopd 1.458*** 1.319*** 1.927*** 1.984*** 1.232*** 1.276*** 0.465 0.0372 2.977*** 2.979***

(0.206) (0.206) (0.393) (0.396) (0.306) (0.307) (0.473) (0.478) (0.989) (0.995)

lnenergy 0.120*** 0.110*** 0.0841 0.0713 −0.0668 −0.0593 0.252*** 0.226*** 0.0943 0.0942

(0.0279) (0.0278) (0.0629) (0.0636) (0.0499) (0.0500) (0.0418) (0.0419) (0.109) (0.109)

Constant −11.83*** −11.17*** −20.40*** −20.11*** −8.817*** −9.203*** −7.166*** −4.966* −10.03* −10.04*

(1.303) (1.305) (2.782) (2.791) (2.289) (2.297) (2.557) (2.582) (5.642) (5.654)

Time Fixed Effect Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed

Individual Fixed Effect Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed

Observations 5,985 5,985 1,827 1,827 1,680 1,680 1,764 1,764 714 714

R-squared 0.060 0.066 0.047 0.048 0.209 0.210 0.081 0.093 0.098 0.098

Number of cities 285 285 87 87 80 80 84 84 34 34

Note: The values in brackets are the standard errors; ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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these regional disparities underscore pronounced heterogeneity in
the digital economy’s pollution-mitigating effects across
geographic contexts.

4.2 Threshold regression results

To capture the non-linear impact of digital economy
development on pollution emissions more accurately, this study
employs a refined threshold regressionmodel, refer to Formula 3, for
subsequent analysis. Initially, a three-threshold regression model
was applied to examine data from the Nationwide, Eastern, Central,
Western and Northeastern regions. The critical values for the
confidence intervals were generated through 500 bootstrap
resamples. The detailed results of these tests are presented in Table 5.

Table 5 reveals a significant single-threshold effect for the
nationwide sample, indicating the presence of a single-threshold
effect in the impact of digital economy development on pollution
emission levels. This finding justifies the application of a single-
threshold regression analysis. When examining regional
heterogeneity, the results indicate that only the samples from the
Eastern and Western regions exhibit significant single-threshold
effects at the 5% and 1% significance levels, respectively, while the
threshold effects for samples from other regions are not significant.

Tables 6, 7 present the single threshold regression results and the
threshold value for the Nationwide, Eastern, and Western regions,
respectively.

The regression results above indicate that the coefficient of
digital economy development is significant both before and after
the threshold in the Nationwide sample, suggesting a significant
single-threshold effect across the entire dataset. However, in
Regression (2), the coefficient of digital economy development is
insignificant both before and after the threshold, implying that the

Eastern region sample does not support the threshold effect.
Conversely, the threshold is significant in the Western region
sample, indicating the presence of a threshold effect in this area.

The inconsistent threshold test results across regions may be
attributed to various factors. Primarily, the substantially reduced
number of observations in regional regressions may introduce
observational bias. Secondly, there is a spatial aggregation effect
among cities, where cities in the same economic region tend to
exhibit similar levels of digital economy development and pollution
emissions, clustering the observations within a small range,
potentially omitting the threshold effect.

It suggests considerable regional heterogeneity across the four
economic regions of the country. The primary reason for this
heterogeneity may lie in the geographical and economic
characteristics of these regions. The Eastern, Central, and
Northeastern regions are relatively concentrated, with similar
levels of digital economy development and pollution emissions,
thus failing to demonstrate a threshold effect. Conversely, the
western region, characterised by its vast territory and diverse
conditions, shows significant variations in both digital economy
development and pollution emission levels, leading to the emergence
of a discernible threshold effect. To specify the regional
heterogeneity, this study conducts a descriptive statistical analysis
of digital economy development and pollution emission levels by
region. The results are presented in Table 8.

Table 8 presents the regional descriptive statistics for digital
economy development and pollution emission levels. A discernible
spatial clustering is evident in both indicators: the Eastern region
exhibits the lowest pollution emission levels concomitant with the
highest digital economy development, whereas the Western region
demonstrates the converse, with the highest pollution emissions and
lowest digital economy development. The standard deviations and
value ranges further suggest a spatial spillover effect, albeit requiring

TABLE 5 The threshold test results.

Region Threshold RSS MSE Fstat Prob Crit10 Crit5 Crit1

Nationwide Single 5499.8251 0.9222 213.22 0.0000 39.8363 43.9802 56.5672

Double 5470.9963 0.9173 31.43 0.1460 33.7422 41.0344 52.2096

Triple 5450.7587 0.9139 22.14 0.4400 41.0102 46.9815 61.0737

Eastern Single 1764.1655 0.9768 36.37 0.0300 26.2885 31.7911 42.5565

Double 1753.8081 0.9711 10.67 0.4740 20.5238 24.9639 41.2699

Triple 1746.7211 0.9672 7.33 0.8720 27.2447 32.4946 43.5721

Central Single 1202.7050 0.7250 28.91 0.1220 31.3152 36.5089 54.9860

Double 1190.9454 0.7179 16.38 0.2660 22.6620 26.9891 41.3341

Triple 1180.0607 0.7113 15.30 0.6660 28.6941 31.8111 40.2858

Western Single 1647.0487 0.9450 159.69 0.0000 30.0325 38.4138 55.3458

Double 1638.2142 0.9399 9.40 0.5020 20.9058 27.4600 42.4727

Triple 1628.9848 0.9346 9.88 0.4560 16.7462 18.9169 23.9683

Northeastern Single 653.5712 0.9431 8.71 0.8680 36.0613 42.9355 60.0735

Double 635.6973 0.9173 19.49 0.2200 23.5984 28.4997 35.1464

Triple 627.5884 0.9056 8.95 0.9680 38.0425 41.9049 54.3126
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further analysis through spatial models to confirm and elucidate
these patterns.

4.3 Spatial autoregression results

This study employs the Moran’s I statistic, calculated using
inverse distance weighting matrices, to investigate the spatial
spillover dynamics of urban pollution emissions. While
acknowledging the modest global Moran’s I values presented in

Table 9 (ranging between 0.02–0.064 across the 2002–2022 period),
our analysis reveals statistically significant positive spatial
autocorrelation at the 1% level for all observed years. This
finding demonstrates that, despite moderate overall spatial
correlation coefficients, localised spatial dependencies persist due
to the specific configuration of our inverse distance weighting
matrix, which captures fine-grained geographic proximities often
overlooked by simpler binary contiguity matrices. The observed
positive spillover effects - where pollution levels in one urban area
exert demonstrable influence on neighbouring regions’ emission

TABLE 6 The Threshold regression results.

Variables (1) (2) (3)

lnpestop Nationwide Eastern Western

lndigifac < T1 1.049*** 0.00704 0.953***

(0.153) (0.293) (0.211)

lndigifac ≥ T1 −0.493*** −0.418 −1.018***

(0.120) (0.275) (0.215)

lngdp 0.480*** 0.846*** 0.216*

(0.0760) (0.170) (0.131)

lnfdi −0.0522*** −0.0616 −0.0206

(0.0128) (0.0399) (0.0177)

lnloan −0.416*** −0.480*** −0.146

(0.0559) (0.125) (0.0983)

lnsciexp −0.0358* −0.0853** −0.00769

(0.0193) (0.0374) (0.0353)

lnpopd 1.379*** 1.434*** −0.109

(0.204) (0.371) (0.468)

lnenergy 0.0931*** 0.0766 0.188***

(0.0277) (0.0625) (0.0417)

Constant −11.87*** −16.61*** −5.490**

(1.292) (2.703) (2.517)

Individual Fixed Fixed Fixed Fixed

Time Fixed Fixed Fixed Fixed

Observations 5,985 1,827 1,764

R-squared 0.076 0.050 0.104

Number of cities 285 87 84

Note: The values in brackets are the standard errors; ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

TABLE 7 The threshold value.

Regression Region Thresholds Value Lower Upper

(1) Nationwide T1 0.4546 0.4356 0.4594

(2) Eastern T1 1.2532 1.2414 1.2544

(3) Western T1 0.4312 0.3975 0.4417
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patterns - are validated through three critical observations: (1) the
consistent significance of spatial coefficients across two decades; (2)
Z-scores exceeding 4.6 in all years, indicating robust spatial
structuring; and (3) the operationalisation of geographic

proximity through inverse distance decay parameters, which
amplify spillover detection in peri-urban zones. These results
collectively justify the subsequent SAR model specifications,
which explicitly account for these identified spatial transmission
pathways. The study’s selection of inverse distance weighting -
defined in Section 3.2.5 - enhances sensitivity to distance-decay
effects, revealing meaningful spillover mechanisms even within the
context of moderate global Moran’s I values. This underscores the
importance of methodological transparency in spatial econometric
analyses, particularly when addressing scale-dependent
environmental impacts.

This paper investigates the spatial spillover effects of cities’
pollution emissions, with a particular focus on how digital
economic development influences these dynamics. To ensure the
appropriateness of the modelling framework, we initially conducted
Lagrange Multiplier (LM) tests to verify the presence of spatial
autocorrelation. The results confirmed the significance of spatial
autoregressive terms, prompting us to augment the baseline model
with a spatial autoregression term. Specifically, we employed a
Spatial Autoregressive (SAR) model as outlined in Formula 4,
where spatial dependencies are captured using an inverse
distance weighting matrix defined in Formula 10. This matrix
was selected to account for the nuanced geographic proximities
that may influence pollution transmission patterns.

Subsequent spatial diagnostic tests were performed to determine
the optimal model specification. The Hausman test indicated the
rejection of random effects in favour of fixed effects, while the
Likelihood Ratio (LR) test supported the adoption of a two-way fixed
effects model, incorporating both cross-sectional and temporal
dimensions. The final SAR two-way fixed effects regression
results, presented in Table 10, reveal compelling insights.
Column (1) demonstrates that digital economic development
exerts a significantly negative impact on pollution emissions at
the 5% significance level across the national scale. Concurrently,
the spatial lag coefficient (rho) maintains statistical significance at
the 1% level, alongside all control variables. These findings
collectively suggest that the SAR model effectively captures the
inhibitory effect of digital economic development on pollution
emissions, underscoring the importance of considering spatial
spillovers in environmental impact assessments.

TABLE 8 The descriptive statistics of digital economy development and pollution emissions by region.

Variable Region Obs Mean Std. Dev Min Max

lndigifac Nationwide 5985 0.718 0.456 −0.933 1.902

Eastern 1827 0.959 0.277 0.1 1.902

Central 1680 0.641 0.32 −0.07 1.4

Western 1764 0.478 0.59 −0.933 1.411

Northeastern 714 0.868 0.345 −0.045 1.86

lnpestop Nationwide 5985 −2.932 1.972 −24.481 3.569

Eastern 1827 −2.479 2.182 −24.481 2.559

Central 1680 −2.981 1.599 −10.031 3.569

Western 1764 −3.309 2.135 −12.253 3.069

Northeastern 714 −3.05 1.499 −8.373 0.453

TABLE 9 The Moran’s I Value for pollution emissions.

Year lnpestop

Moran’s I Z

2002 0.031*** 6.638

2003 0.03*** 6.474

2004 0.033*** 7.147

2005 0.041*** 8.779

2006 0.046*** 9.604

2007 0.038*** 8.19

2008 0.033*** 7.511

2009 0.037*** 8.091

2010 0.03*** 7.029

2011 0.037*** 8.233

2012 0.05*** 10.411

2013 0.047*** 10.503

2014 0.064*** 13.277

2015 0.061*** 12.725

2016 0.052*** 10.738

2017 0.052*** 10.747

2018 0.033*** 7.111

2019 0.032*** 6.994

2020 0.035*** 7.508

2021 0.021*** 4.829

2022 0.02*** 4.632

Note: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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From the perspective of regional heterogeneity, Columns (2)–(5)
show that the impact of digital economic development on pollution
emissions is significant only in the Eastern and Central regions but
not in the Western and Northeastern regions. Nonetheless, the
spatial lag term remains significant across all regressions,
highlighting a significant spatial spillover effect. This may be
attributed to several factors, including the relatively smaller
sample sizes in the Western and Northeastern regions, relatively
lower levels of digital economic development in these areas, the
concentration of the observations within the same economic region
and differences in industrial structure across different
economic regions.

Table 11 shows the breakdown of the direct, indirect, and total
effects derived from the SAR. The direct effect denotes the influence
of a city’s own independent variables on its pollution emissions. The
indirect effect represents the impact on a city’s emissions from a
one-unit change in independent variables of neighbouring cities.
The total effect is the sum of these two effects. Analysing the
nationwide sample shows that the indirect effect has a
statistically significant negative impact on pollution emissions

with a coefficient of −1.713. Similarly, the direct effect also
demonstrates a notable negative influence on pollution emissions
with a coefficient of −0.225. Both these effects are statistically
significant at the 10% level. This underscores a negative
correlation between the level of digital economic development in
neighbouring cities and pollution emission levels. Furthermore, this
negative influence is observed to be statistically significant in both
the eastern and central regions of the country, indicating a consistent
pattern across these geographical areas.

4.4 Mediating effect results

This study performed a mediating effect analysis using the
Bootstrap method to explore how green technological
innovations and industrial upgrading mediate the digital
economy’s influence on pollution emissions. Building upon the
estimation of (Equations 5.1, 5.3), and (Equations 6.1, 6.3) the
method tested the null hypothesis H0: a1b1 � 0. A bootstrap
resampling procedure utilizing 1000 iterations was used to

TABLE 10 The results of SAR.

Variables (1) (2) (3) (4) (5)

lnpestop Nationwide Eastern Central Western Northeastern

lndigifac −0.220** −0.727*** −0.402** 0.0242 0.0885

(0.112) (0.260) (0.190) (0.191) (0.337)

lngdp 0.333*** 0.635*** 0.487*** 0.209 0.0472

(0.0714) (0.164) (0.136) (0.127) (0.171)

lnfdi −0.0587*** −0.0584 −0.0841*** −0.0310* 0.00600

(0.0121) (0.0381) (0.0258) (0.0173) (0.0334)

lnloan −0.192*** −0.192 −0.291*** −0.275*** −0.297**

(0.0526) (0.123) (0.0834) (0.0944) (0.150)

lnsciexp −0.113*** −0.110*** −0.0981*** −0.0445 0.00702

(0.0181) (0.0358) (0.0309) (0.0345) (0.0558)

lnpopd 1.283*** 1.113*** 1.516*** 0.477 1.742*

(0.191) (0.352) (0.265) (0.456) (0.892)

lnenergy 0.217*** 0.141** 0.167*** 0.221*** 0.118

(0.0261) (0.0602) (0.0449) (0.0404) (0.0977)

rho 0.887*** 0.606*** 0.831*** 0.688*** 0.604***

(0.0218) (0.0574) (0.0308) (0.0533) (0.0548)

sigma2_e 0.854*** 0.929*** 0.585*** 0.945*** 0.796***

−0.0157 (0.0309) (0.0203) (0.0320) (0.0424)

Time Fixed Fixed Fixed Fixed Fixed Fixed

Individual Fixed Fixed Fixed Fixed Fixed Fixed

Observations 5,985 1,827 1,680 1,764 714

Number of cities 285 87 80 84 34

Note: The values in brackets are the standard errors; ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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calculate critical values and confidence intervals. The results are
presented in Table 12.

Table 12 presents the regression results of the mediation effects
of green technological innovation and industrial structure
upgrading. The indirect effect of green technological innovation
is significant at the 5% level, while the indirect effect of industrial
upgrading is significant at the 1% level. It indicates that both green
technological innovation and industrial upgrading exhibit notable
mediation effects.

Furthermore, the direct effects of digital economy development
on pollution emissions remain statistically significant, even when
accounting for the intermediary pathways of green technological
innovation and industrial structural upgrading. This dual-pronged
mechanism elucidates that digital transformation not only exerts a
primary effect on environmental outcomes but also operates
through secondary channels. Specifically, digital technologies
enhance the diffusion of clean production methodologies and
resource-efficient systems, fostering green innovation by enabling
data-driven optimisation of energy consumption patterns and
pollution abatement processes. Concurrently, digital penetration
facilitates industrial restructuring by automating traditional
manufacturing, promoting service-sector expansion, and reducing
reliance on high-emission heavy industries. These structural shifts,
mediated by digitalisation, create a synergistic effect that amplifies
the pollution-mitigating potential of technological progress.
Collectively, these findings substantiate the theoretical framework

underpinning Hypotheses 3.1 and Hypotheses 3.2, demonstrating
both direct and indirect transmission mechanisms in the digital
economy’s environmental impact.

5 Robustness tests

Considering the endogeneity of variables, the heterogeneity
among different levels of cities, and the examination of various
types of spatial matrices, we perform a series of robustness tests on
the econometric methods previously discussed. This approach seeks
to validate the reliability of our findings related to the impact of
digital economy development on pollution emissions.

5.1 Endogenous problems

To address the issue of endogeneity inherent in the digital
economy variable, this study constructs the “Bartik instrument” for
implementation in a two-stage least squares (2SLS) regression (Bartik,
2006; Goldsmith-Pinkham et al., 2020). This “Bartik instrument” is
formulated as the product of the lagged digital economy development
(lndigifacit-1) and the first-order difference of the national digital
economy development index (Δlndigifact-1), denoted as (ivlndigifac).

The rationale behind constructing this instrumental variable is
twofold. The national digital economy development index, derived

TABLE 11 The Breakdown of spillover effects.

Region Effects lndigifac lngdp lnfdi lnloan lnsciexp lnpopd lnenergy

Nationwide Direct −0.225* (0.116) 0.335*** (0.0618) −0.0593*** (0.0134) −0.191*** (0.0545) −0.118*** (0.0196) 1.344*** (0.207) 0.225***
(0.0286)

Indirect −1.713* (0.947) 2.536*** (0.570) −0.454*** (0.137) −1.444*** (0.467) −0.904*** (0.236) 10.29*** (2.738) 1.718*** (0.431)

Total −1.939* (1.056) 2.871*** (0.610) −0.513*** (0.148) −1.635*** (0.511) −1.022*** (0.249) 11.64*** (2.881) 1.943*** (0.449)

Eastern Direct −0.738*** (0.266) 0.629*** (0.141) −0.0565 (0.0420) −0.182 (0.125) −0.117*** (0.0393) 1.165*** (0.371) 0.147** (0.0657)

Indirect −1.115** (0.473) 0.934*** (0.233) −0.0863 (0.0672) −0.266 (0.189) −0.178** (0.0763) 1.776** (0.720) 0.226* (0.123)

Total −1.853*** (0.714) 1.563*** (0.339) −0.143 (0.108) −0.448 (0.308) −0.295*** (0.111) 2.941*** (1.048) 0.373** (0.184)

Central Direct −0.425** (0.202) 0.502*** (0.122) −0.0865*** (0.0293) −0.299*** (0.0895) −0.108*** (0.0337) 1.639*** (0.294) 0.181***
(0.0513)

Indirect −1.964* (1.015) 2.303*** (0.637) −0.404** (0.161) −1.361*** (0.438) −0.500*** (0.194) 7.635*** (2.219) 0.847*** (0.329)

Total −2.389** (1.206) 2.805*** (0.737) −0.490*** (0.188) −1.660*** (0.513) −0.608*** (0.224) 9.274*** (2.449) 1.028*** (0.374)

Note: The values in brackets are the standard errors; ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

TABLE 12 The bootstrap results for mediating effect.

Mediating variable Effects Observed coefficient Bootstrap std. err z P > z Normal based

[95% conf. Interval]

lngreinno Direct −0.9754733 0.0557233 −17.51 0.000 −1.084689 −0.8662576

Indirect 0.0207433 0.0084817 2.45 0.014 0.0041194 0.0373672

lnindup Direct −0.72767 0.0522952 −13.91 0.000 −0.8301667 −0.6251732

Indirect −0.22706 0.0210153 −10.8 0.000 −0.2682493 −0.1858708
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from the average values of 285 cities, is intended to reflect
overarching trends that are resistant to significant influence from
the dynamics of any individual city. Consequently, the differenced
term can be considered exogenous relative to individual cities,
thereby fulfilling the requirement for an effective instrumental
variable. Secondly, although environmental pollution may be
influenced by various unobserved shocks, the validity of our
instrument depends on these shocks not being substantial
enough to affect the national digital economy development.
Under these conditions, the Bartik instrument continues to serve
as a reliable proxy for the expected value of each city’s digital
economy development, contingent upon the observed national
trend. Moreover, the instrumental variable has successfully
passed the weak IV test, thereby affirming its validity.

Table 13 shows two methodologies we conducted to address the
issue of endogeneity. First, we utilised the standard Two-Stage Least
Squares (2SLS) method to mitigate potential biases arising from
endogenous variables. The results are presented in Columns (1) and
(2). It demonstrates that the coefficient for digital economy development
is markedly negative, aligning with the significance observed in the
baseline model regression (2). This preliminary finding indicates robust
baseline model results, accounting for endogeneity issues.

Furthermore, this study delves into the threshold effect of digital
economy development on pollution emission levels. To this end, a
two-stage threshold regression was conducted, inspired by the two-
stage least squares (2SLS) approach. In the first stage, a fixed-effects
regression was performed using an instrumental variable for digital
economy development, with the results presented in Column (3).

TABLE 13 Regression results for 2SLS.

Variables (1) (2) (3) (4)

First stage Second stage Fixed Effect threshold

lndigifac lnpestop lndigifac lnpestop

lndigifac −0.614***

(-7.12)

lndigifac < T1 −0.321**

(-2.56)

lndigifac ≥ T1 −0.768***

(-5.56)

ivlndigifac 12.326*** 0.451***

(62.34) (4.80)

lngdp −0.004 1.594*** 0.069*** 0.418***

(-0.29) (23.96) (7.50) (4.98)

lnfdi −0.018*** −0.013 −0.004*** −0.060***

(-7.76) (-1.05) (-3.01) (-4.46)

lnloan 0.060*** −0.444*** 0.215*** −0.466***

(6.42) (-8.79) (37.60) (-7.88)

lnsciexp 0.017*** −0.363*** 0.006*** −0.047**

(4.74) (-18.85) (2.93) (-2.30)

lnpopd 0.013*** −0.012 −0.146*** 1.692***

(4.97) (-0.85) (-6.11) (7.54)

lnenergy 0.049*** 0.400*** 0.035*** 0.119***

(8.71) (13.37) (11.24) (4.14)

Constant −1.071*** −24.433*** −3.395*** −12.126***

(-10.30) (-42.22) (-23.36) (-8.53)

Observations 5,700 5,700 5,700 5,700

R-squared 0.534 0.297 0.811 0.055

Number of cities 285 285

Note: The values in brackets are the standard errors; ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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Then, the fitted values obtained from this regression were employed
as a substitute for the original independent variable, namely digital
economy development, in the second-stage threshold effect
regression. The threshold effect regression utilised the Bootstrap
method with 500 resamples to determine the confidence intervals
and critical values, and the results are displayed in Column (4). The
findings reveal that both the instrumental variable and the fitted
values for digital economy development are statistically significant.
Consequently, this suggests that, after accounting for endogeneity,
the results of the threshold regression remain significant and robust.

5.2 Excluded municipalities sample

In the previous regressions, the initial sample encompassed
281 prefecture-level cities and 4 municipalities. Given municipalities’

higher administrative authority,mixing themwith prefecture-level cities
could introduce bias. Consequently, we excluded the municipalities
from the sample and re-ran the regression analysis. The revised results
are presented subsequently.

Table 14 presents the regression results of the fixed-effects model
and the threshold regression model after excluding municipalities. The
parameters for the digital economy development are found to be
significant in both models, which aligns with the findings from the
baseline model and the threshold regression model in Tables 3, 6. This
consistency underscores the robustness of our regression results,
indicating that the digital economy development’s impact on
pollution emissions remains stable across differentmodel specifications.

5.3 Change the spatial matrix

After replacing the spatial matrix with a distance matrix, the
results obtained were consistent with the original spatial regression
outcomes, thereby demonstrating the robustness of the spatial
regression analysis. This consistency suggests that the impact of
the digital economy development on pollution emissions is stable
across different spatial configurations.

Table 15 presents SAR regression results after altering the spatial
weight matrix. Specifically, the regression results indicate that, with
the exception of the western and northeastern regions, the impact of
the digital economy development on pollution emissions is
statistically significant. This finding further confirms the robustness
of our spatial regression results and underscores the importance of
considering spatial factors in studying the complex relationship
between digital economy development and pollution emissions.

6 Conclusion and discussion

6.1 Conclusion

This study delves into the intricate relationship between urban
digital economy development and pollution emissions, employing a
comprehensive array of econometric models to unravel this dynamic.
The findings reveal a distinctive inverted U-shaped pattern in the
impact of digital economy advancement on pollution levels. Initially,
the expansion of digital infrastructure and the energy-intensive
operations associated with it may contribute to increased
emissions. However, as the digital economy matures and industrial
digitisation progresses, it facilitates enhanced productivity and fosters
green technological innovations, ultimately leading to a reduction in
pollution emissions. This transition underscores the transformative
potential of the digital economy in environmental sustainability.

Furthermore, the analysis highlights significant regional disparities
and spatial spillover effects in the influence of digital economy
development on pollution emissions. Urban agglomerations and
industrial hubs in eastern and central China exhibit more
pronounced pollution reductions, attributed to their advanced digital
infrastructure, higher internet penetration, and robust technological
ecosystems. Conversely, regions with less developed digital economies
and lower population densities demonstrate a lesser impact on pollution
abatement. Additionally, the spatial spillover effect implies that
pollution management strategies must extend beyond individual

TABLE 14 Regression results without municipalities.

No. (1) (2)

Models Fixed effets
regression

Threshold
regression

Variables lnpestop lnpestop

lndigifac < T1 1.128***

(7.19)

lndigifac ≥ T1 −0.553***

(−4.56)

lndigifac −0.309*

(−1.87)

lngdp 0.590*** 0.510***

(3.96) (6.64)

lnfdi −0.064*** −0.051***

(−3.15) (−3.92)

lnloan −0.545*** −0.419***

(-4.88) (−7.41)

lnsciexp −0.056 −0.035*

(−1.38) (−1.79)

lnpopd 1.323*** 1.374***

(3.02) (6.70)

lnenergy 0.117** 0.087***

(2.24) (3.13)

Constant −11.706*** −12.371***

(−4.09) (−9.39)

Observations 5,901 5,901

R-squared 0.043 0.076

Number of cities 281 281

Note: The values in brackets are the t statistics; ***, **, and * indicate significance at the 1%,

5%, and 10% levels, respectively.

Frontiers in Environmental Science frontiersin.org19

Lan and Ma 10.3389/fenvs.2025.1538077

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1538077


cities to encompass regional collaboration, as emissions in one city can
affect neighbouring areas.

The study also elucidates the mediating roles of green technological
innovation and industrial structural upgrading. The digital economy
serves as a catalyst for the emergence and diffusion of green
technologies, enhancing resource utilisation efficiency and mitigating
emissions. Simultaneously, it propels a shift in industrial structures
towards knowledge-intensive and technology-intensive sectors, thereby
reducing the overall pollution intensity of economic activities.

6.2 Discussion

The findings of this study carry substantial policy implications.
Policymakers should recognise the dual nature of the digital
economy’s environmental impact and implement targeted
environmental regulations that adapt to different stages of digital
development. In the early stages, emphasis should be placed on
energy-efficient infrastructure and green technology adoption to
offset potential emission increases. As the digital economy matures,
policies should focus on promoting advanced digital technologies
and industrial upgrading to harness the emission-reducing benefits.

Moreover, the study underscores the critical role of regional
environmental policies in coordinating the development of the digital
economy and pollution control. Cities should collaborate to establish
unified environmental standards and implement joint pollution
management initiatives. For instance, the implementation of regional
carbon trading markets or joint technological innovation platforms
could facilitate the sharing of resources and best practices, thereby
enhancing the overall effectiveness of pollution abatement efforts.

The analysis also reveals the necessity for policymakers to
consider the heterogeneous impacts of digital economy
development across regions. One-size-fits-all policies may not be
effective, as the digital economy’s influence on pollution emissions
varies significantly depending on local economic structures,
infrastructure, and environmental regulations. Therefore, policies
should be tailored to the specific contexts of different regions to
maximise their efficacy.

Beyond the foregoing analysis, promising avenues for future
research lie in dissecting the micro-level determinants of the digital-
environmental interplay. This could entail, for instance, granular
examinations of how region-specific digital innovations—such as
AI-driven energy management systems or blockchain-based supply
chain decarbonisation frameworks—might interact with local

TABLE 15 The SAR results after changing the Spatial matrix.

Variables (1) (2) (3) (4) (5)

Nationwide Eastern Central Western Northeastern

lndigifac −0.319*** −0.828*** −0.653*** 0.0405 0.0764

(0.116) (0.270) (0.202) (0.198) (0.338)

lngdp 0.455*** 0.914*** 0.512*** 0.233* 0.152

(0.0738) (0.166) (0.146) (0.133) (0.171)

lnfdi −0.0673*** −0.0818** −0.0995*** −0.0298* −0.0172

(0.0125) (0.0392) (0.0276) (0.0179) (0.0335)

lnloan −0.302*** −0.372*** −0.358*** −0.416*** −0.269*

(0.0552) (0.125) (0.0918) (0.0984) (0.152)

lnsciexp −0.107*** −0.0867** −0.0485 −0.00723 0.0168

(0.0189) (0.0367) (0.0329) (0.0361) (0.0559)

lnpopd 1.335*** 1.399*** 1.907*** 0.363 2.035**

(0.198) (0.363) (0.283) (0.472) (0.892)

lnenergy 0.164*** 0.0656 0.104** 0.267*** 0.0712

(0.0269) (0.0611) (0.0488) (0.0419) (0.0980)

rho 0.722*** 0.371*** 0.673*** −0.266** 0.611***

(0.0400) (0.0822) (0.0489) (0.114) (0.0556)

sigma2_e 0.911*** 0.973*** 0.665*** 1.015*** 0.801***

(0.0167) (0.0322) (0.0230) (0.0342) (0.0426)

Observations 5,985 1,827 1,680 1,764 714

R-squared 0.001 0.003 0.011 0.035 0.178

Number of citycode 285 87 80 84 34

Note: The values in brackets are the t statistics; ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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industrial configurations and policy ecosystems to yield emission
reductions. Equally critical would be cross-regional comparative
studies of institutional architectures, particularly how variations in
environmental governance paradigms (e.g., carbon taxation vs. cap-
and-trade systems) and digital infrastructure policies modulate the
environmental efficacy of urban digitalisation trajectories.
Longitudinal investigations adopting such comparative lenses
would not only elucidate the temporal evolution of digital
economies’ environmental footprints but also disentangle the
complex, context-dependent synergies and trade-offs inherent in
this relationship.
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