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This study examines the complex relationship between renewable energy
penetration (REP) and CO2 emissions in China, aiming to provide insights into
deep decarbonization strategies. Using the advanced and robust pooled mean
group-autoregressive distributed lag (PMG-ARDL) estimation, this paper analyzes
the long-run equilibrium and short-run dynamics of REP and CO2 emissions
based on panel data from 30Chinese provinces (1997–2021). Wavelet coherence
analysis (WCA) and exploratory spatio-temporal data analysis (ESTDA) are also
employed to explore time-frequency relationships and spatial correlation
dynamics. The findings indicate that: (1) A 1% increase in REP reduces long-
term and short-term carbon emissions by 0.05% and 0.26%, respectively. (2) A
more pronounced coherence in the 1–2 year time-frequency band. (3) REP and
CO2 exhibit opposing spatial distribution patterns (−0.224), with distinct north-
south clustering, dominated by low-high and low and high clustering,
respectively. (4) Most provinces’ LISA time paths demonstrate strong
spatiotemporal stability, while Central, South, and Southwest China exhibit a
more complex spatial variability process, and the spatiotemporal transitions,
predominantly of Type IV, reflect strong locking effects. This paper offers
policy suggestions for China’s low-carbon energy system and lessons for
other economies.
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1 Introduction

Fossil fuels have long dominated the global energy mix, accounting for 82.6% of global
energy consumption in 2022 (Bob, 2023). However, the greenhouse gas emissions caused by
long-term consumption of fossil fuels have seriously exceeded the purification capacity of
natural ecosystems, resulting in rising global temperatures and frequent occurrence of
extreme weather, and measures to mitigate climate change on earth have become a focus of
global attention in recent years (Khan et al., 2022). At the same time, fossil fuels themselves
have depletion characteristics, and for the concerns of energy security and climate change,
realizing energy transition has increasingly become the consensus of the international
community (Gielen et al., 2019). The 2019 United Nations Climate Action Summit
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emphasized the realization of net-zero carbon emissions by
2050 and called for accelerating the transition from fossil to
renewable energy (RE) sources, which has pointed out the
direction of the global energy transition has pointed out
the direction.

China’s rapid economic development has created a rigid
demand for energy, which is accompanied by a rapid increase in
CO2 emissions. As a major player and leader in the carbon emissions
landscape (Yue et al., 2017), China faces enormous domestic and
international pressure to reduce emissions (Zhao et al., 2020). China
attaches great importance to combating climate change and has set
ambitious dual-carbon targets. However, the huge energy demand
and the fossil fuel-based energy structure had increased the security
risks of energy supply, especially in the winter of 2021, when some
areas resurfaced the situation of “power rationing,” which signals
that China’s energy structure urgently needs to carry out a profound
systematic change. RE demands an urgent leap from “small scale”
and “low penetration” to “large scale” and “high penetration”.

The 14th Five-Year Plan explicitly proposed to significantly
increase the proportion of RE in the electricity supply. The
position of RE in power supply has become increasingly
prominent (Yu et al., 2021), and increasing the penetration of RE
in power generation has been identified as a key countermeasure to
curb carbon emission reduction and an important hand in
promoting energy transition (Zheng et al., 2021). Given the
urgency of combating climate change and the imperative of
energy transition, it is of enormous practical value to deeply
investigate the dynamic relationship between REP and
CO2 emission.

Although many scholars have initiated discussions in the area of
the relationship between RE and CO2, there are still several research
gaps: (1) Existing literature mostly focuses on cross-country
comparisons or single-country level, ignoring the heterogeneity of
different regions within a country, which reduces the generalizability
and adaptability of regional policies. In particular, there are
relatively few case studies of a large energy-consuming country
like China with a vast territory and unbalanced development of RE,
and even fewer studies exploring the relationship between REP and
CO2 emissions from the production side of RE. (2) Although WCA
has been applied in the field of energy economy, no study has
empirically examined the time-frequency relationship between RE
and CO2 in China and failed to capture the synergistic or lagging
effects of the two at different time-frequency scales. (3) Most of the
previous studies adopt a single methodology, focusing on the
dynamic relationship in the time dimension, and lack in-depth
exploration of the linkage relationship in the spatial and temporal
scales, which makes it difficult to effectively support the formulation
of context-specific matching policies.

The necessity of this study lies in the fact that the evolving
relationship between REP and CO2 emissions has important policy-
level implications for achieving carbon neutrality goals and
enhancing energy security. Given that locally adapted regional
strategies are essential to effectively drive the energy transition,
policymakers need to have a deeper understanding of how REP
affects carbon emissions at the temporal and even spatial levels, as
well as at the overall and regional levels.

To address this policy challenge and fill the identified research
gap. By combining the PMG-ARDL model, WCA, and ESTDA

analytical methods, based on Chinese provincial data and from the
production side, this study constructs an integrated analytical
framework that can simultaneously capture the differences in
long-term trends, short-term fluctuations, and spatial dynamics
between the two variables at the provincial level in China, which
provides a more comprehensive and in-depth perspective for the
study of the dynamic relationship between REP and CO2, and
supports the effectiveness and precision of policy.

The purpose of this study is to deeply investigate the spatio-
temporal dynamic relationship between REP and CO2 emissions
and to provide a theoretical basis and decision-making reference for
the formulation of more targeted regional carbon emission
reduction policies through the revelation of the temporal and
spatial relationship between the two.

Compared with previous studies, the innovations and main
contributions of this paper include: (1) Based on provincial panel
data, this study analyzes in-depth the contribution of REP to carbon
emission reduction from the production side, which provides a
direct decision-making basis for the precise regulation of regional
energy policies. (2) For the first time, this study extends the time-
scale analysis through the WCA method in the Chinese context,
verifies the time-frequency relationship of variables, and provides
new evidence to reveal the evolution pattern of renewable energy
power generation and CO2 in China. (3) It makes up for the
shortcomings of the temporal and spatial linkage analysis by
combining the PMG-ARDL model with the ESTDA method to
consider the relationship between REP and CO2 simultaneously in
both time and space dimensions, which captures both the long-term
cointegration and short-term dynamic relationships among the
variables and reveals the regional interdependence and spatial
agglomeration pattern characteristics and their evolution.

In summary, this study not only makes up for the deficiencies of
the existing literature in the analysis of spatial and temporal linkages,
but also injects new vitality into the theoretical study of REP and
CO2 emissions, and provides policymakers with a more accurate
basis for regional decision-making. This paper not only has guiding
significance for China’s energy policy, but also provides important
policy insights for other economies, especially developing countries,
to formulate low-carbon development strategies, and provides a
multidimensional and multi-scale relationship analysis framework
for subsequent studies. The research framework is shown
schematically in Figure 1.

2 Literature review

The intensifying problem of climate change on a global scale has
prompted countries to actively explore low-carbon development
paths, and they have takenmeasures to reduce CO2 emissions. RE, as
a kind of clean energy, has attracted widespread attention in terms of
its relationship with CO2 emissions, and although relevant literature
has been abundant, no clear consensus has been reached so far.

Most scholars agree that there is a negative correlation between
RE and CO2. For instance, both Ali et al. (2023) 46-year-long panel
data analysis of emerging economies in Asia and Apergis et al.
(2018) study of 42 countries in sub-Saharan Africa consistently
shows that renewable energy consumption (REC) has a long-term
dampening impact on carbon emissions. Naseem et al. (2024)
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quantified the environmental and economic impacts of (un)RE
resources and showed that RE demonstrates significant
advantages in protecting the environment in G20 countries. This
conclusion is corroborated by Rahman et al.’s study (Rahman et al.,
2024) on several countries that are highly dependent on fossil fuels.
Yao et al., (2019) highlighted that the carbon-reducing effect of RE is
universal across countries with different levels of economic
development. In addition to multi-country comparative studies,
scholars have also explored specific countries or regions in depth.
Zuhal and Göcen (2024) used spectral Granger causality analysis to
suggest that RE is the key to achieving sustainable development in
the United States. The spatial Durbin modeling analysis of Li et al.
(2024) showed the carbon reduction effect is not only limited to the
local area but also has a positive demonstration effect on the
neighboring areas.

Some scholars have pointed out that this negative effect is not
immediately apparent, but an accumulation process. For example,
Yu et al. (2020) found that the CO2 emission reduction effect of RE
generation in China has a time lag through a panel quantile
regression model, which is gradually enhanced over time, and
Chen et al. (2022a) further supported this view by using a
nonlinear panel threshold model, which shows that the emission
reduction effect of RE can only be significantly manifested after REC
reaches a certain scale. Through the ARDL model, Wang (2022)
observed that REC has a significant long-term inhibitory effect on
CO2, but no notable effect in the short term. With the help of WCA,
Bilgili et al. (2016) and Kuşkaya and Bilgili (2020) emphasized that
the effect of time lags should be fully considered when evaluating the

carbon-reducing effects of biomass and wind energy in the
United States.

However, some studies come to different conclusions. A
worldwide Nonlinear ARDL (NARDL) model research by
Rehman et al. (2023) found that the carbon reduction effect of
REC on CO2 emissions was not as significant as expected, which
triggered new thinking about the carbon reduction potential of RE.
Ali et al. (2022) surprisingly uncovered that REC not only fails to
reduce carbon emission intensity but even has the opposite effect.
The results of WCA by Bilgili et al. (2021) indicated that there is
temporal heterogeneity in the carbon-reducing effect of
hydropower, which may temporarily intensify carbon emissions
in the short term, while the investigation by Arain et al. (2020)
revealed that the correlation between REC and CO2 emissions is
not strong.

These conflicting findings may be due to differences in variable
selection, study scales, and methodological and technical changes.
First, A majority of previous research variable selection focuses on
the consumption side of RE, and few studies have been conducted
from the generation side (Yu et al., 2021). Accelerating the
deployment of RE focuses on adjusting and optimizing the power
supply structure, which requires increasing the proportion of RE
power generation; therefore, this paper will focus on uncovering the
relationship from the production side.

Second, the choice of research scale affects the conclusions.
Globally, scholars often select a representative sample of continents
or countries, such as Africa (Abban et al., 2022), Asia (Wu et al.,
2022), the top 74 countries in carbon emissions (Sharif et al., 2019),

FIGURE 1
Schematic of research framework.

Frontiers in Environmental Science frontiersin.org03

Yang and Wang 10.3389/fenvs.2025.1538630

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1538630


TABLE 1 Literature summary.

Author(s) Variables Methodology Countries Period Key results

Ali et al. (2023) REC, NREC, GDP, CO2 Augmented mean group
(AMG) estimation

Emerging Asian countries 1975–2020 In the long run,
REC→CO2 (−)
NREC→CO2 (+)
GDP→CO2 (+)

Apergis et al. (2018) REC, GDP, CO2, HE Granger Causality Test 42 sub-Saharan African countries 1995–2011 In the short run,
GDP →CO2

REC ↔ CO2

In the long run,
HE ↔ CO2

Naseem et al. (2024) NEC, REC, GDP, CO2 FMOLS
DOLS

G20 Countries 1990–2020 NEC →CO2 (+)
REC →CO2 (−)

GDP →CO2 (+ → –)

Rahman et al.
(2024)

REC, FFC, GDP, CO2 Moments Quantile
Regression

China, the United States, India,
Russia, and Japan

1990–2020 REC→CO2 (−)
FFC→CO2 (+)
GDP→CO2 (+)

Yao et al. (2019) RER, GDP, CO2 FMOLS
DOLS

17 developing and developed
countries as well as 6 geo-

economic regions

1990–2014 RER→CO2 (−)
EKC and RKC are valid

Zuhal and Göcen
(2024)

REC, GDP, CO2 Spectral Granger Causality
Analysis

United States 1973M01-
2022M06

REC ↔ CO2 ↔GDP

Li et al. (2024) RED, CO2 SDM China 2013–2021 RED→CO2 (−)
Spatial spillover effects exist

Yu et al. (2020) RED, CEI Quantile Regression models China 2005–2016 RED→CEI (−)

Chen et al. (2022a) REC, NREC, GDP, CO2 Panel Threshold models 97 Countries 1995–2015 REC must exceed a threshold for its
CO2 reduction effect to be significant

Kuşkaya and Bilgili
(2020)

Wind, CO2 WCA United States 1989 M1 -
2017 M8

Wind→CO2 (−)

Khan et al. (2022) REC, ICT, Governance,
GDP, CO2

ARDL Morocco 1985–2020 REC→CO2 (−)
ICT→CO2 (−)

Governance→CO2 (−)

Rehman et al.
(2023)

Globalization, EG, PG,
REC, Nuclear, CO2

NARDL Global 1985–2020 Globalization→CO2 (+)
EG→CO2 (−)
PG→CO2 (+)

REC→CO2 (Not significant)
Nuclear→CO2 (−)

Ali et al. (2022) REC, NREC, UP, RDE
TI, CEI

ARDL China 1990–2019 In the long run,
REC→CEI (+)
NREC→CEI (+)
RDE→CEI (+)
UP→CEI (−)

In the short run,
UP→CEI (+)
TI→CEI (+)

Wu et al. (2022) REE, Globalization,
GDP, TO, CO2

PMG -ARDL
WCA

Asia 2000–2019 REE→CO2 (−)
Globalization→CO2 (+)

GDP→CO2 (+)
TO→CO2 (Not significant)

Akram et al. (2022) RE, EE, Nuclear, CO2 NPARDL Mexico, Indonesia, Nigeria, and
Turkey (MINT)

1990–2014 RE→CO2 (−)
EE→CO2 (−)

Shahnazi and
Shabani (2021)

RE, EF, CO2 Spatial econometric models European Union (EU) countries 2000–2017 RE →CO2 (−)
EF →CO2 (− → +)

Kang et al. (2019) REC, NREC, GDP, CO2 VAR India 1965Q1-
2015Q4

GDP →CO2 (+ →–)

Apergis and Payne
(2014)

REC, GDP, CO2, coal
prices, oil prices

ECM Seven Central American 1980–2021 GDP→REC (+)
CO2→REC (+)

(Continued on following page)
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MINT countries (Akram et al., 2022), major nuclear power countries
(Kartal et al., 2023), developing countries (Dimitriadis et al., 2021),
and so on. Additionally, it is also more common to conduct
comparative studies based on international organizations or
regional cooperation platforms, for example, the European Union
(Shahnazi and Shabani, 2021), the BRICS (Sebri and Ben-Salha,
2014), the Group of 20 (Naseem et al., 2024), the Belt and Road
(Sheraz et al., 2022), the Group of Seven (Cai et al., 2018), and so on.
Meanwhile, some studies focus on single energy varieties, such as
biomass (Bilgili et al., 2016), wind energy (Kuşkaya and Bilgili,
2020), and hydroelectric (Bilgili et al., 2021), etc., to explore in depth
the characteristics and developmental patterns of specific energy
types. However, the above studies are often limited by the level of
economic development, policy environment, and institutional
differences between countries, which makes it difficult to directly
generalize to other regions. Instead, the literature focuses on a single
country as the object of study, such as China (Wang, 2022), the
United States (Twumasi, 2017), Thailand (Phadkantha and
Tansuchat, 2023), Turkey (Yurtkuran, 2021; Pata, 2018), India
(Kang et al., 2019), and Saudi Arabia (AlNemer et al., 2023), etc.,
although they can analyze the energy transition process of a specific
country, they tend to neglect the heterogeneity of different regions
within the country, especially China, a large energy-consuming
country. Given this, this study, based on Chinese provincial panel
data, examines the dynamics of Chinese provinces in the time
dimension and the heterogeneity in the spatial dimension.

Furthermore, the existing literature presents a diversity of
research methods on the relationship between RE and CO2.
Traditional econometric models, such as the Vector
Autoregression (VAR) model (Kang et al., 2019; khoshnevis
Yazdi and Shakouri, 2018), Error Correction Model (ECM)
(Apergis and Payne, 2014; Gwani and Sek, 2023), causality test
(Inglesi-Lotz and Dogan, 2018), Fully Modified Ordinary Least
Squares (FMOLS) (Saidi and Omri, 2020; Shao et al., 2019), and
Dynamic Ordinary Least Squares (DOLS) (Inglesi-Lotz and Dogan,
2018; Qudrat-Ullah and Nevo, 2022) are widely used to depict the
long-term stable relationship between variables. To dig deeper into
the mechanism of the impact of RE on CO2, some studies have also
adopted methods such as panel threshold models (Chen et al.,
2022a) and quantile regression models (Yu et al., 2020; Chen and
Lei, 2018), the former of which is effective in capturing the nonlinear
relationship between variables, and the latter of which can
characterize the heterogeneous relationship between variables. In
recent years, the ARDL model (Khan et al., 2022; Yu et al., 2020;
Yurtkuran, 2021; Chen et al., 2019) and its extensions, such as the
Cross-Sectionally Augmented ARDL(CS-ARDL) model (Sheraz
et al., 2022; Mehmood et al., 2023); NARDL model (Rehman

et al., 2023), and PMG-ARDL model (Wu et al., 2022; Wang
et al., 2021), have received favor thanks to their advantages in
dealing with non-stationary panel data. However, many studies
ignore cross-sectional dependence (CSD), which can bring about
unreliable and inefficient assessments (Banerjee et al., 2004).
Besides, WCA (Kuşkaya and Bilgili, 2020; Abban et al., 2022;
AlNemer et al., 2023) is gradually being introduced into the field
of energy economics as a multiscale analysis tool. Considering the
spatial effects, spatial econometric models, such as spatial
autocorrelation (SAC) analysis (Li et al., 2024; Grodzicki and
Jankiewicz, 2022; Zhu et al., 2022) and the spatial Durbin model
(Liu et al., 2023a; Chen et al., 2022b) are commonly applied to
portray interregional spatial effects. However, differences in the
assumptions and treatments of data structure in different models
may lead to inconsistencies in research conclusions. Table 1
summarizes some of the previous literature.

In summary, while existing research has been fruitful, there are
some shortcomings in existing studies that need to be further
improved. First, existing studies mostly start from the energy
consumption side, and the analysis of the power generation side
is relatively insufficient; Second, previous studies have primarily
focused on the macro level (cross-country comparison or single-
country analysis), neglecting the micro-level regional differences,
especially for countries with significant differences in resource
endowments and policy environments. In the case of China, for
example, while RE has made breakthroughs, the spatial imbalance of
RE is highlighted, and there are great differences in carbon emission
reductions, which suggests that it is necessary to study the regional-
level differences in depth. Third, although existing studies have
attempted to use wavelet analysis to reveal the volatility of the
relationship between the two, there is still a lack of wavelet analysis

TABLE 1 (Continued) Literature summary.

Author(s) Variables Methodology Countries Period Key results

Mehmood et al.
(2023)

EC, GDP, REC, TI, CO2 CS-ARDL G-7 1990–2020 GDP→CO2 (−)
REC→CO2 (−)

TI→CO2 (− → +)

REC, renewable energy consumption; NREC, nonrenewable energy consumption; GDP, gross domestic product; CO2, carbon dioxide emissions; HE, health expenditures; FFC, fossil fuel

consumption; RER, renewable energy consumption rate; EKC, environmental kuznets curve; RKC, renewable energy environmental kuznets curve; SDM, spatial durbin model; RED, renewable

energy development; CEI, carbon emissions intensit; REE, renewable electricity; TO, trade openness; EE, energy efficiency; EF, economic freedom; EG, economic growth; PG, population growth;

UP, urban population; RDE, research and development expenditure; TI, technology innovations.

TABLE 2 Descriptive statistics.

LNREP LNCO2 LNPGDP LNECS LNIS

Mean −2.571 1.619 0.586 −0.879 −0.826

Median −2.070 1.603 0.670 −0.747 −0.840

Maximum −0.085 4.100 2.436 −0.192 −0.178

Minimum −11.843 −2.074 −1.499 −5.001 −1.373

Std. Dev 2.262 0.808 0.830 0.528 0.194

Jarque-Bera 1428.298 120.273 24.080 6439.847 78.090

Probability 0.000 0.000 0.000 0.000 0.000

Observations 750 750 750 750 750

Frontiers in Environmental Science frontiersin.org05

Yang and Wang 10.3389/fenvs.2025.1538630

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1538630


studies on the specific correlation between RE and CO2 in China.
Finally, most of the previous studies have adopted a single
methodology, mainly focusing on the dynamic relationship in the
time dimension, while the spatio-temporal dynamic relationship
between RE and CO2 has been insufficiently explored. Therefore,
this study provides an in-depth analysis of China’s panel data by
employing a multi-method combination of the PMG-ARDL model,
WCA, and ESTDA to reveal the complex and dynamic
spatiotemporal correlation between REP and CO2 emissions and
to characterize regional heterogeneity.

3 Data and methods

3.1 Data

This paper adopts panel data for 30 provinces, autonomous
regions, and municipalities in China (barring Hong Kong, Macao,
Taiwan, and Tibet) for the period 1997–2021. The selection of
periods and provinces for this study depends on the availability
of data for the variables involved.

Following Yu et al. (2023), the share of renewable electricity
generation in total electricity generation is used as a measure of REP.
Considering the availability of data, renewable electricity is
represented by hydropower, wind power, and solar power.
Carbon emissions are measured by per capita CO2 emissions. In
line with earlier literature, economic growth (Wang, 2022), energy
consumption structure (ECS) (Xiao and Zhang, 2019), and
industrial structure(IS) (Liu et al., 2023a) control variables are
linked to CO2 emissions. Therefore, this study includes them as
control variables in the regression analysis and expresses them as the
gross domestic product per capita (PGDP) (1997 base period), the
share of coal consumption in total energy consumption, and the
ratio of tertiary sector output to GDP, respectively. Considering the
effect of population size, per capita size indicators are used for CO2

emissions and economic growth. All indicators are treated as natural
logarithms in this paper, and the descriptive statistics for the
variables are tabulated in Table 2.

The data for this study were derived chiefly from the China
Statistical Yearbook (NBSC, 2022a), China Electric Power Yearbook
(China Electricity Council, 2022), China Energy Statistical Yearbook
(NBSC, 2022b), provincial statistical yearbooks, and Carbon
Emission Accounting and Data Sets (CEADs, 2022). A few
missing data were supplemented by linear interpolation.

3.2 Methodology

3.2.1 PMG-ARDL model
This study seeks to discuss the relationship betweenREP andCO2, to

determine the relationship, the subsequent empiricalmodel is considered
while controlling for other explanatory variables (Equation 1):

ln CO2it � β0 + β1 lnREPit +∑k
I�2
βI ln xI,i,t + εit (1)

Where εit is the error term, ln CO2it is the logarithm of the
dependent variable, CO2 emissions per capita, lnREPit is the

logarithm of the independent variable, REP, ln xI,i,t represents the
logarithm of other control variables (ln xi,t �
(ln GDP, ln ECS, ln IS)), i denotes the index of individual units,
and t denotes the index of time.

The long- and short-termdynamics between REP, PGDP, ESC, IS,
and per capita CO2 emissions were investigated through the PMG-
ARDL method developed by Pesaran and Yamagata (2008). This
method is theoretically based on dynamic panel data theory,
cointegration theory, and the ECM. The PMG-ARDL model
integrates the ideas of the PMG estimator (Pesaran et al., 1999) in
panel data analysis and the ARDLmodel (Pesaran et al., 2001) in time
series analysis, which is a novel tool for panel analysis. The model
comprehensively considers individual heterogeneity and the overall
characteristics of panel data, and by introducing the lag term, it
establishes a dynamic panel model that can effectively address the
endogeneity problem. Several empirical studies (Wu et al., 2022;
Wang et al., 2021) have employed PMG-ARDL to examine the
energy-carbon nexus. A key point to consider is that the PMG-
ARDLmodel presupposes that the order of integration of the variables
cannot exceed the first order. However, considering the possibility of
CSD in panel data, traditional unit root tests (URT) [LLC (Levin et al.,
2002), IPS (Im et al., 2003)]may lead to biased results (Pesaran, 2006).
Therefore, the CIPS test (Pesaran, 2007) is chosen for this study,
which can effectively deal with the CSD problem and deliver more
reliable test results. Meanwhile, to ensure the validity of the
cointegration relationship between variables, we successively use
the Pedroni cointegration test (CT) (Pedroni, 1999) (for individual
heterogeneity) and the Westerlund ECM cointegration test
(Westerlund, 2007) (more robust when CSD exists).

On the confirmation of cointegration between variables, the
subsequent analysis can be carried out through the PMG-ARDL
model. The model is as Equation 2:

ΔY1it � αIi + γ1iY1,i,t−l +∑k
I�2
γliXI,i,t−1 +∑p−1

j�1
∅1ijΔY1,i,t−j

+∑q−1
j�0

∑k
I�2
∅IijΔXI,i,t−j + εIit (2)

In Equation 2, Y1 represents the dependent variable, Xl is the
explanatory variable, I � 1, 2, 3, 4, Δ stands for the difference
operator, p, q are the lag orders, and j is the index for the lag order.

The reparameterized model becomes a form of error correction
that arranges the variables used in this study and can be constructed
as follows Equation 3:

Δ ln CO2it � φiECTi,t +∑p−1
j�1 δi,j

*Δ ln CO2i,t−j +∑q−1
j�0ϑi,j

*Δ ln Xi,t−j

+ αi + εit

(3)
where, ECTi,t � ln CO2i,t−1 − θiXi,t, φi � −(1 −∑p

j�1δi,j),
θi � −(∑q

j�0ϑi,j)/φi, δi,j
* � ∑p

s�j+1δi,s, ϑi,j* � ∑q
s�j+1ϑi,s

In Equation 3, ECTi,t represents the error correction term, φi

represents the speed of adjustment coefficient. θi represents the long-
run coefficients, δi,j* and ϑi,j* represents the short-run dynamic coefficients.

To verify the reliability of the estimation results of the PMG-
ARDL approach, FMOLS, and DOLS were applied for robustness
testing following Dam et al. (2024).
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3.2.2 WCA
The WCA method is based on wavelet transform theory. This

method is derived from mathematics and has been studied in the
field of energy economics, such as by Kuşkaya and Bilgili (2020),
Abban et al. (2022), and AlNemer et al. (2023), who have applied the
WCA to the United States, African oil-producing countries, and
Saudi Arabia, respectively, to study the time-frequency relationship
between RE and CO2. These studies provide a strong reference for
this study. This paper uses the WCA developed by Goupillaud et al.
(1984) in 1984 to capture the time-frequency dependence among the
variables. The breakthrough of WCA is the multiscale
decomposition of the time series data, thus mining the
interaction between the two at different frequencies, as described
in Equations 4–9.

The wavelets used in this study are from the Morlet wavelet
series with the following equations:

χ t( ) � π−1
4 e−iω0te−

1
2 t

2
(4)

Where χ is applied to finite time series analysis.
By varying the scale parameter f (determining frequency) and

translation parameter g (determining position on the time axis),
different wavelet functions with varying frequencies and positions
can be obtained. The results after the wavelet transform are
as follows:

χg,f t( ) � 1��
f

√ χ t − g

f
( ), g, f ∈ R, f ≠ 0 (5)

The continuous wavelet transform is the inner product
operation of the original time series n(t) with wavelet functions
of different scales and positions as follows:

Wn g, f( ) � ∫∞

−∞
n t( ) 1��

f
√ χ t − g

f
( )dt (6)

A cross-wavelet transform is applied to the two-time series:

Wnm g, f( ) � Wn g, f( )Wm g, f( ) (7)
Where Wn(g, f) and Wm(g, f) denote the wavelet transform of
two time series n(t) and m(t). In turn, the square formula for wavelet
coherence is derived as follows:

R2 g, f( ) � C f−1Wnm g, f( )( )∣∣∣∣ ∣∣∣∣2
C f−1 Wn g, f( )∣∣∣∣ ∣∣∣∣2( )C f−1 Wm g, f( )∣∣∣∣ ∣∣∣∣2( ) (8)

Where C is the smoothing factor, indicating the time smoothing
process. R2 reflects the degree of correlation, with a value between
0 and 1. The larger R2 value, the stronger the correlation between the
two-time series, conversely, the weaker the correlation.

Since R2 is a non-negative number, it fails to provide
information about the direction of interaction. Therefore,
Torrence and Compo (1998) and Pal and Mitra (2017) proposed
a phase-based method to detect differences in wavelet coherence and
reveal the lead-lag relationship between two-time series. The
formula is as Equation 9:

Πnm � tan−1 L C f−1Wnm g, f( )( ){ }
O C f−1Wnm g, f( )( ){ }( ) (9)

Where L and O represent the Hilbert transform’s imaginary and real
part operators, respectively.

3.2.3 Spatial autocorrelation method
Exploratory spatial data analysis (ESDA) is a set of technical

methods for exploring the characteristics of spatial data (Hou
et al., 2022), the core of which is to delve into the distributional
characteristics of spatial objects (Overmars et al., 2003),
including global SAC and local SAC analysis (Sun et al.,
2013). ESTDA (Rey et al., 2011) systematically analyzes
temporal behavior based on ESDA, which compensates for the
shortcomings of ESDA ephemeral measures. ESTDA is mainly
based on spatial econometrics and the theory of spatial dynamic
change, which can reveal the spatial dependence patterns of
variables and their evolution paths. Already studies (Kao
et al., 2023) have analyzed the characteristics of the spatial
relationship between EC and CO2 using the ESDA method,
and then Liu et al. (2023b) explored the spatio-temporal
dynamics of CO2 and the role of influencing factors on CO2

based on ESTDA. Therefore, the application of ESTDA to the
study of the spatial and temporal dynamics of REP and CO2 in
this study is a justifiable extension.

SAC is usually quantified by calculating Moran’s I value. The
range of Moran’s index is when the calculation result falls in the
interval of (0,1], it indicates a positive autocorrelation and the
positive correlation is enhanced with the increase of the value;
when the calculation result falls in the interval of, the formula is
as follows Equation 10:

Moran′s I �
∑n
i�1
∑n
j�1
wij xi − �x( ) xj − �x( )

∑n
i�1
∑n
j�1
wij

, S2 � 1
n
∑n
i�1

xi − �x( )2 (10)

Traditional univariate Moran’s I index primarily measures the
SAC of a single variable. Anselin (1995) extended the traditional
Moran’s I to a bivariateMoran’s I, enabling the exploration of spatial
relationships between two variables and effectively capturing their
spatial covariation. This study employs bivariate SA analysis to
investigate the spatial response pattern between REP and per capita
CO2 emissions. The formula is as Equations 11, 12:

I �
∑n
i�1
∑n
j�1
wij xi − �x( ) yj − �y( )

S2∑n
i�1
∑n
j�1
wij

(11)

Ii � zi ∑
j

wijzj (12)

In Equations 11, 12, I and Ii are respectively bivariate global
Moran’s I index and bivariate local Moran’s I index, n the number of
the study area, xi, and yj denote the observed values of two variables
in regions i, j, respectively, �x and �y are the corresponding means, S2

is the sample variance,wij represent the spatial weight matrix, zi and
zj are the variance normalization of different attribute values of
region i, j, respectively. Based on Ii four types of clusters can be
identified: H-H (high-high), L-L (low-low), L-H (low-high), and
H-L (high-low).
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3.2.4 LISA time path
LISA time paths (Zhang et al., 2022) can describe the dynamic

migration changes realized by LISA coordinates in Moran scatter
plots in the time dimension, i.e., it can reveal the degree of stability of
LISA coordinates over time, and the geometrical characteristics of

the LISA time paths are expressed in terms of the relative lengths,
and tortuosity, the formula is shown in Equations 13–14.

Γi �
n ∑T−1

t�1
d Li,t, Li,t+1( )

∑n
i�1

∑T−1
t�1

d Li,t, Li,t+1( )
(13)

Di � ∑T−1
t�1 d Li,t, Li,t+1( )
d Li,1, Li,T( ) (14)

Where Γi is the relative length; Di is the degree of curvature;
d(Li,t, Li,t+1) denotes the moving distance of province i between
years t and t + 1; the larger Γi is, the more dynamic the local spatial
structure is; Γi >1 indicates that the moving distance of province i is
more than the national average distance, or else it is the other way
around. The larger value of Di indicates that the dynamic path of
province i is more curved, showing a more dynamic local spatial
dependence process, while the smaller value of Di indicates a more
stable local spatial dependence direction.

3.2.5 LISA space-time transition
LISA space-time transition (Liu et al., 2023b) is used to reveal the

changes of local spatial correlation types in Moran’s I scatterplot,
combining local Markov transfer and spatio-temporal leaps to
classify the leaps into four types, as shown in Table 3. Among

TABLE 3 Spatiotemporal transition type.

Type Connotation Expression formulas

TypeⅠ Only the cell itself undergoes a transition HHt→LHt+1,HLt→LLt+1,LLt→HLt+1,LHt→HHt+1

TypeⅡ Only neighboring units transition HHt→HLt+1,HLt→HHt+1,LLt→LHt+1,LHt→LLt+1

TypeⅢ Both the cell and its neighboring cells transitioned HHt→LLt+1,HLt→LHt+1,LLt→HHt+1,LHt→HLt+1

TypeⅣ Cell and neighboring cells remain stable HHt→HHt+1,HLt→HLt+1,LLt→LLt+1,LHt→LHt+1

TABLE 4 CSD tests results.

LNREP LNCO2 LNPGDP LNECS LNIS

Breusch-Pagan LM 3428.27*** (0.000) 8359.03*** (0.000) 10810.54*** (0.000) 6077.69*** (0.000) 6865.43*** (0.000)

Pesaran scaled LM 101.48*** (0.000) 268.65*** (0.000) 351.76*** (0.000) 191.31*** (0.000) 218.01*** (0.000)

Bias-corrected scaled LM 100.86*** (0.000) 268.02*** (0.000) 351.14*** (0.000) 190.68*** (0.000) 217.39*** (0.000)

Pesaran CD 23.69*** (0.000) 81.62*** (0.000) 103.97*** (0.000) 69.54*** (0.000) 79.61*** (0.000)

*** shows statistical significance at 1% level.

TABLE 5 CIPS unit root test results.

Variable Constant Constant and trend

Level Δ Level Δ

LNREP −2.525*** −3.850*** −2.768** −3.759***

LNCO2 −2.177** −2.973*** −2.850*** −3.655***

LNPGDP −2.474*** −3.260*** −2.772** −2.876***

LNECS −2.753*** −3.942*** −3.410*** −3.760***

LNIS −2.133*** −2.622*** −2.542 −3.153***

***, **, and * show statistical significance at 1%, 5%, and 10% levels, respectively.

TABLE 6 Pedroni cointegration test result.

Estimates Statistic P-value

Panel v-Statistic −5.266 0.999

Panel rho-Statistic 1.509 0.934

Panel PP-Statistic −16.526 0.000***

Panel ADF-Statistic −13.776 0.000***

Group rho-Statistic 2.693 0.996

Group PP-Statistic −18.387 0.000***

Group ADF-Statistic −12.942 0.000***

*** shows statistical significance at 1% level.

TABLE 7 Westerlund cointegration test result.

Statistic Value Z-value P-value

Gt −4.754 −11.416 0.000***

Ga −16.585 0.494 0.689

Pt −29.569 −15.189 0.000***

Pa −18.146 −2.708 0.003***

*** shows statistical significance at 1% level.
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them, “Type III” can be subdivided into two types according to
whether the direction of its own and neighboring leaps are
consistent or not (TypeIIIA: HHt→LLt+1, LLt→HHt+1,
TypeIIIB: HLt→LHt+1, LHt→HLt+1), and on the basis of which,
further compute the characteristics of the spatiotemporal flow(SF)
and spatiotemporal cohesion(SC) of the object of study, the formula
is shown in Equations 15–16. m is the total number of leaping units.
m is the total number of transition units.

SF � Type I + Type II
m

(15)

SC � Type IIIA + Type IV
m

(16)

4 Results and discussion

4.1 PMG-ARDL model results

4.1.1 CSD tests results
To mitigate the potential estimation bias caused by neglecting

CSD in existing studies, this paper examines the CSD in the panel
data by using four methods, including the Breusch-Pagan LM test
(Breusch and Pagan, 1980) and the Pesaran CD test. The results in
Table 4 provide strong evidence of CSD in the sample data, as all
tests reject the null hypothesis at the 1% significance level.

4.1.2 CIPS unit root test results
Considering the potential impact of CSD on the results of the

first-generation panel URT, this paper further employs Pesaran’s
CIPS test to conduct more robust tests of stationarity while
controlling for CSD, thereby providing a more accurate
assessment of the integration properties of the variables. Table 5
provides strong evidence against the occurrence of a unit root at first
differences for all variables. Regardless of whether the model
contains a constant term or both a constant and trend term.
Given that variables are smooth either at I (0) or I (1), there is

no evidence of I (2) processes. Therefore, the PMG-ARDL model is
appropriate for this paper.

4.1.3 Cointegration test result
In this study, Pedroni and Westerlund CT were applied and the

results are presented in Tables 5, 6. Four out of seven statistics in
Table 6 and three out of four statistics in Table 7 reject the null
hypothesis at the 1% significance level. Thus, the outcome provides
evidence for a long-term association between the variables.

4.1.4 Regression results
Table 8 displays the PMG-ARDL model results, which

demonstrate a robust negative correlation between REP and CO2

in both the long and short term. Specifically, every 1% increase in
REP leads to a reduction in long-term and short-term per capitaCO2

emissions by 0.05% and 0.26%, respectively. Consistent with the
previous findings of Zheng et al. (2021), and Wang (2022), which
highlights the suppressive effect of RE on CO2 emissions and
emphasizes the importance of increasing the share of RE. A
noteworthy finding is that the coefficient of influence of REP on
per capita CO2 emissions in the results is low compared to other
variables. Although RE is regarded as an important means of
reducing CO2, its effectiveness is influenced by numerous factors,
insufficient capacity of the power system and inefficient
transmission are the main bottlenecks limiting the role of RE
(Chen and Lei, 2018), and the development of RE has not yet led
to a fundamental shift in the structure of power production, the
resulting in its relatively limited impact on CO2 (Yu et al., 2020). To
maximize the carbon reduction potential of RE, the policy level
should focus on the construction of power grid infrastructure,
accelerate the implementation of the strategy of building a smart
grid, and synchronize the enhancement of the power system’s
acceptance capacity and transmission efficiency.

According to the long-term estimation results, among other
explanatory variables, PGDP and ECS exert a powerful positive
influence on CO2, with an increase of 0.75% and 0.53% in CO2 for
every 1% increase in both. This suggests that economic growth and
the proportion of coal consumption impede progress toward carbon
emission reduction goals in China in the long run. Numerous studies
have corroborated this finding (Chen et al., 2019), economic growth
is often accompanied by an increase in production activities, which
will directly or indirectly increase CO2 emissions; coal combustion is
the main source of CO2, and the higher the proportion of coal in the
ECS, the more CO2 will be emitted. In contrast, the improvement of
IS has a significant contribution to the reduction of per capita CO2

emissions, and every 1% increase in IS index will reduce CO2 by
0.32%. Similar findings are found in the literature by Zhao et al.

TABLE 8 PMG-ARDL estimation results.

Variables Coefficients P-value

Long run results

LNREP −0.050 0.000***

LNPGDP 0.747 0.000***

LNECS 0.530 0.000***

LNIS −0.316 0.000***

Short run results

△LNREP −0.260 0.027**

△LNPGDP 0.626 0.465

△LNECS 0.264 0.057**

△LNIS −0.440 0.337

ECT (−1) −0.277 0.002***

***, **, and * show statistical significance at 1%, 5%, and 10% levels, respectively.

TABLE 9 FMOLS and DOLS robustness test results.

Variables FMOLS DOLS

LNREP −0.051*** −0.035***

LNPGDP 0.923*** 0.894***

LNECS 0.346*** 0.289***

LNIS −0.716*** −1.316***

*** shows statistical significance at 1% level.
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(2022) and Yu et al. (2018). Industrial restructuring is a substantial
initiative to promote low-carbon development by improving energy
efficiency (Wang and Yang, 2024), which in turn mitigates CO2

emissions. Based on the above findings it is necessary to promote a
society-wide low-carbon transition through market mechanisms
and policy regulation. Green investment can be encouraged
through tax incentives and green financial instruments to
reduce the dependence of economic growth on high-carbon
energy. Gradually reduce the share of coal in the ECS, promote
coal consumption to reach the peak, and accelerate the formulation
and implementation of a stricter plan for the orderly rollout of
coal. Improve the decarbonization of the industrial structure,
develop strategic emerging industries, encourage the
development of green industries such as smart manufacturing
and the digital economy, and implement stricter energy-
efficiency standards for electricity, a high-energy-consuming
and high-emission industry.

The PMG-ARDL model also provides results for short-term
dynamics, and as expected the error correction term is significantly
negative, confirming the presence of a long-run equilibrium
relationship; in other words, shocks in the short run do not
permanently change the path of the system, which will always
ultimately return to the long-run equilibrium. The ECS has a
similar short-term relationship to its long-run relationship,
increasing per capita CO2 emissions, and the short-term
relationships for the other control variables are less clear.

4.1.5 Robustness tests
This paper employs FMOLS and DOLS to examine the

robustness of the estimation outcomes, the outcomes are
tabulated in Table 9. The observations of FMOLS and DOLS are
consistent with the results of the PMG-ARDL model.

4.2 WCA results

The PMG-ARDLmodel neglects regional heterogeneity and fails
to capture the time-frequency spatial dependence among variables.
This study further employs WCA to explore the time-frequency
local correlations across different regions and at various time
intervals and frequencies. This method combines time-domain
information and frequency-domain information to uncover
information that traditional methods cannot capture, as
highlighted by Kirikkaleli (2020). Figure 2 presents the results of
the WCA, where the correlation between the two variables is shown
by the color warm and cold, and the results outside of the conical
white line (cone of influence) are unreliable.

The WCA plot visually presents the correlation between the two
variables. It is obvious that the coherence between regional REP and
per capita CO2 emission is stronger in the entire heat map in
Northeast China, Central and South China, and the weakest in
Northwest China, and the other regions also show different degrees
of coherence. Although the Northwest region is rich in resources, it
has a weak industrial base and a relatively small demand for energy.
At the same time, the Northwest region’s lagging economic
development and the low elasticity of demand for energy in
industrial production mean that the penetration of RE will have
a limited ability to mitigate CO2. This phenomenon suggests that

current energy policies should be further optimized to enhance the
efficiency of renewable energy use in the Northwest region. During
the study period, leftward arrows appeared within the significant
regions of Northeast China and Central and South China, indicating
a phase difference between REP and CO2 (CO2 lags behind REP).
The wide variation in REP-CO2 correlations in different regions
suggests that current energy policies are not working evenly across
regions. Although no significant common movement is found in
other regions in time and scale, it is interesting to note that except for
Southwest and Northwest regions, all other regions have shown a
strong correlation between REP and per capita CO2 emission on a
1–2 year scale, which is mainly attributed to the cyclical influence of
government energy policies and the cyclical characteristics of RE
project construction. Therefore, the government should establish a
long-term stable renewable energy support policy to reduce market
uncertainty caused by short-term adjustments and enhance market
confidence, and at the same time, optimize the approval process of
renewable energy projects and improve the efficiency of policy
implementation1.

4.3 ESTDA results

The difference in wavelet coherence maps provides important
clues for the study to explore the spatial correlation. Based on the
correlation between REP and per capita CO2 emission in the time
dimension revealed earlier, this study further adopts the ESTDA to
explore the relationship between the two in the spatial dimension to
reveal the strength and direction of the spatial correlation between
different regions.

4.3.1 Bivariate global Moran’s I results
As Figure 3 illustrates, the global Moran’s I value of REP and per

capitaCO2 emission in 30 provinces cluster below the zero value and
pass the 1% significance test, demonstrating that there is a negative
spatial correlation between the two, i.e., the regions with high REP
tend to be neighboring to the regions with low values of CO2, which
corroborates with the results of the PMG-ARDL model.

4.3.2 Bivariate local SAC analysis
The bivariate LISA agglomeration map (Figure 4) reflects the

clustering of the six-time points, and during the study period, the
regions with significant correlations (5%) are mainly clustered in
northern and southern, and the regions with negative correlations of
L-H clustering and H-L clustering are widely distributed. The
former spatial distribution is concentrated in the northern part of
China, especially in Inner Mongolia, Liaoning Province, and Hebei
Province. The latter are primarily situated in the southward regions
such as Yunnan, Guizhou, and Hunan. This may be due to the

1 Eastern China: Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi,

Shandong; North China: Beijing, Tianjin, Hebei, Shanxi; Northeast China:

Liaoning, Jilin, Heilongjiang, Inner Mongolia; Central and South China:

Henan, Hubei, Hunan, Guangdong, Guangxi, Hainan; Southwest China:

Sichuan, Guizhou, Yunnan, Chongqing; Northwest China: Shaanxi, Gansu,

Qinghai, Ningxia, Xinjiang.
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strong industrial base in northern China and its high dependence on
coal. Although wind power has been vigorously developed in recent
years, the heavy historical burden has led to a relatively slow
adjustment of the energy structure, and the pressure to reduce
carbon emissions remains significant. In contrast, southern
regions are rich in hydropower and solar resources, providing
ample conditions for hydropower and photovoltaic power
generation. Moreover, the construction of the southern power

grid is relatively complete, which is conducive to the grid
connection of renewable electricity, the combined effect has led
to significant carbon reduction in these southern regions. This
spatial difference reflects the unbalanced regional development in
China and also provides important insights for regional synergistic
emission reduction. In response to the above phenomenon of
differentiation between the North and the South and its analysis,
the government should implement differentiated low-carbon

FIGURE 2
Wavelet coherence between REP and CO2 in different regions.

FIGURE 3
Bivariate global Moran’s I results.
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transformation policies, accelerate coal substitution, industrial
upgrading and power grid construction and upgrading in the
North, and optimize green power consumption and market-based
trading in the south, to enhance the synergistic effect of the national
carbon emission reduction.

Interestingly, even within the same region with similar
renewable resource conditions, the carbon reduction effects of
REP may exhibit different characteristics across provinces,
suggesting that intra-regional spatial heterogeneity also deserves
attention. Although both Yunnan and Sichuan are major
hydropower provinces, Yunnan has performed more
prominently in terms of RE emission reductions. The main
reason may be that, the industry in Yunnan Province is
dominated by tourism and services, which have relatively low
fossil energy demands, thus facilitating the expansion of RE. In
contrast, Sichuan, with a stronger industrial base and greater
reliance on fossil fuels, has higher CO2 emissions. Additionally,
Sichuan as an important power exporter in China, has long
undertaken the task of transmitting power to the eastern
region, and the priority of power transmission is higher, which
to some extent squeezes the space for local consumption of clean
energy, whereas Yunnan has less pressure on power transmission,
the highest power self-sufficiency rate, with less pressure on
carbon emission reduction. This phenomenon suggests that the
energy consumption structure and industrial structure are
important resistance to the pressure of emission reduction in
high RE production regions. Differentiated policies should be
formulated according to the regional characteristics. Sichuan
Province should optimize the local energy consumption

structure and increase the proportion of local clean energy
consumption while ensuring the transmission of electricity, and
Yunnan Province should further take advantage of its service and
tourism industries to promote the development of low-carbon
industries and consolidate its renewable energy emission
reduction results.

4.3.3 Relative length and tortuosity analysis
The spatial distribution of LISA time path length and curvature

is shown in Figure 5. Provinces with LISA time paths less than
1 accounted for 70% of the total in the study period, and the whole
shows a relatively stable local spatial pattern. The spatial structure
of Northeast and Eastern China is more stable, but the causes are
different, as Northeast China found it difficult to get rid of the
fossil-energy-dominated energy structure quickly resulting in
slower changes; Eastern China is due to the relatively mature
economy and energy structure, and there is less room for
advancement, and therefore shows a stable structure. Therefore,
Northeast China should accelerate the adjustment of energy
structure and reduce the dependence on fossil energy, and East
China should further improve the efficiency of renewable energy
utilization through technological innovation. The LISA time path
tortuosity is generally greater than 1, while 66.7% of the provinces
are lower than the national average, suggesting that the direction of
dependence between REP and CO2 local spatial patterns is stable.
Regionally, Central and South China and southwestern China have
more dynamic spatial variability processes, indicating that these
regions have more complex and dynamic interactions between
REP and CO2. For these regions with large spatial variations,

FIGURE 4
Bivariate LISA clustering diagram of REP and CO2.
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regional energy coordination and policy guidance should be
strengthened to promote the synergistic development of
renewable energy and carbon emission reduction, to adapt to
the dynamically evolving energy structure.

4.3.4 LISA spatiotemporal transition analysis
The local Moran’s I transfer probability matrix is shown in

Table 10. Overall, the structure of local spatial association between
REP and CO2 in China is relatively stable, and most of the
provinces and regions have not been separated from their
original clustering categories, and the probability of spatial and
temporal mobility is significantly lower than the probability of
spatial and temporal cohesion, presenting a certain degree of
inertia in the transitions. The most prevalent type of transition is
TypeⅣ (94.3%), indicating a strong path-locking characteristic,
and the proportion of TypeⅠ, TypeⅡ, and TypeⅢ transition is only
3.5%, 2.2%, and 0.0%, respectively, which is a relatively small
number of transition phenomena, suggesting that the reforms and
changes in this area are more inclined to be adjusted gradually.
Given this, policymaking should balance stability and
breakthroughs, and while maintaining the continuity and
stability of energy transition policies, it should increase reform
efforts in key regions, break path dependency, and promote
synergistic development of green energy among regions.

5 Conclusion and policy implications

In order to cope with the increasingly severe climate change, it is
of strategic significance to delve into the spatio-temporal dynamic
relationship between REP and CO2 emissions. In this study, the
dynamic relationship between the two in the short and long term
from 1997 to 2021 is simultaneously estimated using the PMG-ARDL
methodology for 30 provinces in China. Furthermore, to reveal their
heterogeneity in the time-frequency dimension, the WCA is
introduced to compare the time evolution patterns in different
regions. Finally, their spatial correlation is explored in the spatial
dimension through ESTDA, tomore comprehensively understand the
complex spatio-temporal interactions between the two.

The empirical analysis leads to the following conclusions: The
impact of REP on per capita CO2 emission is relatively weak in the
study period, but this negative correlation exhibits consistent and
stable characteristics in the time dimension, persisting across various
time scales. The wavelet correlation analysis reveals significant
spatiotemporal heterogeneity, with varying degrees of coherence
between REP and CO2 across regions—except for Northwest
China—primarily concentrated in the 1–2 year time-frequency
interval. Spatially, REP and CO2 emission levels in neighboring
regions exhibit a seesaw pattern, with L-H clusters dominating the
north and H-L clusters prevalent in the south. The relative lengths of

FIGURE 5
Spatial distribution of LISA time path length and curvature.

TABLE 10 The spatial and temporal transition matrix.

t/t+1 HH LH LL HL Types Proportion SF SC

HH TypeⅣ(0.942) TypeⅠ(0.058) TypeⅢ(0.000) TypeⅡ(0.000) TypeⅠ 0.035 0.057 0.943

LH TypeⅠ(0.029) TypeⅣ(0.959) TypeⅡ(0.012) TypeⅢ(0.000) TypeⅡ 0.022

LL TypeⅢ(0.000) TypeⅡ(0.500) TypeⅣ(0.500) TypeⅠ(0.000) TypeⅢ 0

HL TypeⅡ(0.000) TypeⅢ(0.000) TypeⅠ(0.000) TypeⅣ(1.000) TypeⅣ 0.943
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LISA time paths indicate strong spatiotemporal stability, while the
Type IV and spatial-temporal cohesion probabilities exceed 0.9,
suggesting that most provinces maintained stable spatial clustering
without significant state transitions during the study period.

5.1 Policies implications

Undoubtedly, achieving low-carbon development is a
challenging and complex process. Given the above findings, the
following policies are recommended. First, the implementation of
regionally differentiated low-carbon transition strategies. As there
are significant differences in the energy structure and level of
economic development of different regions, carbon emission
reduction policies should avoid a “one-size-fits-all” approach. For
example, in the northwestern region, in the short term, the focus
could be on improving the transmission and local consumption of
renewable energy. Through the carbon market linkage mechanism,
the government can enable the eastern region to purchase green
power from the northwest region through carbon trading, thus
indirectly increasing the carbon emission reduction contribution of
renewable energy. Northeast China should speed up energy
structure adjustment, reduce dependence on fossil energy, and
promote low-carbon upgrading of traditional industries. East
China can improve the utilization efficiency of renewable energy
through technological innovation and industrial upgrading.

Second, accelerate the process of energy electrification and
optimize the stability of energy policies. Take the power system as
the core of energy transformation, vigorously develop renewable
energy generation, and gradually replace traditional fossil energy.
Realize the fundamental transformation of energy production mode,
needs long-term stable policy support, to enhance policy continuity,
reduce the frequent adjustment of short-term energy policy, to ensure
the predictability and feasibility of low-carbon transformation.

Third, improve the construction of energy infrastructure and
vigorously develop the smart grid. Renewable energy is subject to
regional and climatic conditions such as great restrictions, and can
only rely on the form of power generation to achieve cross-regional
transmission, so we must increase the renewable energy resources in
areas rich in power grid investment and construction, to enhance
renewable energy access capacity. At the same time in the face of
growing renewable energy demand for a high proportion of grid, to
enhance the resilience of the energy system, the smart grid is the
realization of the energy system’s flexible, stable operation of the key,
which can effectively coordinate the renewable energy power
generation and traditional fossil energy power generation,
improve the efficiency of energy use.

Fourth, optimize the regional synergy mechanism to break the path
dependence of the energy structure. Policies should break the path of
regional dependence, strengthen inter-regional power interconnection
and sharing of energy resources, realize the complementary advantages
of the region, and jointly meet the challenges of energy transition, by
clarifying the regional differences and commonalities, to achieve the
“integrated” development of energy, to better safeguard the sustainable
development of the regional economic and social development. For
example, the “West-East Power Transmission” project has been
strengthened to transmit surplus renewable energy from the
northwestern region to the eastern and central regions, where the

energy demand is stronger, to reduce the phenomenon of abandoned
wind and light, and to optimize the allocation of energy resources
through cross-provincial cooperation, thereby enhancing the
effectiveness of carbon emission reduction at the national level.

5.2 Limitations and future research

This research has some limitations. First, there are limitations in the
data selection process due to the accessibility of statistical data, other types
of RE such as geothermal energy andbiomass energy are relatively under-
considered, and future research should be based on data availability,
should expand the scope of the data, and comprehensively examine the
REP in China. Second, the study analyzes RE as a whole, and future
studies can subdivide RE and analyze the relationship between different
types of RE, such as wind power, solar power, and hydropower, and
carbon emissions, to reveal the carbon reduction potential and
characteristics of different types of RE. Finally, there may be other
unconsidered factors in the wavelet analysis that correlate with the
relationship between the two-time series. In the future, it is possible
to consider conducting amore comprehensive quantitative analysis of the
problem after removing the influence of other factors.
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