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Human activities and climate change exert significant influence on global land-
use and land-cover (LULC) alteration. The integration of geo-spatial and remote
sensing technologies is pivotal in comprehending these dynamics and
formulating strategies for future natural resource management. This research
is centered on the modeling of spatio-temporal trajectories of landscape
transformation spanning from 1988 to 2018, with a forward-looking scenario
up to 2040. By leveraging imagery from Landsat 5, LISS-3, and Sentinel 2A MSI, a
detailed assessment of LULC changes was carried out for the Mashi Dam
command (CMD) area in Rajasthan, India, covering a total expanse of
90.07 km2. Rigorous validation of the 2018 land cover map against ground-
truth data ensured the reliability of predictions, which were subsequently utilized
to forecast LULC patterns for 2031 and 2041. The analysis uncovered significant
impacts on cropland, barren land, built-up areas, and scrub land throughout the
study period. Notably, built-up areas, water bodies, and barren land exhibited
substantial growth from 2008 to 2018, while cropland experienced a decline of
4.75% in the same timeframe. Projections indicate a further reduction in cropland
by 2041, accompanied by an expansion of barren land. These results underscore
the critical imperative for effective land management strategies to mitigate the
conversion of cropland and scrub land into barren areas, thereby ensuring the
sustainable utilization of agricultural resources in the region.

KEYWORDS

transformation, future prediction, LULC, geoinformatics, Rajasthan (India)

1 Introduction

Land use and land cover (LULC) are intertwined concepts that delineate the utilization
of land and the assortment of vegetation and features adorning its surface. Land use
encapsulates human activities on the land, while land cover embodies the physical attributes
such as mountains, forests, vegetation, water bodies, and other natural elements (Pandey
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et al., 2021). The significance of land use and land cover lies in their
profound influence on the environment and human sustenance
(Moharir et al., 2025). Human endeavors like agriculture, mining,
industrialization, and urbanization wield substantial impacts on the
natural milieu, sculpting the land composition and modulating
ecosystem services (Naikoo et al., 2020).

The dynamics of land use and land cover transformation can
exacerbate climate change, biodiversity loss, and other
environmental dilemmas. A comprehensive comprehension of
these patterns holds paramount importance across diverse
domains including land management, urban planning, natural
resource stewardship, and environmental sustainability.
Moreover, it guides policy formulations concerning sustainable
development, conservation, and climate change mitigation.
Remote sensing methodologies, notably satellite imagery, are
frequently harnessed to scrutinize global and regional land use
and land cover dynamics (Pande et al., 2024). These techniques
furnish invaluable insights into temporal shifts and spatial variations
in land utilization and coverage. In essence, the intricate interplay
between land use and land cover serves as a crucial nexus for
unraveling the intricate relationship between human
undertakings and the natural ecosystem (Moharir et al., 2025).

The alteration in land use and land cover is a pervasive global
concern with far-reaching implications for numerous regions
worldwide. The swift appropriation of natural resources driven
by ongoing human civilization development and heightened
living standards has brought about substantial global
transformations in land cover. Regrettably, over 80% of the
Earth’s natural resources, notably land cover, have already
endured degradation due to human activities (Pande et al., 2024).

Worldwide, LULC variation commonly issues the interference of
the configuration and useful of terrestrial environments (Lambin and
Meyfroidt, 2011; Winkler et al., 2021). LULC variation is difficult
phenomenons that includes a variation in the determination, used to
and purpose of a landscape and can get various systems, such as
urbanization, deforestation and infrastructure growth (Foley et al., 2005;
Song et al., 2018; Ersoy Tonyaloğlu, 2025). Various factors give to LULC
changes entire different areas of the world. These alterations are mainly
driven by both natural procedures and human activities (Ragini et al.,
2023). Natural influences, adding into climatic differences, topography,
soil composition, wildfires, and unforeseen events, serve as the basis for
LULC transformations and use incomplete control over these shifts.
Similarly, the human-induced aspects like population growth (Khan
et al., 2023; Waleed et al., 2023), it is crucial role in determining
LULC patterns.

Within India, out of the country’s expansive total geographic
area of 328.7 million hectares, approximately 146.82 million
hectares bear the brunt of various forms of land use and land
cover change. Notably, land cover change has left a substantial
impact on watershed areas, river corridors, and irrigated lands,
precipitating significant disturbances (Pande et al., 2018). The
gravity of the situation is such that simply halting further land
abuse may not suffice to naturally restore these lands. The
proliferation of degraded lands in the country is predominantly
linked to the adoption of unsustainable agricultural practices,
mining, and the excessive utilization of irrigation methods,
intensifying the processes of land degradation, and propelling its
rapid expansion (Pande et al., 2018).

1.1 LULC change impact on irrigated lands

In recent years, irrigated land-use and land-cover (LULC)
dynamics have undergone significant changes due to
anthropogenic interventions, including excessive irrigation and
the overuse of fertilizers. These unsustainable practices have led
to land degradation in several regions. This study aims to assess the
impacts of such alterations and promote sustainable management
strategies to mitigate degradation while raising awareness about the
preservation of irrigated lands, particularly in arid and semi-arid
regions (Su et al., 2024). Variations in land cover and land use
patterns surrounding irrigated areas have the potential to modify the
accessibility and quality of water resources as well as the properties
of the soil. Moreover, these changes can impact water infiltration
rates and groundwater recharge, consequently influencing the soil’s
water-holding capacity and overall irrigation efficiency.
Furthermore, improper agricultural practices, such as over-
irrigation and excessive use of fertilizers, can trigger soil
degradation and diminish its water retention capabilities,
culminating in heightened runoff and soil erosion. These shifts in
LULC present noteworthy challenges to the sustainability and
productivity of irrigated lands, emphasizing the imperative need
for adept agricultural management and water resource planning to
mitigate their adverse ramifications (Lal et al., 2021).

1.2 Importance of LULC change analysis

The analysis of land use/land cover change constitutes a pivotal
field of study that furnishes invaluable insights into the evolving
patterns of LULC. It plays a crucial role in informing sustainable
landmanagement practices and policies, facilitating natural resource
management, and supporting effective land use planning. Through
the scrutiny of LULC change, decision-makers can glean enhanced
understanding of the ramifications of land use change, identify the
catalysts propelling change, and devise strategies for sustainable land
utilization that harmonize economic advancement with
environmental safeguarding (Seyam et al., 2023; Bandyopadhyay
et al., 2017). The importance of LULC change analysis is
underscored by several key reasons: Firstly, it aids in
comprehending the factors driving change, such as urbanization,
mining, agricultural expansion, and natural disasters, thus
informing the formulation of effective policies and interventions.
Secondly, it enables the evaluation of the environmental impacts of
land use change, encompassing soil degradation, loss of biodiversity,
and water quality, thereby guiding informed land management
practices. Thirdly, it contributes to prospective land use planning
by delineating areas suitable for conservation, urbanization, or
agricultural expansion, thereby ensuring sustainable land use
practices. Fourthly, it bolsters natural resource management,
including forestry, water management, and agriculture, by
guiding interventions that enhance sustainable practices.
Furthermore, it facilitates land use planning through zoning
regulations and land use plans that advocate for sustainable land
use and the protection of natural resources. Lastly, it furnishes
baseline data for monitoring changes in land use and land cover over
time, thereby aiding in long-term decision-making and policy
development.
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1.3 Role of remote sensing in LULC
change study

Remote sensing and geospatial technology constitute a diverse
array of tools providing extensive data on the Earth’s surface,
facilitating detailed analyses and change detection through
various satellite and aircraft sensors. This technology offers
valuable capabilities for understanding and efficiently managing
Earth’s natural resources. Notably, remote sensing has evolved into a
sophisticated technology for detecting LULC changes and for
enhancing environmental and natural resource management
(Halder et al., 2023). Geospatial technology delivers high-
resolution satellite imagery that aids in mapping LULC features
of an area, identifying alterations in LULC patterns, and monitoring
the environmental impact of human activities (Chang et al., 2018).
Remote sensing plays a pivotal role in the examination of LULC
change by facilitating data acquisition, monitoring, mapping,
temporal analysis, ensuring accuracy and consistency, and
enabling integration with geospatial analysis. Geospatial
techniques equip researchers with comprehensive and reliable
information regarding LULC changes (Kumar et al., 2013; Wang
et al., 2020; Girma et al., 2022). The land use variations predicted
showing main alterations can support to land use experts, and
management policymakers in endorsing sustainable development
and mitigating harmful effects. So, discovering and calculating the
LULC variations have become an significant consideration in a
diversity of fields adding, modeling villager and city strategies (Parsa
and Salehi, 2016), classifying biodiversity hotspot landscapes
(Yirsaw et al., 2017) for proceeding conservation hard work,
investigation changing aspects of desertification, etc. This study
mainly focused on the detail assessment of land use land cover
changes and also helps in forecast the data from the year 2031 and
2041. The result of the study shows that, there was increasing in the
barren land. This study helps to implement the suitable land
management practices and also suggested the sustainable use and
conservation of agricultural resources in the area. The novelty of this
research lies in its comprehensive modeling of land-use and land-
cover (LULC) changes in the Mashi Dam command area from
1988 to 2018, with projections extending to 2040. Utilizing a
combination of satellite imagery from Landsat 5, LISS-3, and
Sentinel 2A MSI, the study rigorously validates the 2018 land
cover map against ground-truth data. It identifies critical trends,
such as a 4.75% decline in cropland and significant growth in built-
up areas and barren land. These insights emphasize the urgent need
for effective land management strategies to combat further
agricultural land conversion and promote sustainable resource
utilization. The prediction of 2031 and 2041 LULC maps is
prepared for future LULC changes in the area, it can a very
novel results of study area helpful to planning of LULC in the
area. This study also supportive for scientists, policymakers, and
land administrators which can gain valuable insights into the
dynamics and effects of land transformations, thereby supporting
informed decision-making for sustainable land management,
environmental conservation, and socio-economic development.

The main objectives of this study are as follows:

i. To analyze the spatio-temporal land use/land cover patterns
from 1988 to 2018.

ii. To forecast land use/land cover for 2031 and 2041 using the
Land Change Modeler (LCM) in IDRISI TerrSet.

2 Materials and methods

2.1 Study region

The command area (CMD) of the Mashi Dam is situated
between latitudes 26°17′ N and 26°41′ N and longitudes 75°65′ E
and 75°76′ E, within the Peeplu Tehsil of Tonk District,
Rajasthan, (India) (Figure 1). The area is fed by three
tributaries: the Bandi, Mashi, and Sohadara rivers, all of which
ultimately flow into the Banas River Basin. The topography of the
study area, which encompasses Peeplu Tehsil, features a
peneplain landscape with ground elevations ranging from
260 to 418 m above mean sea level. Isolated hillocks and
continuous chains of hills can be found in the southeast near
Sohela. The highest elevation in the region is 418 m at Chironj,
while the lowest point, at 260 m, is located near the banks of the
Banas River. The left bank of the Mashi River exhibits an
undulating topography. The Mashi River is classified as a
fifth-order stream, whereas the Sohadara River is a fourth-
order stream within the Banas River Basin. Soil in this region
is primarily yellowish-brown with a sandy loam texture. It is
generally well-drained and calcareous, composed of fine loamy
soil that characterizes the sloping plains.

The annual rainfall in Peeplu Tehsil averages 500.6 mm, which
serves as the primary source for groundwater recharge. The climate
in this region is classified as tropical dry, with mean maximum
temperatures reaching 44.8°C in June and minimum temperatures
dropping to 2.9°C in January. During the warmer months, the
minimum relative humidity is recorded at 45% in April and 32%
in May. In the Peeplu Tehsil, an area of 17,640.29 ha is irrigated
through groundwater resources, including wells and tube wells, in
addition to 3,440.37 ha irrigated by canals and tanks. The geological
structure of the study area consists of several geological units,
including alluvium, schist, migmatite, and gneiss. The topsoil is
primarily composed of alluvial soil and river sand, with depths
ranging from 3.0 to 8.0 m, making it suitable for agricultural
activities.

2.2 Materials

The data acquisition and methodology for the LULC change
study encompass several key steps, including the acquisition and
pre-processing of satellite imagery, the classification of imagery into
distinct LULC categories, the evaluation of classification accuracy
and change matrix, and the application of change detection analysis
over time to identify shifts in LULC. Additionally, the study includes
the projection of LULC for future time points (2031 and 2041)
utilizing the LCM model within the IDRISI software. This chapter
specifically focuses on data acquisition for four different time
periods: 1988, 1998, 2008, and 2018. Figure 2 illustrates the
framework detailing the steps for data acquisition and subsequent
procedures employed for the detection of LULC change and
prediction modeling.
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2.3 Data acquisition

The initial step entails the acquisition of satellite imagery
corresponding to the various time periods under analysis. The
selection of satellite data hinged on the desired spatial resolution,
spectral bands, and other requisites specific to the study. Landsat

satellites are frequently employed in land use/land cover change
studies due to their extensive track record of furnishing high-quality
imagery characterized by consistent spatial and spectral properties. Data
collection for the 1988 and 1998 time periods involved the utilization of
Landsat 5 satellites, whereas for 2008 and 2018, the acquisition of data
relied on IRS LISS-III and Sentinel 2A MSI data products. A

FIGURE 1
Study area and Sentinel-2A MSI image (FCC) acquired on May, 2018.
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comprehensive understanding of the datasets and spectral characteristics
used in the study is presented in detail in Supplementary Tables S1–S4, as
well as in Supplementary Figures S1A–S1D, further elaborated upon by
(Saipova et al., 2022).

3 Methodology

3.1 Image pre-processing

Prior to the commencement of image processing, corrections
were applied to rectify the geometric and radiometric characteristics
of the Sentinel 2A MSI data utilizing the SNAP tool (Sen2cor
processor). However, such corrections were deemed unnecessary
for the Landsat and LISS 3 data. Furthermore, cloud masking and
image masking procedures were implemented to ensure the cloud-
free nature of the study area, particularly for the precise classification
of LULC (Matinfar et al., 2007).

The selection of the study years 1988, 1998, 2008, and 2018 was
primarily based on field observations and feedback from
respondents at the command area, which indicated that
significant cropland degradation, particularly owing to soil
salinity and overuse of groundwater, became apparent starting in
1988. To analyse this degradation over time, a 10-year interval was
chosen for the datasets (1988, 1998, 2008, and 2018) to examine the
changes in cropland condition at regular intervals, reflecting the
gradual nature of such environmental changes.

3.2 Image classification

LULC classification involves the process of categorizing the
land surface into distinct classes based on its physical and

biological attributes. This task typically utilizes remote
sensing data, such as satellite imagery, which can capture the
spectral, spatial, and temporal characteristics of the land surface.
The classification process encompasses assigning each pixel or
object in the image to a specific land cover class, including
categories such as cropland, salt-affected land, scrub land, water
bodies, sandy areas, and built-up land. The selection of classes in
the classification is determined by the study’s objectives and the
available classification scheme, which is detailed in
Supplementary Table S5, providing a comprehensive overview
of its general description.

Image classification was conducted using an object-based
classification method within the SAGA GIS software. The
object-based classification method is preferred for its ability to
incorporate spatial context and relationships among pixels,
leading to more accurate and meaningful classifications. This
approach effectively captures complex land-use patterns,
particularly in heterogeneous landscapes, which enhances the
differentiation of land cover types compared to pixel-
based methods.

In this approach, the images were segmented into distinct
objects based on their spectral and spatial properties (Halder
et al., 2023). Subsequently, the objects were categorized into
various LULC classes based on their spectral signature and
other attributes using a rule-based classification method. The
classification rules were defined based on the spectral and spatial
characteristics of each LULC class. The resultant classified maps
underwent visual inspection and validation utilizing ground
truth data (from field surveys, Google Earth) and other
supplementary information (Worldview 2 Image).
Furthermore, the overall accuracy and kappa coefficient of the
classified maps were computed to evaluate the accuracy of the
classification (Stuckenberg et al., 2013).

FIGURE 2
Methodology framework for LULC change detection and prediction modelling.
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3.3 Accuracy assessment and change matrix

The accuracy assessment is a critical process that enables the
evaluation of how well the classified image aligns with the actual
ground truth. Given that land use maps generated through image
classification may contain errors, it is essential to conduct an
accuracy assessment to gain confidence in the reliability of the
results and facilitate the detection of temporal changes. In this
study, the accuracy assessment involved comparing the classified
maps with ground truth data collected from field surveys utilizing
GPS for the years 1988, 1998, 2008, and 2018, in conjunction with
information derived from Google Earth, field observations, and
Worldview 2 imagery. The error/confusion matrix, a widely used
and effective method for assessing the accuracy of classified images,
provided information on overall accuracy, user accuracy, producer
accuracy, and kappa statistics. The formulas for calculating these
metrics are presented in Supplementary Table S6 and are employed
to quantify and evaluate the accuracy of the classified image derived
from remotely sensed imagery. Of particular note, the kappa
coefficient is utilized to determine the level of agreement, as
recommended by (Leta et al., 2021), where a kappa coefficient
below 0.4 indicates poor agreement, a value between 0.4 and
0.8 represents moderate agreement, and a value above
0.8 signifies strong agreement.

3.4 LULC change statistics

The cartographic maps and statistical graphs for the LULC
change study were generated using a combination of software,
including SAGA GIS, IDRISI TerrSet, ArcGIS, and Microsoft
Excel. These software packages provide a wide array of tools and
functionalities for data analysis, visualization, and mapping.
IDRISI and ArcGIS are frequently utilized for LULC
prediction modeling and the formulation of LULC change
matrices using intersect tools, while Excel is commonly
employed for data processing and analysis. The utilization of
multiple software tools ensures comprehensive and accurate data
analysis and presentation, facilitating the integration of diverse
data types to support the study’s objectives.

3.5 LULC change modelling and
projected scenarios

The LCM, a component of IDRISI software, is designed for the
analysis and prediction of land cover change, in addition to the
assessment of habitat and biodiversity impacts. It encompasses a
suite of automated tools that streamline the processes of change
analysis, resource management, and habitat assessment. This model
leverages artificial neural network (ANN), Markov Chain matrices,
and transition suitability maps to forecast land use and land cover
changes. Thematic raster images with the same number of classes
and sequential order are employed to generate these predictions. In
the context of this study, the LCM was used to forecast forthcoming
land use and land cover changes in the Mashi command area for the
years 2031 and 2041. This model executes a sequence of procedural
steps to accomplish its objectives (Lemenkova, 2020).

3.5.1 Change analysis
The change analysis panel computes differences between two

distinct time periods, denoted as time 1 and time 2, using the LULC
maps. This analysis enables the swift evaluation of quantitative
changes by visualizing gains and losses across various land cover
types. Furthermore, it furnishes data on net change, persistence, and
specific transitions in both map and geographical formats.

3.5.2 Spatial model variables and transition
potential modeling

In order to project the LULC for the years 2031 and 2041,
several spatial model variables were selected based on review of
previous research literature. These variables include DEM,
Slope, Distance from canals, Distance from river, Distance
from roads, and Distance from built-up areas. Following the
identification of these pertinent spatial variables, factor maps
were generated. A critical step in this process involved
performing geometry matching to ensure compatibility and
consistency among the spatial data. This entailed ensuring
that the raster data maintained consistent cell sizes, No-Data
values, data extents, dimensions, and coordinate reference
systems. In this study, the cell size for all spatial variables was
set to 30 m, with a designated No-Data value of 0, indicating the
absence of data, and utilizing the coordinate reference system
WGS-84 UTM-Zone 43N. These measures were instrumental in
ensuring proper alignment of the spatial variables, thereby
facilitating effective analysis and integration within the study.
Through the maintenance of consistent parameters across the
spatial variables, the study is able to accurately assess and
analyze the relationships and patterns among these variables
(Mishra and Rai, 2016).

The LCM modeler comprises two sub-models: the Transition
Potential sub-model and the Change sub-model. The Transition
Potential sub-model predicts the likelihood of each pixel in the
study area to transition from one land cover class to another
based on the spatial and contextual relationships between
neighboring pixels, utilizing the land cover map for the initial
time period as input. On the other hand, the Change sub-model
utilizes the output of the Transition Potential sub-model to
simulate future land cover changes likely to occur over time,
utilizing the initial land cover map and additional information
such as the rate of change and the predicted time period. These
two sub-models work conjointly to provide a thorough analysis
of LULC change over time, taking into account historical
patterns of change and potential future scenarios (Gadhave
et al., 2022).

3.5.3 Multilayer perceptron (MLP) network
The multilayer perceptron (MLP) neural network plays a crucial

role in the land change modeler. Comprising input, hidden, and
output layers, the MLP utilizes feed-forward algorithms to compute
weights for various nodes within the network. These weights
propagate through the hidden layer, enabling the modeling of
non-linear relationships and multiple transitions simultaneously.
Data flows unidirectionally within the MLP, moving from the input
layer to the output layer, with nodes receiving input signals and
generating transformed signals for other nodes. Each node is
assigned a weight inclusive of a threshold and undergoes a linear
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or non-linear stimulation function. Throughout the training phase,
the weights are adjusted to minimize the disparity between observed
and expected outcomes, ensuring precise forecasting. Once the MLP
is trained with the influencing factors for each sub-model, it
produces time-specific transition potential maps portraying
change potential over time. These maps offer valuable insights
into the specific changes anticipated within the modeled system
(Kafy et al., 2020).

This study harnessed the Markov Chain analysis and Cellular
Automata (CA) techniques available in IDRISI to model and predict
future LULC changes. The methodology entailed utilizing land cover
maps from 1988 to 2018 as inputs to forecast the land cover map for
the years 2031 and 2041. To validate the accuracy of the projections,
the resultant land cover map for 2018 was compared against the
actual land use/cover map for 2018, generated using SAGA GIS.
Following successful validation, the land cover maps from 1988 to
2018 were once more employed to predict the LULC map for the
years 2031 and 2041.

The selection of the first prediction interval (14 years), this was
done to create a longer-term forecast that extends beyond the 10-
year intervals in the dataset, capturing a more extended horizon for
policy and management planning. However, the years 2031 and
2041 were included in the prediction because they align with the
planning horizons typically used in natural resource management
and policy development. These years are intended to project future
land degradation trends based on current observations, which is why
they were selected despite the primary data being focused on the 10-
year intervals.

4 Results

The LULC of the Mashi command area was mapped over a 30-
year period, spanning from 1988 to 1998 and 2008 to 2018. Below, a
comprehensive description of the distribution and detection of
changes is provided, furnishing detailed information about the
study area. LULC changes around the Mashi Dam are influenced
by key spatial model variables shaping land development, water
management, and ecosystem dynamics. DEM and Slope determine
land use feasibility, with lower elevations supporting agriculture and
settlements, while steeper slopes restrict construction. Around
Mashi Dam, gentle slopes facilitate farming and urban expansion,
while higher elevations remain under natural vegetation. Rivers and
Canals play a crucial role in agricultural expansion and water
distribution. The Mashi River and associated canals enhance
irrigation, leading to cropland intensification, but also contribute
to encroachment and soil degradation near water bodies. Built-up
Areas near the dam have expanded due to water availability,
infrastructure projects, and tourism, resulting in urban sprawl
and deforestation. Increased settlements raise concerns about
water resource depletion and environmental stress. Road
Networks enhance accessibility, accelerating land conversion
from natural landscapes to urban and agricultural uses. Roads
near the dam influence commercial growth and settlement
expansion, often at the cost of green cover. These factors
collectively drive LULC changes in the Mashi Dam region,
necessitating balanced planning to ensure sustainable
development, water conservation, and ecosystem protection.

4.1 LULC change dynamics (1988, 1998,
2008 and 2018)

Figures 3A,B depicts the LULC maps of the Mashi command
area for the years 1988 and 1998, while Table 1 presents a detailed
breakdown of the area covered under each category during the
period from 1988 to 1998. In 1988-1998, cropland, barren land, and
scrub land were the predominant land cover types, respectively. The
LULC map for 1988 indicates that approximately 80.12 km2 of the
Mashi command area was classified as cropland, representing
88.95% of the total area. Furthermore, there were 1.24 km2

designated as built-up land, 1.35 km2 as barren land, 3.08 km2 as
sandy area, 3.94 km2 as scrub land, and 0.34 km2 as water bodies.
Notably, the proportions of each LULC class in the command area
during the 1998 period reveal cropland as the dominant LULC,
covering 88.53% of the study area, followed by barren land (1.64%),
sandy area (3.42%), scrub land (4.46%), water bodies (0.38%), and
built-up areas (1.57%) (refer to Table 1). Throughout the study
period from 1988 to 1998, there was a significant expansion in
barren land, scrub land, and built-up areas, with growth rates of
1.64%, 1.57%, and 4.46%, respectively. Additionally, barren land
experienced a slight increase from 1.50% to 1.64%. Among the
different land cover types, cropland incurred the highest net loss,
followed by barren land, built-up areas, and scrub land, as outlined
in Table 2. The trend observed from 1998 to 2008 aligns with the
findings. Figure 4A presents comprehensive statistics of LULC
change from 1988 to 2018 (Mirhosseini et al., 2016).

Moreover, Figures 3C,D delineates the types of LULC classes in
the Mashi command area for the years 2008 and 2018, while Table 3
offers a detailed breakdown of the different land cover categories
during that period. Between 2008 and 2018, the main types of land
cover were cropland, barren land, and scrub land, with cropland
covering the majority of the area in both 2008 and 2018. Notably,
there was a clear increase in the extent of barren land, built-up areas,
and water bodies during this period. Conversely, there was a
decrease in the area of cropland, sandy areas, and scrub land,
indicated in Figure 4B. The changes in different land cover types
occurred at varying rates, with cropland experiencing the largest net
loss, followed by barren land, built-up areas, and water bodies. The
findings revealed a decrease of −0.51% in sandy areas and a −3.23%
decline in scrub land between 2008 and 2018, while barren land,
built-up areas, and water bodies experienced an increasing trend
with growth rates of +5.2%, +3.11%, and +0.17%, respectively, as
indicated in Figure 4B. This pattern aligns with the observations
from 1988 to 1998, except for scrub land, sandy areas, and water
bodies (Parsamehr et al., 2020).

The notable proportion of barren land observed between
1988 and 2018 can be attributed to factors such as salinity,
waterlogging, and human activities, including over-irrigation, that
occurred during that period. These factors likely contributed to the
increased extent of unproductive and uncultivable land.

4.2 Accuracy assessment of the
classified images

In this study, 50 points were randomly selected to assess
classification accuracy. An accuracy assessment was conducted to
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analyze the changes in LULC by creating confusion/error matrices
for the classified maps of 1988, 1998, 2008, and 2018. Various
measures including user’s accuracy, producer’s accuracy, kappa
statistics, and overall accuracy were utilized for the assessment.
The kappa statistics and overall accuracy values for the classified

images were as follows: 87.76% and 90% for 1988, 68.38% and 94%
for 1998, 91.70% and 94% for 2008, and 86.36% and 90% for 2018 (as
depicted in Supplementary Tables S7–S10). The more recent LULC
maps exhibited higher accuracy, possibly attributable to the
utilization of satellite images with higher spatial resolution. It is

FIGURE 3
LULC maps of the study area (A) 1988, (B) 1998, (C) 2008, (D) 2018.
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crucial to conduct accuracy assessment when employing remote
sensing Landsat data for historical LULC studies. The achieved
accuracy in this study falls within the acceptable range, signifying the
reliability of the results (Alqadhi et al., 2021).

4.3 LULC change matrix

The LULC change matrices for the periods 1988-1998, 1998-
2008, 2008-2018, and 1988-2018 are detailed in Tables 4–7,
respectively. Bold values in the tables signify no change in the
corresponding LULC categories during the specified time
periods. The analysis of the LULC change matrix unveils
substantial land cover transformations in the Mashi command
area over the study period. Notably, during the 1988-1998 period,
significant changes in LULC were observed. A considerable
conversion of agricultural land to barren land occurred, with
approximately 0.13 km2 transitioning to this land cover category.
Conversely, 0.17 km2 of crop land areas converted to built-up
land, primarily due to urban expansion. Additionally, the area
under crop land decreased by approximately 0.08 km2, attributed
to land degradation activities. These changes highlight the
dynamic nature of land use in the study area during the
specified period. The 1988-1998 LULC change matrix is
presented in Table 4 (Murayama and Thapa, 2011).

From 1998 to 2008, there was an observable increase in the areas
of barren land, built-up land, scrub, and water bodies within the
study area. In contrast, other land use classes, such as crop land and
sandy land, showed a decreasing trend. Notably, an increasing trend
was observed in the areas of barren land, built-up land, and water
bodies, while other land use classes, such as crop land, sandy land,
and scrub land, exhibited decreases in their change rates.

Similar trends were observed from 2008 to 2018, with
approximately 3.54 km2 of crop land converting to barren land
due to issues such as waterlogging, salinity, and over-irrigation.
Additionally, the conversion of 2.60 km2 of crop land to built-up
areas was observed, driven by population growth in the villages
within the command area. Around 0.67 km2 of crop land
transitioned into scrub land, attributed to land degradation. The
LULC matrix in Table 6 indicates approximately 1.89 km2 of scrub
land converted to barren land, influenced partially by anthropogenic
activities and land degradation. Furthermore, there was a conversion
of 0.21 km2 of water bodies to barren land and 0.40 km2 of scrub land
to built-up land.

Over the specified time period, there was an upward trend observed
in the areas of barren land, built-up land, and water bodies, increasing
from 1.46 km2 to 8.30 km2, 1.24 km2 to 4.89 km2, and 0.34 km2 to
0.56 km2, respectively. Conversely, other land use classes, such as crop
land, sandy land, and scrub land, exhibited decreases in their areas,
declining from 80.01 km2 to 72.13 km2, 3.08 km2 to 1.80 km2, and

TABLE 1 Land Use and Land Cover change from 1988 to 1998.

LULC class 1988 1998 Area of change (1988–1998)

Area in km2 Area in % Area in km2 Area in % %

Barren land 1.35 1.50 1.48 1.64 +0.14

Built-up land 1.24 1.38 1.41 1.57 +0.19

Crop land 80.12 88.95 79.74 88.53 −0.42

Sandy area 3.08 3.42 3.08 3.42 +0.00

Scrub land 3.94 4.37 4.02 4.46 +0.09

Water body 0.34 0.38 0.34 0.38 +0.00

Total 90.07 100 90.07 100

TABLE 2 Land Use and Land Cover change from 1998 to 2008.

LULC class 1998 2008 Area of change (1998–2008)

Area in km2 Area in % Area in km2 Area in % %

Barren land 1.48 1.64 3.58 3.97 +2.33

Built-up land 1.41 1.57 2.03 2.25 +0.69

Crop land 79.74 88.53 76.57 85.01 −3.52

Sandy area 3.08 3.42 2.25 2.50 −0.92

Scrub land 4.02 4.46 5.24 5.82 +1.35

Water body 0.34 0.38 0.4 0.44 +0.07

Total 90.07 100.00 90.07 100.00
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3.94 km2 to 2.39 km2, respectively. The detailed LULC change matrix is
presented in Table 7.

4.4 LULC gain and loss analysis using
LCM model

The land use categories in theMashi command area have undergone
changes over different time periods: 1988-1998, 1998-2008, 2008-2018,
and 1988-2018. Figure 5 presents charts depicting the gains and losses for
the six land use categories from1988 to 1998, 1998-2008, 2008-2018, and
1988 to 2018, while Figure 6 illustrates the spatial gains and losses in crop
land and built-up areas. The changes observed between 1988 and

1998 indicate a relatively slower conversion between land use
categories compared to the changes between 1998-2008 and 2008-
2018. Particularly, during the period from 1988 to 2018, the crop,
barren, scrub, and built-up categories exhibit significant changes
compared to the other land use categories (Munthali et al., 2019).

4.5 Explanatory variables for projected LULC

The selection of explanatory variables or drivers contributing to
LULC change was based on factors influencing the suitability of
specific activities. Topographic features, encompassing DEM and
slope, play a crucial role in shaping land use patterns. Additionally,
the proximity to resources such as rivers, canals, built-up areas, and
roads also influences land use patterns. In this study, both
topographic and proximity factors were considered to assess their
impacts on land use/land cover change. The significance of each
variable was evaluated using Cramer’s V, a quantitative measure.
However, it is important to note that relying solely on Cramer’s V
does not fully capture the complexity and scientific intricacies of the
relationships. While it aids in determining whether a variable should
be included as a driving factor of LULC change, further analysis is
imperative to comprehensively understand these relationships.
Supplementary Figure S2 comprises all the spatial model
variables, with corresponding Cramer’s V values presented in
Supplementary Table S11 (Rwanga and Ndambuki, 2017).

4.6 LULC transition from 1988 to 2018

To examine and comprehend the influence of land use/land
cover change on the Mashi CMD area (specifically, irrigated-
cropland) and the significant role of anthropogenic activities
(such as over-irrigation, waterlogging, mining, etc.), Figure 7
illustrates the conversion of cropland into other land use types.
The spatial visualization provided by the Land Change Modeler
indicates that barren land is projected to be the most impactful
LULC class in the next 30 years, potentially exerting negative effects
on the croplands. Figure 5 demonstrates the continuous expansion
of barren land in the command area from 1988 to 2018 (Haque and
Basak, 2017).

FIGURE 4
Changes in LULC areas (A) LULC change areas (in km2) for the
period 1988–2018, (B) LULC change areas in percent from 1988 to
1998 and 2008 to 2018.

TABLE 3 Land use and land cover change from 2008 to 2018.

LULC class 2008 2018 Area of change (2008–2018)

Area in km2 Area in % Area in km2 Area in % %

Barren land 3.58 3.97 8.26 9.17 +5.20

Built-up land 2.03 2.25 4.83 5.37 +3.11

Crop land 76.57 85.01 72.29 80.26 −4.75

Sandy area 2.25 2.50 1.79 1.99 −0.51

Scrub land 5.24 5.82 2.33 2.58 −3.23

Water body 0.4 0.44 0.56 0.62 +0.17

Total 90.07 100 90.07 100
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4.7 Validation of the model

A validation process was executed to assess the accuracy and
reliability of the LULC change predictions for the years 2031 and
2041. The validation entailed comparing the actual LULC map for
2018 with the simulated LULC map generated by the model for the
same year. The accuracy analysis encompassed the computation of

Kappa statistics and overall accuracy measures. The accuracy
analysis results revealed a Kappa value of 0.79 and an overall
accuracy of 0.83. These values indicate a reasonably good
agreement between the simulated and actual LULC maps,
suggesting the model’s potential applicability for projecting LULC
changes in the Mashi command area for 2031 and 2041. A Kappa
coefficient exceeding 0.60 is considered indicative of a reliable

TABLE 4 LULC change matrix from 1988 to 1998.

LULC 1998

LULC classes Barren land Built-up land Crop land Sandy area Scrub land Water body Total

LULC 1988 Barren land 1.35 1.35

Built-up land 1.24 1.24

Crop land 0.13 0.17 79.74 0.08 80.12

Sandy area 3.08 3.08

Scrub land 3.94 3.94

Water body 0.34 0.34

Total 1.48 1.41 79.74 3.08 4.02 0.34 90.07

TABLE 5 LULC change matrix from 1998 to 2008.

LULC 2008

LULCClasses Barren land Built-up land Crop land Sandy area Scrub land Water body Total

LULC 1998 Barren land 0.40 0.29 0.76 0.03 1.48

Built-up land 0.85 0.50 0.02 0.04 1.41

Crop land 2.53 1.11 72.61 0.62 2.61 0.26 79.74

Sandy area 0.01 1.44 1.56 0.07 3.08

Scrub land 0.64 0.06 1.50 0.05 1.77 4.02

Water body 0.01 0.23 0.11 0.35

Total 3.58 2.03 76.57 2.25 5.24 0.40 90.07

TABLE 6 LULC change matrix from 2008 to 2018.

LULC 2018

LULC classes Barren land Built-up land Crop land Sandy area Scrub land Water body Total

LULC 2008 Barren land 2.53 0.06 0.89 0.06 0.04 3.58

Built-up land 0.01 1.57 0.42 0.03 2.03

Crop land 3.54 2.60 68.97 0.44 0.67 0.36 76.57

Sandy area 0.09 0.19 0.64 1.30 0.02 0.01 2.25

Scrub land 1.89 0.40 1.30 0.06 1.55 0.05 5.24

Water body 0.21 0.01 0.07 0.11 0.40

Total 8.26 4.83 72.29 1.79 2.33 0.56 90.07
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model. Table 8 presents the area and change statistics for different
land use and land cover classes. According to the table, the simulated
map underestimates crop areas and scrub land by 76.93% and 2.44%,
respectively, while overestimating barren land, built-up areas, sandy
areas, scrub land, and water body areas by 9.69%, 5.66%, 2.05%, and
3.22%, respectively.

Overall, the validation results suggest that the model performs
reasonably well in predicting LULC changes for the Mashi CMD
area through the years 2031 and 2041. Nonetheless, it is crucial to
consider the specific overestimation and underestimation patterns
observed in different land use and land cover classes when
interpreting the results (Ansari and Golabi, 2019).

4.8 Projected LULC

Following a successful validation process using the actual
LULC map compared to the predicted LULC for the years
2031 and 2041, as depicted in Figure 7, the statistical change
analysis of the projected land cover is presented in

Supplementary Table S12. According to the model predictions,
built-up land is expected to continue increasing significantly,
reaching 4.84 km2 (5.33%) in 2031 and 4.93 km2 (5.47%) in 2041,
compared to 4.83 km2 in 2018. This growth comes at the expense
of a decrease in barren land, crop land, and scrub land. Barren
land is projected to increase by 10.94 km2 in 2031 and 12.52 km2

in 2041, compared to the 8.26 km2 observed in 2018. Crop lands
will decrease by 69.73 km2 and 68.02 km2 in 2031 and 2041,
respectively, compared to the 72.29 km2 recorded in 2018. On the
other hand, scrub land is anticipated to continue decreasing, with
an estimated decline of 2.23 km2 in 2031 and 2.23 km2 in 2041, in
contrast to the 2.33 km2 observed in 2018 (Supplementary Table
S12). The overall changes in land use/land cover for the predicted
years are depicted in Figure 8.

In summary, these predicted results affirm that the observed
patterns will persist in the future, influenced by factors such as urban
growth, waterlogging, salinity/sodicity issues, and sand mining
activity. These changes will have significant impacts on the
command area. Therefore, the future prediction results can be
utilized to establish proper planning and environmental

TABLE 7 LULC change matrix from 1988 to 2018.

LULC 2018

LULC classes Barren land Built-up land Crop land Sandy area Scrub land Water body Total

LULC 1988 Barren land 1.02 0.07 0.18 0.19 1.46

Built-up land 1.04 0.2 1.24

Crop land 5.79 3.4 69.11 0.32 0.96 0.43 80.01

Sandy area 0.11 0.15 1.32 1.47 0.02 0.01 3.08

Scrub land 1.26 0.21 1.22 0.02 1.23 3.94

Water body 0.12 0.01 0.09 0.13 0.34

Total 8.30 4.89 72.13 1.80 2.39 0.56 90.07

FIGURE 5
Gains and losses (in km2) each type of land-use in 1988–1998, 1998–2008, 2008–2018, and 1988–2018.
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management strategies to mitigate the adverse effects of these
changes (Abbas et al., 2021).

5 Discussion

The findings of this study illuminate the intricate dynamics of
land-use and land-cover (LULC) changes in the Mashi Dam
command area, reflecting broader trends influenced by human
activities and climate change. The research identifies a troubling
decline in cropland, which decreased by 4.75% from 2008 to 2018,
while built-up areas and barren land witnessed significant
expansions during the same period. This trend raises concerns
regarding food security and ecological sustainability in the
region, highlighting the urgent need for targeted land
management strategies (Mall et al., 2006).

The integration of geo-spatial and remote sensing
technologies facilitated a comprehensive understanding of
these changes, enabling accurate spatio-temporal modeling. By
leveraging high-resolution imagery from Landsat 5, LISS-3, and
Sentinel 2A MSI, the study ensured robust data quality and
validation through ground-truthing, enhancing the reliability
of the predictions for 2031 and 2041. This methodological
rigor provides a strong foundation for forecasting future
scenarios in LULC, offering insights that are crucial for

stakeholders engaged in resource management and urban
planning (Abijith and Saravanan, 2022).

The projected further reduction of cropland by 2041, alongside the
anticipated increase in barren lands, underscores the potential
implications for local agricultural practices and biodiversity. These
findings indicate a pressing need for effective interventions that
promote sustainable land use, mitigate the conversion of fertile land,
and enhance ecological resilience. Policymakers and land managers
must therefore prioritize the development of adaptive strategies that
consider both environmental sustainability and community livelihoods
(Ahmad et al., 2024).

Ultimately, this research not only contributes to the
understanding of LULC dynamics in Rajasthan but also serves as
a call to action for the implementation of proactive measures aimed
at preserving vital agricultural resources in the face of ongoing
environmental challenges.

6 Conclusion

The findings of this study offer valuable insights into the location and
extent of barren land expansion, which can be pivotal for natural resource
planners when formulating strategies for barren land reclamation. The
LCM utilized in this research demonstrates its effectiveness as a tool for
depicting land cover changes, enabling policymakers to make informed

FIGURE 6
Gain and Loss in Crop land and built-up land from 1988 to 2018.
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FIGURE 7
Transition in LULC from 1988 to 2018 using LCM Model.

TABLE 8 Validation of LULC change prediction: actual vs. projected 2018 LULC.

LULC category Actual LULC 2018 Simulated LULC 2018

Area in km2 Area in % Area in km2 Area in %

Barren land 8.26 9.17 8.73 9.69

Built-up land 4.83 5.37 5.10 5.66

Crop land 72.29 80.26 69.29 76.93

Sandy area 1.79 1.99 1.85 2.05

Scrub land 2.33 2.58 2.20 2.44

Water body 0.56 0.62 2.90 3.22

Total 90.07 100 90.07 100
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decisions towards accomplishing sustainable development objectives.
Across the period studied from 1988 to 2041, it is clear that the rise
in barren land can be linked to anthropogenic activities such as soil
salinity, waterlogging, mining, and over-irrigation, resulting in the
degradation of crop land. These developments are not in harmony
with sustainable development principles.

The study unveils a significant deterioration in the condition of crop
lands over time, marked by substantial degradation. Moreover, the
findings highlight a continual expansion of barren lands throughout the
command area, primarily driven by anthropogenic influences. This
situation presents numerous challenges for irrigated lands, impacting
agricultural productivity and soil quality. Inappropriate agricultural
practices are identified as the main drivers behind the proliferation of
barren lands, leading to considerable harm to crop lands in the region.
Addressing the issues related to barren lands and implementing suitable
land management practices are essential to ensure the sustainable
utilization and preservation of agricultural resources in the area.
Policy implications or mitigation strategies has been mentioned
properly. To strengthen the study, it is essential to incorporate a
discussion on the long-term sustainability of LULC changes under
climatic, socio-economic, and political conditions. Addressing how
cropland degradation and barren land expansion may evolve due to
factors such as changing rainfall patterns, population growth, and policy
interventions will enhance the study’s relevance. Additionally,
integrating policy implications and mitigation strategies can provide

a more practical perspective. This includes sustainable land
management practices, afforestation programs, soil conservation
techniques, and urban planning policies that balance development
with environmental protection. Considering regulatory frameworks,
such as land-use zoning, water resource management near Mashi Dam,
and conservation strategies, would help in formulating actionable
recommendations. By incorporating these aspects, the study can
provide a comprehensive assessment of LULC transformations while
ensuring sustainable development in the region.

6.1 Limitations of the study

It is very significant to recognize the study’s limitations. On the
basis of accuracy of remote sensing data various factors are
influenced including data quality, and uncertainties in ground
truthing. Additionally, this study primarily provides observational
data and also observed the changes in land use. A more
comprehensive understanding would require further research,
including field investigations and a more in-depth analysis of
local policies and socioeconomic factors influencing land use
patterns. This study, while informative, is a stepping stone
toward a more profound comprehension of the land use land
cover in the region. Future research and collaborative efforts are
necessary to build upon these findings and develop effective

FIGURE 8
Projected land-use/land-cover for the period 2031 and 2041.
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strategies for addressing the challenges posed by the land use land
cover in Mashi Dam command area in Rajasthan.
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