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This paper presents a new snow parameter retrieval (SPR) algorithm for the Global
Change Observation Mission-Climate/Second Generation Global Imager
(GCOM-C/SGLI) instrument (2018-present). This algorithm combines accurate
radiative transfer model (RTM) simulations and Scientific Machine Learning
(SciML) methods, Multi-Layer Neural-Network (MLNN) techniques in particular.
It provides pixel-by-pixel optically equivalent snow grain size in two layers (i.e., a
thin surface snow layer and a deep snow layer), snow impurity concentration and
broadband blue- and black-sky albedo which constitute standard SGLI products.
In addition, this RTM-SciML algorithm retrieves aerosol optical depth and
provides an important retrieval error quality flag. This retrieval error flag,
established by comparing reflectances obtained from RTM simulations using
the retrieved snow and aerosol parameters as input with the measured
reflectances, provides a pixel-by-pixel quality check of the retrieval
parameters. Application of the RTM-SciML algorithm to SGLI images obtained
over the Greenland Ice Sheet revealed a significant change in snow parameters
from a cold July 2018 to a warm July 2019. The inferred blue-sky albedo was in
general agreement with field measurements with RMSE = 0.0517 and MAPE =
4.64% for shortwave albedo at the SIGMA-A site, and the black-sky albedo,
inferred from retrieved snow parameters, was found to be similar (within 5%
relative difference) to the blue-sky values. Although developed specifically for
application to data obtained by the SGLI imager, the SPR algorithm can easily be
adapted for application to other similar multi-spectral sensors, such as MODIS
(already done), VIIRS, and OLCI.
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1 Introduction

Long-term global mapping of snow albedo and snow property
parameters plays an important role in monitoring of the Earth
climate system. Satellite remote sensing has offered a very valuable
and powerful way to record the evolution of global snow extent and
properties with high temporal and spatial resolution (Frei et al.,
2012; Deltz et al., 2012; Tedesco, 2015). The visible and near infrared
bands can be used to obtain snow coverage, broadband albedo, and
snow physical parameters (Stamnes et al., 2007; Lyapustin et al.,
2009b; Zege et al., 2011; Kokhanovsky et al., 2019). In particular, the
retrieval of snow physical parameters provides a direct way to
determine the spectral albedo and the snow surface radiation budget.

Remote sensing algorithms for snow and ice physical properties
have been developed for different satellite sensors, such as the
GLobal Imager (GLI) (Stamnes et al., 2007), the Moderate
resolution imaging spectroradiometer (MODIS) (Lyapustin et al.,
2009b; Painter et al., 2009; Zege et al., 2011), and the Ocean and
Land Colour Instrument (OLCI) (Kokhanovsky et al., 2019). Some
of these algorithms (Stamnes et al., 2007; Lyapustin et al., 2009b)
were based on radiative transfer (RT) model generated lookup tables
(LUTs), while others (Kokhanovsky et al., 2019; Zege et al., 2011)
were based on analytical methods. A physically based, multiple
endmember spectral mixture method (Painter et al., 2009) has also
been applied to land surfaces consisting of a mixture of snow,
vegetation, rocks, and soil. Sirguey et al. (2009) developed a
comprehensive atmospheric correction and inversion scheme to
retrieve snow parameters in mountainous areas. More recently, Bair
et al. (2021) attempted to retrieve snow impurity concentration
under complex sub-pixel mixing conditions using a generalized
multispectral unmixing approach. However, these previous methods
did not solve the radiative transfer equation for a coupled
atmosphere-snow system with multiple layers in the atmosphere
and a two-layer snowpack consisting of nonspherical snow grains.

The Second Generation Global Imager (SGLI) onboard the
Global Change Observation Mission-Climate (GCOM-C) satellite
operated by the Japan Aerospace Exploration Agency (JAXA) is
aimed at global and long-term observations of the Earth
environment. Launched in December 2017, SGLI has a wide
spectral coverage from 380 nm to 12 μm, a high spatial
resolution of 250 m, and a field of view exceeding 1,000 km. In
this paper, we present the radiative transfer model (RTM)
simulations and Scientific Machine Learning (SciML) snow
parameter retrieval (SPR) algorithm developed to retrieve
standard SGLI snow products. The SPR algorithm shares a
number of basic concepts and ideas with our algorithm designed
for the previous GLobal Imager (GLI) sensor (Stamnes et al., 2007).
It employs seven SGLI bands extending from 380 nm to 2,210 nm to
retrieve snow products including optically equivalent snow grain
size in two layers (a thin surface layer and the bulk of the snowpack),
and snow broadband (blue- and black-sky) albedo on a pixel-by-
pixel basis. The structure of this paper is as follows. Section 2 gives
an overview and provides detailed information about the SPR
algorithm. Section 3 describes the satellite and ground-based
measurements used in this paper. Section 3.1 shows some case
study results of the SPR algorithm where simultaneous
measurements from the field and SGLI are available. Section 3.2
provides validation results based on SGLI images obtained over GrIS

in July of 2018–2021. A summary and conclusions are provided in
Section 4. Detailed information about the RTM and the snow and
atmosphere Inherent Optical Properties (IOPs) used in the RT
simulations is provided in the Supplementary Appendix (Section 5).

2 Snow parameter retrieval
(SPR) algorithm

In contrast to the look-up-table approach adopted for GLI
(Stamnes et al., 2007), several important improvements have been
made in the RTM-SciML algorithm for SGLI. These improvements
include (i) employing a comprehensiveMachine Learning Classification
Mask (MLCM) for simultaneous cloud screening and surface
classification (Chen et al., 2018; Zhou et al., 2023); (ii) using a
coupled atmosphere-surface RTM (Stamnes et al., 2018) to create a
large synthetic dataset of simulated top-of-the-atmosphere (TOA)
reflectances as a function of snow and aerosol physical parameters;
(iii) using this synthetic dataset to train a multi-layer neural-network
(MLNN) for the retrieval, which has led to significant improvements in
both retrieval accuracy and speed; (iv) using a non-spherical (Voronoi)
particle model, instead of a spherical snow particle model, which has
been shown to be more realistic (Ishimoto et al., 2012; Ishimoto et al.,
2018; Tanikawa et al., 2020); (v) using a pseudo-spherical correction to
consider Earth curvature, which provides more accurate simulations in
high latitude areas; (vi) using a “filtered” (instead of a random)
distribution of snow and aerosol parameters to generate the
synthetic dataset used for MLNN training, which mimics a more
realistic snow situation, and leads to significantly improved
retrievals. The “filtering” approach is described in Section 2.2.1.

The SPR algorithm is part of the RTM-SciML remote sensing
algorithm framework as illustrated in Figure 1. In this paper we will
discuss its application to snow-covered targets over land. The RTM-
SciML framework consists of four key components: (i) a comprehensive
Machine Learning ClassificationMask (MLCM) for simultaneous cloud
screening and surface classification as described in Section 2.1; (ii) a
retrieval algorithm which employs multi-layer neural-network
(MLNNs) trained by data generated using a forward RTM (Section
2.2.1) to retrieve snow/aerosol physical parameters as described in
Sections 2.2.2 and 2.2.3, and (iii) an uncertainty estimation method as
described in Section 2.2.5.

2.1 Machine learning classification
mask (MLCM)

Cloud screening is an essential first step in the satellite retrieval
chain. Therefore, a Machine Learning Classification Mask (MLCM)
was first applied to SGLI images to identify clear-sky overlying
snow-only pixels. The current version of the SPR algorithm will be
applied only to cloud-screened (clear-sky), snow-only pixels. Hence,
the quality of the MLCM will control the quality of the information
inferred from the SPR retrieval algorithm. The MLCM algorithm
employs Scientific Machine Learning (SciML) methods (Chen et al.,
2018; Baker et al., 2019; Zhou et al., 2023) in conjunction with a large
synthetic dataset generated by RTM simulations for a coupled
atmosphere-surface system (Chen et al., 2018; Zhou et al., 2023).
This large synthetic dataset includes inherent optical property (IOP)
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data for a variety of aerosol and cloud (liquid water and ice) types as
well as bidirectional reflectance distribution function (BRDF) data
for a variety of surface types. From this MLCM tool, we obtain not
only cloud-free pixels, but also a pixel-by-pixel classification of the
underlying surface into several categories such as snow-only, mixed
snow/vegetation (Chen et al., 2018), sea-ice, and liquid water (Zhou
et al., 2023). As shown by Stillinger et al. (2019) traditional
threshold-based cloud mask methods have problems over
complex snow-covered terrain due to the similarity of snow and
clouds in most reflectance channels as well as the surface sub-pixel
mixing conditions of snow and vegetation/soil/rock. We have shown
that this approach can be significantly improved through the
threshold-free approach provided by the MLCM algorithm (Chen
et al., 2018; Zhou et al., 2023).

TheMLCM algorithm is generic in nature and could in principle
be applied to any sensor with a suitable set of channels (Chen et al.,
2018; Zhou et al., 2023). However, for our purpose it is important to

note that our MLCM approach has been validated by collocated
CALIPSO and MODIS data (Chen et al., 2014; 2018), and that it has
been tailored specifically for application to the SGLI sensor. Pixels
from SGLI images, classified by this MLCM algorithm as clear-sky,
snow-only pixels, were used to develop and test the SPR
retrieval algorithm.

2.2 Snow parameter retrieval algorithm
trained by RT simulations

2.2.1 Forward model simulations and synthetic
dataset generation

A comprehensive forward RTM (Stamnes et al., 2018) was used
to simulate upward radiances at the top of the atmosphere (TOA).
We used the sub-arctic summer atmosphere profile (Anderson et al.,
1986), aerosol properties described in Supplementary Section
5.1.1.1, snow IOPs described in Supplementary Section 5.1.1.2,
and a two-layer snow configuration described in Table 1. The
SPR algorithm was designed with two snow layers to take into
account the snow vertical structure. We fixed the thickness of the
upper snow layer to be 1.5 cm and the lower layer to be 98.5 cm.
Since the penetration depth for the short wavelength channels can
exceed 10 cm (see Section 3.1 for details), we chose a total snow
thickness of 1 m to make sure there will be no signal coming from
the underlying surface. The upper layer snow thickness is within the
range of the light penetration depth at the 1.64 μm wavelength. The
snow grain size was allowed to be different in the two layers, but the
impurity concentration was assumed to be the same. The snow
densities were assumed to be 0.15 and 0.25 g/cm3 for the upper and
lower snow layers, respectively. The aerosol parameters used to
generate the synthetic dataset required to develop the RTM-SciML
algorithm are described in Supplementary Section 5.1.1.1.

FIGURE 1
Flow chart of the RTM-SciML framework for snow remote sensing using satellite data.

TABLE 1 Ranges of the parameters used to generate the MLNN training
dataset. Note that the volume-to-surface-area ratio equivalent snow grain
radius of a sphere is assumed for the gain size of the non-spherical snow
particles. Also, for the snow impurity content a black carbon equivalent
value is assumed.

Aerosol optical depth (869 nm) 0.001–0.6

Relative humidity 30%–99%

Upper layer snow grain size 10–2000 μm

Lower layer snow grain size 20–5,000 μm

Snow impurity concentration 0.001–0.4 ppmw

Solar zenith angles 20–80°

Sensor viewing angles 0–47°

Relative azimuth angles 0–180°
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The broadband albedo for each case in the synthetic dataset was
also simulated in two ways. One is for blue-sky (cloud-free atmosphere)
broadband albedo, and the other is for black-sky (no atmosphere)
broadband albedo. Both broadband albedo values were simulated in the
following 3 bands: visible (300–700 nm, VIS) albedo; near-infrared
(700–3,000 nm, NIR) albedo; and shortwave (300–3,000 nm, SW)
albedo. The broadband albedo can be configured to other wavelength
ranges as needed.

We generated a synthetic dataset consisting of 2.7 million cases
after filtering (see Section 2.2.4 for details) for the MLNN training.
This dataset includes simulated TOA radiances and broadband
albedo values (for blue-sky and black-sky conditions) in the VIS,

NIR, and SW wavelength ranges, as well as the broadband albedo
measured by instruments deployed at AWS stations, for snow and
aerosol parameters as well as geometry angles appropriate for SGLI
measurements. The ranges of the physical parameters and the
geometry angles covered in the synthetic dataset are provided in
Table 1. This table applies specifically to the conditions of the GrIS,
but can easily be extended for global application.

It has been argued (Warren, 2013) that satellite remote sensing of
snow impurity content (like black carbon) is unlikely to be successful,
except in highly polluted industrial regions. Since the visible albedo
depends on snow impurity content, we cannot ignore this effect when
retrieving snow grain size (Warren andWiscombe, 1980). Hence, we try

FIGURE 2
Training accuracy of the R2P, P2R, and albedo neural networks.

TABLE 2 MLNN training configurations.

MLNN Inputs (xi) Outputs (ym)
R2P Geometry angles (sza, vza, raz)

Target surface elevation (elev)
Aerosol relative humidity (RH)

TOA reflectance

Top layer grain size (rs1)
Bottom layer grain size (rs2)
Impurity concentration (soot)
Aerosol optical depth (aod)

P2R Geometry angles (sza, vza, raz)
Target surface elevation (elev)
Aerosol relative humidity (RH)

Top layer grain size (rs1)
Bottom layer grain size (rs2)
Impurity concentration (soot)
Aerosol optical depth (aod)

TOA reflectance

Albedo R2P Geometry angles (sza, vza, raz)
Target surface elevation (elev)
Aerosol relative humidity (RH)

TOA reflectance

Visible albedo(alb_vis)
Near infrared albedo (alb_nir)
Shortwave albedo (alb_sw)
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to get information of impurity content as well (Aoki et al., 2014b),
although the retrieved values are expected to have large uncertainties or
may even be below the detection limit of currently available
instrumentation in space for the low impurity contents encountered
in pristine high-latitude regions like the Greenland Ice Sheet (GrIS) as
discussed by Warren (2013).

2.2.2 Algorithm training, consistency check
and output

In the SPR algorithm, we used the RTM-SciMLmethod employing
Multi-Layer Neural-Networks (MLNNs) (described below) to (i)
retrieve snow and aerosol parameters; (ii) retrieve black-sky albedo
and blue-sky albedo, and (iii) estimate the retrieval error. TheMLNNor
multilayer perceptron (MLP) is a feed-forward artificial neural network
that is frequently used for pattern classification, recognition, prediction,
and function approximation. It has been demonstrated that MLNNs
with one ormore hidden layers and a non-linear activation function can
be used to approximate nonlinear functions very well (Chen et al., 1990;
D’Alimonte and Zibordi, 2003; D’Alimonte et al., 2004; 2012).
Therefore, they are suitable for solving our inverse problem.

The transfer (activation) function of the neurons for the MLNN
was taken to be the hyperbolic tangent function:

f x( ) � 2
1 + exp −2x[ ] − 1 � ex − e−x

ex + e−x
� tanh x( ). (1)

In the output layer a linear transfer function was used to link the
hidden layers to the output. The exact expression of this MLNN can be
written as:

ym � b4,m +∑N3

l�1
w4,ml · f b3,l +∑N2

k�1
w3,lk · f b2,k[⎧⎨⎩

+∑N1

j�1
w2,kj · f b1,j +∑N0

i�1
w1,ji · xi

⎛⎝ ⎞⎠]} (2)

where xi, i � 1, . . . , N0 is an element in the input layer. It is
important to note that if the goal is to make a retrieval of state
parameters directly from TOA reflectance measurements, then the
input parameters xi in Equation 2 are the ground elevation, the
measured TOA reflectances at the seven SGLI channels plus the
solar/viewing geometry, and the output parameters ym are the
desired retrieval (state) parameters. We shall refer to this MLNN
as R2P (Radiance→ Parameter) for short. On the other hand, if the
goal is to use the MLNN [Equation 2] as a fast interpolator to obtain
the TOA radiances and associated Jacobians, then the input
parameters xi should be the state parameters and the solar/
viewing geometry, and the output parameters ym should be the
TOA radiances (Stamnes and Stamnes, 2016). We shall refer to this
MLNN as P2R (Parameter → Radiance) for short.

We use a 3-hidden-layer structure with 50 × 20 × 15 neurons for
all MLNNs. In Equation 2w1,ji,w2,kj,w3,lk, andw4,ml are the weights
of the three hidden layers and the output layer, and b1,j, b2,k, b3,l, and
b4,m are the biases of the three hidden layers and the output layer.
The weights and biases are to be determined by the training. The
parameter f (see Equation 1) is the hyperbolic tangent function, and
ym is the mth element in the output layer, which in the R2P case is
one of the four retrieved snow and aerosol parameters (top and
bottom snow grain sizes, snow impurity concentration, and aerosol

FIGURE 3
10-day averaged RaaNN values [Equation 3] for July 1–10, 2018 for eight SGLI channels. Note: the 530 nm channel has possible calibration/saturation
issues while the 674 nm channel has confirmed saturation issues.
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optical depth); hence m � 4. Figure 2 shows the R2P training
performance with the statistical analysis values R2, defined as the
coefficient of determination, and the root mean square error
(RMSE) value.

For all algorithm trainings (as listed in Figure 2), the synthetic
dataset was randomly divided into two independent groups: a
training group (85% of the dataset), and a validation group (15%
of the dataset). The training group was used to optimize the weights
and biases of the neural network and the validation group was used
to validate the neural network after the training was finished. The
MLNN was trained using the ‘adam’ stochastic gradient descent
method (Kingma and Ba, 2017) in Scikit-Learn, which employs an
adaptive learning rate (Amari et al., 2000) to reduce the training
time. The training algorithm updates the weights and biases
iteratively, based on the residual between the training target and
the neural network output. In each iteration, the validation dataset
was used to monitor the performance of the current neural network
by computing the root mean square error (RMSE).

An increase in the RMSE implies that the neural network was
over-trained. Therefore, the training was terminated if the RMSE
increased for 10 consecutive iterations in order to avoid over-fitting.
A L2 regularization scheme (Neumaier, 1998) was also applied to the
training algorithm to minimize the possibility of over-fitting.

The training configurations of the R2P, P2R and albedo MLNNs
are listed in Table 2. The training performance of the MLNNs is
shown in Figure 2. In general, the performance is good, although the

correlation coefficient R for the aerosol optical depth is larger than
for the other parameters, because aerosol retrieval over bright
surfaces like snow is a challenging task.

2.2.3 Algorithm self-consistency and
feature selection

To investigate the consistency of our trained MLNN, we apply
an autoencoder neural network (aaNN) (see Section 2.2.4) between
the training dataset and the satellite measurements. For this purpose,
we trained a special neural network by using our simulated TOA
reflectance dataset in such a way that it attempts to learn an “identity
data set” (i.e., the input data are identical to the output data) with the
least number of hidden layers required to create a “compressed”
representation of the input.

We used satellite measured TOA reflectances as the input to this
trained RaaNN network. If the output reflectances differ significantly
from the input reflectances, it would imply that the satellite
measurements are inconsistent with the radiances available in the
synthetic dataset. Hence, this RaaNN neural network should help
indicate if the algorithm is reliable, and identify other issues within
the data such as instrument saturation, sensor degradation or
calibration issues. A low RaaNN value would indicate that the
simulated TOA reflectances are consistent with satellite measured
data. But a high RaaNN value would imply that the simulated TOA
reflectances are not representative of the satellite measurements, which
could be an indication that the real snow is “out of the range” of

FIGURE 4
Top panels: Comparison of albedo reconstructed from the input data (MCD43 albedo) after passing the trained aaNN. The correlation coefficient R
(the Pearson R coefficient), the rootmean square of error (RMSE), mean absolute percentage error (MAPE) and correlation equation (y � ax + b) are shown
in the legends. The solid line is the 1-1 line, and the dashed line is the fitted line by the correlation equation. Middle panels: Histograms of MCD43 albedo in
SW, VIS, and NIR wavelength bands, respectively. Bottom panels: Histograms of synthetic dataset albedo in SW, VIS, and NIR wavelength bands,
respectively.
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(i.e., inconsistent with) our synthetic data. The reason could be that (1)
the range of the synthetic dataset is not large enough to cover the
different types of snow; (2) the sensor has calibration or degradation
issues; (3) there are cloud screening or surface classification issues due to
contamination by cloud, vegetation (or snow impurities like red algae,
not considered in our forward RTM simulations), or melting snow/ice
(we assumed a dry snowpack in our forward model simulations). This
RaaNN test is performed on a channel-by-channel basis. Hence, by
carefully examining the RaaNN values, certain channels (features) could
be removed from the dataset to improve its robustness.

To generate the synthetic dataset for the RaaNN test, we used
input layer elements consisting of the three geometry angles, the
ground elevation, and the synthetic TOA reflectances in eight SGLI
channels (380 nm, 412 nm, 530 nm, 674 nm, 869 nm, 1,050 nm,
1,640 nm, and 2,100 nm). The output layer elements were the TOA
reflectances in these eight SGLI channels. The number of neurons
for the three hidden layers were 10, 6, and 10, respectively. The
R(i)aaNN is defined as follows:

R i( )aaNN � R i( )input − R i( )output( )/R i( )input × 100 %( ) (3)

where i denotes any one of the eight SGLI channels. The R(i)input
values are the original eight SGLI satellite measurements, while the
R(i)output values are the eight output TOA reflectances produced by
the trained autoencoder neural network.

Figure 3 shows detailed RaaNN values in each SGLI channel for
10-day (July 1–10, 2018) average reflectances. For a good
consistency, the RaaNN value should be below about 5%. The
largest RaaNN values were found to occur in the 674 nm and
530 nm channels. We found that there is a constant bias in these
two channels and in the same area. The large error in the 674 nm
band is due at least partly to a signal saturation issue occurring over
the southern area of the GrIS. Therefore, in our snow retrieval, we
excluded this channel and used only the remaining seven SGLI
channels. For the 530 nm SGLI band, we conjecture that the problem
may be a calibration issue, since SGLI post-launch calibration shows
a 4% higher value when compared with EGRIP data (https://suzaku.
eorc.jaxa.jp/GCOM_C/data/prelaunch/index_cal.html). Hence, the
high positive RaaNN values for the 530 nm band could be due partly
to the calibration bias. But, theRaaNN values seem to exceed 10% over
the Southern GrIS (Figure 3) which might be too high to attribute
solely to a calibration issue. Besides the calibration issue, the
maximum radiance for the 530 nm band is designed to be
350 Wm−2sr−1 μm−1 which can lead to saturation over very
bright targets leading to high RaaNN values. Due to the high
reflectance of snow, these calibration/saturation issues are quite
noticeable, especially over the southern area of the GrIS. For now, we
continue to include the 530 nm band in our algorithm until JAXA
confirms or refutes our conjecture regarding its calibration/
saturation.

FIGURE 5
Top panels: A comparison of albedo reconstructed from the input data (model albedo) after passing the aaNN. Middle panels: A comparison of the
reconstructed albedo and the input data (model albedo) after implementing filtering thresholds required to pass the aaNN. Bottom panels: Histogram of
snow parameters for the filtered (brown) and unfiltered (blue) datasets.
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2.2.4 Synthetic dataset filtering
To improve the performance of the SPR algorithm we proceeded as

follows: Due to the sparsity of field-measured snow properties, it is
challenging to generate a synthetic dataset that covers all possible
situations encountered in nature. However, since the SPR algorithm is
a RTM-SciMLneural network basedmethod, it is important to establish a
proper training dataset, especially for the distribution and ranges of the
parameters used to create this dataset. It is also important to check that
the parameters have realistic relationships with each other. In order to
create a realistic dataset, we adopted the following four-tiered approach:

1. We used a “random” selection of snow/aerosol parameters to
establish a synthetic dataset with about 120,000 cases to train an
initial P2R MLNN. We then applied this MLNN to about
120 SGLI images obtained over GrIS during two summer
months of 2018 and 2019. By reviewing the retrieval results
from these images, we established an appropriate range and
distribution of the snow and aerosol parameters across the GrIS.

2. Based on the experience we gained by studying the snow
parameters retrieved from these images, we generated a new

synthetic dataset of 120,000 cases following a noncentral F
distribution1 of the snow and aerosol parameters.

3. We trained an autoencoder (or auto-associative neural
network, aaNN) based on MODIS MCD43A3 albedo values
of July 2018 retrieved over GrIS to provide a final consistency
check against real data. As described in (Fan et al. 2017; Fan
et al. 2021), an autoencoder2 can be used to check the
consistency between two datasets and therefore it can be

FIGURE 6
Retrieval error estimates [Rerror,i in Equation 4] for a SGLI image obtained over the GrIS on 6 July 2019.

TABLE 3 Satellite data, output data products, and validation data employed in this study.

Satellite Data and channels Data products (standard) Validation data

SGLI LTOA data (2018–2021) Top layer grain size (rs1)
Bottom layer grain size (rs2)

Snow grain size, EGRIP 2018
(Dr. Teruo Aoki, private)

Channel: VN01, VN03, VN05 Blue sky albedo (alb_blue) SW and NIR albedo, SIGMA-A 2018–2020

VN08*, VN11, SW01, SW03, SW04 Black sky albedo (alb_black) Nishimura et al. (2023)

Snow surface temperature (SST) SW albedo, EGP and KAN-L 2018–2020
Fausto et al. (2021)

*: Dropped after the RaaNN, test.

1 This distribution is described by a quotient, where the numerator has a

noncentral χ2 distribution with n1 degrees of freedom and the

denominator has a central χ2 distribution with n2 degrees of freedom,

and for which numerator and denominator are required to be statistically

independent of each other. https://en.wikipedia.org/wiki/Noncentral_F-

distribution.

2 It is called an autoencoder neural network because it sets the target values

to be equal to the inputs.
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used to eliminate unrealistic data points in the synthetic dataset
trained by MCD43 snow albedo data.

To train the autoencoder, we constructed a dataset consisting of
500,000 data points of SW, VIS, and NIR albedo values randomly
selected from 2 months of MCD43 snow albedo data over GrIS and
used this dataset to train the autoencoder. The low dimensionality
of this albedo dataset based on only four parameters (aerosol
optical depth, top layer snow grain size, bottom layer snow
grain size, and snow impurity concentration) implies that it is
prone to overfitting during the training of the aaNN. Here we used a
5-layer network with 4 × 15 × 4 × 15 × 4 neurons to construct the
aaNN. Identical input and output of solar zenith angles, as well as
the SW, VIS, and NIR albedo values were used in the training. The
histogram of SW, VIS, and NIR albedo values of the
MCD43 training dataset and the training results of the aaNN
are shown in Figure 4, which indicates excellent training
accuracy. Figure 4 also shows the histogram of albedo
distributions of the synthetic dataset (bottom panels), which are
different from those of the MCD43 data. We then applied the
trained aaNN to the albedo dataset generated by using the
noncentral F distribution of snow parameters discussed above.

The results are shown in Figure 5, which demonstrates larger
dispersion and bias when passing the synthetic dataset through the
aaNN trained by the MCD43 data, which indicates inconsistency
between the synthetic dataset and MCD43 data. We implemented
two thresholds to identify and eliminate model data that are
inconsistent with the MCD43 albedo data. Hence, model data
would be eliminated if 1) the percentage difference between
aaNN reconstructed albedo and input albedo is greater than 2.0%
for VIS, SW and NIR; 2) the VIS albedo is smaller than 0.83. The
filtered model dataset shows excellent consistency with the
MCD43 data with a much improved correlation and dispersion
as can be seen in the bottom panels of Figure 5. The distributions of
the snow parameters of this “filtered” dataset are shown in Figure 5,
in which about 26.5% (31,800 cases) of the original synthetic dataset
was rejected by the aaNN implying that the size of the synthetic
dataset of snow parameters was reduced from 120,000 to about

90,000. We expect this new noncentral F distribution dataset
obtained by the procedure described above to be more realistic
than a random distribution dataset, at least for conditions
encountered on the GrIS during the summer season in
2018 and 2019.

4. We enlarged the filtered synthetic dataset from the previous
step to be the final synthetic dataset for MLNN training. To
capture snow BRDF information, for each snow case in the
dataset, we generated simulated TOA reflectances at 30 viewing
angle directions. Hence, the total number of cases in the
synthetic dataset is about 30 × 90,000 = 2.7 million.

One should note that the MODIS MCD43 SW albedo product
pertains to the wavelength range 300–5,000 nm which is different
from the wavelength range (300–3,000 nm) used in our albedo
simulations. For wavelengths longer than 3,000 nm the snow albedo
is extremely low (usually < 0.1%) and the incoming solar irradiance
is very small. Therefore, we consider the use of autoencoders trained
by MCD43 albedo products justifiable in spite of the wavelength
range difference.

2.2.5 Retrieval error estimation
(convergence check)

In order to estimate the quality of SPR results generated by the
RTM-SciML method, we first introduce a retrieval error (Rerror) flag
on a pixel-by-pixel basis. We use the retrieved aerosol and snow
parameters to calculate the TOA reflectances [R(i)retrieved in
Equation 4] at all satellite channels using a P2R MLNN as
explained in Section 2.2.2. Then these computed reflectances are
compared with the satellite measured ones [R(i)measured] to
determine the retrieval error for channel i as:

Rerror, i � R i( )satellite − R i( )retrieved( )/R i( )satellite[ ] × 100 %( ). (4)
The retrieval error flag is defined by averaging the Rerror, i over
all channels:

Rerror � 1
nch

∑nch
i�1

|Rerror, i| (5)

where nch is the number of satellite channels used in the retrieval.
Rerror,i for a typical SGLI image is shown in Figure 6. It can be seen in
Figure 6 that Rerror, i is in general below 2%–5% for most channels
except for the shortwave infrared SW3 (1,630 nm) channel, which is
notably wider and may have caused a larger discrepancy between
simulated and measured reflectances (Chen et al., 2017). One can
also find wide, slanted stripes from the composition of image from
different times of the day. Although different in their absolute
values, the Rerror, i for different channels show similar patterns as
pixels with high Rerror, i values appear to be affected by inadequate
cloud screening or melting snow. Hence we consider an averaged
Rerror value of 10% to be the criterion for a “good” retrieval for SGLI.

3 Data, validation and application

The main focus of this paper is the development and validation
of an SPR algorithm for the SGLI sensor, based on the RTM-SciML

FIGURE 7
Comparison between satellite-derived (SGLI) snow grain sizes
and field-measured ones using the IceCube instrument at the EGRIP
field station for a 17-day period in July 2018.

Frontiers in Environmental Science frontiersin.org09

Chen et al. 10.3389/fenvs.2025.1541041

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1541041


FIGURE 9
Same as Figure 8 but with a fixed impurity concentration in retrieval.

FIGURE 8
Comparison between SGLI albedo retrievals and ground-based albedo measurements at the SIGMA-A field station on GrIS for the months of May,
June, July, and August of 2018–2020. Left panel: SW albedo. Right panel: NIR albedo. Dashed black lines represent ± 10% error range and the data points
are color-coded by the associated averaged Rerror values in percent.

FIGURE 10
Comparison between SGLI shortwave albedo retrievals and ground-based shortwave albedo measurements at the PROMICE EGP (left panel) and
KAN-L (right panel) field stations for the same time period as Figure 8.
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method and applied to snow-covered land areas. The MLCM and
retrieval MLNNs are all trained by dry snow models, therefore the
SPR algorithm is expected to be less accurate in areas affected by
surface melting. Using reflectance data in seven SGLI channels (see
Table 3), we developed the SPR algorithm to retrieve the snow grain

size in two layers, the snow impurity concentration, the aerosol
optical depth, and three broadband surface albedo values (visible
(VIS), near-infrared (NIR), and shortwave (SW)) using SGLI 1 km
ground resolution L1B data. To demonstrate its merits, we applied
the SPR algorithm to SGLI data obtained each July from 2018 to

FIGURE 11
Comparison of 10-day averaged retrieved top layer snow grain size (μm) between July of 2018–2021. The first 3 columns from left to right are for:
July 1–10, July 11–20, and July 21–30 and the last panel is the histogram of the entire July. The last column displays histograms of the 10-day averages
and the overall July-averaged snow retrieval parameters, with their mode and mean values indicated in the legend.

TABLE 4 Statistical metrics of snow shortwave albedo validation with AWS data.

Validation site Sample size Pearson-R RMSE MAPE Average Rerror

SIGMA-A 173 0.6963 0.0517 4.6396% 19.67%

EGP 293 0.3099 0.0524 5.9171% 6.54%

KAN-L 235 0.6660 0.1366 23.3314% 28.36%
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2021 over the GrIS. Table 3 provides a summary of the SGLI data
employed by the SPR algorithm, the output standard data products
from the algorithm, and the validation data.

We used field measurements for validation of the SPR
algorithm. These validation data included snow grain size data
measured at the East GReenland Ice core Project (EGRIP)
(Vallelonga et al., 2014) camp (75.6°N, 36.0°W, 2,708 m a.s.l.)
in the central GrIS in the summer season of 2018, and surface
albedo measured at the SIGMA-A site (78.1°N, 67.6°E, 1,490 m
a.s.l.) (Aoki et al., 2014a) in the northwest GrIS from 2012 to
2020. The SIGMA-A site observations were conducted by
members of this study (Nishimura et al., 2023). Surface albedo
has been measured since July 2012 by a net radiometer (CNR-4,
Kipp and Zonen, Netherlands) installed to the AWS deployed at
the SIGMA-A site on the GrIS in the northwestern part of
Greenland. Although the SIGMA-A station is located at the
snow accumulation area, it may still be subject to surface melt

and runoff during summer. To investigate the impact of surface
melting on the results produced by SPR algorithm, we included
the shortwave surface albedo data from the PROMICE AWS
product (Fausto et al., 2021) at the EGP (accumulation) and
KAN-L (ablation) field station as a comparison.

Snow samplings were performed for two snow layers of
0–2 cm and 2–10 cm at a clean area in the EGRIP camp on
30 June, 5 July, 10 July, and 15 July 2018. The snow grain size was
measured for snow samples collected from a topmost layer
(0–1 cm) and a thick layer (0–5 cm) using the IceCube
instrument (A2 Photonic Sensors, France, Gallet et al. (2009)).
This measurement was performed mainly synchronized with the
overpasses of GCOM-C/SGLI. The parameter measured by the
IceCube instrument is the specific surface area (SSA) [m2 kg−1] of
snow grains, from which the corresponding sphere-equivalent
snow grain radius (SGR) [μm] is calculated by
SGR � 3000/(SSA ρice), where ρice is the ice density (0.917 g

FIGURE 12
Same as Figure 11 but for the bottom layer grain size (μm).
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cm−3) (Gallet et al., 2009). The SGR values were used to validate
snow grain size retrieved from SGLI data (see Figure 7). Snow
grain shapes in the top 30 cm layer consisted of faceted crystals,
depth hoar, rounded grains and ice layers during the observation
period. The averaged snow densities were 0.128, 0.213, 0.298 and
0.352 g cm−3 for the layers of 0–3, 3–6, 6–9 and 9–30 cm,
respectively. Snow surface temperature varied in the range
from −24.3 °C to −2.6 °C. The snow samples were stored in
dust-free plastic bags on site and transported to Japan. Mass
concentrations of snow impurities were measured from a quartz
fiber filter and a nuclepore filter on which the snow impurities
were collected, in a laboratory of Meteorological Research
Institute in Tsukuba, Japan using the methods employed by
(Aoki et al., 2011; Aoki et al., 2014b) and Kuchiki et al.
(2015). The impurity components are elemental carbon (EC)
and mineral dust (MD). For the quartz fiber filters EC mass
concentrations were measured with the Lab OC-EC Aerosol

Analyzer (Sunset Laboratory Inc., USA) using the thermal
optical reflectance method (Chow et al., 1993). The MD mass
concentrations were determined by gravimetric measurements of
the nuclepore filter before and after the filtration. We assumed
that the component of EC is equal to black carbon (BC) for
comparison with satellite-derived snow impurity mass
concentrations in the present study. As satellite-inferred snow
impurity mass concentrations (cSI) contain the effects of light
absorption by BC and MD, we define the BC-equivalent snow
impurity mass concentration cSI by (Tanikawa et al., 2015).

cSI � kBCa cBC + kMD
a cMD( )/kBCa

where ka and c are the mass absorption coefficient (in units of
m2 g−1) and the impurity mass concentration (in units of g m−3),
respectively. We used the hydrophilic values of kBCa �
1.196 × 101 m2 g−1 and kMD

a � 7.389 × 10−2 m2 g−1 for the

FIGURE 13
Same as Figure 11 but for the shortwave blue sky albedo.
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broad visible wavelength range (Aoki et al., 2011), in which the
channels to retrieve snow impurity mass concentrations
are contained.

3.1 Validation with field measurements
obtained on the GrIS

We start our validation effort by comparing the satellite retrieved
snow grain size to field measured SGR values in the EGRIP site. Recall
that in our snow model, the upper snow layer thickness was set to
1.5 cm with snow density of 0.15 g cm−3, while the bottom layer was
set to 98.5 cm with snow density of 0.25 g cm−3. These settings may
not be consistent with the vertical structure of the snow during field
measurements. The satellite-retrieved snow grain size depends on the
light penetration depth for each channel. We calculated the
penetration depth (Li et al., 2001) for a typical day (16 July 2018)

from our forward RTM, using the retrieved snow and aerosol
parameters as input, and found that the penetration depth is about
10 cm at the 3 shortest wavelengths, about 3.5 cm at 869 nm, about
1.5 cm at 1,240 nm, and < 1.5 cm at 1.6 and 2.2 μm. Field IceCube
measurements were obtained between 0–5 cm snow depths. Since
longer wavelength (> 865 nm) channels are more important for grain
size retrieval, we consider our model setting (0–1.5 cm for the top
layer, > 1.5 cm for the bottom layer) to be comparable with the
IceCube measurements.

To compare with the measurements, we averaged retrieved
upper layer and lower layer snow grain sizes and compared the
average value with the measured 0–5 cm value. Overall during these
18 days, the retrieved upper layer snow grain sizes were between
30 and 100 μm and the lower layer snow grain sizes were between
50 and 200 μm.

The results are shown in Figure 7 with data selected based on
matching satellite measurements within 1 h time difference and

FIGURE 14
Same as Figure 11 but for the shortwave black sky albedo.
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satellite viewing zenith angle smaller than 30°. In total, 16 averaged
snow grain size samples from 0–5 cm were selected based on these
criteria. Overall, the retrieved grain size shows a positive correlation
with the measurements (R � 0.49), but the limited sample size
hampers statistical significance. Consequently, we shifted our
validation efforts to in-situ snow albedo measurements, which are
relatively abundant.

At the SIGMA-A site on the GrIS in the northwestern part of
Greenland, albedo values were measured once a minute and 1-h
averaged values were recorded. These hourly albedo values are
compared with the nearest satellite-derived values (Δt< 1 hour)
in Figure 8. The data points are color-coded by the associated
averaged Rerror values from all satellite channels employed. The
satellite-derived blue-sky albedo values generally agree with in-situ
measurements for both SW and NIR albedo with relative errors
smaller than 10%, especially for the NIR albedo which may indicate

a higher accuracy in grain size retrieval. The relatively lower
correlation coefficient of SW albedo may be caused by the
difficulties in snow impurity retrieval, which could significantly
affect the visible albedo of snow and create outliers that would
significantly impact the results for a small sample size (N � 173). To
confirm this conjecture, we re-trained the algorithm with a dataset
that has impurity concentration fixed to a level that is close to that
determined by the field measurements (about 2.0 × 103 ppmw) and
repeated the retrieval. The updated results displayed in Figure 9
show that fixing the impurity concentration indeed reduced the
number of outliers in SW albedo retrieval whereas the overall
correlation coefficients in both SW and NIR albedo are slightly
decreased. Since the NIR albedo is mainly affected by the snow grain
size this finding means that the accuracy of grain size retrievals are
getting worse after fixing the impurity concentration. We also
noticed that the data points with large Rerror values are often

FIGURE 15
10-day averaged values of snow surface temperature in Kelvin for July 2018 to July 2021.
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located at the bottom left corner of the albedo plots, which indicates
larger grain size and tendency of melting. In summary, the results
show that quantifying the presence of impurity and its interaction
with other parameters (especially the lower layer snow grain size) is
still a challenging problem that requires further attention. The
albedo enhancement under cloudy (compared to clear) sky
conditions due to the change of the spectral distribution of
downward irradiance over snow surfaces (Liljequist, 1956; Aoki
et al., 1999) can also increase the uncertainty as the field
measurements and satellite overpasses are usually not exactly
simultaneous.

To further investigate the relationship between Rerror and surface
melting/bare ice, we compared our retrieval results with the surface
shortwave albedo data from PROMICE automatic weather station
data. In the snow accumulation area of the GrIS we chose the EGP
field station as this site is the only one in the PROMICE dataset that
is expected to beminimally affected by surface melting as it is located
at 2,660 m above the sea level and close to the center of Greenland.
On the other hand, we chose the KAN-L station located in the snow
ablation area to examine the performance of the algorithm when
applied to mostly melting snow/bare ice surfaces. We use the same
time period as that adopted for our SIGMA-A site comparison and
the results are shown in Figure 10. At the EGP station, the retrieved
albedo data are tightly packed between 0.8–0.9 with relatively low
averaged Rerror values (with all Rerror values below 20%). The lower
correlation coefficient can be explained by the “restriction of range”
effect, in which the measurements (or predictions) all fall within a
narrow interval so that even small amounts of scatter/noise can
overshadow the true relationship and reduce the correlation. There
seems to be a slight bias of satellite-retrieved albedo compared to the
field measurements of about 0.03–0.05 in Figure 10. This bias could
be due to the platform obstruction effect as described by
(Kokhanovsky et al., 2020) which we have not attempted to
correct for. We also noticed a slight difference in shortwave
albedo wavelength range (0.3–2.8 μm for the SIGMA-A site and
0.3–2.5 μm for the EGP site) which we consider to be minor but
leaves room for further investigation. At the KAN-L station,
however, the retrieved albedo show large dispersion with
significantly increased RMSE and MAPE, which indicates

downgraded retrieval quality from the algorithm. The average
Rerror is the largest at this site (28.36%) compared to the other
sites. Detailed statistics of shortwave albedo validation are listed
in Table 4.

3.2 Application to SGLI data over Greenland

SGLI data have been available since early 2018. In Figures 11–15,
we show applications of our MLCM and SPR algorithms to SGLI
data obtained over the GrIS in July of 2018, 2019, 2020, and 2021.
From these data we can infer not only how the snow properties
evolved during the month of July for each year, but also how the
snow surface of the GrIS changed from July 2018 to July 2021.

The retrieved snow grain size in the top and bottom layers of the
two-layer snow configuration are shown in Figures 11, 12. The three
columns from left show the 10-day average snow retrieval
parameters for July 1–10, July 11–20, and July 21–30. The last
column displays histograms of the 10-day averages and the overall
July-averaged snow retrieval parameters, with their mode and mean
values indicated in the legend. The retrieved values are smooth and
stable and in basic agreement with ground truth data as
demonstrated in Section 3.1. Over most of the GrIS, the upper
layer snow grain size is smaller than about 100 μm, and the lower
layer snow grain size is a few hundreds of μm. Although we already
excluded pixels located at the edge of the GrIS identified as “non-
snow’’ (by the MLCM algorithm), we still find pixels there with large
grain size (> 1, 000 μm), which may be due to melting snow. At the
beginning of July, the snow surface appears to be quite homogeneous
across the GrIS. But later in July, a significant amount of pixels in the
southern part of the GrIS has very large snow grain size
(> 1, 000 μm), indicating that the snow has started to melt.

Among these 4 years, grain size values for July 2019 (especially
for the bottom layer which is relatively stable under snow
precipitation events) were found to be significantly higher with
average bottom layer grain size being higher by about 54%, 25% and
27% than for the other 3 years (2018, 2020 and 2021) over the whole
GrIS. This finding is consistent with Figure 15 showing that the
surface temperature was also higher, implying that the GrIS was

FIGURE 16
Comparison of 10-day averaged retrieved Rerror [Equation 5] in percentage between SGLI for July 2019. From left to right: July 1–10, July 11–20, and
July 21–30.
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warmer in July 2019 than in July 2018, consistent with the results
reported by Tedesco and Fettweis (2020) and Sasgen et al. (2020). A
detailed description of the snow surface temperature product is
provided elsewhere (Stamnes et al., 2007).

Consequently, both the blue sky and black sky surface albedo
show lowest values for the year of 2019 compared to the other years
(Figures 13, 14), with the mean blue sky and black sky albedo values
for July of 2019 lowered by more than 0.02 compared to the other
years. The albedo plots in Figures 13, 14, the temperature plots in
Figure 15, and the Rerror plots of July 2019 in Figure 16 indicate a
clear correlation between areas with lower albedo values, higher
surface temperature and Rerror. These results suggest that Rerror can
be a good indicator of surface melting.

4 Summary and conclusion

We have provided a comprehensive description of the GCOM-C
SGLI Scientific Machine Learning (SciML), snow/aerosol parameter
retrieval (SPR) algorithm. Overall, this SciML, neural network based
SPR algorithm, provides stable and reliable retrievals of snow
parameters over dry snow-covered areas. It has been applied to
SGLI images and validated by field measurements. The salient
features of the SPR algorithm can be summarized as follows:

1. The GCOM-C SGLI SPR algorithm provides (i) pixel-by-pixel
retrievals of snow and aerosol physical parameters (two-layer
snow grain size, snow impurity concentration, and aerosol
optical depth); (ii) snow surface broadband albedo; (iii)
consistency checks between radiative transfer model
simulations and satellite measurements; and (iv) retrieval
error estimates.

2. The retrieved snow grain size and albedo results are stable and
reliable over dry snow-covered areas. The SPR algorithm can
easily be adapted for application to different sensors with a
suitable configuration of channels.

3. Impurity concentrations on the GrIS are too low to be
successfully retrieved from satellite data with currently
available instrumentation and methods, but could
potentially be measured from space at locations with higher
concentrations.

4. The SPR algorithm provides a retrieval error flag, Rerror, that
checks the consistency between TOA reflectances measured
and computed from the retrieved snow and aerosol
parameters. This flag helps establish and ensure high quality
of the retrievals on a pixel-by-pixel basis and can be a good
indicator of surface melting.

5. The blue-sky albedo, retrieved directly from satellite measured
reflectances of cloud-free, snow-only pixels, agree well with
ground-based measurements at the EGRIP and SIGMA-A sites
on the GrIS.

4.1 Uncertainty estimates and future work

A future goal is to provide uncertainty estimates on a per-
pixel basis, but this task is difficult for a SciML neural network
designed as a regressor, which typically returns a single predicted

value rather than a probability distribution. To obtain
uncertainty estimates on a per-pixel basis we plan to adopt a
Bayesian approach in which uncertainties in measured TOA
radiances and a priori information are used to quantify
uncertainties in the retrieval parameters produced by the SPR
algorithm. The Bayesian uncertainty estimation algorithm is
currently under development and will be implemented in
future versions of the SPR algorithm. Other future work to
improve the algorithm includes but is not limited to:

• Validating our algorithm using more available in-situ data
(Fausto et al., 2021; How et al., 2022; Harris Stuart et al., 2023;
Steen-Larsen et al., 2022; Vandecrux et al., 2022; Vandecrux
et al., 2023).

• Using a “wet” snow model instead of the current dry snow
model to improve the retrieval quality over areas with
melting snow.

• Exploring the retrieval of snow parameters over mixed snow/
vegetation areas by employing a mixed snow/vegetation
canopy model.

• Exploring the potential for retrieving the presence and
abundance of snow algae (like red snow).

• Employing local or regional atmospheric/aerosol profiles for
specific situations (geolocation, season).
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