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The role of digital economy (DE) in improving urban ecological development
(UED) has attracted scholarly attention. Additionally, traditional causal inference
models encounter several challenges, such as model misspecification and the
“curse of dimensionality.” In response to these problems, the double machine
learning method is applied to assess the effect of DE on UED. Leveraging data
from 282 Chinese cities in 2006–2021, several valuable conclusions emerge.
First, DE improves UED and positively contributes to ecological resilience and
recovery. Second, promoting green innovation, enhancing environmental
efficiency, and optimizing industrial structures are the pathways through
which DE contributes to UED. Third, the influence of DE on UED displays
heterogeneity. Based on the results, this work proposes relevant
recommendations grounded in empirical research.
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1 Introduction

Urban areas are undergoing rapid development, which is accompanied by a swift influx
of urban populations. As forecasted by UN-Habitat (2022), 68% of the global population
will have been residing in urban regions by 2050. The rapid expansion of urbanization
undoubtedly brings substantial risks to urban ecosystems, including environmental
pollution, soil erosion, biodiversity loss, and geological disasters (Song et al., 2020). In
this context, China must advance its urban ecological development (UED) to counteract the
detrimental consequences of urbanization (Korhonen and Seager, 2008; Dong et al., 2022).
China has increasingly prioritized UED in recent years. Notably, the restoration and
protection of urban ecosystems have been included in China’s 14th Five-Year Plan.
However, urban ecosystems are confronted with numerous environmental pollution
and ecological degradation issues (Zhang H. et al., 2023). Identifying new pathways for
enhancing UED and fostering high-quality urban ecosystems is crucial.

Existing studies indicate a strong connection between digital economy (DE) and UED
(Liu et al., 2024). However, several gaps remain in the existing research. First, the debate
over the relationship between DE and UED is far from settled. On the one hand, DE has
driven advancements in digital technologies (Farley and Voinov, 2016), thereby enhancing
urban ecosystems’ capacity for risk prediction and management. On the other hand, digital
technologies require substantial energy support, which may lead to a surge in energy
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consumption, thus posing new threats to urban ecosystems (Hills
et al., 2018; Chatti and Majeed, 2022). Second, the use of the
difference-in-differences model in existing research for estimating
policy effects is prevalent. However, traditional causal inference
models encounter several issues, such as model misspecification and
the curse of dimensionality, thus leading to reduced accuracy and
credibility in estimating policy effects (Ling et al., 2024). Third,
studies analyzing the impact mechanisms of DE on UED are limited.

This study tackles the aforementioned issues by evaluating the
effect of DE on UED using the double machine learning (DML)
method. Furthermore, this research explores the roles played by
green innovation, environmental efficiency, and industrial upgrade
in enhancing UED through DE. Finally, the heterogeneity of the
effect of DE on UED is examined by considering urban geographical
location and resource endowment.

The main innovations of this study are outlined below.
First, the relationship between DE and UED has been
debated. This study focuses on urban areas in China and
confirms that DE promotes UED, thus providing new
evidence. Second, differing from the approach taken by Wu
et al. (2024), the DML method is employed to estimate how DE
influences UED. This method adeptly mitigates concerns
regarding model misspecification and the curse of
dimensionality, thereby resulting in improved accuracy of
estimation outcomes. Third, this work dissects the
mechanisms by which DE influences UED from three angles:
environmental efficiency, industrial upgrade, and green
innovation, which further expands on the findings of Zhang
W. et al. (2023). Fourth, whereas previous studies have
concentrated on examining regional heterogeneity, this study
broadens the scope to investigate how DE affects UED under
different resource conditions (Zhang et al., 2021).

2 Literature review and theoretical
hypotheses

2.1 Literature review

As an important catalyst, DE influences various fields, such as
corporate sustainability and green growth (Shahbaz et al., 2022;
Wang et al., 2023; Stamopoulos et al., 2024). At present, considerable
scholarly interest in the relationship between DE and UED has
emerged. The existing literature on this topic presents two opposing
perspectives.

One view in the literature is that DE enhances UED. This
perspective argues that DE promotes the development of digital
technologies that improve UED. For example, Luo et al. (2022)
argued that DE enhances green development, thereby improving
urban ecological recovery. Hao et al. (2023) concluded that DE
contributes to environmental management and resource allocation,
thus improving economic ecological efficiency. Liu et al. (2024)
validated that DE possesses green value and promotes UED. Chen
and Yao (2024) demonstrated that DE boosts carbon emission
efficiency, thereby strengthening the resilience of urban
ecosystems. According to Li and Zhou (2024), DE aids in
lowering carbon emissions, which improves the resistance of
urban ecosystems.

In contrast to these optimistic views, other researchers highlight
the potentially negative effects of DE on UED. DE, which is driven
by information and communication technologies (ICT), results in
substantial energy use and increased CO2 emissions, thereby
damaging urban ecosystems. For example, Lee and Brahmasrene
(2014) investigated the connections among ICT, CO2 emissions, and
economic growth. They concluded that although ICT facilitates
economic growth, it also contributes to a rise in CO2 emissions.
Additionally, Hills et al. (2018) took Fiji, South Pacific as a case and
concluded that the adoption of innovative technologies has
increased fossil fuel consumption. Asongu et al. (2018) used data
from 44 countries from 2000 to 2012, which demonstrated that the
rise in ICT utilization has contributed to high CO2 emissions per
capita. In addition, Avom et al. (2020) took 21 sub-Saharan African
nations as an example and investigated the effect of ICT usage on
CO2 emissions. They found that ICT significantly increases CO2

emissions, thus indicating that it has exacerbated environmental
issues in the region. Chatti and Majeed (2022) analyzed panel data
from 94 countries between 1998 and 2016 and found that ICT
damages environmental quality.

The aforementioned studies indicate that the relationship
between DE and UED continues to be contentious. Hence, the
current study applies the DMLmethod to assess the impact of DE on
UED, thus offering new empirical evidence to inform this
discussion.

2.2 Theoretical hypotheses

Promoting DE potentially bolsters UED (Herman and Oliver,
2023). First, DE contributes to enhancing ecological resistance.
Digital technologies aid in establishing platforms for risk
monitoring and early warning. These platforms enable cities to
track unforeseen challenges swiftly and take proactive preventive
actions, thereby boosting ecological resistance (Ghobakhloo, 2020).
In parallel, DE can provide financial and technological support to
facilitate the upgrading of urban ecological infrastructure, thereby
enhancing the urban ecosystem’s ability to cope with risks (Guo D.
et al., 2023). Second, DE contributes to enhancing ecological
recovery. DE has enabled the integration of data with traditional
production inputs, thereby transforming the production mode that
involves high investment, low efficiency, and high pollution
(Carlsson, 2004). The resulting increase in the total factor
productivity has accelerated the restoration of urban ecosystems.
Additionally, the emergence of numerous industries, such as smart
agriculture, intelligent manufacturing, and digital finance, have
eradicated a multitude of high-energy-consuming and highly
polluting industries (Ran et al., 2023). This development has not
only strengthened economic vitality but also propelled the
progression of green economic growth. Accordingly, Hypothesis
1 is proposed.

Hypothesis 1: DE significantly promotes UED.
DE propels innovation and application of digital technologies

within urban settings, guiding UED (Filiou et al., 2023). First, DE
represents a form of green economy. Digital technologies contribute
to the innovation of green technologies (Dian et al., 2024). Green
innovation not only aids cities in refining their ecological
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monitoring systems but also fosters the utilization of clean energy,
thus contributing to decreased pollutant emissions. Second, DE has
facilitated the integration of data elements with traditional
production factors. This integration enables precise resource
allocation and has reduced resource waste and pollution
emissions (Lange et al., 2020), thereby enhancing environmental
efficiency (Yasmeen et al., 2020). Improvements in environmental
efficiency result in the conservation of resources and reduction of
pollution (Hao et al., 2023). Third, DE optimizes the industrial
structure by fostering innovation in emerging industries and
accelerating the digitization of traditional sectors. Additionally,
the shift of traditional industries from being labor intensive to
becoming technology and knowledge intensive has transformed
the energy consumption structure and resource utilization
methods. As a result, urban energy consumption and
environmental pollution have significantly decreased (Gu et al.,
2023). Accordingly, Hypothesis 2 is proposed.

Hypothesis 2:DE reinforces UED by promoting green innovation,
enhancing environmental efficiency, and optimizing the
industrial structure.

The effect of DE on UED may differ depending on the
characteristics of the city. In terms of geographic location, the
eastern coastal areas demonstrate high economic prosperity and
advanced infrastructure; thus, they offer a conducive environment
for DE and result in a significant impact on UED (Xu and Cai, 2024).
However, infrastructure development is comparatively deficient in
the western inland areas; resources are scarce, which obstructs DE
and diminishes their effectiveness in enhancing UED (Huang and
Huang, 2024). In terms of resource endowment, DE can spur the
emergence of industries in resource-based cities, thereby amplifying
economic dynamism. However, the ongoing exploitation and
utilization of resources aggravate the contradiction between

ecological protection and economic development. Therefore, the
positive impact of DE on UED in resource-based cities is low or even
insignificant. Nonresource-based cities have strong resilience
because of few shocks or disruptions caused by resource
exploitation. Leveraging DE to transform traditional
infrastructure concurrently enhances resource utilization
efficiency in nonresource-based cities, thereby effectively boosting
UED (Lyu et al., 2024). Therefore, Hypothesis 3 is proposed.

Hypothesis 3: UED exhibits heterogeneous effects on DE.

3 Methodology

3.1 Model

Numerous factors (e.g., policy, economy, society, and
technology) affect the process of DE promoting UED. Moreover,
the relationship between influencing factors is always nonlinear.
Traditional models, such as differences-in-differences and
propensity score matching, cannot apply to multidimensional
data and have limitations in dealing with the nonlinear
relationships between variables (Wen et al., 2024). This study
addresses these problems by applying DML to explore how DE
affects UED (Chernozhukov et al., 2018) (Figure 1).

Step 1: The main regression model is constructed, as presented
in Equation 1.

UEDit � θ0DEit + g Xit( ) + Uit ,E Uit DEit ,Xit|[ ] � 0. (1)

In Equation 1, DEit is an independent variable. If city i in year t
implements DE, the value of DEit is 1. Otherwise, it is 0. UEDit is a

FIGURE 1
Steps for DML.
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dependent variable, which represents UED in city i during year t θ0
represents the treatment coefficient, Xit represents a group of
control variables that influence UEDit through function g, and
Uit is the error term.

Step 2: Machine learning algorithms are used for the first time.

The estimation ĝ(Xit) of function g(Xit) can be obtained using
machine learning algorithms (Equation 2).

ĝ Xit( ) � E UEDit Xit|[ ]. (2)

The random forest (RF) algorithm is selected to estimate g
because of the following reasons. First, compared with other
algorithms, such as lasso and gradient boosting, RF is highly
effective in handling high-dimensional data and has a strong
ability to fit nonlinear relationships and feature interactions
(Chernozhukov et al., 2018; Chen and Wang, 2024). Second, the
superiority of RF in handling large datasets and complex
relationships, particularly its high stability and accuracy during
estimation, has been confirmed by previous research, (Wen
et al., 2024).

Next, Equation 3 is further derived.

UEDit − ĝ Xit( ) � θ̂0DEit + Û it . (3)

Thus, the estimate of the disposal coefficient, θ̂0, is given by
Equation 4.

θ̂0 � 1
n
∑n
i�1
DEit

2⎛⎝ ⎞⎠−1
1
n
∑n
i�1
DEit UEDit − ĝ Xit( )( ). (4)

In Equation 4, n represents the sample size. Although machine
learning algorithms help reduce the variance of the estimator θ̂0,
they also cause regularization bias, which prevents θ̂0 from
converging to θ0.

This study accurately examines the bias of estimator θ̂0 by
substituting Equation 1 into Equation 4, thus yielding Equation 5.

θ̂0 � 1
n
∑n
i�1
DEit

2⎛⎝ ⎞⎠−1
1
n
∑n
i�1
DEit θ0DEit + g Xit( ) + Û it − ĝ Xit( )( )

� θ0 + 1
n
∑n
i�1
DEit

2⎛⎝ ⎞⎠−1
1
n
∑n
i�1
DEitÛ it + 1

n
∑n
i�1
DEit

2⎛⎝ ⎞⎠−1
1
n
∑n
i�1
DEit

g Xit( ) − ĝ Xit( )( ). (5)

Next, Equation 5 is transformed into Equation 6.

��
n

√
θ̂0 − θ0( ) � 1

n
∑n
i�1
DEit

2⎛⎝ ⎞⎠−1
1��
n

√ ∑n
i�1
DEitÛ it

+ 1
n
∑n
i�1
DEit

2⎛⎝ ⎞⎠−1
1��
n

√ ∑n
i�1
DEit g Xit( ) − ĝ Xit( )( ).

(6)

In Equation 6, (1n∑n
i�1DEit

2)−1 1�
n

√ ∑n
i�1DEitÛit is normally

distributed with a mean of 0. However, in
(1n∑n

i�1DEit
2)−1 1�

n
√ ∑n

i�1DEit(g(Xit) − ĝ(Xit)), the convergence
rate of g(Xit) toward ĝ(Xit) is slow. As n approaches infinity, b
also increases indefinitely. In addition, θ̂0 has difficulty converging
to θ0.

Step 3: The auxiliary regression model is constructed, as
presented in Equation 7.

This work addresses these issues by formulating the following
auxiliary regression:

DEit � m Xit( ) + Vit , E Vit Xit|[ ] � 0. (7)
In Equation 7,Xit affects the disposition variable via functionm.

Vit is the error term.

Step 4: The machine learning algorithm is used for the
second time.

Similarly, the specific form of functionm(Xit) is undisclosed. Its
estimation m̂(Xit) can be obtained using a machine learning model
(Equation 8).

m̂ Xit( ) � E DEit Xit|[ ]. (8)
The RF algorithm is applied to estimate function m.
Next, Equation 9 is further derived.

DEit − m̂ Xit( ) � V̂ it . (9)

Thus, the unbiased estimate of the disposal coefficient, �θ0, is
derived, as shown in Equation 10.

�θ0 � 1
n
∑n
i�1
V̂ itDEit

⎛⎝ ⎞⎠−1
1
n
∑n
i�1
V̂ it UEDit − ĝ Xit( )( ). (10)

Similarly, the estimation bias of estimator �θ0 is further
examined, as presented in Equation 11.

��
n

√ �θ0 − θ0( ) � E V2[ ]( )−1 1��
n

√ ∑n
i�1
V̂ it Û it + 1��

n
√ ∑n

i�1
m Xit( ) − m̂ Xit( )( )

g Xit( ) − ĝ Xit( )( ) � a + b. (11)

In Equation 11, a normally distributed with a mean of 0 and the
convergence rates of m(Xit) to m̂(Xit) and g(Xit) to ĝ(Xit)
determine the convergence rate of b. This configuration results in
a faster convergence rate for Equation 11 than for Equation 6.
Therefore, �θ0 is an unbiased estimate of θ0.

Based on the DML, a significantly positive �θ0 indicates that DE
supports the development of UED, whereas a significantly negative
�θ0 implies that DE impedes UED.

3.2 Variables

3.2.1 Dependent variable
This study selects UED as the dependent variable (Zhang T.

et al., 2023). The UED evaluation indicator system constructed
includes two dimensions: ecological resistance (Y1) and ecological
recovery (Y2). Table 1 displays the specific indicators of the
evaluation framework for UED. In contrast to subjective
assessment methodologies, the entropy method mitigates the bias
introduced by subjective judgments (Wang H. et al., 2024). Hence,
the entropy weight method is utilized to assess UED. Specifically, the
extreme value method is employed to ensure indicator
comparability followed by normalization using Equation 12.
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Subsequently, the entropy ej and coefficient of variation dj for the
indicators are computed with Equation 13 and Equation 14,
respectively. Finally, the weights of each indicator wj are
obtained through Equation 15. The overall score of UEDij is
calculated in combination with Equation 16.

�yij �
yij∑n
i�1yij

, (12)

ej � − 1
ln n

∑n
i�1

�yij ln �yij⎡⎣ ⎤⎦, (13)

dj � 1 − ej, (14)

wj � dj∑m
j�1dj

, (15)

UEDij � ∑(yij × wj). (16)

Figure 2 shows the overall and regional UED levels of China
from 2006 to 2021. From an overall perspective, China’s UED
level experienced a significant upward trend throughout the
observation period: this level rose from 4.8492 in 2006 to
6.1114 in 2021, which was a growth of 26.03%. This outcome
suggests that China has made a remarkable achievement in the
development of ecological civilization. Additionally, the UED
levels in all four regions exhibited growth particularly in the
central region, which recorded the highest growth rate at
29.11%. This growth may have resulted from the central
region’s shift from a traditional resource-dependent economy
to a diversified, green, and sustainable economy (Fu et al., 2024),

which has enhanced the ecological resilience and recovery of
urban areas.

3.2.2 Independent variable
DE refers to an economic mode that is driven by digital

technologies, thus leveraging data and digital technologies to
facilitate industrial upgrade and economic growth (Luo et al.,
2022). A binary variable is constructed based on the
implementation of the National Big Data Comprehensive Pilot
Zone (BDPZ) policy to represent DE. This study selects the
BDPZ policy for three reasons. First, existing measurement
approaches, such as internet penetration and e-commerce
transaction volume, have notable limitations and cannot
comprehensively capture the multidimensional nature of the DE
(Chen and Yao, 2024). By contrast, pilot policies accurately reflect
the actual effects of digital development because they integrate the
deployment of digital technologies with policy innovation (Wei
et al., 2023). Second, adopting pilot policies as a measure of DE,
combined with DML, effectively addresses endogeneity and
estimation biases that are caused by omitted variables (Lyu et al.,
2024). Third, several studies have similarly employed a binary
variable that has been constructed from the BDPZ policy to
assess DE, including those by Liu et al. (2024) and An et al. (2024).

3.2.3 Mechanism variables
This study investigates how green innovation (M1),

environmental efficiency (M2), and industrial structure (M3)
mediate the effects of DE on UED (Hao et al., 2023; Xu and
Cai, 2024).

Green innovation (M1). The quantity of green patent
applications is used to quantify M1. It represents innovation
activities that focus on conserving resources, improving energy
efficiency, and fostering sustainable development (Lin and Ma,
2022). Given that M1 accurately reflects the output of green
innovation, it serves as an effective indicator for evaluating green
innovation (Dian et al., 2024). A high value of this metric suggests a
high degree of advancement in green innovation.

Environmental efficiency (M2). By adhering to the definition of
theWorld Business Council for Sustainable Development, this study
posits environmental efficiency as the process through which cities
gradually diminish pollution while concurrently fostering economic
growth and enhancing the wellbeing of their residents (Luo et al.,
2022). The global super efficiency slacks-based measure (SBM),
which incorporates undesirable outputs, is employed to evaluate

TABLE 1 UED evaluation indicator system.

Tier 1 Tier 2 Tier 3 Attribute

UED Ecological resistance (Y1) Volume of sulfur dioxide emission -

Volume of industrial particulate emission -

Population density +

Ecological recovery (Y2) Ratio of wastewater centralized treated of sewage work +

Domestic garbage harmless treatment rate +

Proportion of green space in built district +

Per capita green space +

FIGURE 2
Overall and regional UED levels of China from 2006 to 2021.
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environmental efficiency (Zhao X. et al., 2022). Building on prior
research, this study selects several indicators, which are presented
in Table 2.

Industrial upgrade (M3). The thriving of the tertiary sector
marks a transition in economic growth from being predominantly
driven by the secondary sector to being steered by the collaborative
development of the secondary and tertiary sectors. Thus, the growth
of the tertiary sector is utilized to evaluate industrial structural
advancement (Zhao J. et al., 2022). M3 is assessed based on the share
of the tertiary gross product in the gross regional product (GRP)
(Cheng et al., 2018). An increase in M3 signifies a developed
industrial structure.

3.2.4 Control variables
A range of control variables (X) are considered in this study

for evaluation (Zhang H. et al., 2023; Lai et al., 2024): per capita
GRP (X1), GRP growth rate (X2), secondary industry as
percentage to GRP (X3), local expenditure as percentage to
GRP (X4), loans and deposits of financial institutions as
percentage to GRP (X5), number of industrial enterprises
(X6), log value of urban district population (X7), total retail
sales of consumer goods as percentage to GRP (X8), expenditure
for education as percentage to local expenditure (X9),
expenditure for science and technology as percentage to local
expenditure (X10), number of students enrollment (X11), log
value of highway passenger traffic (X12), log value of highway
freight traffic (X13), road surface area per capita (X14), total
import and export volume as a percentage of GDP (X15), and
collections of public libraries (X16). Additionally, the quadratic
term (X2) of all control variables is added to the model to
enhance its accuracy.

3.3 Sample selection and data sources

In light of the policy implementation of the BDPZ, the sample is
divided into a treatment group, which consists of 80 cities where
pilot zones have been established, and a control group, which
comprises all other cities. This study constructs a dataset with
panel data from 282 prefecture-level cities in China in
2006–2021. The data for the indicators are primarily sourced
from the China National Intellectual Property Administration

and the City Statistical Yearbook. The descriptive statistics for all
the variables are presented in Table 3.

4 Empirical analysis

4.1 Benchmark regression results

The results of the benchmark regression are shown in Table 4.
Model 1 incorporates X and reveals that DE significantly promotes
UED. Model 2 incorporates X and X2. The result of Model
2 maintains a significantly positive regression coefficient. This
outcome implies that DE unlocks particular digital dividends,
thus contributing to the enhancement of UED (Zhang W. et al.,
2023). Therefore, H1 is supported. Models 3 to 6 examine the effects
of DE from Y1 and Y2. The regression outcomes demonstrate that
DE significantly enhances Y1 and Y2 at the 1% significance level,
thus signifying its favorable impact on boosting resistance and
recovery, which aligns with the theoretical insights of this
research. DE can strengthen preventive measures against shocks
or disturbances, thus alleviating their effects (Yang et al., 2023).
Additionally, the digital dividends released by DE can facilitate
urban ecological construction and foster green growth (Hao
et al., 2023).

TABLE 2 Input and output indicators.

Tier 1 Tier 2 Explanation

Input Capital Total fixed-asset investment

Labor Employees of unit at year-end

Energy Total energy consumption

Land Urban district area

Water Daily water consumption per
capita

Desirable output Economic output Gross regional product

Undesirable
output

Environmental
pollution

Carbon dioxide emissions

TABLE 3 Descriptive statistics of variables.

Variable N Mean SD Min Max

UED 4512 5.6359 0.5008 4.1500 6.4864

M1 4512 435.9353 1111.9777 1.0000 7474.0000

M2 4512 0.4958 0.1720 0.2600 1.0882

M3 4512 0.4072 0.1021 0.1881 0.7094

X1 4512 45759.7617 32298.4451 6276.0000 164000.0000

X2 4512 9.9217 4.3891 −2.9000 20.2000

X3 4512 46.7280 10.9719 18.1400 73.9200

X4 4512 0.1835 0.0939 0.0637 0.5815

X5 4512 2.3202 1.1026 0.8812 6.5029

X6 4512 6.5623 1.1050 3.9318 9.0561

X7 4512 4.1606 0.8790 2.5726 7.0480

X8 4512 0.3672 0.1028 0.1283 0.6643

X9 4512 0.1797 0.0408 0.0887 0.2847

X10 4512 0.0150 0.0143 0.0012 0.0775

X11 4512 3.8977 0.7620 1.7585 5.4121

X12 4512 8.3219 1.0684 5.3891 11.1513

X13 4512 8.9432 0.8584 6.7569 10.9023

X14 4512 16.3956 7.0667 4.2500 37.9800

X15 4512 13.7561 2.1110 8.6236 19.0780

X16 4512 5.3424 1.2706 2.9704 8.9709
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4.2 Mechanism analysis

Using the DML model, this section explores the effect of DE on
the mediator variables (Table 5). The results show a statistically
significant and positive regression coefficient. This finding suggests
that DE contributes to promoting urban green innovation,
enhancing environmental efficiency, and optimizing industrial
structure (Gruber, 2019).

Furthermore, the causal mediation model is applied to analyze
the mechanism ofM1, M2, andM3 (Farbmacher et al., 2022). In this

model, the indirect effect denotes the consequence of variations in
mediator variable M while keeping the treatment variable DE fixed.
The direct effect denotes the consequence of variations in treatment
variable DE while keeping mediator variable M fixed. The treatment
group is composed of 80 cities that have been adopting the BDPZ
policy. Meanwhile, the control group contains the remaining cities.
Table 6 presents the findings of the mechanism analysis. The total
effects under diverse mediation routes are significantly positive. In
the treatment group cities, the direct and indirect effects of all
mediators are statistically significant. Cities that are strengthening

TABLE 4 Benchmark regression results.

Variables UED UED Y1 Y1 Y2 Y2

DE 0.0911*** 0.0955*** 0.0436*** 0.0439*** 0.0523*** 0.0507***

(0.0193) (0.0192) (0.0128) (0.0128) (0.0110) (0.0109)

X Yes Yes Yes Yes Yes Yes

X2 No Yes No Yes No Yes

City FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Learning model RF RF RF RF RF RF

k-folds 5 5 5 5 5 5

Sample size 4512 4512 4512 4512 4512 4512

Note: *, **, and *** show that the disposition coefficient is significant at the 10%, 5%, and 1% level, respectively. The sample applies to the following tables.

TABLE 5 Regression results of DE on the mediating variables.

Variables M1 M1 M2 M2 M3 M3

DE 0.0083** 0.0083** 0.0249** 0.0276*** 0.0055** 0.0051**

(0.0037) (0.0036) (0.0098) (0.0099) (0.0024) (0.0024)

X Yes Yes Yes Yes Yes Yes

X2 No Yes No Yes No Yes

City FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Learning model RF RF RF RF RF RF

k-folds 5 5 5 5 5 5

Sample size 4512 4512 4512 4512 4512 4512

TABLE 6 Mechanism analysis.

Variables Total dir.treat dir.control indir.treat indir.control

M1 0.1239*** 0.1217*** 0.1037*** 0.0202*** 0.0022

(0.0164) (0.0165) (0.0170) (0.0054) (0.0014)

M2 0.1286*** 0.1280*** 0.1143*** 0.0143*** 0.0006

(0.0164) (0.0164) (0.0169) (0.0050) (0.0006)

M3 0.1228*** 0.1175*** 0.1039*** 0.0189*** 0.0054***

(0.0164) (0.0166) (0.0164) (0.0060) (0.0016)
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DE utilize their remarkable advantages in technology and economic
development to propel green innovation (Yan et al., 2023), improve
urban environmental efficiency, and optimize economic industrial
structure (Ghobakhloo and Fathi, 2021), thus consequently driving
UED growth. This outcome supports H2. In the control group cities,
the direct effects of M1, M2, and M3 are significantly positive.
Moreover, the indirect effects of M1, M2, and M3 are all positive.
However, only the indirect effect of M3 is statistically significant.
The findings indicate that even in cities that are not strengthening
DE, urban areas consistently endeavor to optimize their industrial
structure (Cheng et al., 2018), thus fostering favorable environments
and conditions for enhancing UED.

4.3 Robustness tests

4.3.1 DML robustness analysis
While the DML method offers valuable insights for causal

inference, it also has inherent limitations. For instance, the
sample split ratio in K-fold cross-validation and the choice of
machine learning algorithms can influence the results. Therefore,
this section performs DML robustness analysis using the following
approach: (1) altering the sample splitting ratio (Models 1 to 2 in
Table 7), (2) changing the machine learning algorithms (Models 3 to
4 in Table 7), and (3) adopting an interactive model (Models 5 in
Table 7). The regression outcomes still reveal that DE significantly
and positively influences UED.

4.3.2 Endogenous analysis
The nonrandom selection of BDPZ gives rise to a potential

endogeneity concern. This section employs a partial linear
instrumental variable model to mitigate the endogeneity problem
(Chernozhukov et al., 2018).

UEDit � θ0DEit + g Xit( ) + Uit . (17)
IVit � m Xit( ) + Vit . (18)

In Equation 17 and Equation 18, IVit refers to the instrumental
variable for DE. This study constructs two instrumental variables

(Guo B. et al., 2023). The first is the interaction term between the
historical number of broadband internet access ports and the total
volume of postal and telecommunications services in 1984 (IV1),
and the second is the interaction term between the historical number
of broadband internet access ports and terrain undulation (IV2). As
shown in Model 6 and Model 7 of Table 7, DE promotes UED, thus
verifying the robustness of findings.

4.3.3 Other robustness analysis
The following approaches are utilized to assess the robustness of

baseline regression: (1) excluding special city samples (Model 1 in
Table 8), (2) adjusting the time sample (Model 2 in Table 8), (3)
considering the interaction effects of provinces and time (Model 3 in
Table 8), and (4) excluding the influence of other parallel policies,
such as SCP and BCP (Models 4 to 6 in Table 8). After retesting the
effect of DE on UED using the aforementioned methods, the
regression coefficients remain significantly positive.

4.4 Heterogeneity analysis

According to the geographical locations of the cities, the sample
is categorized into four regions, as depicted in Table 9. Accordingly,
the influence of DE on UED remains positive across different
significance levels. This outcome indicates that despite variations
in geographical locations and economic development levels among
cities, DE consistently enhances UED effectively. The northeast
region exhibits a low significance level in the relationship
between DE and UED. This trend implies that the northeastern
region must focus on the extensive development of DE to
strengthen UED.

According to resource endowment, the sample cities are
categorized into resource-based and nonresource-based cities.
The results reveal that DE in nonresource-based cities
significantly enhances UED (Table 10). Additionally, resource-
based cities are further subdivided into growth, maturity, decline,
and regeneration types. As shown in Table 10, although the
regression coefficients of DE for the four types are positive, none
of them are statistically significant. This outcome implies that

TABLE 7 DML Robustness analysis and endogenous analysis.

Variables 1 2 3 4 5 6 7

UED UED UED UED UED UED UED

DE 0.0879*** 0.0951*** 0.0932*** 0.3701*** 0.2964*** 0.4538** 0.8112**

(0.0176) (0.0198) (0.0150) (0.0088) (0.0179) (0.2283) (0.3522)

X Yes Yes Yes Yes Yes Yes Yes

X2 Yes Yes Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes

Learning model RF RF Gradboost Lasso RF RF RF

k-folds 3 8 5 5 5 5 5

Sample size 4512 4512 4512 4512 4512 4512 4512
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resource-based cities must prioritize DE, which can help optimize
their industrial structure, reduce reliance on traditional resource
industries, and strengthen UED. The aforementioned
conclusions confirm H3.

5 Discussion

5.1 Discussion of findings

First, DE contributes to advancing UED. This conclusion is in
agreement with Wang T. et al. (2024), who proposed that DE
reduces energy use and pollution via intelligent systems, thus
contributing to ecological sustainability. Numerous scholars have
demonstrated that the digital dividends unleashed by DE can

effectively enhance the construction of smart urban ecosystems
and improve ecological resilience (Liu et al., 2024). Moreover,
DE, which is characterized by low pollution and low energy
consumption, has fostered green urban growth and enhanced
ecological recovery (Ma et al., 2024). However, some researchers
hold differing opinions by arguing that DE can obstruct UED
(Avom et al., 2020). This outcome may be a result of potential
barriers in implementing digital strategies, such as insufficient
funding, infrastructure disparities, and policy differences (Chatti
and Majeed, 2022). The effect of DE is constrained by these barriers.
Therefore, this study must address these challenges strategically to
maximize DE’s role in enhancing UED.

Second, this study finds that DE can promote UED by
improving environmental efficiency, driving green innovation,
and upgrading industrial structures. DE promotes the application
of digital technologies in green innovation, which enhances green
innovation output and alleviates environmental burdens. Qiu et al.
(2025) concluded that DE promotes green innovation, thus further
confirming this conclusion. DE has the potential to optimize
production processes and enhance energy management efficiency,
as confirmed by Luo et al. (2022) andWu et al. (2024). Furthermore,
DE advances the green and digital transformation of traditional
industries, which facilitates industrial structural upgrading and
drives UED. Ding and Luo (2024) asserted that DE accelerates
the low-carbon and modern transformation of industries through
technological and business model innovations, thus aligning with
the findings of this study.

Third, this work demonstrates that UED exhibits heterogeneous
effects on DE. In terms of geographical location, the northeast region
exhibits relatively low significance in the positive effect of DE on
UED. This outcome might be a result of enduring ecological issues,
such as pollution emissions, which stem from the region’s historical
role as an old industrial stronghold, thereby counteracting some of
the positive effects of DE (Xu and Cai, 2024). In terms of resource
endowment, the beneficial effect of DE on UED is statistically
insignificant in resource-based cities. The underlying reasons are

TABLE 8 Other robustness analysis.

Variables 1 2 3 4 5 6

UED UED UED UED UED UED

DE 0.1012*** 0.0885*** 0.1215*** 0.0939*** 0.0922*** 0.0940***

(0.0194) (0.0191) (0.0296) (0.0194) (0.0193) (0.0195)

SCP Yes Yes

BCP Yes Yes

X Yes Yes Yes Yes Yes Yes

X2 Yes Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Learning model RF RF RF RF RF RF

k-folds 5 5 5 5 5 5

Sample size 4448 3948 4512 4512 4512 4512

TABLE 9 Regional heterogeneity analysis.

Variables East Central Northeast West

1 2 3 4

UED UED UED UED

DE 0.1222*** 0.1278*** 0.0805* 0.2520***

(0.0342) (0.0440) (0.0481) (0.0469)

X Yes Yes Yes Yes

X2 Yes Yes Yes Yes

City FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Learning model RF RF RF RF

k-folds 5 5 5 5

Sample size 1376 1280 528 1328
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outlined below. One is the heavy reliance on traditional resources,
which restricts the effectiveness of DE in resource-based cities
during their growth, maturity, and decline phases (Wang et al.,
2022). Additionally, resource regeneration cities undergo
considerable instability during their transformation phase, which
causes difficulty for DE to drive UED effectively (Lyu et al., 2024).

5.2 Theoretical implications

First, although extensive examination has been conducted on the
relationship between DE and UED, the debate on their connection
remains inconclusive. Some studies contend that DE boosts urban
ecosystem resilience by advancing digital technologies, thus
enhancing risk prediction and management (Farley and Voinov,
2016). Conversely, other studies highlight the energy demands of DE
as a potential emerging threat to urban ecosystems (Chatti and
Majeed, 2022). This study focuses on urban areas in China to
provide new empirical evidence that confirms the positive effect
of DE on UED. Therefore, it offers strong theoretical support for the
role of DE in promoting urban ecological sustainability.

Second, traditional causal inference models often suffer from
several issues, such as model misspecification and the curse of
dimensionality, which potentially lead to biased results (Wu
et al., 2024; Chen and Wang, 2024). This study employs the
DML method to explore the relationship between DE and UER.
This approach not only extends the application of DML but also
effectively addresses the issues in traditional methods, thus
enhancing the accuracy and reliability of results.

Third, this study focuses on three key pathways, namely, green
innovation, environmental efficiency, and industrial upgrading, to
explore the mechanisms through which DE affects UED. This work
examines the mechanisms from multiple perspectives, thus further
extending the work of Zhang T. et al. (2023). Furthermore, this
research examines the heterogeneous effects under different
resource conditions particularly in resource-based cities. Thus, it
contributes comprehensively to the theoretical framework.

5.3 Practical implications

Cities in China have effectively implemented environmental
monitoring and risk prediction by fostering DE and intensifying the
application of digital technologies. Therefore, these activities have
promoted UED. This experience may offer a useful reference for
other regions or countries that are working to enhance UED.
Accordingly, the following practical implications are presented.

First, digital policies should be enacted to maximize the potential
of DE fully. Relevant authorities should establish a unified digital
management platform for ecological environments, thus enhancing
the capacity for risk prediction and environmental monitoring to
bolster urban ecosystem resilience. In addition, the government
should foster green and low-carbon economic growth and enhance
urban ecological recovery. Cities also need to adopt digital governance
measures to identify ecological issues accurately, which can
enhance UED.

Second, policies should focus on the mechanisms through which
green innovation, environmental efficiency, and industrial structure
contribute to UED. The Chinese government should play an active
role in establishing green innovation platforms and boosting investment
in green innovation activities, thereby empowering green innovation.
Meanwhile, industries with high pollution and energy consumption
should establish monitoring platforms and resource management
systems throughout the entire production process to improve
resource efficiency. Cities should foster emerging industries and
support agriculture, manufacturing, and other sectors in adopting
digital transformation initiatives to achieve environmental sustainability.

Third, barriers must be overcome in implementing digital
strategies, and regional differences must be bridged. Potential
obstacles, including insufficient funds, infrastructure gaps, and
regional policy inconsistencies, should be carefully considered.
Governments at the local level must customize digital strategies
based on their regional conditions and effectively coordinate
resources, such as financial support and skilled labor. Emphasis
should be placed on the northeast region and resource-based cities at
various stages. Moreover, local governments should actively foster

TABLE 10 Resource heterogeneity analysis.

Variables Growing Mature Declining Regenerating Nonre

1 2 3 4 5

UED UED UED UED UED

DE 0.0421 0.0519 0.0956 0.1109 0.0913***

(0.1257) (0.0519) (0.0772) (0.0737) (0.0197)

X Yes Yes Yes Yes Yes

X2 Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes

Learning model RF RF RF RF RF

k-folds 5 5 5 5 5

Sample size 224 1008 368 240 2672
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emerging industries in the northeast region. During the growth,
maturity, and decline phases, resource-based cities should adjust
their industrial frameworks. During the regeneration phase, the
focus should shift toward improving environmental efficiency.

6 Conclusions and policy implications

This study uses data from 282 Chinese cities in 2006–2021 and
utilizes the DML model to explore the effect of DE on UED, thus
leading to the following conclusions. First, DE significantly enhances
UED. DE contributes to the improvement of ecological resistance and
ecological recovery of the urban ecological system. Second, DE
enhances UED by fostering green innovation, enhancing
environmental efficiency, and optimizing industrial structure. Third,
UED exhibits heterogeneous effects on DE. In terms of geographic
distribution, DE has a positive impact on UED across all four regions
with different levels of significance. In terms of resource endowments,
DE in nonresource-based cities promotes UED. However, the effect of
DE onUED in resource-based cities is not statistically significant during
the growth, maturity, decline, and rejuvenation stages.

This study also has several limitations. First, this research is based
on 282 cities in China, thus making the conclusions particularly
relevant to the improvement of UED in China. Future research
should consider expanding the sample to include international cities
to obtain a global perspective. Second, although this research considers
mediating effects, moderating effects have not been explored. Future
research can explore moderating factors, including policy interventions
or social conditions, to understand how DE impacts UED.
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