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Introduction: The long-term high carbon economic model, while driving
economic growth, has also led to climate issues. Faced with this challenge,
reducing carbon emissions and advocating low-carbon economic development
have become the focus of international attention. Although the Yangtze River
Delta region holds an important position in economic and technological
innovation, its carbon emissions are still continuously increasing.

Methods: To explore the mutual influence between low-carbon economy and
energy technology innovation, this study took the Yangtze River Delta region as
the research object, collected data from the region from 2010 to 2022, and
analyzed and explored the correlation between the two. Then, using spatial
econometric methods, a spatial model was constructed to explore the spatial
effects between the two in depth.

Results: Research data showed that, taking adjacency matrix as an example,
when the level of energy technology innovation increased by 1%, the low-carbon
economic development level in the Yangtze River Delta region would increase by
21.15%. In terms of geographical distance matrix, when the level of energy
technology innovation increased by 1%, the low-carbon economic
development level in the Yangtze River Delta region would also increase by
19.95%. The energy technology innovation in the Yangtze River Delta was
positively correlated with the development of low-carbon economy, with
energy innovation technology mainly improving the low-carbon economic
level of the Yangtze River Delta region through carbon reduction and
decarbonization. In addition, the interaction between energy technology
innovation and the environment also shows a significant spatial spillover effect
on the development of low-carbon economy.

Discussion: In summary, the empirical results of this study indicate that the
Yangtze River Delta region should prioritize the following measures to enhance
its energy technology innovation and promote low-carbon development: The
first is to encourage enterprises and scientific research institutions to increase
investment in low-carbon technologies; The second is to implement more
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detailed environmental regulatory policies, including carbon emission standards,
technical standards, and market access conditions; The third is to promote
enterprises to realize low-carbon transformation.
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1 Introduction

In recent years, the severity of global climate change and
environmental problems has become increasingly apparent, and
these issues have emerged as a common challenge faced by
governments and all sectors of society. The increase in
greenhouse gases has been linked to rising global temperatures,
as well as to increasingly frequent extreme weather events, water
shortages, and ecosystem disruption. In this context, Low Carbon
Economy (LCE), as a new development model, has been widely
concerned by the international community for its coordination
among emission reduction, environmental protection, and
economic growth (Yang M. et al., 2023; Caglar, 2023). LCE
places significant emphasis on the mitigation of carbon emissions
and environmental degradation, while concurrently ensuring
economic growth. This commitment encompasses not only the
development and utilization of renewable energy sources but also
the transformation and upgrading of advanced technologies and
industrial sectors. The Yangtze River Delta (YRD) region, as one of
the most economically developed regions in China, gathers a large
number of industries and population, and its economic aggregate
accounts for a large part of the country. However, the region’s high
level of carbon emissions remains an important challenge in its
development. In the process of rapid industrialization in the past,
issues of resource consumption and environmental pollution have
gradually emerged, especially in carbon emissions, which have
become bottlenecks restricting its sustainable development.
Although the policy level has begun to attach importance to low-
carbon development and formulated a number of relevant policies,
carbon emissions continue to grow. Therefore, how to realize the
transformation of LCE and realize the coordinated development of
economy and environment has become an urgent problem for
academia and policymakers. In this context, technological
innovation, especially Energy Technology Innovation (ETI), is
considered a key factor in achieving the goal of a LCE. The
development and promotion of new technologies has the
potential to enhance energy efficiency, reduce reliance on high-
carbon energy sources, and effectively mitigate Greenhouse Gas
Emissions (GGE). The YRD region has a strong foundation in
technology research and development and industrial innovation,
and the level of its ETI directly affects the level of low-carbon
economic development in this region. Therefore, an in-depth study
of the relationship between LCE and ETI is not only helpful to
deepen the theoretical research but also can provide an empirical
basis for policy making and promote the sustainable low-carbon
development of the region (Panzera and Postiglione, 2022; Karimi
et al., 2023).

The main variables studied include ETI, LCE, Carbon Emission
Intensity (CEI), and Environmental Regulation Index (ERI). Among
them, ETI represents the research and development of new

technologies and the enhancement of the application capacity of
existing technologies in energy, which directly affects the
development of LCE. High levels of ETI can effectively reduce
CEI, that is, the carbon emissions generated per unit of GDP,
which promotes the formation of a LCE. At the same time, the
development of LCE can in turn encourage more ETIs, and promote
the R&D investment of enterprises and society in low-carbon
technologies through the guidance of market demand and
environmental policies. Therefore, there is a positive interaction
between ETI and LCE. The ERI, as an external policy variable,
further promotes the synergistic development between ETI and LCE
by strengthening the control of carbon emissions. The complexity
and dynamics of this interaction reflect the importance and urgency
of regional sustainable development.

The Spatial MetrologyMethod (SMM), as a method for studying
spatial distribution characteristics and spatial correlations, provides
scholars with a new perspective to deeply explore the relationship
between LCE and ETI in YRD region. The use of SMM can not only
help staff understand the direct correlation between the two but also
reveal their indirect effects, such as Spatial Spillover Effects (SSE)
(Jiang et al., 2022). This study analyzed panel data of 33 cities in
YRD from 2010 to 2022 by constructing a Spatial Durbin Model
(SDM) and obtained the relevant mechanisms of various influencing
factors. The purpose is to further explore the correlation between
YRD region’s LCE and ETI, and provide valuable policy
recommendations for the sustainable development of YRD
region’s LCE. The final research results provide valuable
references for policymakers, entrepreneurs, and researchers in the
region, promoting the healthy development of YRD region’s LCE.
This study consists of five sections in total. Section 1 is an analysis
and summary of relevant research reviews. Section 2 analyzes the
theoretical knowledge of this study and proposes hypotheses.
Section 3 is to build a spatial econometric model to explore the
relationship between ETI and LCE in YRD region. Section 4 is an
empirical analysis, while Section 5 is a summary and
recommendations for the paper.

2 Related works

There is a close relationship between LCE and ETI, and many
scholars have conducted a series of studies on the relationship
between the two. L. Xin et al. utilized provincial panel data from
2006 to 2020 to construct an evaluation system for measuring
Inclusive Low-carbon Development (ILCD) in China. From the
comprehensive perspective of SSE and threshold effects, the SSE and
regional boundaries of renewable ETI on ILCD were explored.
Renewable ETI and ILCD exhibited a spatial pattern of “high in
the east and low in the west”. Renewable ETI had a significant
driving effect on ILCD in both the local and neighboring areas, but
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its driving effect was more significant in the mature stage (Xin et al.,
2023). Y. Xu et al. explored the impact of local government
competition and Green Technology Innovation (GTI) on Low
Carbon Economy Transition (LCET) in the context of China’s
government led economic development system. Empirical
analysis was conducted using system Generalized Method of
Moments (GMM), panel threshold model, and geographically
weighted regression method, using data from 30 provincial-level
administrative regions from 2006 to 2019. The competition among
local governments not only significantly suppressed LCET but also
significantly suppressed the positive effect of GTI on LCET. When
GTI was used as a threshold, there is a significant N-type
relationship between it and LCET. In areas with low competition
intensity, local government competition had a stronger inhibitory
effect on LCET (Xu Y. et al., 2023). K. Ullah et al. used time series
data from 1990 to 2020 to study the roles of Green Energy
Consumption (GEC), ecological innovation, and urbanization in
explaining Pakistan’s LCE and environmental sustainability goals.
This study used symmetric, asymmetric, and quantile autoregressive
lag models to explore the short-term and long-term relationships
between explanatory and non-explanatory variables. The use of
symmetric autoregressive lag models can effectively identify the
average impact of explanatory variables on the dependent variable in
equilibrium states. The asymmetric autoregressive lag model allows
researchers to examine the dynamic effects of shocks in different
directions on the explained variables, thereby revealing potential
nonlinear relationships between variables. Furthermore, by
examining the effects under varying quantiles, the autoregressive
lag model can elucidate the differential impacts of the explanatory
variables on the explained variables under diverse circumstances,
thereby enhancing the accuracy and reliability of the research
findings. LCE, GEC, ecological innovation, urbanization, per
capita GDP, and labor force exhibit a co-integration relationship
in the long term. GEC and effective ecological innovation are the
most important paths to ensure environmental sustainability, while
urbanization, per capita GDP, and labor has a negative impact on
LCE. Therefore, emphasizing GEC, ecological innovation, and
controlled urbanization, as well as incorporating environmental
policies into economic development policies, are of great policy
significance for formulating Pakistan’s environmental sustainability
strategy (Ullah et al., 2023). S. Meng et al. used the STIRPAT model
to empirically analyze the impact of renewable energy electricity
consumption on Carbon Productivity (CP) in 30 provinces of China
from 2011 to 2020, using data on CP, technological progress,
economic development level, population, energy efficiency, and
industrial structure rationality. China’s CP showed a clear SSE,
characterized by a spatial positive correlation distribution pattern
of “high-high” and “low-low”. The utilization of renewable energy
occupied an active position in stimulating the LCE progress,
showing a positive SSE in the horizontal spatial dimension and
an increasing trend in the overall improvement of the environment
in the vertical temporal dimension. Among the seven regions in
China, Renewable Energy Consumption (REC) in North China, East
China, and Central China had a dominant effect on CP. In addition,
about 29% of the positive effects of REC on CP were indirectly
achieved through technological progress (Meng et al., 2023).

SMM is a product of the combination of econometrics and
geographic information systems, used to address issues in

geographic or spatial data, particularly spatial dependence and
heterogeneity. Common SMMs include Spatial Weight Matrix
(SWM), spatial lag model, spatial error model, spatial
autoregressive model, etc. Many experts have conducted a series
of studies based on these spatial models. Y. Yang et al. used panel
data from China from 2000 to 2018 to evaluate the Efficiency of
Green Development (GDE) using the Super-SBM model, and
conducted empirical analysis using the system generalized
moment estimation method. Capital mismatch had a significant
inhibitory effect on the GDE. In addition, capital mismatch also
limited technological innovation, which played an important role in
improving the GDE. Further research on the impact of regional
heterogeneity revealed that capital mismatch had a more significant
negative impact on the GDE in the central and western regions,
while its impact was not significant in the eastern regions (Yang Y.
et al., 2022). Hasanov F J et al. proposed a theoretical framework to
quantitatively analyze the impact of technological progress, REC,
and international trade on carbon emissions using SMM. The
quantitative analysis results showed that technological progress,
REC, and export scale contributed to reducing carbon dioxide
emissions, while GDP and import scale both increased pollution
in the long and short term (Hasanov et al., 2021). S. Safdar et al. used
panel data from six South Asian countries from 1996 to 2020 to
examine the stationarity of variables using structural break-point
panel unit root tests, and confirmed that variables are stationary
under first-order differences. They conducted long-term analysis
using FMOLS and DOLS models, and estimated an auto-regressive
distributed lag model with enhanced cross sections to ensure
robustness. Reducing GGE could effectively improve the
environment. In addition, both GDP and trade openness had a
positive impact on economic and social outcomes, while natural
resource rents were positively correlated with GGE (Safdar et al.,
2022). Haque MI analyzed the correlation between oil price shocks,
energy consumption, carbon emissions, and per capita GDP using
static and dynamic panel estimation SMMs over a 30-year data
period of Gulf Cooperation Council countries. It was found that
population growth is positively correlated with energy consumption,
while energy consumption is positively correlated with
CO2 emissions. Therefore, measures needed to be taken to save
energy and reduce emissions, and demand side management should
be implemented (Haque, 2020).

Wu Q et al. addressed the environmental issues in China’s
pharmaceutical manufacturing industry by proposing a method to
measure Total Factor Productivity (TFP) using Data Envelopment
Analysis (DEA), which yielded more precise results than traditional
models. The study, based on panel data from 30 provinces from 2004 to
2019 and spatial econometric models, explored the impact of
environmental regulation on the TFP of the pharmaceutical
manufacturing industry, enriching research on clean production
(Wu et al., 2022). Hou X et al. examined the effect of Low-Carbon
City Pilot Programs (LCCP) on carbon emissions in China, proposing a
method that utilizes enterprise-level tax survey data and a staggered
Differences-in-Differences (DID) approach. The research resulted in a
30% reduction in emissions and a 36% increase in energy efficiency
(Hou et al., 2023). Bai D et al. studied the importance of GTI in
economic growth in developing countries, employing a new synthetic
control DID model to empirically test the impact of Ecological
Civilization Pilot Programs (ECP) on GTI in pilot provinces. The
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study found that after implementing the ECP, the number of green
utility model patents in the pilot provinces increased by an average of
38.1%, while the number of green invention patents increased by 23.1%
(Bai et al., 2023). Wang X et al. explored the significance of renewable
energy deployment by applying spatial econometric methods to analyze
the effect of green finance on renewable energy utilization in
30 provinces in China from 2006 to 2020. They also examined the
moderating effects of government intervention measures (such as
environmental regulation and natural gas promotion). The research
combined SDMs and a DID approach to assess the overall effects of the
green bond policy first introduced in 2015 (Wang X. et al., 2024).Wang
Z et al. focused on the issue of green innovation within energy
companies. They proposed an analytical method based on the
adoption of Artificial Intelligence (AI) and found that the
widespread application of AI significantly improved green
innovation efficiency in energy companies. This effect was
particularly evident in companies actively engaged in environmental,
social, and governance activities. However, executives focused on short-
term interests may undermine the positive impact of AI on enhancing
green innovation (Wang Z. et al., 2024).

In summary, many scholars have discussed the relationship
between energy and LCE and have achieved certain results.
However, most research focuses on areas with certain limitations.
There is a lack of specific research to analyze the relationship
between YRD and other regions with rapid economic
development and high levels of energy technology. Based on this
background, this study concentrates on a sample of 33 cities within
the YRD region. Utilizing the SDM approach, it aims to elucidate the
correlation between their LCE and energy innovation. The objective
is to furnish policy recommendations that will facilitate the
sustainable development of the YRD region.

3 Theoretical analysis and research
hypotheses

The theoretical framework of the research is built around four
core variables: LCE, ETI, CEI and ERI. Firstly, ETI is regarded as a
primary catalyst for LCE development. The integration of innovative
clean energy technologies and enhanced energy efficiency has been
demonstrated to effectively mitigate CEI, defined as the carbon
intensity per unit of GDP. Secondly, the promotion of LCE has been
shown to encourage enterprises and scientific research institutions
to increase investment in ETI R&D through market mechanisms
and policy guidance, thus forming a virtuous cycle. In addition, ERI,
as a representative of government policies, influences the behavior
choice of enterprises in environmental protection and the direction
of technological innovation. The implementation of more stringent
environmental regulations is likely to prompt companies to adopt
more advanced technologies to comply with policy requirements.
This will further promote the development of LCE. On this basis, the
following two research hypotheses are proposed:

Hypothesis 1. The improvement of ETI level will significantly
promote the development of LCE.

Hypothesis 2. Environmental regulation has a significant
moderating effect on the relationship between ETI and LCE.

This theoretical framework provides a solid foundation for the
subsequent empirical analysis and helps to deeply explore the
interaction and influence mechanism between variables.

Currently, discussions on LCE in China mostly focus on the
dominant factors that affect its development and regional
differences, especially the impact of green and low-carbon
technologies on LCE (Gardiner and Hajek, 2020). However, for
specific regions such as YRD, there is currently a lack of correlated
research to prove the specific impact of a certain factor within the region
on LCE. Therefore, this study chooses YRD, a region with highly
developed technology and economy, to explore its relationship with
LCE in depth from a broader perspective of ETI. Firstly, this study
selects four commonly used indicators, namely, R&D Expenditure
(R&D-E), Number of Energy Innovation Patents (EIPN), number of
High-tech Energy Enterprises (HTEE), and R&D Sales (R&D-S) of
HTEE, as the measurement indicators of YRD’s ETI level (Barma and
Modibbo, 2023; YangG. et al., 2023; Zeng et al., 2023; Li et al., 2024). All
data used in this study are fromChina Statistical Yearbook and relevant
statistical yearbooks to ensure the authority and reliability of data. The
data in the China Statistical Yearbook not only cover the relevant
information of 33 cities in the YRD region but also reflect the
comprehensive status of each city in terms of economic
development, technological innovation, and carbon emissions. This
makes the data have a good representation and can fully reflect the
relationship between LCE and ETI in the YRD region, providing a solid
empirical basis for research. Considering the objective and content of
the study, the 33 cities in the YRD region selected as the sample range
can fully represent the economic and technological development level of
the region. This region is one of the most economically active and
technologically innovative regions in China. The differences in LCE and
ETI among cities in this region can exactly reveal the complexity and
diversity of research questions. At the same time, the data period is
selected from 2010 to 2022, which not only covers the implementation
period of the national policy on LCE and ETI but also reflects the rapid
economic development and sustainable development challenges faced
by the region. Therefore, it is appropriate to maintain the existing
sample range and time period, which is conducive to fully analyzing the
interaction andmechanism of each variable. Figure 1 shows the changes
in R&D-E and EIPN of YRD region from 2010 to 2022.

Figures 1a, b show the changes in R&D-E and EIPN in Shanghai,
Jiangsu, Zhejiang, and Anhui provinces in the YRD region,
respectively. In Figure 1a, over time, the R&D-E of the three
provinces and one city showed a continuous upward trend, with
Jiangsu Province having the largest increase. In Figure 1b, from
2010 to 2022, the overall EIPN of the three provinces and one city
increased, but the upward trend began to slow down after 2011.

Figures 2a, b show the number of HTEEs and R&D-S changes in
three provinces and one city in the YRD region, respectively. In 2 (a),
with the change of time, the number of HTEEs in the three provinces
and one city has increased, but the proportion of HTEEs in
Shanghai, Jiangsu, and Zhejiang provinces is relatively high,
while the proportion in Anhui province is relatively small. In 2
(b), the R&D-S revenue proportion of HTEE in three provinces and
one city has remained stable at around 35%, with Jiangsu Province
having the highest sales revenue proportion. The data are based on
the analysis of relevant statistical data, specifically from the
Statistical Yearbook of three provinces and one city in the YRD.
The annual statistics in the yearbook provide detailed information
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on R&D investment and sales revenue of high-tech enterprises in
each province and city, allowing estimates of this data to be
accurately reflected.

Based on Figures 1, 2, the ETI of the YRD region is at a leading
level nationwide. Among them, Shanghai ranks among the top three
in the country, while Hefei, the city with the best ETI in Anhui
Province, only ranks 17th in the country. Therefore, there is still a
significant gap in the ETI level of the YRD region, which can be
further explored. In addition to analyzing ETI, this study also
analyzed the current development status of LCE in YRD region.
Figure 3 shows the Total Carbon Emissions (TCE) and Carbon
Emission Share (CES) in the YRD region.

Figures 3a, b show the TCE and CES situation of YRD’s three
provinces and one city from 2010 to 2022, respectively. Jiangsu
Province has the highest TCE and CES among the four provinces,
while Zhejiang Province is similar to Anhui Province, and Shanghai
has the lowest TCE.

In Table 1, the ERI of the three provinces and one city has shown
a continuous upward trend since 2016. The ERI of Shanghai has
always been higher than that of the other three provinces, because
Shanghai has introduced many encouraging policies to protect the
environment, such as subsidies for purchasing new energy vehicles
and special subsidies for energy-saving projects. Compared to
Shanghai, the other three provinces have fewer policies related to
environmental regulations, resulting in lower ERI.

4 Method design for the impact of YRD
region’s ETI on LCE under spatial
econometric analysis

Through the analysis of the current development status of YRD
region ETI and LCE, this study proposes two hypotheses in total.
Hypothesis 1: The ETI level of YRD region has a significant SSE

FIGURE 1
Changes in R&D-E and EIPN in the YRD region from 2010 to 2022. (a) Changes in research and development expenditure, (b) Changes in patent
programmes.

FIGURE 2
Changes in the Number of HTEE and R&D-S in the YRD region, 2010–2022. (a)Changes in the number of high-tech energy technology enterprises,
(b) Changes in R&D sales of high-tech energy technoloy companies.
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effect on the LCE development. Hypothesis 2: The increase in ETI
levels in the YRD region has an active promoting effect on
developing local LCE. To prove the proposed hypothesis, this
study will use a series of SMMs to conduct empirical analysis on
the correlation between ETI and LCE development.

4.1 Indicator selection and variable
description

Tomore accurately reveal the relationship between ETI and LCE
development in the YRD region, this study used panel data from
33 cities in YRD from 2010 to 2022 for analysis. Table 2 shows the
selected relevant indicators.

In Table 2, a total of seven indicators are selected, including PII,
CEI, ERI, IEI, regional population, internet users, and industrial
structure. The CEI indicator is represented by the carbon emissions

per unit of regional GDP. Among the seven indicators mentioned
above, energy-related PII can reflect the level of ETI, CEI can reflect
the development level of LCE, and ERI can reflect both the level of
ETI and the development level of LCE.

Due to the need to use entropy weight method to determine the
weights of ERI, the extreme value method is first used to standardize
the various data in ERI. When the data of ERI are all positive
indicators, the standardized processing formula is Equation 1
(Mahmood and Ali, 2023; Tiangui et al., 2022).

x* � x − xmin

xmax − xmin
(1)

In Equation 1, x and x* represent the original data and the
standardized data, respectively. xmin and xmax represent the
maximum and minimum values of the corresponding indicators
in x. When all ERI data are negative indicators, the processing
formula is expressed as Equation 2.

x* � xmax − x

xmax − xmin
(2)

When there are m and n evaluation objects and indicators
respectively, the constructed Evaluation Information Matrix
(EIM) expression is shown in Equation 3.

A �
a11 a12 / a1n
a21 a22 / a2n
..
. ..

.
1 ..

.

am1 am2 / amn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

In Equation 3, A represents EIM, and a represents the unit
evaluation information in the matrix (Wang et al., 2019). A is
standardized as shown in Equation 4.

R � rij( )
m×n

(4)

In Equation 4, rij represents the standardized data of indicator j
in year i. R represents A after standardization. m × n represents the
order of the matrix. A specific gravity transformation is performed
on Equation 4 to obtain Equation 5 (Hu et al., 2023).

FIGURE 3
TCE and CES in the YRD region, 2010–2022. (a) Change in weight of carbon emissions, (b) Share of carbon emissions.

TABLE 1 Changes in the ERI in the YRD region, 2010–2022.

Year Shanghai Jiangsu Zhejiang Anhui

2010 0.82 0.42 0.58 0.77

2011 0.81 0.45 0.59 0.76

2012 0.83 0.41 0.60 0.77

2013 0.84 0.48 0.62 0.76

2014 0.82 0.49 0.66 0.75

2015 0.85 0.52 0.70 0.73

2016 0.88 0.55 0.68 0.75

2017 0.92 0.64 0.75 0.78

2018 0.93 0.75 0.77 0.81

2019 0.95 0.81 0.82 0.83

2020 0.96 0.84 0.85 0.86

2022 0.98 0.86 0.92 0.94
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pij � rij/∑m

i�1rij (5)

In Equation 5, pij represents the specific gravity. According to
the definition of information entropy, the obtained information
entropy value is shown in Equation 6.

ej � −k∑m

i�1pij lnpij (6)

In Equation 6, ej represents the information entropy of the j-th
indicator. k represents the weight of information entropy. The
formula for obtaining information utility value from information
entropy is shown in Equation 7.

dj � 1 − ej (7)

In Equation 7, dj represents the information utility value of indicator
j (Liu and Han, 2021). Equation 7 is normalized to obtain Equation 8.

wj � dj/∑n

j�1dj (8)

In Equation 8, wj represents the normalized value of the
information utility of the j-th indicator.

4.2 Construction of spatial models

Spatial Auto-correlation Test (SACT) is a type of SMM
commonly used to explore the spatial relationships between
variables. Common SACT methods include Moran’s I and
Geary’s C index analysis (Zhao et al., 2019; Zhang et al., 2023).
This study mainly uses Moran’s I to analyze the spatial correlation
level between LCE and ETI. The first is to build the SWM and set the
mathematical model of the AdjacencyWeight Matrix (AWM) in the
matrix, as shown in Equation 9 (Guo et al., 2021).

W1 �
w1,1 w1,2 / w1,l2

w2,1 w2,2 / w2,l2

..

. ..
.

1 ..
.

al1,1 wl1,2 / wl1,l2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (9)

In Equation 9,W1 represents AWM.When the matrix valuewl1,l2

inW1 is 1, it indicates that the two cities l1 and l2 are adjacent. When
wl1,l2 is 0, it indicates that the two cities are not adjacent. The model of
Geographic Weight Matrix (GWM) in SWM is shown in Equation 10.

W2 �

0
1
d1,2

/
1

d1,l2

1
d2,1

0 /
1

d2,l2

..

. ..
. ..

. ..
.

1
dl1,1

1
dl1,2

/
1

dl1,l2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

In Equation 10, W2 represents GWM. Using dl1,l2 to
represent the distance between two cities in a geographical
region, the larger the distance value, the farther the distance
between the two cities, and the poorer their spatial correlation.
The Economic Weight Matrix (EWM) model in SWM is shown
in Equation 11.

W3 �

0
1

Y1 − Y2| | /
1

Y1 − Yl2| |
1

Y2 − Y1| | 0 /
1

Y2 − Yl2| |
..
. ..

. ..
. ..

.

1
Yl1 − Y1| |

1
Yl1 − Y2| | /

1
Yl1 − Yl2| |

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

In Equation 11, W3 represents EWM. |Yl1 − Yl2| represents the
economic distance between two cities, and the closer the distance,
the better the spatial correlation.

Due to the ability of SACT to quantitatively describe the
spatiotemporal dependence of LCE in various cities of YRD, this
study conducts SACT on LCE (Tian et al., 2023; Yu et al., 2018). The
Global Moran’s I in global SACT is adopted to reveal the spatial
correlation within the overall region. The expression of Global
Moran’s I is shown in Equation 12.

Global Moran′sΙ �
n∑n
l1�1

∑n
l2�1

W Yl1
′ − �Y′( ) Yl2

′ − �Y′( )
∑n
l1�1

∑n
l2�1

W∑n
l1�1

Y′l1 − �Y′( )2 (12)

In Equation 12,W represents SWM.Yl1
′ , Yl2

′ , and �Y′ respectively
represent the CEI of City l1, the CEI of City l2, and the mean CEI of
33 cities in the YRD region. The Stata software is utilized to obtain

TABLE 2 Explanatory table of indicators.

Indicator Indicator
code

Source of data

Items of Patents Issued (PII) A1 SY-3P1C in YRD, China Science and Technology Statistical Yearbook

Carbon Emission Intensity (CEI) A2 China Carbon Accounting Database data, statistical yearbooks of cities

Environmental Regulation
Index (ERI)

A3 Using the entropy weight method, calculations were made based on the emissions of industrial wastewater,
sulphur dioxide and soot

Industrial Electricity Intensity (IEI) A4 Derived from electricity supply and GDP of each city

Area population A5 SY-3P1C in YRD

Internet user A6 SY-3P1C in YRD

Industrial structure A7 SY-3P1C in YRD

Note: “SY-3P1C, in YRD” represents the “Statistical Yearbook of 3 Provinces and 1 City in YRD, Region”.
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the Moran index for CEI, ETI, and environmental regulations of
YRD region cities under the Spatial Adjacency Matrix (SAM) as the
sovereign weight matrix (Li et al., 2023; Wang et al., 2023), as shown
in Table 3.

Table 3 shows the Moran’s Index of 33 cities A1, A2, and A3 in
YRD under SAM from 2010 to 2022. The value range of Moran’s
index is between −1 and 1, and a value close to one indicates positive
spatial auto-correlation, meaning similar values tend to cluster
together. A value close to −1 indicates negative spatial auto-
correlation, meaning similar values tend to be dispersed. A value
close to 0 indicates no significant spatial auto-correlation, meaning
that the observed values are randomly distributed in space. Table 3
shows that A1, A2, and A3 all exhibit spatial clustering in SAM.

In addition to using global SACT to analyze the spatial
correlation of a certain attribute value in the overall direction of
the region, it is also necessary to use local SACT to analyze the

specific locations where spatial clustering occurs (Xu Z. et al.,
2023; Yang X. et al., 2022). Three time points, 2010, 2015, and
2020, are selected to analyze the local auto-correlation Moran
scatter distribution of CEI, ETI, and ERI in the YRD region.

Table 4 shows the Local Spatial Auto-Correlation (LSAC)
Moran scatter clustering of CEI for 33 cities. Among them,
H-HA indicates that two nearby cities with high CEI exhibit
significant spatial clustering. L-LA indicates that two nearby
cities with low CEI exhibit significant spatial clustering. L-HA
and H-LA both indicate that there is no clustering in space. In
Table 4, H-HA cities are generally cities with slightly
underdeveloped economies such as Lianyungang, Huai’an,
and Huainan. These cities have a high CEI in their
economic development process, so they are unable to drive
surrounding cities towards LCE direction. On the contrary,
most of the cities in L-LA are relatively developed first tier cities
such as Hangzhou, Shanghai, Nanjing, and Suzhou. These cities
themselves have a relatively high level of economic
development, which can drive some surrounding cities to
develop towards LCE. Overall, most cities have gradually
developed towards the L-LA and L-HA directions over time,
indicating a decreasing trend in the total CEI of the
YRD region.

Table 5 shows the clustering of LSAC Moran scatter points at
the ETI level. PII represents the ETI level of the YRD region (Xie
et al., 2022). Both H-HA and L-LA data exhibit significant spatial
clustering. This is because regions with higher or lower levels of
ETI are more prone to spatial concentration. In addition, cities
with high levels of energy innovation, such as Shanghai, Suzhou,
and Wuxi, generally have more developed economies. On the
contrary, cities such as Ma’anshan, Tongling, and Anqing are
mostly concentrated in areas with low energy innovation levels,
which is related to their relatively lagging economic
development. Overall, as time goes on, the number of cities in
the L-LA area shows a gradually decreasing trend, indicating that
ETI has a certain radiative driving effect.

Table 6 shows the Moran scatter distribution of ERI LSAC in
2010, 2015, and 2020. ERI data only shows significant clustering
in the H-HA quadrant, and does not exhibit significant spatial
clustering features in the other three quadrants.

TABLE 3 Moran’s index under the SAM.

Year A1 A2 A3

I P I P I P

2010 0.195 0.001 0.136 0.101 0.467 0.031

2011 0.258 0.000 0.113 0.176 0.506 0.004

2012 0.264 0.001 0.115 0.160 0.512 0.002

2013 0.167 0.002 0.085 0.258 0.534 0.058

2014 0.192 0.001 0.116 0.164 0.546 0.035

2015 0.262 0.012 0.101 0.235 0.458 0.003

2016 0.172 0.000 0.051 0.487 0.361 0.001

2017 0.218 0.002 0.084 0.305 0.438 0.064

2018 0.205 0.001 0.025 0.664 0.463 0.015

2019 0.226 0.003 0.073 0.867 0.412 0.027

2020 0.198 0.001 0.148 0.584 0.359 0.002

2021 0.261 0.000 0.152 0.395 0.384 0.000

2022 0.262 0.000 0.158 0.368 0.483 0.000

TABLE 4 Local spatial auto-correlation of CEI Moran scatter city clustering.

Spatial
characteristics

Time

2010 2015 2020

High-height
aggregation (H-HA)

Suqian, Lianyungang, Huaian, Huainan,
Yancheng

Hefei, Wuhu, Bengbu, Maanshan,
Huaibei, Bengbu, Wuhu, Huainan,
Maanshan

Lianyungang, Huaian, Quzhou, Yancheng

Low-high
aggregation (L-HA)

Wuhu, Nanjing, Xuzhou, Changzhou, Yangzhou,
Hangzhou

Xuzhou, Huaian, Yancheng, Suqian,
Tongling

Nanjing, Wuxi, Xuzhou, Changzhou, Yangzhou,
Hangzhou, Wuhu, Huainan, Tongling, Anqing

Low-Low
Aggregation (L-LA)

Shanghai, Wuxi, Suzhou, Nantong, Zhenjiang,
Taizhou, Ningbo, Wenzhou, Jiaxing, Shaoxing,
Jinhua, Zhoushan, Taizhou

Shanghai, Nanjing, Wuxi, Changzhou,
Suzhou, Nantong, Yangzhou,
Zhenjiang, Taizhou

Shanghai, Nantong, Suzhou, Taizhou, Ningbo,
Wenzhou, Jiaxing, Huzhou, Shaoxing, Jinhua,
Zhoushan, Taizhou, Bengbu, Huaibei

High-low
aggregation (H-LA)

Huzhou, Quzhou, Lishui Lianyungang, Huaibei Zhenjiang, Lishui, Maanshan
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5 Empirical results on the impact of ETI
in YRD region on LCE under spatial
econometric analysis

Global and local SACT reveal the spatial clustering degree of
CEI, ETI, and ERI in different cities at different time points. This
study further utilizes empirical analysis related detection methods to
explore the correlation between the selected indicators, thereby
proving the correctness of the hypothesis.

5.1 Descriptive statistical results

Descriptive statistics were used to analyze the impact
relationship between various correlation coefficients, and the
correlation coefficient analysis between various variables was
obtained as shown in Table 7.

Table 7 reveals the correlation coefficients and their significant
characteristics among various variables. There is a significant
correlation between the selected variables, with a 1% significance
level between PII and CEI, which fully demonstrates that an increase
in ETI level will effectively reduce the intensity of carbon emissions
and promote the development of LCE. Figure 4 presents the
descriptive analysis results between each variable.

Figure 4 shows the descriptive statistical analysis of each
variable. These include Low-Carbon Technology Innovation
(LTI) and Low-Carbon Economy Network Technology (LENT),
which measures regional R&D and application capabilities in
emerging low-carbon technologies. LTI reflects a region’s level of
technological innovation to promote the development of LCE.
LENT mainly measures the development of Internet and
information technology infrastructure in a region to support the
development of LCE. The large standard deviation between LTI and
LENT indicates significant differences in ETI levels and internet
development speed across different regions. The standard deviation
of IEI is the smallest, so its impact on the development level of LCE
in various regions is relatively small.

5.2 Selection results of spatial
econometric models

Using five different spatial econometric testing methods to
explore the spatial correlation between energy innovation level
and LCE, the testing results of the five spatial models are shown
in Table 8.

In Table 8, a total of five testing methods, LM, Hasman, Wald,
fixed effects, and LR, were selected to explore the relationship

TABLE 5 Local spatial auto-correlation of energy ETI Moran scatter city clustering.

Spatial
characteristics

Time

2010 2015 2020

H-HA Shanghai, Nanjing, Wuxi, Changzhou, Suzhou,
Nantong, Yangzhou, Hangzhou, Ningbo,
Wenzhou, Jiaxing, Huzhou, Shaoxing, Jinhua,
Taizhou

Shanghai, Nanjing, Wuxi, Changzhou,
Suzhou, Nantong, Yangzhou, Hangzhou,
Ningbo, Wenzhou, Jiaxing, Huzhou,
Shaoxing, Jinhua, Taizhou, Zhenjiang,
Taizhou, Yancheng

Shanghai, Wuxi, Changzhou, Suzhou,
Nantong, Yangzhou, Ningbo, Wenzhou,
Jiaxing, Huzhou, Shaoxing, Jinhua, Taizhou,
Zhenjiang, Taizhou

L-HA Zhenjiang, Taizhou, Huaibei, Quzhou,
Zhoushan, Lishui

Quzhou, Zhoushan, Lishui, Lianyungang Quzhou, Zhoushan, Lishui, Lianyungang,
Huainan

L-LA Lianyungang, Huaian, Yancheng, Suqian,
Wuhu, Bengbu, Huainan, Maanshan,
Tongling, Anqing

Suqian, Bengbu, Huainan, Maanshan,
Tongling, Anqing, Huaibei

Maanshan, Tongling, Anqing, Huaibei

H-LA Xuzhou, Hefei Xuzhou, Hefei, Wuhu, Huai’an Xuzhou, Hefei, Nanjing, Hangzhou, Wuhu,
Huaian, Yancheng, Suqian, Bengbu

TABLE 6 Local spatial auto-correlation of ERI Moran scatter urban agglomeration.

Spatial
characteristics

Time

2010 2015 2020

H-HA Yangzhou, Wenzhou, Taizhou, Lianyungang,
Huaian, Yancheng, Suqian, Wuhu, Bengbu,
Maanshan, Tongling, Anqing

Yangzhou, Wenzhou, Taizhou, Huaian,
Yancheng, Suqian, Wuhu, Bengbu,
Tongling, Anqing, Xuzhou

Yangzhou, Wenzhou, Taizhou, Lianyungang,
Huaian, Suqian, Wuhu, Bengbu, Ma’anshan,
Tongling, Anqing, Xuzhou

L-HA Taizhou, Huaibei, Huainan, Quzhou, Ningbo,
Hangzhou, Nanjing

Taizhou, Huaibei, Huainan, Quzhou,
Ningbo, Hangzhou

Huaibei, Huainan, Quzhou, Ningbo, Hangzhou

L-LA Shanghai, Suzhou, Nantong, Wuxi, Changzhou,
Shaoxing

Shanghai, Suzhou, Nantong, Wuxi,
Changzhou, Shaoxing, Nanjing,
Maanshan

Shanghai, Suzhou, Nantong, Wuxi, Changzhou,
Shaoxing, Jiaxing, Nanjing

H-LA Xuzhou, Hefei, Jiaxing, Zhoushan, Lishui,
Zhenjiang, Jinhua, Huzhou

Hefei, Jiaxing, Zhoushan, Lishui,
Zhenjiang, Jinhua, Huzhou, Lianyungang

Hefei, Zhoushan, Lishui, Zhenjiang, Jinhua,
Huzhou, Taizhou, Yancheng
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between energy innovation and LCE, development. LM-SAR, LM-
SAR, Hasman, Wald-Random effects, LR-end-bottom, LR-time-
both, LR-SDM, SAR, LR-SDM SEM, were all significant at the
1% level, therefore SDM, was used for further analysis.

5.3 The results of the spatial panel
durbin model

There is a significant spatial correlation between energy
technology, LCE, and ERI in the YRD region. Therefore, CEI
serves as the dependent variable and technological innovation
level as the core explanatory variable to construct a spatial panel
Durbin model for further analysis of its spatial effects. Table 9 shows
the comparison of different panel models.

According to Table 9, the impact of ETI under spatial panels on
LCE is significant at the 1% level, while it is not significant in

TABLE 7 Analysis of correlation coefficients of variables.

/ A2 A1 A3 A4 A5 A7 A6

A2 1

A1 −0.742*** 1

A3 0.241*** −0.504*** 1

A4 0.253*** −0.084* −0.187*** 1

A5 −0.169*** 0.399*** −0.335*** −0.234*** 1

A7 0.048 0.113*** −0.213*** 0.248*** −0.362*** 1

A6 −0.674*** 0.909*** −0.513*** 0.156*** 0.532*** −0.157*** 1

Note: ***, **, and * respectively represent significance at the 1%, 5%, and 10% levels.

FIGURE 4
Descriptive statistical analysis of variables.

TABLE 8 Test results of the five spatial models.

Spatial test models Item Statistic P

LM test LM-SAR 21.216 0.000

RLM-SAR 23.101 0.000

LM-SEM 0.935 0.421

RLM-SEM 3.51 0.115

Hasman test Hasman 135.64 0.000

Wald test Wald-Random effects 12.52 0.031

Fixed Effects Test LR-end-both 42.67 0.000

LR-time-both 742.51 0.000

LR test LR-SDM SAR 15.21 0.035

LR-SDM SEM 10.65 0.127
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ordinary panels. This indicates that the ETI under the space panel
has a significant spatial effect on the development of LCE, and the
improvement of energy technology level can suppress CEI and
promote the development of LCE. In addition, ρ under SDM is
significant, indicating that the CEI of YRD region can have a positive
effect on the CEI of surrounding areas. In Table 9, ρ represents the
intensity of spatial auto-correlation effect, which measures the
spillover effect of a region’s LCE level between neighboring cities.
When the value of ρ is positive, it means that if the LCE level of a city
increases, the LCE level of its neighboring cities will also increase
accordingly, indicating that there is a positive SSE. In the reported
results, the value of ρ in the SDM is 0.2482, indicating that the spatial
correlation of LCE development is strong. The value of ρ in the SDM

+ interactive response is 0.2531, indicating that after controlling the
interactive response effect, the correlation of LCE between
neighboring cities still exists and is slightly enhanced. This
further supports the spatial importance of the interaction
between the LCE and ETI.

In Table 10, the values of ρ in spatial AWM, spatial GWM, and
spatial EWM are all positive and significant, indicating that the CEI
in the YRD region has a significant SSE effect on the CEI in the
domain. Under SDM, both local ETI levels and ERI have a negative
impact on the development of LCE.

In Table 11, the regression results under the Durbin model show
that all core variables can be significant at the 10% level under different
circumstances. From the perspectives of AWM, GWM, and EWM,

TABLE 9 Comparison results of different panel models.

Variable Ordinary least
squares

Ordinary least Squares +
interactive response

Spatial durbin
model

Spatial durbin Model +
interactive response

A2 0.0412 0.0865

A1 −0.1398
(−1.70)

−0.1699
(−1.21)

−0.1502***
(−4.01)

−0.2135***
(−3.55)

A3 −0.1490
(−0.49)

−0.4811
(−0.39)

−0.1451
(−0.89)

−0.7991*
(−1.69)

A4 0.3012
(−0.61)

0.2591
(−0.53)

−0.3048
(−0.65)

−0.3801
(−0.78)

A5 −0.2348
(−0.88)

−0.2411
(−0.95)

−0.2735*
(−1.81)

−0.2789*
(−1.85)

A7 −1.6526***
(−2.25)

−1.7871**
(−2.48)

−1.4812***
(−3.25)

−1.7554***
(−3.68)

A6 −0.2189**
(−2.24)

−0.2115**
(−2.24)

−0.1594***
(−2.60)

−0.1562***
(−2.60)

W*A1 0.0295
(−0.25)

0.5843***
(−3.15)

W*A3 −0.3412
(−0.45)

5.3725***
(−3.26)

W*A4 1.812
(−1.54)

2.0615*
(−1.78)

W*A5 0.7215
(−1.28)

0.9913*
(−1.75)

W*A7 0.0301
(−0.02)

2.2567*
(−1.89)

W*A6 −0.0925
(−0.51)

−0.0668
(−0.35)

W*A2 −0.7342***
(−3.95)

Time effect YES YES YES YES

Individual
effect

YES YES YES YES

ρ 0.2482** 0.2531***

Z −2.55 −2.61

σ2 0.0812*** 0.0761***

Z −17.52 −17.52

* means P<0.05, ** means P<0.01, *** means P<0.001.
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when the ETI level increases by 1%, the LCE development level of the
YRD region will increase by 21.15%, 19.95%, and 26.98%. In addition,
the ERI at all three matrix angles increases by 1%. In summary,
combining the ETI level of the YRD region with ERI has a
significant SSE effect on the development of LCE, and improving
the interaction between energy innovation level and ERI can
effectively promote the development of local LCE. To further verify
the stability of the results of the paper,more control variables are used to
analyze the model. The variables introduced include Per capita Gross
Domestic Product (PGDP), Foreign Direct Investment (FDI),
Population Density (POPD), Industrial Structure (INDS), Education
Level (EDU), Internet Penetration (INTERNET), and Environmental
Investment (ENVI), and the results are shown in Table 12.

Among the results in Table 12, regression results of model
1 show that ETI has a significant negative relationship with CEI,
which accords with the preliminary hypothesis. The coefficient of
ETI in Model 2 has decreased slightly, but it is still significant. This

suggests that the control variables have limited influence on the
primary relationship. At the same time, the introduced PGDP has a
significant negative impact on CEI, reflecting the relationship
between the level of economic development and carbon
emissions. Model 3 further reduces the ETI coefficient, but the
correlation remains significant after the introduction of multiple
control variables. In this model, several new control variables (such
as POPD, INDS, EDU, etc.) also show significance, indicating that
they have an impact on the relationship between LCE and ETI.

According to the above empirical results, there is a significant
negative correlation between ETI and LCE. This result not only
confirms the validity of Hypothesis 1 but also illustrates the
important role of ETI in promoting the development of LCE. When
ETI levels increase, CEI is significantly reduced, indicating that
advanced energy technologies can effectively reduce GGE and
support the construction of a LCE. This finding is consistent with
expectations in the theoretical framework, suggesting that technological
innovation can effectively drive the transition to a LCE by improving
energy efficiency and promoting clean energy. For the test of
Hypothesis 2, empirical analysis also shows that the ERI plays an
important moderating role in the interaction between ETI and LCE.
Specifically, in regions with stronger environmental regulations, the
relationship between ETI and LCE is more significant. This indicates
that when the policy environment imposes more stringent
requirements for LTI, enterprises will increase their investment in
clean technology research and development to meet the policy
standards. Consequently, this will promote the development of LCE.
This result shows that government policy is not only the direct driving
force to promote technological innovation but also guides the direction
of LCE to a certain extent.

The specific mechanism between ETI and LCE is primarily
reflected in the promotion of ETI, which directly reduces carbon
emissions per unit production process by introducing more efficient
clean energy technologies. Furthermore, the promotion of ETI
optimizes and purifies the energy structure, compelling enterprises
to prioritize environmental performance in production and operation.
The implementation of innovative technologies has the dual benefit of
reducing reliance on traditional high-carbon energy sources and
promoting the widespread adoption of renewable energy sources.
This, in turn, fosters societal awareness and acceptance of LCE.

6 Conclusion and policy
recommendations

To explore the relationship between the ETI level of YRD region
and the development of LCE, this study used empirical analysis
methods to construct an SDM analysis to analyze the data of YRD
33 cities from 2010 to 2022. Using this data as a sample, the impact of
ETI level on LCEwas obtained. The research results indicated that cities
with higher LCE levels in the YRD region had higher spatial clustering,
and ETI could have a positive impact on the development of LCE. In
addition, the combination of energy innovation and environmental
regulations could have a significant SSE effect on the development of
LCE, and the interaction between the two could effectively promote the
positive development of LCE. Based on the above results, the study
proposes the following policy recommendations. First, the government
should set up a special fund to support the research and development

TABLE 10 Spatial Durbin regression results.

Variables AWM Spatial GWM Spatial EWM

A2 0.0512
(−0.89)

0.0861
(−1.58)

0.2065***
(−3.36)

A1 −0.2212***
(−3.88)

−0.2128***
(−3.78)

−0.2810***
(−4.76)

A3 −0.4915
(−1.06)

−0.8012*
(−1.75)

−1.8451***
(−3.52)

A4 0.0570
(−0.11)

−0.3792
(−0.82)

0.3651
(−0.95)

A5 −0.4112***
(−2.61)

−0.2811*
(−1.88)

−0.2069
(−1.55)

A7 −2.0311***
(−4.31)

−1.7542***
(−3.70)

−1.3120***
(−2.90)

A6 −0.1925***
(−3.25)

−0.1562***
(−2.68)

−0.1275**
(−2.18)

W*A2 −0.2001*
(−1.75)

−0.7342***
(−3.95)

−0.5801***
(−4.25)

W*A1 −0.2212**
(−2.15)

0.5812***
(−3.15)

0.3775***
(−2.95)

W*A3 1.9251*
(−1.95)

5.3689***
(−3.22)

4.2621***
(−3.67)

W*A4 −0.6592*
(−0.69)

0.1254***
(−1.84)

0.3594***
(−1.99)

W*A5 1.1565***
(−2.98)

0.9881*
(−1.75)

−0.7765*
(−2.12)

W*A7 1.1105
(−1.32)

2.2631*
(−1.91)

0.5515
(−0.56)

W*A6 −0.0501
(-0.45)

−0.0665
(-0.35)

−0.1525
(−0.95)

ρ 0.2117*** 0.2518*** 0.1892***

Z −3.58 −2.61 −2.75

σ2 0.0786*** 0.0787*** 0.0765***

Z −17.52 −17.55 −17.55

* means P<0.05, ** means P<0.01, *** means P<0.001.
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and application of clean energy technologies, and guide enterprises and
scientific research institutions to increase investment in low-carbon
technologies. Second, the government should encourage and support
the establishment of joint innovation and technology transfer platforms
between enterprises, research institutions, universities, and the
government to promote resource sharing and technology exchange.
Third, the government should establish and strictly implement more

detailed environmental regulatory policies, including carbon emission
standards, technical standards, and market access conditions, to
promote enterprises to low-carbon transition. The fourth strategy is
to raise social awareness of low-carbon and clean technologies through
public promotion, education, and training, and encourage public
participation in low-carbon actions. The fifth is to encourage cities
in the YRD region to share low-carbon development experience and

TABLE 11 Spatial Durbin decomposition effects.

Type of effect Variables AWM Spatial GWM Spatial EWM

Direct effect A2 0.0510
(−0.77)

0.0712
(-1.32)

0.1921***
(−3.25)

A1 −0.2112***
(−3.65)

−0.1998***
(−3.45)

−0.2712***
(−4.51)

A3 −0.4013
(−0.89)

−0.6799
(−1.50)

−1.7172***
(−3.41)

A4 0.0612
(−0.15)

−0.3458
(-0.81)

0.3721
(−0.98)

A5 −0.3542**
(−2.31)

−0.2526*
(−1.72)

−0.2291*
(−1.71)

A7 −1.9812***
(−4.25)

−1.7052***
(−3.69)

−1.2895***
(−2.95)

A6 −0.2152***
(−3.25)

−0.1621**
(−2.58)

−0.1328**
(−2.15)

Indirect effect W*A2 −0.2318*
(−1.78)

−0.9515***
(−3.81)

−0.6512***
(−4.21)

W*A1 0.2095*
(−1.79)

−0.6825***
(−2.85)

−0.3912***
(−2.71)

W*A3 2.1895**
(−1.98)

6.7018***
(−3.25)

4.7298***
(−3.65)

W*A4 0.4201
(−0.54)

2.6002*
(−1.78)

0.1558
(−0.18)

W*A5 1.3564***
(−2.81)

1.2648
(−1.65)

−0.9412**
(−1.99)

W*A7 0.6941
(−0.75)

2.3621
(−1.58)

0.3721
(−0.32)

W*A6 −0.0982
(−0.71)

−0.1251
(−0.46)

−0.1895
(−0.99)

Total effect A2 −0.1841
(−1.31)

−0.8775***
(−3.35)

−0.4567**
(−3.12)

A1 −0.0019
(−0.01)

0.4921**
(−2.01)

0.1225
(−0.85)

A3 1.8425
(−0.85)

6.2594***
(−2.82)

3.0211**
(−2.51)

A4 0.4811
(−0.67)

2.2518*
(−1.71)

0.5196
(−0.65)

A5 0.9832**
(−1.99)

1.0313
(−1.31)

−1.1625**
(−2.30)

A7 −1.298
(−1.43)

0.6513
(−0.45)

−0.9253
(-0.67)

A6 −0.3026**
(−2.12)

−0.2813
(−1.12)

0.3240
(−1.51)

* means P<0.05, ** means P<0.01, *** means P<0.001.
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technology application cases, and promote regional coordinated
development through institutional innovation and policy coordination.
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