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The digital economy (DE) is an essential transmitter of CO2 within the economic
system, significantly impacting carbon emissions and high-quality development.
The Yellow River Basin (YRB) and the Yangtze River Economic Belt (YREB), China’s
two most important economic regions, are critical strategically for achieving the
dual carbon target. This paper uses panel data from the YRB and YREB in China from
2011 to 2021 and adopts fixed and mediating effects to explore the internal impact
mechanisms and spatial heterogeneity of theDE and carbon emission intensity (CEI)
in the context of newquality productivity (NQP). The research results indicate that (1)
the DE can significantly reduce CEI. A 1% increase in the DE reduces CEI by 0.1536%
in the YRB and 0.0643% in the YREB, respectively. (2) The DE can affect CEI in the
YRB and the YREB through mechanisms such as the economic development level,
industrial structure advancement and rationalization, energy structure, and level of
technological progress, with industrial structure advancement having the highest
impact. (3) The YRB has a lower level of DE development and a higher overall CEI
than the YREB. (4) A 1% increase in the DE leads to regional CEI variations: in the
upstream of the YRB and YREB, CEI decreases by 0.1424% and 0.1956%,
respectively, whereas in the midstream of the YRB, it decreases by 0.1298%, and
in the downstream of the YREB, it increases by 0.0707%. We propose accelerating
the development of the DE and constructing a green and modernized industrial
system to achieve carbon reduction and emission mitigation goals.
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1 Introduction

Excessive CO2 emissions profoundly affect climate change (Jiang et al., 2024), directly
and indirectly influencing achieving the Sustainable Development Goals (Hermwille et al.,
2023). China is the world’s largest economy and, thus, is crucial in mitigating global climate
change (Liu L. et al., 2023; Yu et al., 2023). At the 75th session of the United Nations General
Assembly in 2020, the Chinese government proposed ambitious targets to achieve peak
carbon emissions by 2030 and carbon neutrality by 2060, demonstrating its commitment to
addressing climate change (Li L. et al., 2022; Gao et al., 2017). China has proposed reducing
carbon emissions through a dual drive of digital empowerment and green development
under NQP framework to achieve sustainable development.
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The DE is a significant transmitter of CO2 in the economic
system (Wang et al., 2023). According to the “Global Digital
Economy White Paper (2024)” released by the China Academy
of Information and Communications Technology, the estimated
added value of China’s core DE industries in 2023 exceeded
12 trillion yuan, accounting for approximately 10% of GDP. The
DE’s rapid development has improved resource utilization efficiency
and reduced pollution and carbon emissions. The prospects of this
fast-growing sector for lowering carbon emissions are promising.
Therefore, an in-depth study of the relationship between DE and
carbon emissions is important theoretically for achieving the dual
carbon goals. Current research on the impact of the DE on carbon
emissions mainly focuses on four aspects: first, the analysis of how
the DE affects carbon emissions, such as industrial structure (Lin
and Zhou, 2021), technological progress (Yi et al., 2022), energy
intensity (Zhang W. et al., 2022), and human capital (Wang et al.,
2022b); second, the analysis of regional heterogeneity of this impact
is often conducted at different scales, such as the provincial (Chen
et al., 2023), the city (Cheng et al., 2023), and the county scales (Ma
and Zhang, 2025); third, the impact of various aspects of DE
development on carbon emissions involves perspectives of digital
city construction (Yang et al., 2022), digital infrastructure
development (Zhang et al., 2023), and digital taxation (Zeng and
Yang, 2023); and fourth, the impact on different dimensions of
carbon emissions, such as the effect of digital finance on carbon
productivity (Sun et al., 2023) and the influence of digitalization and
industrialization on total factor carbon emission performance (Ma
R. et al., 2023). However, these studies typically employed singular
and unsystematic indicators of the DE. Moreover, they focused on
broad regions, lacking detailed investigations into specific areas and
comparative analyses. The impact of the DE on carbon emissions
requires further exploration, especially in the context of NQP. As
China entered this higher-level form of productivity, there was an
urgent need to break away from traditional economic development
models and productivity paths, significantly enhancing total factor
productivity and, thus, indirectly affecting carbon emissions.
Therefore, in the era of NQP, it is important to explore the
impact and improvement potential of traditional and NQP paths
on carbon emissions under different structures according to the
innovative forms of the volatile DE industry, to promote the high-
quality green development of carbon emissions and the economy.

To further highlight the differences between the DE and carbon
emissions under traditional and new-quality paths, this study
compares the YRB and the YREB. The YRB is a crucial base for
China’s energy, chemical, and basic industries, traditionally
supported by agriculture, energy, and heavy industry. In recent
years, it has gradually shifted toward manufacturing and high-tech
industries. The YREB represents half of the country’s population
and total economic output, with manufacturing, high-tech
industries, and modern services serving as key pillars of the
economy, possessing broad developmental depth. This research
centers on single-region carbon emission evolution (Rong et al.,
2023), carbon emission efficiency (Wang and Shao, 2024), CEI
(Chen et al., 2022), and driving factors (Wang and Xue, 2023).
Despite the research on the DE and carbon emissions in both the
YRB and the YREB (Dong and Zhou, 2023; Xu and Ci, 2023),
comparative research between these regions under traditional
production modes and NQP is lacking. Especially in the context

of NQP, developing DE in the YRB and the YREB will have different
driving models owing to the regional heterogeneity of carbon
emissions, leading to time lags and differences in mechanisms
and spatial–temporal distributions. Therefore, studying the DE
and carbon emissions in the YRB and the YREB in the context
of NQP will help stakeholders and governments formulate
differentiated regional development strategies, learning from one
another, complementing one another’s strengths, and promoting the
high-quality development of the basin economy.

Based on the above, we use panel data from 58 prefecture-level
cities in the YRB and 104 in the YREB from 2011 to 2021. We
analyze the impact of the DE on CEI in the YRB and YREB by
employing fixed and mediating effects, focusing on the intrinsic
mechanisms and spatial heterogeneity between the two regions with
NQP as a key driving force. This study makes the following marginal
contributions: (1) It innovatively constructed an index system of the
DE comprising five key dimensions: element configuration,
elemental support, innovative performance, digital
industrialization, and industry digitalization. This comprehensive
framework enabled a scientific measurement of the DE’s
development, allowing policymakers and stakeholders to
formulate precise development strategies, optimize resource
allocation, and foster innovation-driven growth. (2) This study
also compared the impact of the DE on CEI under NQP
paradigm in the YRB and the YREB. This regional comparison
provided valuable empirical insights and practical references for
leveraging the DE to drive high-quality development. (3) By
integrating Grossman’s theory and the Environmental Kuznets
Curve (EKC) hypothesis, the study innovatively explored how the
DE empowered NQP to influence carbon emissions. This
introduced a novel theoretical framework for relevant research
and offered concrete policy pathways to help China achieve its
2030 carbon peak and 2060 carbon neutrality goals. (4) The study
revealed the differentiated effects of the DE on CEI under spatial
heterogeneity across river basins. The study incorporated economic
development, development models, and technological foundations,
conducting a detailed assessment of the impact of the DE on carbon
emissions across the upper, middle, and lower reaches of the YRB
and the YREB. These findings support local governments in
formulating region-specific strategies for the DE and carbon
reduction policies.

The rest of this paper is organized as follows: Section 3 presents
the theoretical framework and research hypotheses. Section 4
outlines the methodology, variables, and data sources. Section 5
presents the empirical results. Sections 6, 7 provide the comparative
mechanism analysis and heterogeneity analysis. Finally, Section 8
concludes and provides policy implications. Section 9 discusses the
study’s limitations and suggests future research. The technology
roadmap is shown in Figure 1.

2 Theoretical analysis and research
hypotheses

2.1 Direct effects of DE on carbon emissions

The direct impact of the DE on carbon emissions manifested
primarily in three ways. First, as a foundational element of the DE,
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digital infrastructure reduced the resource dependency of economic
development, significantly lowering CEI (Zhang et al., 2023).
Second, the DE broke through the regional barriers of data
elements and digital technologies through spatial spillover effects.
Enhancing resource mobility altered the geographical distribution of
data elements, optimized resource allocation, positively influenced
the energy-saving and emission-reduction efficiency of neighboring
regions, and reduced CEI (Wu et al., 2021; Yi et al., 2022; Bai et al.,
2023; Cheng et al., 2023). Third, developing digital technologies
increases the input levels of data elements and the output levels of
digital innovation, advancing the flow of innovative resources and
the integration of industrial resources, enhancing economic
operational efficiency and innovation capacity, reducing energy
consumption, and decreasing carbon emissions (Zhang W. et al.,
2022; Lin and Zhou, 2021). Based on these studies, we proposed
Hypothesis 1.

Hypothesis 1. Developing DE positively contributes to decreasing
carbon emissions.

2.2 Mediating effects on DE and carbon
emissions relationship

NQP refers to the productivity of leading technological
innovation and achieving critical disruptive technological
breakthroughs. It comprises three key dimensions: the “new
economy,” “new industrial forms” and “new technologies” (Zhou
and Xu, 2023). As an inherently green type of productivity, it
facilitates carbon reduction and emission mitigation. A significant
driving force for developing NQP (Zhang and Wen, 2024), the DE
directly influenced carbon reduction and sustainable development
by transforming NQP and production relations. Grossman and

FIGURE 1
Technology roadmap.
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Krueger (Grossman and Krueger, 1991) utilized the LMDI index to
decompose the driving factors of carbon emissions into scale,
structural, and technological effects, which logically correspond
to the three dimensions of NQP, i.e., new economy, industrial
forms, and technologies. By integrating Grossman’s theory with
the theoretical framework of NQP, we innovatively propose a new
theoretical pathway among the DE, NQP, and carbon emissions, as
indicated in Figure 2.

2.2.1 Scale effect
The EKC hypothesis posits an inverted U-shaped relationship

between economic growth and environmental pressure, as shown in
Figure 3. Environmental pressure increased with economic growth
in the initial stages of economic development. However, once
economic growth reached a certain level, policymakers and
stakeholders recognized that excessive economic development
was causing significant ecological damage. Consequently, there
was a need to emphasize the dual benefits of environmental and
economic sustainability. After implementing protective measures,

environmental pressure decreased and the ecological environment
improved (Grossman and Krueger, 1995; Yang et al., 2022; Chang
et al., 2023).

The DE, driven by technological and institutional innovations,
represents a new economic type integrated with the real economy.
Through aspects such as digital infrastructure, industrial

FIGURE 2
The mechanism between DE, NQP and CEI.

FIGURE 3
The Environmental Kuznets Curve (EKC) hypothesis.
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digitization, and digital industrialization, it empowered the
development of NQP in the “new economy,” with amplifying,
overlapping, and multiplicative effects on economic growth
(Chang et al., 2023; Zhang and Wen, 2024). According to the
EKC hypothesis, carbon emissions are anticipated to decline once
the DE attains a certain level of development and the government
begins to prioritize the dual benefits of environmental and economic
sustainability. Based on these studies, we proposed Hypothesis 2.

Hypothesis 2. The DE empowers the “new economy” dimension
of NQP, reducing carbon emissions through the scale effect.

2.2.2 Structural effect
Industry is a fundamental driver of NQP and a key dimension of

“new industrial forms,” with structural shifts significantly impacting
carbon emissions (Cheng et al., 2023). Within the framework of
NQP, the DE influenced carbon emissions through the industrial
structure in three main ways. First, the DE empowered NQP by
rationalizing industrial structures. On the one hand, data elements
exerted a substitution effect, shifting traditional production factors
such as land and labor toward innovative configurations involving
data and technology (Lu et al., 2024). This shift permitted effective
production factors to flow from low-to high-efficiency sectors,
leveraging the dividend effect of the DE to upgrade industrial
structures, improving green total factor productivity (Lee et al.,
2023). On the other hand, carbon emissions were reduced by
expanding the economic scale of the tertiary industry and
decreasing the proportion of coal consumption (Wang et al.,
2022a). Additionally, as the DE transformed traditional industrial
structures, employment models in traditional enterprises were also
altered, imposing higher requirements on the workforce’s technical
skills and professional qualities. The increase in high-tech personnel
has increased energy-saving awareness (Edziah et al., 2021),
influencing carbon emissions and achieving a virtuous cycle
among the population, resources, and the environment. Second,
the DE empowered NQP by advancing industrial upgrading.
Leveraging its extensive factor coverage, the DE transformed
traditional industries toward strategic emerging industries such as
high-end equipment manufacturing and low-altitude economy
industries. This transition contributed to establishing a modern
industrial system, achieving new industrialization, and promoting
carbon reduction. Third, the DE fostered the innovative upgrading
of industrial production relations in NQP, transitioning industries
from segregation to integration. The data elements’multiplier effect
advanced their integration with various production factors, fostering
innovative upgrades in industrial production relations, reducing
high energy consumption and pollution, and lowering CEI (Wang
et al., 2022a; Wang et al., 2022c; Chang et al., 2023; Lan et al., 2023;
Lee et al., 2023).

Meanwhile, energy served as a critical pillar for developing NQP
and represented an essential dimension of transforming and
upgrading “new industrial forms.” Its structural changes
profoundly affected carbon emissions. The DE, by leveraging the
substitution effect of data elements, empowered NQP, driving
disruptive technological innovations that facilitated the transition
of the energy structure toward low-carbon and cleaner alternatives.
This transformation enhanced energy conservation and emission
reduction efficiency (Wu et al., 2021; Zhang W. et al., 2022),

effectively lowering CEI and contributing to developing a green
industrial system. Based on these studies, we proposed Hypothesis 3.

Hypothesis 3. The DE empowers the “new industrial forms” of
NQP, reducing carbon emissions through structural effects.

2.2.3 Technological effect
The rapid advancement of information technology reduced the

costs of information transmission and processing (Moore, 1965;
Brenner, 1997), contributing to the swift growth of the DE. “New
technologies,” a critical dimension of NQP development, involved
significant disruptive technological breakthroughs (Zhou and Xu,
2023). The DE, through digital technologies and data elements,
empowered NQP to achieve these breakthroughs by enhancing the
efficiency and quality of economic operations, optimizing the
coordination between economic development and ecological
protection, and influencing carbon emissions through three
pathways. First, the DE boosted innovation momentum in NQP
through digital technologies, achieved high-efficiency innovation
transformations, reduced transaction costs for factors such as land
and capital, improved transaction efficiency, and lowered energy
consumption in economic operations, all of which advanced green,
low-carbon development (Lin and Zhou, 2021). Second, the DE
utilized the data substitution effect of data elements to empower
NQP and drove disruptive technological innovations to improve
traditional production methods, facilitated energy structure
adjustments, reduced energy consumption, and lowered CEI
(Huang, 2023; Zeng and Yang, 2023; Yu et al., 2024). Third,
developing digital finance propelled NQP through disruptive
technological innovations, spurred the market to create new
production methods and business models, generated more green
financial products, reduced investment and financing risks, and
achieved green digital development, thus affecting carbon emissions
(Liu Q. et al., 2023). Based on these findings, we proposed
Hypothesis 4.

Hypothesis 4. The DE empowers NQP’s “new technologies,”
reducing carbon emissions through technological effects.

3 Methodology, variables, and data

3.1 Study area

Themajor cities within the YRB and the YREB are selected as the
study area, as shown in Figure 4. Situated between longitudes
96°–119° E and latitudes 32°–42° N, the YRB covers
approximately 795,000 km2, including 42,000 km2 of inland river
areas. The YRB’s population constitutes nearly 30% of the national
total, with economic development primarily concentrated in the
middle and lower reaches—especially in Shandong and Henan
provinces, which account for the majority share. The YREB
encompasses about 2,052,000 km2, representing 21.4% of China’s
total area. As of 2021, its population and regional GDP constitutes
42.9% and 46.4% of the national totals, respectively. Due to their
unique geographical areas, populations, and economies, changes in
carbon emissions within the YRB and the YREB profoundly affect
the entire country. Moreover, under the pathway of NQP, these
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regions exert different impacts. The study area’s boundaries are
delineated by the administrative divisions of prefecture-level cities.
Additionally, based on geographical characteristics, the upper, middle,
and lower reaches are distinguished to facilitate a comparative analysis
of the DE and carbon emissions among the basins.

3.2 Methodology

3.2.1 Entropy method
The entropy method was utilized to reflect the utility value of the

information entropy of indicators (Chen et al., 2023). We objectively
evaluated the comprehensive DE indicator system, constructed using
18 subindicators and referencing previous studies (Lin and Zhou, 2021;
Yang et al., 2022), by applying the entropy method for measuring the
DE development levels of 58 prefecture-level cities in the YRB and
104 prefecture-level cities in the YREB from 2011 to 2021.

Initially, the data were standardized as follows:

Yij � Xij −min X1j, · · ·,Xnj( )
max X1j, · · ·,Xnj( ) −min X1j, · · ·,Xnj( ) (1)

where Xij denotes the value of subindex j for city i, and Yij denotes
the standardized value of subindex j for city i in Equation 1.

Therefore, the ratio of the subindex j value for city i to the
standardized values of subindex j across all cities is given by
Equation 2:

Pij � Yij∑m
i�1Yij

(2)

Furthermore, the entropy value of the subindex was calculated as
shown in Equation 3:

ej � −k∑m
i�1
Pij ln Pij( ) (3)

Where k >0 and ej ≥0. Subsequently, the redundancy
of the information entropy was calculated as dj = 1– ej.
Therefore, the weight of subindex j was evaluated using
Equation 4:

wj � dj∑n
i�1dj

(4)

Finally, the weights of the comprehensive DE indicator system
were calculated by Equation 5 (as shown in Table 1):

DEi � ∑n
i�1
wjPij j � 1, 2, 3....( ) (5)

FIGURE 4
The geographical locations of the YRB and YREB within the study area.
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3.2.2 Benchmark model
The IPATmodel (Ehrlich and Holdren, 1971) is typically used to

identify the causes of environmental problems resulting from
human activities. The model is as follows:

I � P × A × T (6)

where I denotes the environmental impact, P denotes
the population factors, A denotes affluence, and T denotes
the broad level of technology. However, the model is limited
for being singly linearized. Consequently, Dietz and Rosa
(Dietz and Rosa, 1994) introduced a stochastic error
term, extending the IPAT model to the STIRPAT model,
allowing a more extensive analysis of the impact of social and
ecological factors on the environment. The specific model is
as follows:

I � φ0 × Pφ1 × Aφ2 × Tφ3 × φ4 (7)

Referring to the study (Li et al., 2023), to reduce the abnormal
volatility of the data, Equation 8 was logarithmically transformed
as follows:

ln I � lnφ0 × φ1 ln P × φ2 ln A × φ3 ln T × φ4 (8)
where φ0 denotes the constant term; and φ1, φ2, and φ3 denote the
coefficients of the variables, i.e., the indicator terms. φ4 is the
stochastic error term.

The impact of the DE on carbon emissions in the YRB and the
YREB were compared by constructing the following research model
and Hypothesis 1 following previous theoretical models (Wang
et al., 2022b; Wang et al., 2022a; Chen et al., 2023; Ma R. et al.,
2023; Wang and Li, 2023):

ln CEIit � α0 + α1lnDEit + α2 × ln Ergit + +α3 × ln Ppdit

+ α4 × ln Lopnit + α5 × ln Lgsit + α6 × lnUrbit

+ α7 × ln Lugit + εit (9)

TABLE 1 Index system of DE.

Target
level

First-level
Index

Second-level
Index

Indicators Unit References Weight

DE Element
configuration

Hardware Number of internet access ports 10,000 Zhang et al. (2022a) 0.0375

Number of domain names 10,000 Wang et al. (2022b), Wang
et al. (2022a)

0.0698

Software Number of mobile phone users 10,000 Sun et al. (2024) 0.0320

number of broadband Internet
subscribers

10,000 Yi et al. (2022) 0.0408

Element
support

Policy element DE policy level % Tang et al. (2021) 0.0218

Market element Marketability index % Zhang et al. (2022a) 0.0032

Labour element Number of people employed in the
information transmission, computer

services and software industry

10,000 0.1160

Innovative
performance

Level of innovation
input

Science and technology expenditure/local
public general budget expenditure ratio

% Wang et al. (2022a) 0.0319

Number of patent applications in the DE piece Ma and Zhu (2022) 0.1168

Level of innovative
output

Number of patent authorizations in
the DE

piece — 0.1124

Number of startups per 100
people

— 0.0193

Digital
industrialisation

Communications
industry

Total telecommunications
business/GDP ratio

% Ma and Zhu (2022) 0.0270

Electronic information
manufacturing industry

Number of AI enterprises unit Wang and Li (2023) 0.1330

Software and information
technology

services industry

Percentage of people
employed in software and information

technology services

% 0.0225

Digitalisation
of industry

Digitalisation
of agriculture

Total agricultural
machinery power

10,000 kW — 0.0208

Digitalisation of transport and
logistics

Total postal business volume 10,000 Wang et al. (2022b), Zhang
et al. (2022a)

0.1057

Number of employees in transport,
storage, postal and telecommunications

10,000 0.0801

Financial
digitalisation

Digital financial inclusion index — Sun et al. (2024) 0.0092
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where CEIit denotes CEI of city i in year t, corresponding to I in
Equation 8, i.e., environmental impact, serving as the dependent
variable; DEit denotes the DE of city i in year t, corresponding to A
in Equation 8, i.e., affluence, serving as the independent variable.
Additionally, several control variables were included: Ppdit denotes
the population density of city i in year t, corresponding to P in
Equation 8, i.e., population factors, measured in people per square
kilometer; Ergit denotes the environmental regulation of city i in
year t, corresponding to T in Equation 8, i.e., the broad level of
technology, measured in percentage (%); LOPNit denotes the level
of openness of city i in year t, measured in percentage (%); Lgsit
denotes the level of government support of city i in year t, measured
in percentage (%); Urbit denotes the urbanization level of city i in
year t, measured in percentage (%); and Lugit denotes the urban
greening level of city i in year t, measured in square meters (m2). α0 is
the constant term, i denotes the time fixed effects, t denotes the
individual fixed effects, and εit denotes the stochastic error term. All
variables were logarithmically transformed. Moreover, based on
Hypothesis 1, it was assumed that α1 > 0.

Furthermore, this study investigated the intrinsic mechanisms
between DE and carbon emissions by referencing relevant
theoretical models (Baron and Kenny, 1986; MacKinnon et al.,
2000). The following mechanism model was constructed by
introducing the interaction term between the mediating variable
and DEit of the explanatory variable in the benchmark regression:

lnMEAit � ∂0 + ∂1lnDEit +∑7
k�2

∂k ln Cit + εit (10)

ln CEIit � δ0 + δ1lnDEit + δ2lnDEit × lnMEAit + δ3lnMEAit

+∑9
k�4

δk ln Cit + εit (11)

The mediating variable, MEAit encompassed economic
development level (pgdpit), industrial structure (Isrit; Isait),
energy structure (Ensit), and level of technological progress
(Ltpit). The control variables in Equation 9 were represented by
ln Cit. The estimated coefficients are denoted as ∂0 /∂7 and δ1 / δ9,
where ∂0 and δ0 represent the constant terms. If the estimated
coefficients ∂1 and δ2 were both significant, the mediating variable
mediates between the DE and carbon emissions, verifying
Hypothesis 2–4.

3.3 Variable selection and data

3.3.1 Dependent variable
CEI was selected as the dependent variable from an equity

perspective, quantifying the relative variation in carbon emissions
within the study region. Referring to the study by (Wang and Li,
2023), CEI was estimated as carbon emissions per unit of GDP,
specifically the ratio of carbon emissions to GDP for each
prefecture-level city.

3.3.2 Independent variable
The DE development index was chosen as the explanatory

variable. The World Economic Forum and the G20 defined the
DE as “a broad range of economic activities that use digital

information and knowledge as key production factors, modern
information networks as important activity spaces, and
information and communication technologies to drive
productivity growth.” Based on theoretical foundations and
practical needs, we created an index that accurately reflects the
essence of the DE and its impact on economic development.
Simultaneously, we thoroughly considered the multidimensional
characteristics of DE development to construct a hierarchical
index system with strong practical applicability and scalability.
Additionally, considering data reliability, availability, consistency,
and temporal continuity, we developed a DE index system
comprising five key dimensions: element configuration, elemental
support, innovative performance, digital industrialization, and
digitalization of industry. This framework effectively captures the
DE’s growth potential and development trends. We selected
18 specific indicators to measure the DE development index and
utilized the entropy weight method to synthesize the indicator
system. The specific weights and indicator systems are presented
in Table 1.

3.3.3 Mediating variables
The mediating variables were primarily based on Grossman’s

“scale–structure–technology” principle and the hypothesis analysis
presented in Section 2.2. The mediating variables are as follows.

(1) Economic development level, Pgdp: This variable originates
from the scale effect and the “new economy” dimension. The
DE empowered NQP through digital technologies, advancing
the deep integration of the digital and real economies,
facilitating economic growth (Liu et al., 2024) and
subsequently affecting CEI. Per capita GDP directly
reflected the level of economic development (Chang et al.,
2023). Therefore, we used each prefecture-level city’s per
capita GDP to represent the economic development level.

(2) Industrial structure: This variable is derived from the
structure effect and the “new industrial forms” dimension.
The industrial structure is formed through market selection
under constraints such as technology and the stage of
economic development. Its optimization and upgrading
can generate a “structural dividend” effect, thereby
reducing carbon emissions (Wang et al., 2019). The DE
promoted the collaborative development of digital and
industrial digitalization through digital technologies,
facilitating the innovative flow of production factors (Zhou
and Xu, 2023). This empowered NQP to build a modern
industrial system. Additionally, data factors had a multiplier
effect, allowing for the combination of production factors and
fostering industrial integration, which influences the
industrial structure and indirectly impacts carbon
emissions. Consequently, we selected the advancement and
rationalization of the industrial structure to illustrate its
mechanistic effects.

Industrial structure advancement, Isa. Data factors possessed
broad applicability, empowering NQP to drive the transformation
and upgrading of traditional industries to advanced industries. This
expanded the proportion of emerging and future industries,
achieving green and low-carbon development and reducing
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carbon emissions. Referring to the relevant study by (Fu, 2010), we
employed the cosine method to measure the advancement of the
industrial structure. First, spatial vectors were constructed based on
the proportions of the primary, secondary, and tertiary industries’
added value to GDP, forming a three-dimensional industrial
structure spatial vector P0 � (P10, P20, P30), where P0 represents
the proportion of the ath industry to GDP (a � 1、2、3).
Subsequently, the angles rb (b � 1, 2, 3) between P0 and the
vectors representing different industries, P1 � (1, 0, 0),
P2 � (0, 1, 0), and P3 � (0, 0, 1), were calculated as follows:

rb � arccos
∑3

a�1 Pab × Pa0( )�������������������∑3
a�1 P2

ab( ) × ∑3
a�1 P2

a0( )√⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦
b � 1、2、3

Subsequently, the industrial advancement value G was
calculated using the following formula:

G � ∑3
a�1

∑a
b�1

rb

where Pab represents the coordinate values of the three-dimensional
vectors P1, P2, and P3.

Industrial structure rationalization, Isr. Rationalizing the
industrial structure refers to the quality of industry aggregation,
reflecting the degree of input–output coupling and the effective
utilization of resources between industries. Typically, structural
deviation is used to measure this; however, this approach
neglects the importance of each industry to the economy;
additionally, using absolute values complicates the analysis.
Therefore, to assist in the study, Gan et al. (Gan et al., 2011)
introduced the Theil index (Theil, 1967), which measures the
structural deviations in output and employment among different
industries and assesses the superior characteristics of each industry
in the economy (Yuan and Zhu, 2018). Thus, the Theil index was
utilized to calculate the rationalization of the industrial structure
using the following formula:

Ri,t � ∑3
n�1

Yi,n,t ln
Yi,n,t

Li,n,t
( )

Where i = 1, 2, 3 represents the primary, secondary, and tertiary
industries, respectively. Yi,n,t denotes the proportion of the ith
industry’s gross regional product in region n during period t, and
Li,n,t indicates the proportion of employment in the ith industry
relative to total employment in region n during period t. When the
economy is in equilibrium, Ri,t = 0. The smaller the value of Ri,t, the
more rational the industrial structure.

(3) Energy structure, Ens: The energy structure was derived from
the technology effect and the “new technologies” dimension.
Digital technologies fostered NQP development by driving
the extensive integration of data elements and disruptive
technological innovations. This transformation increased
the share of green and low-carbon industries while
reducing reliance on high-energy-consuming and high-
carbon-emitting sectors, such as coal, accelerating the
energy structure’s transition and upgrading (Yang et al.,
2022; Huang et al., 2023). It also enhanced carbon

emission efficiency, reduced energy consumption, and
promoted a sustainable balance among the population,
resources, and the environment. Because coal has remained
China’s primary energy source, its consumption trends
effectively reflected adjustments in the energy structure.
Therefore, the energy structure was measured by the
proportion of coal consumption to total energy
consumption in each prefecture-level city (Wang et al.,
2022a). Owing to data acquisition considerations, total
energy consumption was calculated using natural gas,
liquefied petroleum gas, social electricity consumption, and
urban heating (including steam heating and thermal power
plant heating), converted using standard coal coefficients. The
specific formula is as follows:

Coal Proportion � UrbanHeating + Total Social Electricity Consumption( )/
Natural Gas + Liquefied PetroleumGas + UrbanHeating(
+Total Social Electricity Consumption).

(4) Level of technological progress, Ltp: The level of technological
progress was derived from the technology effect and the “new
technologies” dimension. Digital technologies empowered
NQP, fostering disruptive technological innovations and
achieving efficient transformations that enhanced total
factor productivity and improved carbon emission
efficiency. Additionally, digital finance drove the
innovation of production relations, altered production and
consumption patterns, enhanced the technological
momentum of industrial forms toward decarbonization,
fostered green and low-carbon financial products, reduced
carbon emissions, and realized green digital development (Liu
Q. et al., 2023; Sun et al., 2023; Tian et al., 2024).
Consequently, technological progress was proxied by the
number of green patents issued (Bottazzi and Peri, 2007;
Wang et al., 2022a).

3.3.4 Control variables
To mitigate the omitted variable bias, control variables

potentially influencing the CEP were selected based on the
aforementioned STIRPAT theoretical framework, in conjunction
with frequency statistical methods and data availability. These
variables were subsequently log-transformed:

(1) Level of Opening (Lopn): The level of openness affects
energy-saving and emission reduction efficiency through internet-
related channels (Wu et al., 2021). Therefore, the opening level was
measured by the total import and export trade ratio to GDP (Han
et al., 2021). (2) Broad Level of Science and Technology (Erg):
Government environmental regulations influence the development
of environmental technologies, under which the internet economy
impacts total factor carbon emissions to some extent (Kou and Xu,
2022). Consequently, the broad level of science and technology was
quantified using the ratio of environmental keywords to the total
number of words in government work reports. (3) Population
Density (Pop): An increase in population typically stimulates
greater consumption demand, leading to elevated industrial and
household carbon emissions (Hua et al., 2018). Thus, population
density was assessed by the ratio of the permanent population to the
administrative area of each region. (4) Level of Government
Support: Low government subsidies, such as fossil fuel subsidies,
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negatively impact economic growth and carbon dioxide emissions
(Lin and Ouyang, 2014). Therefore, government support was
measured by the ratio of local general public budget expenditure
to GDP (Ma R. et al., 2023). (5) Level of Urbanization (URB): The
level of urbanization affects the energy efficiency (Han et al., 2021)
and consumption per unit of time and space, thereby influencing
carbon emissions per unit of space. Accordingly, urbanization was
measured by the proportion of the urban population to the total
population (Wang et al., 2022a). (6) Level of Urban Greening: Larger
per capita areas of urban parks corresponded to greater fixed
amounts of carbon dioxide, t positively contributing to local
carbon emission control (Chen and Lee, 2020; Wang and Li,
2023). Consequently, the per capita park green space area (Zhang
W. et al., 2022; Wang and Li, 2023) determined the level of
urban greening.

3.4 Data resources and statistical description

Per data availability and watershed administrative divisions, we
used panel data from 58 cities in the YRB and 104 cities in the YREB
from 2011 to 2021 to explore the impact of the DE on carbon
emissions. CEO was the dependent variable, with the total carbon
emission data obtained from the Emissions Database for Global
Atmospheric Research. The independent variable, DE, was
measured using data sourced from the National Bureau of
Statistics, the China Statistical Yearbook, the China Urban
Statistical Yearbook, provincial statistical yearbooks, the China
Academy of Information and Communications Technology,
CINIC, the CNRDS database, local business registration records,
prefecture-level city statistical bulletins, local government websites,
the China Regional Statistical Yearbook, and the Peking University
Inclusive Finance Index. Mediating variables included industrial
structure, with data derived from provincial statistical yearbooks;
energy structure, with data obtained from the China Urban
Statistical Yearbook, provincial statistical yearbooks, and
prefecture-level city bulletins; and green technology level, with
data sourced from CNRDS. The control variables were measured
using data from the National Bureau of Statistics, the China Urban
Statistical Yearbook, provincial statistical bulletins, government
work reports, and the China Urban Construction Yearbook.

Additionally, we applied interpolation to supplement and
estimate missing data for certain years in the indicators. Table 2
presents the descriptive statistics of the variables, all of which were
log-transformed.

4 Results and discussion

4.1 DE and CEI characteristics

Figure 5 illustrates the DE and CEI spatial distribution across the
YRB and the YREB. The DE’s overall development gradually
increased, which was mainly attributed to the promotional effects
of national policies such as “Broadband China” “Internet +” and
“Big Data Action” (State Council, 2013; State Council, 2015b; State
Council, 2015a). The overall development of the DE in the YREB
was significantly higher than in the YRB. One possible reason could
be that Hangzhou, as the birthplace of China’s DE, generated
economic agglomeration effects due to its geographic closeness to
neighboring cities, thus promoting economic growth along the
Yangtze River.

Overall CEI also gradually decreased, which was closely related to
policy guidance emphasizing climate change and constructing an
environmentally friendly society, as outlined in the “China’s Policies
and Actions for Addressing Climate Change (2011)” white paper and
the 12th Five-Year Plan, 13th Five-Year Plan, and 14th Five-Year Plans
(Ministry of Ecological Environment, 2011; State Council, 2011; State
Council, 2016a; State Council, 2021b). As economic development
levels improve, cleaning technology is constantly innovated,
reducing the potential energy intensity (Li et al., 2017)and reducing
CEI. However, CEI in the YRB continued to be significantly higher
than in the YREB, possibly because the YRB served as an essential
energy and chemical industrial base in China, characterized by higher
industrial pollutant emissions and low-quality, inefficient industrial
development with insufficient high-quality progress.

4.2 Benchmark regression results

In the benchmark model, we primarily assessed the direct
impact of DE on CEI. In the third row of columns (1) and (2) of

TABLE 2 Descriptive statistics of the variables (after logarithm).

Variable Obs Mean Std. Dev Min Max

Region YRB YREB YRB YREB YRB YREB YRB YREB YRB YREB

lnCEI 638 1144 8.658 7.795 0.574 0.582 7.432 6.09 10.111 10.096

lnDE 638 1144 −3.426 −3.179 0.597 0.693 −4.804 −4.727 −1.181 −0.324

lnErg 638 1144 −1.082 −1.163 0.395 0.433 −2.817 −3.525 0.004 0.214

lnPop 638 1144 5.5 6.028 1.017 0.624 0.683 4.026 7.273 7.747

lnLopn 638 1144 1.393 2.161 1.489 1.399 −2.697 −2.404 4.404 5.449

lnLgs 638 1144 2.954 2.892 0.496 0.377 1.905 2.028 4.517 4.212

lnUrb 638 1144 3.977 3.979 0.264 0.249 2.973 2.899 4.563 4.495

lnLug 638 1144 2.632 2.555 0.37 0.291 1.112 0.307 3.722 3.445
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Table 3, the coefficients of lnDE for both the YRB and the YREB
were negative at the 1% significance level, indicating that DE
development significantly reduced CEI. Specifically, each 1%
increase in the level of DE development reduced CEI by 0.1536%
in the YRB and 0.0643% in the YREB. First, under the “Broadband

China” strategy, improving and developing digital infrastructure
reduced CEI (Yang et al., 2022). Second, due to the efficient,
integrated, and green nature of digital technologies such as big
data and artificial intelligence, they enhanced energy efficiency and
advanced green technological innovation, reducing carbon emissions
(Wang and Li, 2023). Additionally, digital innovation facilitated
digital industrialization and industrial digitization, positioning data
as a new factor of production, transforming the structure of
production factors, and reducing carbon emissions generated in
social production. Therefore, Hypothesis 1 was confirmed.

The first column of Table 3 reflected the key influencing factors of
CEI: (1) lnErg positively impacted CEI in the YRB, indicating that the
strengthening of environmental regulations in this region increased
CEI. (2) lnPop hurt CEI in the YRB. Population agglomeration
reduced the scope of pollution diffusion, improving the quality
and efficiency of carbon emission purification within the region,
thereby reducing CEI. (3) lnLopn positively impacted CEI in both
the YRB and the YREB at the 10% significance level, indicating that
greater openness was associated with higher CEI. (4) lnLgs positively
impacted CEI in the YRB and the YREB at the 1% significance level.
Higher government subsidies, such as fossil fuel subsidies, led to
greater consumption, which was not conducive to reducing CEI. (5)
lnUrb significantly negatively impacted CEI in the YREB. The high
level of urbanization in this region promoted improvements in energy
efficiency, thereby reducing CEI. (6) lnLug significantly negatively
impacted CEI in the YRB. A larger per capita area of urban parks
indicated a more substantial carbon sink capacity, which was
beneficial for controlling carbon emissions.

4.3 Robustness checks

We employed the instrumental variable method (IV) to address
the endogeneity issues arising from omitted variables, reverse
causality, or measurement errors. Lagged variables are generally
not influenced by the current regression error term, satisfying the
exogeneity condition, and are highly correlated with the level of DE

FIGURE 5
Spatial distribution of CEI and DE in the YRB and YREB for selected years.

TABLE 3 Estimation results for the benchmark model.

Denpendent variable: lnCEI (1) (2)

Region YRB YREB

lnDE −0.1536*** −0.0643***

(0.0333) (0.0236)

lnErg 0.0152* −0.0034

(0.0089) (0.0059)

lnPop −0.0271* −0.0427

(0.0149) (0.0443)

lnLopn 0.0216** 0.0324***

(0.0097) (0.0067)

lnLgs 0.7096*** 0.3385***

(0.0416) (0.0386)

lnUrb −0.0432 −0.1122***

(0.0584) (0.0411)

lnLug −0.0461*** −0.0137

(0.0173) (0.0154)

Constant 6.4638*** 7.2768***

(0.2752) (0.3874)

Observations 638 1,144

R2 0.9813 0.9882

Notes: (1) Robust standard errors in parentheses. (2) ***p < 0.01, **p < 0.05, *p < 0.
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development. The lagged value of the DE level, calculated through
the principal component analysis, was used as an instrument for the
DE level. First, the Hausman test was used to verify endogeneity; it
found that the p-values for both the YRB and the YREB were below
0.1, confirming the endogeneity between the DE and CEI. Next, we
conducted underidentification and weak instrumental variable tests
on the selected instrumental variable. As shown in Table 4, the
p-values for the underidentification test in columns (1) and (2) for
the YRB and the YREB were both below 0.1, passing the
underidentification test (Kleibergen and Paap, 2006).
Additionally, the C-D Wald F statistic and the Kleibergen–Paap r
Wald F statistic in both regions exceeded the critical values,
confirming the weak instrumental variable test. These tests
confirmed the robustness of the instrumental variable results.

Moreover, we conducted three types of robustness checks (as
shown in Table 4). (1) Bilateral 1% tailoring: all variables were
subjected to 1% two-sided winsorization prior to regression analysis
to mitigate the potential adverse effects of outliers on the baseline
regression results. The estimation results are presented in columns
(3) and (4) of Table 4, where the coefficients of lnDE in both the YRB
and the YREB remained significantly negative, ratifying the
robustness of the baseline regression. (2) Lag Effects: Following
the relevant study by (Chen et al., 2023), all variables except CEI
were lagged by one to two periods to examine the impact of lagged
effects on the relationship between the DE and CEI. The regression
results with a one-period lag are shown in columns (5) and (6) of
Table 4, where the coefficients of the DE in the YRB and the YREB
were 0.1425 and 0.0556, respectively, both significant at the 1% level.
The regression results with a two-period lag are displayed in
columns (7) and (8) of Table 4, with coefficients of 0.1681 and
0.0487 for the DE in the YRB and the YREB, respectively (significant

at the 1% and 10% levels, respectively). These findings confirmed the
robustness of the baseline regression. (3) Excluding Municipalities:
Considering that the economic scale of municipalities far exceeds
that of other cities, and following (Wang and Li, 2023), we excluded
Shanghai and Chongqing from the sample for the regression
analysis. The estimated results in column (10) of Table 4 indicate
that developing DE inhibited CEI within the YREB, satisfying the 1%
significance level. These tests confirmed the robustness of the
baseline regression results.

5 Mediating effect on the nexus of
theDE and CEI

Based on Hypotheses two to four and Grossman’s theory, we
proposed that within the YRB and the YREB, the DE influenced CEI
through scale, structural, and technological effects through four
potential pathways—economic development, industrial structure,
energy structure, and technological progress—as shown in Table 5
and Figure 6.

5.1 Mediating effect analysis of scale effect

With reference to studies by (Jaccard, 2001; Brambor et al., 2006),
we examined the mediating role of the level of economic development
in DE’s effect on CEI using an interaction term between the levels of
DE development and economic development in Equations 10, 11.
Considering the multicollinearity and model fit, we centered all
interaction terms in this paper. The results in columns (1) to (4)
of Table 5 indicate that c.lnDE#c.lnpgdp significantly impacted CEI

TABLE 4 Estimation results for the robustness checks.

Denpendent variable: lnCEI

IV Bilateral 1%
tailoring

Lag phase I Lag phase II Exclusion of
municipalities

Region YRB YREB YRB YREB YRB YREB YRB YREB YRB YREB

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

lnDE −0.5620*** −0.4593*** −0.1410*** −0.0764*** −0.1425*** −0.0556*** −0.1681*** −0.0487* −0.1536*** −0.0702***

(0.0502) (0.0488) (0.0343) (0.0229) (0.0373) (0.0236) (0.0427) (0.0274) (0.0333) (0.0239)

Underidentification test
test

123.03 215.996

P-value 0.000 0.000

C-D Wald F statistic 1565.812 4095.684

Kleibergen-Paap rk Wald F
statistic

434.516 2164.975

Constant 3.2815*** 3.3000*** 6.5612*** 7.2256*** 7.6621*** 7.7654*** 8.4120*** 7.6421*** 6.4638*** 7.2323***

(0.7232) (1.1185) (0.2863) (0.4073) (0.3178) (0.4783) (0.3915) (0.5962) (0.2752) (0.3884)

Observations 580 1,040 638 1,144 580 1,040 522 936 638 1,122

R2 0.4501 0.1470 0.9806 0.9875 0.9858 0.9860 0.9734 0.9843 0.9813 0.9882

Notes: (1) Robust standard errors in parentheses. (2) ***p < 0.01, **p < 0.05, *p < 0.

Frontiers in Environmental Science frontiersin.org12

Lin et al. 10.3389/fenvs.2025.1543211

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1543211


TABLE 5 Results of the mediating effects.

lnPgdp lnIsa lnIsr lnEns lnLtp

Variables lnDE lnCEI lnDE lnCEI lnDE lnCEI lnDE lnCEI lnDE lnCEI

YRB YREB YRB YREB YRB YREB YRB YREB YRB YREB YRB YREB YRB YREB YRB YREB YRB YREB YRB YREB

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20)

lnDE 0.6328*** 0.2188*** 1.1689*** 0.9619*** −0.1613*** −0.0677*** −0.6356*** 0.5891*** −0.1833*** −0.0549**

(0.1075) (0.0812) (0.3161) (0.1804) (0.0373) (0.0238) (0.2043) (0.1022) (0.0324) (0.0228)

lnpgdp 0.3700*** 0.3111*** −0.9683*** −0.5040***

(0.0107) (0.0088) (0.0519) (0.0510)

c.lnDE#c.lnpgdp 0.0906*** 0.0839*** −0.0703*** −0.0257***

(0.0013) (0.0008) (0.0103) (0.0074)

lnIsa 1.9033*** 1.7552*** −3.1611*** −2.2898***

(0.0376) (0.0388) (0.6557) (0.3324)

c.lnDE#c.lnIsa 0.5237*** 0.5077*** −0.6967*** −0.5336***

(0.0046) (0.0035) (0.1710) (0.0943)

lnIsr −0.3595*** −0.0076 −0.1965*** 0.0047

(0.0987) (0.0351) (0.0322) (0.0118)

c.lnDE#c.lnIsr −0.1043*** −0.0119 −0.0711*** −0.0018

(0.0276) (0.0106) (0.0103) (0.0054)

lnEns 0.8428*** 0.7966*** 0.3980** −0.4995***

(0.0130) (0.0136) (0.1774) (0.0857)

c.lnDE#c.lnEns 0.2267*** 0.2216*** 0.1115** −0.1492***

(0.0019) (0.0016) (0.0464) (0.0240)

lnLtp −0.1547*** 0.0983*** −0.0739*** −0.0491***

(0.0527) (0.0285) (0.0258) (0.0149)

c.lnDE#c.lnLtp −0.0382*** 0.0157** −0.0224*** −0.0111***

(0.0127) (0.0071) (0.0059) (0.0035)

Constant −4.4180*** −3.7295*** 17.7459*** 13.2562*** −3.8192*** −3.1872*** 12.6651*** 11.5199*** −3.9900*** −3.3246*** 7.0216*** 7.4722*** −3.5661*** −3.1550*** 4.8121*** 9.1316*** −2.5898*** −3.5234*** 6.5049*** 7.2404***

(0.1179) (0.1546) (0.6236) (0.6960) (0.0807) (0.0983) (1.3163) (0.6560) (0.3859) (0.3963) (0.2802) (0.3742) (0.0816) (0.0981) (0.7807) (0.4584) (0.3131) (0.4647) (0.2786) (0.3857)

Observations 638 1,144 638 1,144 638 1,144 638 1,144 638 1,144 638 1,144 638 1,144 638 1,144 638 1,144 638 1,144

R2 0.9989 0.9990 0.9946 0.9918 0.9997 0.9997 0.9822 0.9889 0.9740 0.9830 0.9812 0.9882 0.9993 0.9993 0.9815 0.9887 0.9687 0.9801 0.9821 0.9884

Notes: (1) Robust standard errors in parentheses. (2) ***p < 0.01, **p < 0.05, *p < 0.
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negatively in both the YRB and the YREB. Specifically, a 1% increase
in the DE reduced CEI of the YRB and YREB by 0.0703% and
0.0257%, respectively, through improved economic development,
with more pronounced results observed in the YRB. This finding
aligns with the EKC hypothesis. In the YRB, where the development of
DE remains relatively underdeveloped and the traditional economy
continues to be dominant, digitalization has a more pronounced
enabling effect. A leading driver of economic growth, developing DE
enhances resource allocation efficiency and induces structural shifts in
production methods and development models. This transformation
accelerates the transition toward a technology-intensive and low-
carbon economy, potentially facilitating an earlier arrival at the EKC
turning point, resulting in a more rapid decline in CEI and fostering
sustainable low-carbon development. Therefore, Hypothesis 2
was confirmed.

5.2 Mediating effect analysis of the
structural effect

5.2.1 Mediating effect analysis of the
Industrial Structure

To comprehensively assess the mediating effect of the industrial
structure, it was divided into two pathways: industrial structure

advancement and rationalization. The interaction term between the
DE development level and industrial structure advancement was
used in the estimation Equations 10, 11 to test the mediating role of
industrial structure advancement in the impact of the DE on CEI.
Columns (5)–(8) of Table 5 indicate that c.lnDE#c.lnIsa negatively
affected CEI in both the YRB and the YREB, with industrial
structure advancement the most influential pathway among all
effects. Specifically, a 1% increase in the DE reduced CEI by
0.6967% and 0.5336% in the YRB and the YREB, respectively,
through industrial structure advancement. The study by (Wang
et al., 2022c) found that, overall, production structure factors related
to the digital industry significantly negatively affected China’s
embodied carbon emissions from 2002 to 2017, which aligned
with our conclusion on the development of industries toward
digitalization and advancement. Both regions thoroughly
understood supply-side structural reform, continuously advancing
the transformation of industrial structures toward technology-,
knowledge-, and innovation-intensive types, such as vigorously
advancing strategic emerging industries driven by cutting-edge
technologies. However, the pace of traditional industry renewal
and development in the YRB was slower than in the YREB.
Therefore, utilizing the DE to support the digital and green
transformation of traditional industries in the YRB had a more
substantial dividend effect, advancing industry reductions of CEI.

FIGURE 6
Results of the mediating effects in the YRB and YREB.
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The interaction term between the level of DE development and
industrial structure rationalization was then used in the estimation
Equations 10, 11 to test the mediating role of industrial
rationalization. Columns (9)–(12) of Table 5 indicate that
c.lnDE#c.lnIsr negatively affected CEI in the YRB. Specifically, a
1% increase in the DE reduced CEI by 0.0711% through industrial
rationalization. However, this effect was not significant in the YREB,
possibly because the YREB’s industrial rationalization level from
2011 to 2017 was above the national average; thus, the impact of
using the DE to achieve green innovation through industrial
rationalization was less significant than in the YRB. According to
the analysis in Section 4.1, the overall development level of the DE in
the YREB was higher than in the YRB. Consequently, we concluded
that significant reforms in industrial rationalization were likely less
effective at reducing CEI than other beneficial adjustments, such as
advancements in the industrial structure.

5.2.2 Mediating effect analysis of the
energy structure

The interaction term between the DE development level and the
energy structure was utilized in estimation Equations 10, 11 to
examine the mediating role of the energy structure. Columns
(13)–(16) of Table 5 present the regression results, indicating that
c.lnDE#c.lnEns was significant in both YREB and YRB, but had
opposite effects. Specifically, a 1% increase in DE results in a
0.1492% reduction in CEI in YREB, while it increases CEI by
0.1115% in YRB. A possible explanation is that, in recent years,
the YREB has leveraged digital technologies like artificial intelligence
to improve the intelligence and greening of the energy system,
continually increasing the proportion of clean and green energy
consumption and thus reducing CEI. In contrast, the situation in
YRB can be explained from two perspectives. First, the YRB still
heavily depends on traditional energy sources like coal, and the lack of
diversification in its energy structure has led to increased CEI as DE
grows. Second, the energy transition in YRB has been relatively slow;
the development of DE has not effectively harnessed the substitution
effect of clean and green energy, resulting in concentrated energy
consumption and a further rise in CEI. Therefore, while fostering the
development of DE, it is essential to accelerate the green
transformation of the energy structure to achieve coordinated and
sustainable economic and environmental development.

In summary, although some effects were not significant, this did
not hinder verifying the structural effect’s mediating role in the
impact of the DE on CEI. Therefore, Hypothesis 3 was confirmed.

5.3 Mediating effect analysis of the
technological effect

Finally, columns (17)–(20) of Table 5 estimated Equations 10, 11
to test the mediating role of the interaction term between the level of
DE development and technological progress on CEI. Columns (19)
and (20) showed that c.lnDE#c.lnLtp was significant, with a 1%
increase in the DE reducing CEI by 0.0224% and 0.0111% in the YRB
and the YREB, respectively, by improving the green technology level.
The effect was more significant in the YRB. The findings in the
YREB aligned with those of Ma L. et al. (2023). Wang et al. (2022d)
demonstrated that ICT agglomeration reduced carbon emissions

through technological innovation, particularly when the level of
technological innovation surpassed a critical threshold. Our
conclusions were logically consistent with this finding. A possible
explanation for the more significant mediating effects in the YRB
was that the region’s industrial structure was mainly composed of
energy and chemical industries, and the level of carbon emission
reduction through digital technology was not as advanced as in the
YREB. Digital technology plays a crucial role in promoting carbon
emission reduction. For the YRB, strengthening the depth of
technological development might have amplified the impact of
the technical effect. Therefore, Hypothesis 4 was confirmed.

6 Heterogeneity comparative analysis

To explore the differences in the impact of the DE on CEI in the
YRB and the YREB, we divided each basin into upper, middle, and
lower reaches according to their geographic characteristics. We
conducted separate estimations for subsamples in each region (Table 6).

First, in the sample regression for each basin, the DE coefficients
in the upper and middle reaches of the YRB were significantly
negative. Specifically, a 1% increase in DE resulted in a decrease of
CEI by 0.1424% and 0.1298% in the upper and middle reaches,
respectively. However, developing DE in the downstream reaches
did not meaningfully contribute to reducing CEI. From a spatial
perspective, the average level of DE development in the upper and
middle reaches was lower than in the downstream regions, while the
average CEI was higher. Possible explanations for the results in the
upper and middle reaches of the YRB include the following: first, the
provinces in these areas had relatively low levels of economic
development and engaged in significant industrial transfers from
downstream areas, leading to a high proportion of traditional and
heavy industries. Simultaneously, the development of digital
technologies and supporting infrastructure was insufficient,
hindering both digitalization and industrial digitalization. The
industrial structure was inefficient, with significant carbon
emissions. Second, energy consumption intensity was high, while
clean energy technologies, such as carbon capture and storage,
trailed behind those in downstream regions. An explanation for
the situation in the downstream region may lie in its industrial
structure, primarily composed of light industries and agriculture,
resulting in low CEI and limiting the potential of DE to reduce
emissions. Investing in digital technologies, optimizing industrial
structures, enhancing regulations on traditional energy sectors,
supporting renewable energy industries like wind and solar, and
advancing green innovation technologies could help to lower carbon
emissions in the upper and middle reaches (Tian et al., 2024).

In the sample regression of the YREB, the DE coefficients
were −0.1956 (P < 0.01) and 0.0707 (P < 0.05) in the upper and
lower reaches, respectively. This indicated that a 1% increase in DE
decreased CEI by 0.1956% in the upstream regions, with an increase
of 0.0707% in the downstream regions. However, in the middle
reaches, developing DE did not significantly reduce CEI. Figure 7(3),
7 (4) display the quantile distributions of DE and CEI in the YREB,
showing that the average levels in some downstream regions were
higher than in the upper and middle reaches. These results can be
interpreted as follows: in the downstream provinces of the YREB,
digital information technology was highly advanced, with industries
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such as telecommunications and electronic information expanding
significantly and actively integrating digital elements, leading to an
advanced DE. However, this development was accompanied by
substantial electricity consumption, with coal-fired power
generation and other high-carbon energy sources comprising a
large share of the energy supply, resulting in higher CEI.
Additionally, the rapid growth of the logistics industry driven by

online shopping led to hidden carbon emissions, particularly in
manufacturing and transportation. In the upstream regions of the
YREB, near Sichuan and Yunnan, natural advantages such as high
altitudes and abundant water flow gradients supported the
development of clean hydropower, providing energy for DE. At
the same time, these regions were dominated by traditional heavy
industries and resource-based sectors, contributing to higher CEI. DE

TABLE 6 Estimation results for different watersheds.

Dependent variable: lnCEI

Watershed Upstream Midstream Downstream

Region YRB YREB YRB YREB YRB YREB

lnDE −0.1424** −0.1956*** −0.1298** −0.0435 −0.0637 0.0707**

(0.0593) (0.0513) (0.0588) (0.0308) (0.0486) (0.0357)

lnErg −0.0306 −0.0072 −0.0083 −0.0101 0.0124 0.0116

(0.0212) (0.0127) (0.0184) (0.0087) (0.0133) (0.0084)

lnPop 0.0202 −0.2197*** −0.2146*** −0.0175 0.0272 0.2564**

(0.0216) (0.0612) (0.0703) (0.0594) (0.0294) (0.1019)

lnLopn 0.0176 0.0391*** 0.0394*** 0.0162** 0.0178 0.0948***

(0.0108) (0.0138) (0.0126) (0.0082) (0.0325) (0.0131)

lnLgs 0.6142*** 0.4201*** 0.6529*** 0.2741*** 0.7477*** 0.2921***

(0.0553) (0.0955) (0.0716) (0.0518) (0.0587) (0.0290)

lnUrb −0.6173*** −0.1181 0.1312** −0.2299*** 0.2211*** −0.0297

(0.1135) (0.0828) (0.0558) (0.0658) (0.0792) (0.0698)

lnLug −0.0248 0.0039 −0.0257 −0.0136 −0.1283*** −0.1364***

(0.0219) (0.0231) (0.0294) (0.0219) (0.0355) (0.0391)

Constant 8.7325*** 7.3469*** 7.1303*** 7.7092*** 5.3428*** 6.0406***

(0.5341) (0.6415) (0.5285) (0.4821) (0.4133) (0.7444)

Observations 209 330 198 418 231 396

R2 0.9810 0.9883 0.9867 0.9876 0.9689 0.9909

Notes: (1) Robust standard errors in parentheses. (2) ***p < 0.01, **p < 0.05, *p < 0.

FIGURE 7
Spatial and data distribution of CEI and DE in different watersheds of the YRB and YREB in selected years.
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development in these areas assisted in transforming industry,
improving energy utilization efficiency, and reducing carbon
emissions. In the middle reaches of the YREB, the lack of significant
effects on CEI reduction could be explained by the predominance of
traditional high-carbon industries and delays in digital transformation,
which limited the carbon reduction potential of DE. The insufficient
development of digital infrastructure and inadequate application of
clean and green technologies further constrained progress toward green
transformation and low-carbon development.

Then, in the overall sample regression of the YRB and the YREB,
the effect of DE development on reducing CEI was significant in the
upstream regions of both basins, with a more pronounced effect in
the YREB than in the YRB. In the middle reaches, the effect was
significant in the YRB, while the downstream effects were not
significant in either basin. A possible explanation for this was
that the YREB’s upstream area has steep terrain, and hydropower
development has taken place. At the same time, the upstream area
contains many metal industries, and using hydropower-driven
electricity helped convert the development momentum, reduce
environmental pollution, achieve digital and green development,
and lower CEI. This also reflected the differences between the basins.

In 2016, China introduced the “Internet Plus” initiative, marking a
critical turning point in accelerating its DE. Following the 2015 Paris
Agreement, China reinforced its low-carbon policies 2016, shaping
the carbon emissions trajectory. Additionally, the release of the
Yangtze River Economic Belt Development Plan Outline (State
Council, 2016b) the same year advanced the region’s transition
toward high-quality development. Therefore, we selected 2016 as
the dividing point, as it was a pivotal year, to provide a more
explicit analysis of the development differences in DE and CEI
between the YRB and the YREB, as shown in Figure 7. The results
indicated that, across the upper, middle, and lower reaches, with few
exceptions, the overall level of DE development in the YRB was below
that in the YREB, while CEI remained generally higher. A possible
explanation was that, since the reform and opening-up, China’s
economic center has gradually shifted southward, driving th
growth of emerging technology enterprises, such as Huawei and
Tencent, in southern provinces, which spurred forward industrial
transformation, andupgrades in surrounding areas, advancing green
development (Li J. et al., 2022; Wang et al., 2022b).

7 Conclusions and policy implications

7.1 Conclusions

Considering the potential relationship between the DE and CEI in
the YRB and the YREB, we employed fixed effects and mechanism
effects to conduct a thorough study of the impact of the DE on CEI in
the context of NQP in the YRB and the YREB from 2011 to 2021.
Furthermore, we explored the intrinsic mechanisms and spatial
variability of the DE’s influence on CEI and investigated how to
achieve green, high-quality development. The study reached the
following conclusions: (1) Between 2011 and 2021, the DE played
a positive role in reducing CEI in both the YRB and the YREB, with a
more pronounced impact observed in the YRB; (2) TheDE in the YRB
and the YREB affects CEI through scale, structural, and technological
effects, aligning with the concepts of the new economy, new industrial

forms, and innovations in technology under the theory of NQP. The
economic development level, the advancement of the industrial
structure, the optimization of the industrial framework, the energy
structure, and the level of technological progress varied across the
regions. Additionally, digital industrialization and the advancement of
green technology highlighted vital developmental pathways through
which the DE influences CEI; (3) Overall, from 2011 to 2021, the levels
of the DE in both the YRB and the YREB consistently improved, while
CEI steadily decreased. However, the overall development level of the
DE in the YRB was lower than that of the YREB, and its CEI was
higher than that of the YREB; (4) The results of the heterogeneity
analysis indicated that the impact of the DE on CEI in the YRB was
such that the effect in the upstream region was greater than in the
middle reaches, with no significant effect observed downstream. In
contrast, in the YREB the upstream effect was greater than the
downstream effect, with no notable effect in the middle reaches.

7.2 Policy implications

Achieving national climate goals and the corresponding costs
depend entirely on regional actions within the country (Yu et al.,
2023). Therefore, based on the research analysis, we proposed
several policy implications.

First, cities in the YRB and YREB should emphasize the role of the
DE in reducing CEI. The YRB should focus on leveraging the DE to
mitigate CEI in the upper andmiddle reaches, promote the creation of a
digital twin of the Yellow River, enhance monitoring and sensing
capabilities, improve ecological monitoring, and increase efficiency in
addressing carbon emission issues. The YREB should highlight the
positive impact of the DE on reducing CEI in both upstream and
downstream regions, develop green logistics, strengthen supply chain
resilience, and promote smart logistics and low-carbon transportation
technologies to minimize carbon emissions in the transportation sector.
Additionally, cities in both the YRB and YREB should further enhance
digital infrastructure, increase financial investments, and fully utilize
technologies such as cloud computing and big data to advance the
digital transformation of traditional industries, empowering low-carbon
and green development by constructing the DE.

Second, cities in the YRB and the YREB should optimize their
economic structures and facilitate the deep integration of industrial
upgrades and digitalization, systematically establishing a green and low-
carbon modern industrial system. The Yellow River Basin Ecological
Protection and High-Quality Development Strategy (State Council,
2021a) provides essential guidance for balancing the region’s
economic growth with ecological sustainability. In light of the
research findings, cities in the YRB should consider the following: (1)
developing strategic emerging industries that integrate production,
supply, and demand through innovative resource aggregation,
promoting green, low-carbon, and digital development to achieve
new scale effects through the integration of digital and physical
economies; (2) leveraging the role of industrial clusters and urban
agglomerations as demonstration zones for industrial transfer,
enhancing the capacity to undertake industrial transfers both
domestically and internationally; (3) establishing comprehensive pilot
zones for transforming old and new growth drivers, demonstration
zones for industrial transformation and upgrading, and bases for new
industrialization. For cities in the YREB: (1) further improve the
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collaborative development of industrial, innovation, and supply chains,
promoting their deep integration; (2) accelerate the high-end, intelligent,
and green upgrading of traditional industries, enhancing the use of
digital technologies to empower the digital transformation of competitive
manufacturing sectors in the YREB, create competitive digital industry
clusters, build an intelligent manufacturing system with low
consumption and high output, and effectively implement the
requirements for green and high-quality development.

Third, cities in the YRB and the YREB should accelerate developing
green technologies and constructing innovation systems to provide vital
technical support for building a high-quality development framework.
NQP has inherent characteristics that protect the ecological
environment and promote the harmonious coexistence of humans
and nature, aligning with green and high-quality development.
Therefore, the cities of YRB and YREB should thoroughly prioritize
applying new technologies. Cities and governments in the YRB should
remove barriers to the cross-regional and cross-basin flow of resource
factors, promote the efficient flow of technology as a factor of
production, improve resource utilization efficiency, and construct a
pilot area for ecological protection and high-quality development. Cities
and governments in the YREB should increase investment in the
research and development of green technology, encourage industry-
university-research cooperation, and use digital low-carbon technology
to achieve the green transformation of enterprises. For example, big data
technology can monitor emissions in real time and reduce pollution.

Moreover, cities within the YREB accelerated optimizing and
adjusting their energy structures by promoting the integration of
digital technologies with energy transformation. They advanced the
deployment of smart grids and distributed energy systems to
improve energy efficiency. Simultaneously, efforts were made to
reduce reliance on high-carbon energy, expand the use of renewable
sources, and work toward building a clean, low-carbon, safe, and
efficient modern energy system.

8 Limitations and future improvements

Although this study addresses some research gaps in the
relationship between DE and carbon emissions, it also has some
limitations and research prospects.

First, geographic factors such as land use and urbanization
influence the spatial heterogeneity of carbon emissions in the
YRB and the YREB. The extent to which spatial and human
factors shape the underlying mechanisms remain underexplored.
Future studies could incorporate interdisciplinary driving factor
detection to investigate further heterogeneity differences across
the upper, middle, and lower reaches.

Second, the proportion of coal consumption in the total energy
consumption was a proxy for the energy structure. However, due to
data availability constraints, equally important factors such as
renewable energy penetration and energy efficiency could not be
quantitatively examined. Future research should consider these
factors to provide a more comprehensive understanding of how
energy structure adjustments influence carbon emissions.

Third, our study primarily focused on CEI while overlooking
efficiencies due to data limitations. Future research could compare
how the development of DE affects the carbon emission efficiency in
the YRB and YREB. A multiperspective, multidimensional approach

is needed to explore the strategic differences in how the DE
contributes to regional carbon peaking and carbon neutrality.

Fourth, the applicability of this research’s findings to other
developing countries requires further validation. Economic
structures, energy reliance, and policy frameworks likely shaped
the effects of DE on carbon reduction. For instance, energy
dependencies varied across major river basins, including India’s
Ganges and Brahmaputra, Brazil’s São Francisco and Amazon, and
Egypt’s Nile. While India and Egypt depend on fossil fuels, Brazil
primarily utilizes hydropower. Policy approaches also diverged, with
India advancing its digital infrastructure via the India Stack and
Brazil prioritizing renewable energy strategies (Empresa de Pesquisa
Energética, 2020). Furthermore, data limitations restricted the
external validity of the findings. Future research should
incorporate multicountry panel data and microlevel analyses to
facilitate comparative assessments and inform policy design for
sustainable development in emerging economies.
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