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Water catchment areas are the key strategic water sources with a variety of
ecological benefits. However, the trajectory of LandCover and LandUseChanges
(LULC-C change poses a significant threat to water catchment areas, negatively
affecting water quality. Thus, the adoption of remote sensing data and Machine
Learning Algorithms (MLAs) is a novel approach that provides spatiotemporal data
on the environmental changes resulting from LULC dynamics. Hence, this work
harnessed Landsat imageries and the Random Forests (RF) classification as well as
a hybrid model from the Multi-Layer Perceptron and Markov chain (MLPNN-
Markov) to detect changes in LULC and forecast future changes. At every 5 years
interval, the RF model generated more accurate maps for 2003–2023. The LULC
prediction for 2019 also produced acceptable values for the kappa accuracy
matrices, which were 65.50%, 58.4%, 90.90%, and 0.52 for overall accuracy,
kappa location, kappa histogram, and kappa overall, respectively. The findings
highlighted the decline of forest areas, with a strong negative correlation with
built-up and mining areas. The secondary invasion of the abandoned cropland
occupied by grassland members was observed. Thus, grassland displayed
increasing trends between 2019 and 2023. Wetlands and water, however,
exhibited a steady trend with minor variations. On the other hand, each of
these trends persisted in the future, with the exception of grassland areas that
displayed scaling-down behaviour in 2032. The outcomes of this work will offer a
piece of updated information on the LULC-C and hints at the possible future
direction for the trends by 2032. This is crucial to local bodies tasked to protect
the integrity of the water catchment areas with the aim of improving the water
quality.
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1 Introduction

The biophysical attributes of river catchments are important for the health of terrestrial
and freshwater ecosystems (Jewitt et al., 2015) and for mitigating the effects of climate
change (Abbas et al., 2023; Gyamfi-Ampadu et al., 2021; Mugo et al., 2020). In addition, the
catchments provide essential social demands, such as water supply, food, settlement, and
recreational opportunities (Kaval, 2019; Mugo et al., 2020; Pullanikkatil et al., 2016). The
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provision of these services relies on the good health of the ecosystem,
physical components such as the river network, and other land
resources necessary for the supply of these services. Catchment
ecosystems such as that of the uMngeni River Catchment are
vulnerable to both natural disasters brought on by climate
change and human intrusion (Ruppert et al., 2015).

In view of the health status of river catchment ecosystems, the
interference of anthropogenic activities and unprecedented natural
disasters are considered the driving forces behind the Land Use and
Land Cover Changes (LULC-C) in the catchment areas worldwide
(Floreano and de Moraes, 2021; Stosch et al., 2017). Specifically,
anthropogenic activities, including settlements, cultivation, timber,
and mineral extraction, are among the factors that influence the
modifications of catchment landscapes (Pullanikkatil et al., 2016).
These catchment land cover modifications are linked to various
implications such as water quality, groundwater recharge, wildlife
habitat, climate change mitigation, soil conservation, and other
catchment ecosystem benefits (Floreano and de Moraes, 2021;
Indraja et al., 2024; Mararakanye et al., 2022; Mugo et al., 2020;
Pullanikkatil et al., 2016; Yao et al., 2016). According to Mugo et al.
(2020), the first step in addressing these environmental issues should
focus on understanding the land cover trends and configuration.
Therefore, research on LULC monitoring and remote sensing-based
forecasting is, therefore, considered a viable approach (Schoeman
et al., 2013).

Remote sensing technologies with rich data infrastructures have
been the main data source for land cover monitoring studies
(Schoeman et al., 2013). Remote sensing provides extensive
archives with time-stamped spatiotemporal data, which is crucial
for detecting land cover changes in the catchments (Campbell and
Wynne, 2011). The LULC-C analysis approaches vary as there is no
standard rule for selecting a method (Woldemariam et al., 2022).
However, method selection can be influenced by the nature of the
remote sensing data, the physical properties of the study area, and
the objectives of the study. Consequently, a range of methods in the
literature have been employed for land cover change detection.
Machine learning, deep learning, Multi-Layer Perceptron Neural
Networks (MLPNN), Markov chain and Cellular Automata (CA)
are among the prominent methods frequently used in the published
work on land cover change detection and prediction.

Mashala et al. (2023) used Landsat series data to analyze the
historical LULC in the Letaba watershed in South Africa from
1990 to 2021. The study achieved an overall classification
accuracy of 93%–99% across the study periods and found a sharp
increase in built-up and shrubs by 47% and 41%, respectively. These
increases were at the expense of grassland and indigenous forests. In
a similar study, Obaid et al. (2023) assessed spatiotemporal LULC-C
between 1986 and 2021 in Vaal Dam Catchment, South Africa,
based on Thematic Mapper (L5-TM), Enhanced Thematic Mapper
(L7-ETM+), and Operational Land Imager (L8-OLI) with a range
overall accuracy of 87%–95% and kappa coefficient ranging from
0.79 to 0.92. They observed a steady expansion of built-up areas
from 0.87% to 1.43% during the study period at the cost of woody
vegetation. Another study carried out byMugo et al. (2020), assessed
the land cover changes in the Lake Victoria Basin from 1985 to
2014 based on Landsat series data. They reported an 800% increase
in built-up and a 90% increase in small farm areas. A study by
Aghsaei et al. (2020) used L5-TM and L7-ETM + images to assess

the dynamics of the LULC-C in the Anzali wetland catchment, Iraq,
between 1990 and 2013. The study revealed the complete
degradation of the wetlands, which initially accounted for 2.5%
of the catchment area. These losses coincided with the rise of the
cropland and the built-up areas. Namugize et al. (2018) conducted a
time series analysis of LULC in the Upper uMngeni River
catchment, South Africa, between 1994 and 2011. The study
highlighted the expansion of both built-up and cropland areas by
6% and 4.5%, respectively, which came at the expense of a 17% loss
of vegetation cover during the study period.

Research on land use change detection in the catchment areas is
of great importance, not only for monitoring the catchment land
cover spatial extents but also as a tool for predicting future LULC
scenarios. Studies on the LULC prediction have adopted the hybrid
algorithms, to model future land use changes. The primary aim of
adopting hybrid algorithms is to compensate for the shortfalls of the
land cover modelling algorithms, as each model has its advantages
and drawbacks (Hafeez et al., 2019; Loukika et al., 2021). For
instance, Moodley et al. (2023) used L5-TM and L8-OLI to
create historical LULC maps for 1990 and 2018 and simulated
the LULC for 2030 in both the uThukela and uMngeni
catchment areas in South Africa using a hybrid model of CA and
Markov Chain model (CA- Markov). The outcomes of the predicted
land use classes showed slight adjustments in built-up, plantation,
and cropland areas, which increased at the expense of
grassland areas.

Mandal et al. (2023) modelled the decadal future land cover
changes from 2030 to 2050 in the Pare River basin, India. They used
a hybrid approach of MLP and CA-Markov models. The input
classifications based on the Landsat imagery data (L5-TM and OLI-
L8) achieved overall accuracies of 0.91%, 0.85%, and 0.91% with
kappa coefficient values of 0.88, 0.82, and 0.89. Their projected maps
showed a positive linear relationship between cropland and built-up,
while forest land cover experienced a decline by 2050. Maviza and
Ahmed, (2020) used a combination of (MLPNN-Markov) to project
future LULC scenarios from 2023 to 2038 in the Upper Mzingwane
sub-catchment, Zimbabwe. The accuracy of input classifications
from L5-TM and L8-OLI were 0.9846%, 0.7763%, and
0.9791–0.6633 for overall accuracy and Kappa coefficient,
respectively. Their simulation indicated significant land cover
changes in 2038 with a loss of 441 km2 of woodland and an
increase of 185 km2 for grassland.

Hybrid models for change detection and land cover forecasting
have not only been used in the case of the catchment but also
experimented in different scenarios. For example, Adam et al. (2023)
modelled future urban scenarios in Maseru city, Lesotho, for 2050.
The L5-TM and OLI-based thematic maps with an overall accuracy
report of 88% and 95% with ANN-CA were used to produce the
prediction maps. The study shows a continuous increase in built-up
areas, which is expected to cover 5,434.5 ha by 2050, significantly
reducing croplands, grasslands, and woody vegetation. Abbas et al.
(2023), conducted a study to project future urban status by 2030 in
Islamabad City, Pakistan. Sentinel-2 images and MLPNN-Markov
were used to produce prediction maps, indicating that 58.84% of
Islamabad will be covered by a built-up, while other LULC classes
such as forests are expected to decrease with varying rates. In
different a landscape, Floreano and de Moraes (2021) employed
the CA- Markov hybrid model and the Landsat imagery to prepare
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data for forest land cover forecasting in Rondônia, Brazil. The results
showed that approximately 30% of the forest areas will be
encroached by non-forest land use classes by 2030.

Studies examining past and future land cover in different
landscapes have been seen crucial for providing valuable
information for planning and policy-making to promote
sustainable development. According to the evidence gathered
from the literature, there are a limited number of studies that
have extended historical land use analysis to predict the future
land cover state of the catchment area in South Africa. Therefore,
knowledge of the past and future land cover scenarios should be
generated for watershed areas as they are the key strategic freshwater
sources (Indraja et al., 2024). Such knowledge will serve as a critical
tool for developing water catchment management strategies. This
study aims to examine the spatial and temporal land use status of the
uMngeni River Catchment between 2003 and 2023 at half-decade
intervals and project plausible future scenarios for 2032. Our study
site, the uMngeni River Catchment, is subject to different forms of
landscape modifications rising from both anthropogenic and natural
factors (Mauck and Warburton, 2014; Moodley et al., 2023;
Schoeman et al., 2013). Factors such as urban expansion, mining,

cropland, and unprecedented natural factors such as floods are the
main threats to the uMngeni River catchment hydrological integrity.
The qualitative and statistical information presented in this study
will contribute to the knowledge and understanding of change rates
and patterns, providing insight into likely future land cover
distribution, which will serve as a foundation for the
conservation of water resources. Additionally, the findings have
the potential to influence national initiatives aimed at improving the
water supply and protecting the catchment areas.

2 Methods and material

2.1 Study area

The current study focuses on the uMngeni River catchment as
the selected region of interest. The catchment is located between
(29.7156, −29.1349 E) and (31.1137, −29.6383 S) in the KwaZulu
Natal (KZN), South Africa. Its estimated total surface area is
4,400 km2, separated into three main regions (upper, middle, and
lower) (Hughes et al., 2018). Its landscape exhibits the intricate

FIGURE 1
The uMngeni catchment layout with elevation gradients, river network, and dams.
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network of rivers with wavy terrain in the upper riches, whereas
moderate slopes and hills define the catchment’s lower
regions (Figure 1).

The uMngeni River, the principal river formed by the network of
rivers, originates from the Drakensberg and flows through
Pietermaritzburg before emptying into the Indian Ocean through
the Durban north estuary. This lengthy, meandering river, with
major dams (Midmar, Albert Falls, Nagle, and Inanda) along its trail,
supplies water for 45% of the people living in the KZN province
(Stats, 2011; Namugize et al., 2018). The local climate and watershed
topography hold a high stack on the composition of the uMngeni
River. The catchment is 1913 m above sea level (Kusangaya et al.,
2017), with rainfall occurring during the summer seasons (October
to March), ranging from 700 to 1,550 mL and mild temperatures
between 12°C and 20°C annually. These features are key factors
contributing to the province’s economic growth.

One of South Africa’s major economic centers and main trading
port is located in the catchment (Hughes et al., 2018). Accordingly, it
contributes up to 65% of KZN’s overall economic output. The
province’s Gross Domestic Products also heavily relies on
industries such mining, recreation, forestry, and agriculture
(Strydom et al., 2020). The catchment is distinguished by a
variety of land use types as a result of the previously mentioned
industrial and economic activities. Therefore, the consequences of
land cover change not only affect economic opportunities but also
affect water quality, ecosystems, and climate change. The uMngeni
River Catchment was selected as the study area of interest to ensure
the continuation of these crucial services.

According to our field observations, the catchment’s land cover
categories include but are not limited to, built-up areas, barren
ground, wetlands, and water. Green patches, which include forests,
plantations, and crops. The uMngeni catchment is dominated by
farmland and natural vegetation (Namugize et al., 2018). One of the
major land use classes that predominates in the north of the basin is
the plantation. Heterogeneous patches of various land use types
(plantations and built-up areas) define the middle region. While the
lower part is mainly dominated by built-up patches with fragments
of green vegetated land cover. It is worth unpacking the information
in such diverse land cover areas to provide a piece of updated
scientific information.

2.2 Reference data

The geographic reference data for the land use classes was
collected in 16 August 2023, randomly using a portable global
positioning system (GPS). High-resolution Google Earth Pro
archives and historical South African National Land Cover
(SANLC) (Department of Forestry, Fisheries and the
Environment, 2023) were also used to gain further details on the
historical data needed. The following criteria guided the design of
the sampling process: sites dispersed across the study site with
respect to the area covered by each land use type. Google Earth
Engine (GEE) street maps and Google Earth Pro were used to
accomplish this. The polygons were digitised based on the land cover
type indicated by the point with reference to a time-stamped Google
Earth Pro image. The digitised polygons were further imported to
the GEE platform and over-traced by locally digitised polygons with

unique digital labels for each land use class. Then, the spectral
properties of each reference site were extracted from the image using
the sampleRegions() function. Two datasets were created from the
reference data containing the spectral information: 70% were used
for training the models, and 30% were used to interpret the model
performances (Table 1). It is also worth noting that the sampling
methods were standardized across the six study periods of the
uMngeni River catchment.

2.3 Satellite image collection and pre-
processing

In the uMngeni River Catchment, LULC-C was examined for six
research terms—2003, 2007, 2011, 2015, 2019, and 2023—using
Landsat surface reflectance images from the level 2 category. The
composite images were collected from the Earth engine cloud data
hub (https://developers.google.com/earth-engine/datasets/) accessed on
04 February 2024. A total of 24 scenes were collected during the crop
growing season between May and August where the crop fields are
distinctive from other Land use classes (Table 2).

Using a range of GEE functions and filters, the collected datasets
underwent several pre-processing steps. The pre-processing of the
images was done step-by-step; scenes with less than 10% cloud cover
were filtered, and all pixels covered by the cloud and associated cloud
shadows were eliminated using the CFmasking function. To restore
the halo spaces left by the deleted contaminated pixels, the focal-
mean function was applied. Next, a median composite image was
created by applying the median() function to the cloud-free dataset
tiles using the region of interest (ROI) shapefile as a guide. The
subset of the region of interest was then clipped from the median
composite image. It is also crucial to mention that the L5-TM
image’s horizontal stripes were corrected using the focal-mean
method. As explanatory variables, the Normalized difference
indexes for vegetation, water, and bare soil were calculated and
added to the image.

2.4 Land use classification and accuracy
assessment

The GEE cloud computing platform offers a range of
supervised Machine Learning algorithms (MLAs) appropriate
for land use analysis. Naïve Bayes (NB), Random Forests (RF),
Support Vector Machine (SVM), and Artificial Neural Networks
(ANN) are some examples of these MLAs. The abilities of these
MLAs were attested in mapping the LULC within the uMngeni
River catchment (Bhungeni et al., 2024). The RF model
performed better than the other algorithms, according to a
comparison examination. Numerous MLA comparative
research employing RF models in watershed areas have
revealed similar outcomes. For instance, Loukika et al. (2021)
proved the dominance of the RF model over CART and SVM in
their MLA comparative study in the Munneru River Basin, India.
Balha et al (2021) reported similar findings in their study
conducted in Delhi, India. With this evidence, the RF
algorithm was chosen as the suitable MLA to map the
historical LULC-C with the uMngeni River catchment.
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The RF classifier is a supervised learning algorithm based on the
decision tree model, proposed by Breiman in 2001. It constructs an
ensemble of decision trees using random subsets of the dataset,
created through a process known as bagging (Breiman, 2001). The
bagging process generates multiple random sets of samples from the
original reference data (also known as bootstrapping). Then
multiple decision trees are formed from each set of samples.
Each decision tree serves as the electorate, which aids in
allocating the unlabelled pixels to the appropriate class (Obaid
et al., 2023). The majority results of decision trees is used to
determine which class to allocate the pixels to (Mather and
Koch, 2011; Zhang et al., 2023). The RF models are known for
their capabilities to handle complex datasets, have minimal
processing time (Bayas et al., 2022), and are insensitive to
outliers and overfitting (Cuypers et al., 2023). The choice of
explanatory variables and parameter adjustments is deemed to
have a major impact on the model’s performance.

The two primary parameters of the RF models are the number of
explanatory variables per split (Mtry) and the number of decision
trees to be constructed (Ntree). The “smileRandomForest” classifier
from the GEE library was turned as follows: Ntree was equal to 25,
Mtrywas set to be equal to the square root of variables and each node
was adjusted to have two leaves. Six multi-spectral bands (visible,
blue, green, and red), NIR, and SWIR (1 and 2) and three additional

spectral indices (NDVI, NWDI, and BSI) were among the
explanatory features used for the LULC classification for 2003,
2007, 2011, 2015, 2019, and 2023. This combination of predictor
variables has been adopted in many studies and proven to provide
accurate results (Bhaga et al., 2023; Liu et al., 2022; Zha
et al., 2003).

For each research period, we evaluated how well the generated
maps corresponded to reality. For the years 2003, 2011, 2015, 2019,
and 2023, a subset of 30% of the sample size was used to test the
accuracy of the classification results. Using the errorMatrix function
in GEE, the test dataset was employed to calculate the confusion
matrix and determine the assessment metrics. The assessment
metrics used in this study include user’s accuracy (UA), producer
accuracy (PA), overall accuracy (OA), and Kappa coefficient
(Congalton, 1991).

2.5 Land use change detection

Analysis of land cover changes at five-year intervals from
2003 to 2007, 2007–2011, 2011–2015, 2015–2019, and
2019–2023 was conducted using the Land Change Modeler
(LCM), a built-in spatial analysis modeler in TerrSet software,
version 2020.

TABLE 1 Training data distribution for LULC classes across study periodsa.

LULC class 2003 2007 2011 2015 2019 2023

Tr Ts Tr Ts Tr Ts Tr Ts Tr Ts Tr Ts

Grassland 17,777 7,734 20,909 8,944 16,299 7,008 24,046 10,372 23,074 9,810 20,674 8,728

Forest 17,827 7,610 19,945 11,088 24,793 10,995 29,842 12,795 18,962 8,097 16,004 7,003

Water 8,804 3,641 9,083 3,880 6,077 2,647 7,210 3,094 6,652 2,784 5,744 2,448

Wetland 2,254 1,012 2,786 1,244 2,289 946 2,293 987 1,399 597 2,858 1,197

Cropland 22,927 9,617 19,971 8,591 17,067 7,393 19,867 8,523 13,468 5,848 19,748 8,530

Plantation 24,901 10,789 33,561 14,303 29,749 12,584 24,129 10,571 16,264 6,946 16,750 7,043

Barren 13,263 5,594 6,977 2,996 9,885 4,294 12,610 5,419 12,352 5,238 5,232 2,207

Mining 709 305 1,052 452 659 271 663 294 678 318 526 215

Built-Up 11,018 4,702 11,015 4,744 11,856 5,221 14,384 5,991 1,148 4,769 14,308 6,085

Total 119,480 125,299 118,674 135,044 93,997 101,844

aTr (Training Set) = 70% of the total dataset, used for model training. Ts (Test Set) = 30% of the total dataset, used for model validation

TABLE 2 Summary of landsat satellite imagery used LULC analysis (2003–2023).

Year Acquisition date range Mission Sensor Path/row Spectral bands Resolution (m)

2003 01 May-30 August Landsat-5 TM 168/080,168/081 6 30 m

2007 01 May-30 August

2011 01 May-30 August

2015 01 May-30 August Landsat-8 OLI

2019 01 May-30 August

2023 01 May-30 August
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2.6 Predictor variables and transition sub-
model development

A given geographic area is not universally suitable for all land
use activities. Rather, environmental appropriateness (texture and
climate) and social factors (infrastructure developments and
legislative limits) dictate the occurrence of land use activity.
These indicators are deemed to be effective factors in simulating
future land cover scenarios, as they detect the suitability of the
different land cover types (Indraja et al., 2024). For these reasons, the
Digital Elevation Model (DEM), aspect, slope, and distance from
rivers and roads were sourced in the GEE data catalogue and
incorporated in Land Change Modeler (LCM) as predictor
variables. These predictor variables were imported into ArcGIS
Pro 3.0.0 along with time series classifications to ensure the data
have similar properties. Once the necessary preprocessing steps were
fulfilled, the data was imported to LCM in the TerrSet software to
form the part of sub-models. In the transition sub-model tool within
LCM, the sub-models were defined based on data from two
successive land cover classification periods (t1 and t2) and
environmental predictor indicators.

2.7 Transition potential data

The machine learning technique, MLPNN, was leveraged to
compute transition potential maps for each of the defined sub-
models. The MLPNN is the supervised prominent learning method
that proved to effectively handle complex land cover modelling
analysis (Pijanowski et at., 2002). The MLPNN model comprises of
input layer, a hidden layer, and an output layer. The input layer has
neurons that serve as receptor sites for the data from explanatory
variables (Clark Labs, 2016). Through channels, they transfer the
data to the intermediate phase. Each channel has a numeric value
assigned, known as weight, which is a factor of the inputs to be
transmitted to the neurons of the intermediate phase (Dahiya et al.,
2023). The activation function in the neurons facilitates the non-
linearity of the data and identifies the neurons that will contribute to
the inputs of the subsequent phase (Wu et al., 2014); all the activated
neurons transmit the inputs to the next phase; the process is called
forward propagation. The inputs were propagated through the
network to the output layer, where the data was classified based
on the likelihood of change (Chen, Lin, et al., 2023). The MLPNN
model’s optimization for transition potentials was guided by the
MLPmodel, utilizing the default parameters recommended by Clark
Labs (2016).

The Model of seven hidden layers driven by the sigmoid
activation function was used to generate transition maps for each
class in the sub-model based on 50% of 300 random samples and the
other half reserved for validation, and 10,000 iterations were set. The
produced transitionmaps are incorporated as the predictor variables
in the change prediction phase.

2.8 Transition probability matrix

The Markov Chain Model (Markov) model proposed by
Burnham (Burnham, 1973) feeds from the transition potential

maps to dictate the likelihood of LULC classi pixel change to
classj between two periods (producing two matrices such as
transition matrix and transition the probability matrix). The
transition areas matrix summarizes pixels of one class to change
to all classes, and the probability matrix specifies the transition
between two classes (Burnham, 1973). The transition probability
matrix is defined in Equation 1

Pij �
p1,1 p1,2 . . . p1,n
p2,1 p2,2 . . . p2,n
..
. ..

. . .
. ..

.

pn,1 pn,2 . . . pn,n

�����������������

�����������������

, 0≤ pij ≤ 1( ) (1)

where P represents the transition probability matrix; Pij is the
likelihood of one state i to be converted to another state j; Pn
represents the state probability term and Pij values range
between 0 and 1.

2.9 Land cover prediction

MLPNN, together with the Markov Chain model, have been
widely used for predicting future LULC status in the remote sensing
field (Indraja et al., 2024; Ozturk, 2015; Soni et al., 2022; Vinayak et al.,
2021, Kumar and Agrawal, 2023). These studies proved the efficiency
of these algorithms combined in spatial modelling and handling
quantitative data. With such evidence, the MLPNN-Markov from
the Land Change Modeler (LCM) in the TerrSet 2020 software was
used to perform LULC prediction. The LCM requires input data to
predict future land use scenarios. GEE and ArcGIS Pro were
employed to process historical LULC maps and predictor variables.

The MLPNN-Markov is the integrated model of MLPNN and
Markov aiming to improve the modelling results by compensating
for the shortfalls of the individual algorithms. In addition, MLPNN-
Markov joint operation allows the integration of multiple variables
and enhances the scope of the model by including other crucial
variables in one model. Making the MLPNN-Markov reliable and
efficient in predicting LULC-C changes.

The Markov models exhibit a strong statistical ability to predict
probabilities of future land cover, while the MLPNN model learns
the historical and land use patterns, which are used as the base
information to weigh the transition likelihood among the classes.
The main advantages of MLPNN-Markov include its ability to
handle the dynamic environment of the complex land use classes
and spatial factors, its requirement for less user input, and the ease of
setting the parameters and calibration.

2.10 Model validation

Validating the efficiency of the model in LULC prediction is the
key aspect to declare the fitness of the model. Hence the MLPNN-
Markov model was validated. The prior 2032 LULC prediction, the
trial to test the MLPNNN-Markov model was conducted by
predicting the 2019 land cover map using 2003 and
2011 classifications. The first step involved series of six trails to
select the best predictor variables (Section 2.6) combination. A
stepwise approach was used to create a total of six subsets of the
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predictor variables (Table 5). Then the variable selection was based
on the high training accuracy result from the interaction of the
model with the subset of the variables. The best combination of the
variables was then used to predict 2019 map.

The 2019 prediction was used to validate the efficiency of the
model using the Kappa index Agreement (KIA). As the commonly
used standard to validate the classification accuracy. KIA feasibility in
explaining the agreement between the compared maps has been
criticised (Olofsson et al., 2014; Pontius and Millones, 2011). As a
result, other researchers recommended the use of the components of
agreement and disagreement as part of the validation technique of the
results. Hence, this study used 30% of random samples from each
LULC class toto compute three unbiased validation kappa indexes,

which include correctness (overall accuracy), Kappa histogram, and
kappa location, which provide the accuracy of the model in matching
the pixel locations. These validation metrics were computed in the
MOLUSCE plugin within the QGIS 2.18 environment. The validation
module approach is based on the correlation between the input image
and the predicted outputmap. The three variants determine the Kappa
overall value as shown in Equation 2:

Kappa � Pa−Pe( )
Pi−Pe( ) (2)

where kappa is the Kappa index agreement, Pa is the actual accuracy,
Pe anticipated accuracy, and Pi is the desired accuracy,
which is 100%.

FIGURE 2
Historical LULC thematic maps from 2003 to 2023.
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3 Results

Historical land cover analysis was undertaken over a 20-year
period, with data collected at half-decade laps (2003, 2007, 2011,
2015, 2019, and 2023). Over the last two decades, the interplay
among the nine land use classes has been observed within the
uMngeni River catchment, as graphically presented in Figures 2, 3.

The composition of LULC varied significantly throughout the
investigation, according to our findings. In particular, a variety of
human activities and natural causes, have transformed native
forests, plantations, and farmland. Consequently, native forests
experienced a sharp decline (Figure 6) with an estimated loss of

3.18% during the research period, having previously covered 25.60%
in 2003 (Table 3).

Throughout the study period, plantation and croplandgradually
decreased, from 14% to 10.10% and 12%–8.97%, respectively. In
contrast, built-up land has shown notable increases in percentage
cover with a strong alarming trend of 0.92 coefficient of
determination (R2) (Figure 6). The built-up category showed
gradual growth over time, increasing from covering 4.83%–9.6%
(Figure 5), which translates to a total of 5.55% gains in 2023
(Table 3).

Among the primary land use classes in the catchment area,
grassland constitutes 44.5% of the catchment. In 2003, it accounted
for 41.3% of the total area. Fluctuating patterns were noted between
2003 and 2015 until stability was reached by 2019. A gently increase
was noted in bare soil areas, which accounted for 29.71 km2 (0.67%)
in 2003 and gradually expanded to 120.17 km2 by 2015, indicating
an overall increase of 2.57% by 2023 (Table 3).

On the other hand, consistent trends of change with minor
variations were recorded for both water and wetland classes, with
percentages remaining relatively stable at 0.10% and 1.71%
(Table 3), respectively. The mines and quarries class, covering a
small portion of the catchment, experienced small area gains over
time. It is a constantly positive trend as evidenced in R2 of
0.72 in Figure 6.

The accuracy of the classified maps was assessed using standard
accuracy metrics (Table 4) kappa coefficients recorded were 0.77,
0.78, 0.76, 0.73, 0.75, and 0.76, with corresponding overall accuracies
of 80.71%, 82.35%, 80.35%, 77.45%, 80.12%, and 80.33% for the
years 2003, 2007, 2011, 2015,2019 and 2023, respectively. The
overall accuracy for each map explains closely how the maps
produced by the RF model represent the reality on the ground.
Achieving an accuracy of 80% or above shows that classifications fall

FIGURE 3
Half-decadal LULC area changes (km2) from 2003 to 2023 and
predicted LULC for 2032.

FIGURE 4
Five-year land use class change (%) from 2003 to 2023.
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within the classification acceptable standards. Therefore, the six
thematic maps produced were deemed suitable for simulating future
land use scenarios.

3.1 Prediction of the LULC scenarios for the
year 2032

Trails conducted to determine the best variable combination
and prove Trail one as the best variables set at 89.75% training
accuracy (Table 5). Integrated with sub-models to produce the
transition potential maps later. Based in these results, the
MLPNNN-Markov model was adopted to predict future LULC
scenarios for 2032.

In model all variables were incorporated to produce the
transition potential maps and subsequently used to generate a
transition probability matrix through the Markov probabilistic
approach. Which estimates the probability of one LULC class
switching to another, as shown in the probability grid in Table 6.

The predicted map for 2019 were further validated against the
2019 reference map using the confusion matrix (Table 7). The
validation results proved the MLPNN model to be satisfactory
for LULC prediction where the overall accuracy: 65.50%,
Kappalocation: 58.4%, KappaHistogram: 90.90%., and Kappaoverall and
0.52. The accurate KappaHistogram and overall accuracy for the
2019 prediction were above 90% and 65%, respectively. These are
the sufficient scores to declare the model’s fitness for modelling
future land cover scenarios (Hua, 2017). This is also supported by

FIGURE 5
Highlighted percentage change in land use within the uMngeni River catchment for 2003, 2023, and predicted 2032.

TABLE 3 Change in land use type coverage (km2 and %) over time (2003–2023).

LULC
class

2003 2007 2011 2015 2019 2023 2032

Area
km2

% Area
km2

% Area
km2

% Area
km2

% Area
km2

% Area
km2

% Area
km2

%

Grassland 1833.7 41.26 1794.2 40.37 1843.8 41.53 1708.8 38.45 1992.9 44.25 1978.7 44.52 1892.4 42.58

Forest 1,136.7 25.58 1,431.6 32.21 1,204.3 27.12 1,389.2 31.26 1,283.4 28.49 995.41 22.4 937.82 21.1

Cropland 532.81 11.99 367.95 8.28 530.66 11.95 368.09 8.28 293.21 6.51 398.77 8.97 374.27 8.42

Plantation 624.14 14.04 437.38 9.84 434.5 9.79 470.1 10.58 447.03 9.93 447.32 10.07 444.54 10

Built-up 214.46 4.83 265.02 5.96 280.23 6.31 316.11 7.11 322.48 7.16 426.76 9.6 591.09 13.3

Barren 29.71 0.67 76.69 1.73 64.59 1.45 120.17 2.7 95.69 2.12 113.01 2.54 118.9 2.68

Water 57.5 1.29 61.8 1.39 70.18 1.58 58.74 1.32 61.53 1.37 75.98 1.71 76.13 1.71

Wetland 12.64 0.28 7.29 0.16 10.12 0.23 10.33 0.23 3.86 0.09 4.31 0.1 4.62 0.1

Mining 2.33 0.05 2.1 0.05 1.64 0.04 2.49 0.06 3.91 0.09 3.75 0.08 4.2 0.09

Total 4,444 100 4,444 100 4,440 100 4,444 100 4,504 100 4,444 100 4,444 100
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the precise pixel weights per LULC class between the
2019 reference and simulated map, as shown in Figure 7, which
further reinforces this. These outcomes demonstrated the
effectiveness of the MLPNN-Markov hybrid approach in
forecasting future LULC.

The predicted LULC map from MLPNN-Markov shows an
increase in the built-up arial extent (Figure 8) to 591.09 km2,
which accounts for 13.30% of the total catchment area in 2032.
These gains explain the declines observed in other projected land use
classes, among those classes, forests are expected to decline from

FIGURE 6
Trend line analysis of LULC changes from 2003 to 2023.

TABLE 4 Performance metrics for six-period interval LULC maps based on the random forest model.

Year 2003 2007 2011 2015 2019 2023

LULC class PA% UA% PA% UA% PA% UA% PA% UA% PA% UA% PA% UA%

Grassland 80.44 60.02 84.44 64.44 88.79 60.35 79.07 63.98 88.34 70.29 92.34 60.79

Forest 84.9 75.5 86.63 81.36 89.07 81.11 84.71 63.97 81.92 71.35 85.34 82.8

Water 87.83 99.49 91.47 99.75 98.6 99.31 99.38 99.94 98.76 99.86 99.41 99.74

Wetland 78.02 85.2 67.38 88.81 57.03 73.83 87.13 95.78 70.73 99.34 10.88 85.47

Cropland 91.14 92.36 86.11 83.21 81.94 77.49 78.21 81.32 80.42 90.75 82.66 88.3

Plantation 86.04 94 85.26 94.28 79.85 93.99 78.77 92.15 75.65 89.36 91.67 97.67

Barren 58.35 68.42 57.08 73.35 37.61 73.89 65.18 74.05 75.98 81.13 75.01 88.28

Mining 24.85 92.47 54.31 60.23 27.68 97.7 41.56 91.1 45.54 73.82 23.82 87.5

Built-up 66.4 81.95 66.82 86.1 83.01 87.93 56.66 73.22 56.72 81.13 50.8 80.33

Kappa coefficient 0.77 0.78 0.76 0.73 0.75 0.76

Overall accuracy (%) 80.71 82.35 80.35 77.45 80.12 80.33
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995.41 in 2023 to 937.82 km2 by 2032 (1.30% area cover loss)
(Figure 3). On the other hand, grassland will decrease from 1978.7 to
1892.40 km2, which is about 1.94% area cover lost. Other land cover
classes showed insignificant area declines, such as cropland covering
8.42 km2, and plantation with a slight decline at 444,54 km2. Water
bodies and wetlands show constant trends at 76.13 km2 and
4.62 km2, respectively, while mining and barren show increasing
trends with insignificant statistics of 4.20 km2 and
118.90 km2 (Table 3).

4 Discussion

Understanding the past, present, and future land use patterns
within the catchment area serves as a foundation for decision-
making processes. It allows the enactment and implementation of
policies aimed at safeguarding the hydrological resources and
biodiversity while ensuring the continuous provision of
catchment ecological services. The information unpacked is
crucial for sustainable management of river catchment resources.

TABLE 5 Best combination of predictor variables for MLPNN model.

Variable (code) Trials (T) Model Variables included Accuracy (%) Skill measure

All to Built-up transitions (1) T1 With all variables All variables 89.75 0.88

Slope (2) T2 (4) constant [1,2,3,5,6] 89.15 0.88

Aspect (3) T3 [4,3] constant [1,2,5,6] 89.20 0.88

River Euclidian distance (4) T4 [4,3,2] constant [1,5,6] 87.45 0.86

Roads Euclidian distance (5) T5 [6,4,3,2] constant [1,5,] 75.45 0.72

DEM (6) T6 [6,5,4,3,2] constant [1] 62.70 0.57

TABLE 6 Transition probability grid for 2019 LULC prediction based on Trial 1.

LULClass Grassland Forest Water Wetland Cropland Plantation Barren Mining Built-up

Grassland 0.6775 0.092 0.0063 0.0031 0.0992 0.0314 0.018 0.0004 0.0717

Forest 0.2265 0.588 0.0054 0.0055 0.0625 0.0768 0.008 0.0003 0.0266

Water 0.007 0.063 0.9179 0.0004 0.0027 0.0019 0.0009 0.0003 0.0058

Wetland 0.5971 0.226 0.0036 0.02 0.07 0.0383 0.0138 0.0004 0.0313

Cropland 0.3009 0.1465 0.0017 0.0015 0.4342 0.0535 0.0207 0.0005 0.0405

Plantation 0.1586 0.4109 0.0012 0.0047 0.0475 0.345 0.017 0.0012 0.0143

Barren 0.45 0.0899 0.008 0.0053 0.1466 0.0214 0.1113 0.0012 0.1657

Mining 0.5233 0.1754 0.0856 0.01 0.0421 0.0152 0.0273 0.0412 0.0795

Built-up 0.3068 0.0479 0.0146 0.0014 0.0775 0.0072 0.0089 0.0009 0.5342

TABLE 7 Model performance across cross-validation folds for LULC prediction (MLPNN-Markov).

LULC class Grassland Forest Water Wetland Cropland Plantation Barren Mine

Grassland 500,753 106,298 1,040 2,575 54,045 25,909 27,451 163

Forest 73,245 344,407 556 780 9,567 50,078 2,931 71

Water 793 1,367 20,488 11 74 12 163 280

Wetland 770 263 4 442 6 89 8 4

Cropland 26,009 13,878 129 71 59,743 1,396 6,882 11

Plantation 13,352 39,602 18 240 997 115,394 2,581 55

Barren 13,192 1917 8 43 10,595 3,014 7,607 3

Mine 778 297 27 33 32 23 39 316

Built-up 21,246 4,719 174 15 4,617 297 2,813 144
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It provides detailed information such as trends and interactions
among the land use classes. This information helps in the prompt
identification and anticipation of threats to the integrity of the
catchment areas. Hence, the findings of this research can be used by
environmental resource managers to develop effective plans and
management strategies for South African river catchments. This was
achieved by leveraging rich open remote sensing data alongside
advanced statistical algorithms tailored for LULC analysis.

The Landsat series satellites provided useful spatio-temporal
data to achieve meaningful results for mapping historical land use
activities. The extensive archives of remote sensing data allow
researchers to study both past and current conditions, facilitating
the generation of knowledge and understanding to better the future.
The success of the Landsat series data in mapping temporal LULC-C

in different scenarios has been widely observed globally (Mugo et al.,
2020). Its contribution to land cover analysis in river catchment
biophysical environments is extensively documented. To
complement the Landsat imagery, its routine approach for data
capturing has facilitated the acquisition of feasible spatial and
temporal data for mapping and simulating land use activities
within the uMngeni River Catchment. In the mapping process,
the multispectral bands (visible, NIR, and SWIR), along with
spectral indices such as NDVI, BSI, and NDWI as explanatory
variables, were used in the classification. Their respective sensitivity
to different land use types enabled the discrimination of land use
classes effectively. With such good logistics, it is possible for MLAs
like RF to be capable of producing high-quality maps.

The RF model for classification from the GEE library proved its
robust performance in accurately delineating and mapping the land
use types within the uMngeni River Catchment. This success stems
from the RF model’s ability to handle the spectral variations of
different land use classes using information contained in the
variables (Indraja et al., 2024). In addition, there are several
factors that also contributed to the efficiency of the model, which
include the inherent design of the classifier and extensive parameter
turning, as reported in other studies (Chen, Lin, et al., 2023; Dahiya
et al., 2023). Other RF model advantages include proficiency in
complex datasets, and its insensitivity to outliers and overfitting, and
less sensitivity to different sample sizes (Bhungeni et al., 2024). Due
to proficiency results achieved by RF, it was able to unpack the
spatiotemporal changes and the interplay among the land use classes
at five-year intervals with meaningful results. Such kind of results
provided good grounds for the prediction of the future LULC (Soni
et al., 2022). Hence, the MLPNN-Markov hybrid yielded reliable
results in predicting the future distribution of LULC.

The study found that the uMngeni River catchment has
experienced the interplay among the land use classes, leading to

FIGURE 7
Land use class pixel count for the 2019 reference map and
2019 simulated map.

FIGURE 8
Predicted land use map for 2032.

Frontiers in Environmental Science frontiersin.org12

Bhungeni et al. 10.3389/fenvs.2025.1543524

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1543524


observations of spatial changes that occurred at five-year time steps
between 2003 and 2023. The changes are distributed across the study
area, and significant changes are observed in the middle regions
spreading along or from the edges of water bodies, southeast,
southwest and southern parts of the catchment. The mobility of
change shows the swapping and replacement among the land use
classes. These changes have been associated with societal demands
and natural factors. In this study, it was also found that both human
and natural factors contributed to observed changes within the
uMngeni River Catchment.

Human-induced activities such as built-up, growing crops,
timber, and mining collectively played a role in land cover
dynamics observed in the last 20 years. The built-up class
showed a steady increase from period to period and claimed
4.78% of the total catchment by 2023, as Namugize et al. (2018)
also reported similar results. It is worth noting that these
developments were largely observed in urban outskirts, as Jewitt
et al. (2015) made the same observation. This is encouraged by the
need for human settlement, industrial facilities (Adam et al., 2023;
Mashala et al., 2023), and road construction in rural areas (Abbas
et al., 2023; Floreano and de Moraes, 2021; Jewitt et al., 2015;
Moodley et al., 2023; Ozturk, 2015) and the sparse traditional
layout of rural residences (Adam et al., 2023). Resulting in the
modifications of the water catchment landscape (Namugize et al.,
2018), which has a critical role in ensuring freshwater availability
and mitigating climate change. To address this, focus on containing
the urban sprawling should be on the top of the agenda, as suggested
by Abbas et al. (2023), Cuypers et al. (2023), and Mugo et al. (2020).
Thus, the sparse customary layout of residences in rural areas should
be contained by promoting dense settlement, and boundaries for
land dedicated to the settlement must be demarcated (National
Planning Commission, 2012; Jewitt et al., 2015).

The cropland and barren classes showed haphazard behaviour
across the study periods. The unstable tolls of the cropland class
are not surprising, as the harvested patches are left bare or undergo
pre-planting secondary invasion by herbs and reclaimed later.
Similar observations were experienced by the plantation class. As a
result, the inversely proportional relationship between these two
land cover classes and the barren class is manifested in Figure 3.
However, cropland experienced a net loss of 3.02% of its positions
between 2003 and 2023. This can be associated with many factors,
such as abandoned cropland later reclaimed by grassland and
built-up class members (Abbas et al., 2023), as this transition was
observed in the southeast of the catchment. On the other hand,
plantation areas showed a sharp decline of 4.20% in the period
between 2003 and 2007 and were fairly constant from 2007 to
2023. The reduction of the plantation areas by 2007 can be
associated with the ceasing of timber plantation licences by the
Department of Forestry and Fisheries as per applicable regulations
(Jewitt et al., 2015). In addition, cropland made some
advancements during this period taking portions covered by
plantation patches in the northern part of the catchment.
Making them cover 8.97% and 10.10% by 2023, respectively.
The balance between these land cover classes, and the integrity
of the water quality classes should be maintained. Many studies
proved that water quality crisis correlates with the change in land
cover (Abdulkareem et al., 2018; Mararakanye et al., 2022; Mugo
et al., 2020; Yao et al., 2016).

Among the human-made developments, mines account for a
small area cover of the catchment. Taking its total size into account, it
made significant expansion between 2003 and 2023, initially covering
2.33 km2 and advancing to 3.75 km by 2023 (0.80%). These results
agree with Schoeman et al. (2013), who reported the small Mining
area advancement at a national scale. The mines are scattered around
the catchment, particularly in the forest banks in the south, and
middle regions of the catchment. These are open-cast small sites,
starting as a pit and expand both outward and downward
concurrently as mining continues. In addition, they are very
dynamic environments subject to being filled up with water in the
case of heavy rains, with observable bare soil areas resulting from
outward advancements. This mobilizes the mine by-products, such as
effluents, dust particles and non-point pollutants, which pose a health
risk to water biodiversity (Plessis et al., 2014). Its implications on
terrestrial and freshwater ecosystems reflect those of the cropland
class, as previously discussed. However, mines introduce the residuals
of heavy metals, making the environment ill-suitable to sustain life.
These human activities are the main drivers behind changes or
substitutions of naturally occurring classes like grassland.

The forest has shown a constant decline from period to period
with a net loss of 3.18% of area cover by 2023 (Figure 6). These losses
coincide with the constant expansion of built-up, these findings are
consistent with a number of previous studies (Kang et al., 2021; Jewitt
et al., 2015; Mandal et al., 2023; Mashala et al., 2023; Moodley et al.,
2023; Namugize et al., 2018; Obaid et al., 2023). The plantation and
grassland advancements towards the forest areas observed in the
southern regions of the catchment, as illustrated in Figure 2. This also
explains the gains of the grassland over the past 20 years, as it initially
covered 41.3% and increased to 44.5% by 2023, representing a net
increase of 3.26%. Among many contributing factors, grassland is
improved by the recovery of previously disturbed land cover, for
example, abandoned croplands or pre-planting season herbs invasion,
post-built-up vegetation recovery, and deforestation (Jewitt et al.,
2015). The relationship between development and forests raise
concerns about water security (Abbas et al., 2023; Maviza and
Ahmed, 2020) and expose land to harsh climate conditions (Abbas
et al., 2023; Gyamfi-Ampadu et al., 2022; Yao et al., 2016). This
reduces groundwater recharge andmobilises the non-point pollutants
to freshwater bodies. Therefore, the post-development initiative aimed
at rehabilitating the disturbed areas should be considered rather than
relying on a natural healing method.

Wetlands were constant across the study term, with negligible
changes, such findings have been reported in other studies (Mandal
et al., 2023; Moodley et al., 2023). While water bodies show a mild
increasing trend from 57.5 km2 in 2003 to 75.89 km2, as Moodley
et al. (2023) and Namugize et al. (2018) reported similar findings.
This can be attributed to the rise in the dam’s water levels, driven by
unprecedented annual rainfall linked to climate changeIn addition,
the construction of dams and ponds in the west and northeast to
retain water for irrigation could have contributed to the area extent
of the water bodies.

4.1 LULC projection

The MLPNN-Markov provided insight into the possible future
trends of land use changes with acceptable accuracy values.
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However, it has some limitations, Floreano and de Moraes (2021)
highlighted that including only spatial factors in the LULC-C
prediction model might lead to the exclusion of other major role
players, e.g., socio-economic and political influence in
configuration of LULC-C. In addition, the limitation of
Landsat data stemming from its 30 m has affected the results
obtained by MLPNN-Markov; these findings are in line with
(Ozturk, 2015; Soni et al., 2022). Moreover, the inability of the
RF model to go beyond the pixel level also played a role in this
(Adam et al., 2023).

The half-decadal spatiotemporal analysis has enabled the
projection of the future land cover. The results of this work
will not only give insight into the possible land cover but also
give a heads-up to the water resource managers, enabling them to
establish policies to prevent the transpiring water quality issues.
Overall, the predicted land cover classes do not vary greatly from
the 2023 land cover map. Our results showed that Built-up is
expected to increase by 3.7% by 2032. In the southeast, the
intensified density in the existing build-up areas, and in the
northeast, there is also noticeable scattered built-up, as
Moodley et al. (2023) made similar observations. This can stem
from a commitment by eThekwini Municipality to build houses
for 26% of KZN province dwellers at a rate of 5,000 houses per
annum (IDP, 2020). In addition, the South African government
aims to upgrade the informal settlement and develop dense
townships to reduce urban sprawling by 2030 (National
Planning Commission, 2012). Moreover, the scattered
developments are encouraged by the construction of road lines
in rural areas, as it makes it easy to access the place and resources
(Abbas et al., 2023; Jewitt et al., 2015). These projected
developments are expected to take place at the cost of natural
vegetation and equally affect the water quality, as reported by
Plessis et al. (2014).

In 2032, forest and grassland cover classes are expected to
surrender 1.30% and 1.94% to other classes, respectively. In
particular, these losses are associated with human intrusion. Due
to their large area coverage, developments are likely to temper with
the natural vegetation. Hence, some patches of these two land cover
classes are being replaced by the built-up and mining activities in the
middle and the southeast regions. Natural factors like forest
encroachment and land degradation stemming from climate
change could be the reason for the decline of forest area extent.
Other land cover classes showed insignificant area declines, such as
cropland covering 8.42 km2, and plantation with a slight decline at
444,54 km2. This decline can be explained by the counter area
covered by post-harvest barren soil. However, the bare soil total area
cover can also account for partially vegetated areas and fire belts
observable in the tip of the western region.

Water bodies and wetlands show constant trends at 76.13 km2

and 4.62 km2, respectively. Notably, water increased about 2 km2

which could be associated with water level variations stemming
from climate change as previously discussed. While mining and
built-up showed increasing trends with insignificant rates (Table
3). However, the detrimental impact rising from small mining
areas is quite concerning. Therefore, an integrated approach
should be established to balance the mining development and
water quality, as the runoff is more frequent and intensified by
climate change.

5 Conclusion

Our study provided insight into the historical land use
configurations at half-decade intervals between 2003 and
2023 and elevated the viewpoint for possible future land use
cover patterns in the uMngeni River Catchment. The
combination of RF and L8-OLI proved to be an effective logistic
tool by providing the required data for predicting future land cover.
Land cover maps with an overall accuracy of greater than 80%,
except in 2007, were produced and subsequently used as the base
data for the 2032 prediction using a hybrid MLPNN-Markov model.
Prior to the land cover prediction, 2003 and 2011 were used to test
the fitness of the MLPNN-Markov model by predicting 2019 land
cover classes. The model was approved for the actual simulation as it
produced a map that was closely more similar to that of actual 2019,
manifested in the Kappahistogram, and overall accuracy, which all
were above 65%.

According to the outcomes of RF and MLPNN-Markov, the
built-up area cover showed a strong positive trend of 0.92%. These
gains occur at the cost of grassland and forest, and this antagonistic
relationship is expected to maintain the same pace by 2032. It is also
worth highlighting small advancements observed in the mining land
use class, as its impact does not match its spatial cover. Plantation
and Cropland exhibited mild changes across the study periods.
However, holding big stakes of the catchment’s total land
coupled with their related environmental impacts.

The findings of this study recommend shifting from the
customary layout of rural and township development to
overlayed dense buildings with a clear demarcation of urbanized
areas. Mining activities should be practiced precisely with the
regulations in place aimed at protecting against water
contamination. The impact of cultivation and timber industry
residuals in the water ecosystems is non-negligible, as spelt out in
the literature. Therefore, water resource managers and the
agricultural sector must strike a balance between cultivation
practices and water sanity. Wetlands and water support life to
aquatic species and serve as living systems for natural water
purification. Hence, we recommend that their ecological integrity
should be prioritised in the planning strategies aimed at the
preservation of the catchment natural state.

Overall, our study proved the effectiveness of the RF
classification algorithm together with Landsat imagery for
unpacking the historical land use scenarios and as a vehicle for
meaningful projection results achieved by the MLPNN-Markov
Model. The outcomes of this study will not only demonstrate the
application of remote sensing and GIS in acquiring the historical
LULC underlying data but will also serve as the early detection tool
for future LULC scenarios and their accompanying environmental
impact. This enables the water resource managers and other local
environmental authorities to be on high alert and be able to put
preventative measures to change the predicted scenarios. The
methods used in the study can also be adapted and implemented
in other landscapes to gain a detailed understanding of LULC
dimensions and trends. However, it should be noted that 30 m
resolution data have reduced the accuracy of the classifications. In
addition, the inability of the RF model to go beyond the pixel level
also played a role. Therefore, future research should attempt to
reproduce the historical satellite data by mimicking the properties
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(calibration) of high-resolution images such as PlantScope
and RapidEye.

5.1 Limitations and recommendations

Two land cover classes with more similar optical properties, for
example, mining quarries and tar roads or parking lots, the RF
model, struggle to separate and tend to be biased to land use class
with the higher training sample allocation.

MLPNN-Markov tends to ignore the scattered customary layout
of the rural development and bind the dense development along the
provided vector lines (rivers and roads).

MLPNN-Markov has some limitations, as also pointed out by
Floreano and de Moraes (2021). The MLPNN-Markov only
accommodates spatial factors in the LULC prediction, which
might lead to the exclusion of other major role players, e.g.,
socio-economic and political influence in LULC scenarios.

The secondary invasion of harvested areas by the herbaceous
and grass species interferes with the interplay between barren land
and cropland, leading to grassland overestimation.

The residential areas with defined tree canopies and green grass
open spaces (lawn) partially masked the building structure, causing
mixed pixels, making it not guaranteed to award the pixels to the
built-up class. The transition zones between the two land parcels
tend to possess mixed pixels, as a result of confusing the classifier.
Ultimately, impacted the accuracy of the prediction maps.

To enhance the accuracy of the change detection and simulation
results, it is recommended the use of high-resolution images in the
classification stage. Hence, we propose that future research should
attempt to build a model capable of learning the spectral properties
of high-resolution images and reproduce the historical satellite data
by mimicking those properties of high-resolution imagery data such
as PlantScope and RapidEye and comparative work between high-
resolution and moderate resolute LULC simulation.
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