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Our study moves beyond conventional constraints that primarily examine patent
counts, establishing a novel conceptual framework that comprehensively
synthesizes dual dimensions—both the volume and caliber of environmental
innovations—in the aftermath of environmental taxation implementation. In
contrast to prior scholarship, this investigation extends past the mere
assessment of policy-driven innovation promotion, conducting an in-depth
examination of how environmental fiscal measures reconfigure innovation
architecture and elevate innovation excellence. Using a comprehensive panel
dataset of Chinese A-share listed companies from 2012 to 2022, we employ a
difference-in-differences methodology with multiple robustness checks to
establish causal relationships. Our findings reveal three key insights: First,
contrary to the Porter Hypothesis, EPT implementation shows a negative
correlation with green innovation activities in pollution-intensive sectors,
particularly pronounced among private enterprises, smaller firms, and highly
competitive markets. Second, the tax policy demonstrates asymmetric effects
across patent categories, predominantly constraining invention patents while
having a lesser impact on utility models. Third, while the aggregate volume of
environmental patent applications decreases, we document a significant
improvement in mean innovation quality, especially in utility model patents.
The quality-enhancement effect strengthens over time, even as the quantity-
reducing impact gradually attenuates. Through detailed mechanism analysis, we
identify corporate liquidity constraints and reduced R&D expenditure as primary
channels through which EPT affects innovation outcomes. These findings
contribute to the theoretical discourse on environmental regulation and
corporate innovation by highlighting the quality-quantity trade-off in green
innovation responses to environmental taxation. Our results provide important
policy implications for optimizing environmental fiscal instruments to promote
sustainable technological advancement while maintaining innovation quality.
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1 Introduction

The nexus between environmental regulation and corporate
ecological innovation has emerged as a critical research domain
amid intensifying global environmental challenges. Environmental
taxation, as a market-based regulatory mechanism, holds particular
significance in stimulating sustainable technological advancement.
The theoretical foundation, rooted in endogenous growth theory,
was substantively advanced by Acemoglu et al. (2016), who
constructed a dual-sector framework encompassing clean and
pollution-intensive technologies. Their model demonstrates how
calibrated environmental levies and research incentives can reorient
corporate innovation trajectories toward sustainable technologies.
Empirical validation of this theoretical frame-work has emerged
through various studies. Research by Calel and Dechezleprêtre
(2016) documented a 10% increase in low-carbon innovation
among firms regulated under the EU Emissions Trading System.
Similarly, Sharif et al. (2023) confirmed the positive correlation
between environmental fiscal measures and ecological technological
advancement in ASEAN nations. However, contrasting perspectives
exist, as evidenced by Stucki et al. (2018), whose analysis of Central
European firms suggests regulatory constraints may impede eco-
friendly product development.

Given China’s prominence as the world’s second-largest
economic entity and principal carbon contributor, its
environmental governance strategies hold considerable exemplary
value for global policy discourse. The nation’s transition from
pollution charges to a comprehensive environmental tax regime
in 2018 constitutes an unprecedented policy experiment for
examining the interplay between fiscal environmental
instruments and corporate ecological innovation. Contemporary
scholarship examining this policy transformation has yielded
heterogeneous findings, predominantly concentrating on
quantitative patent metrics. Empirical evidence from Zhao et al.
(2022), derived from emission-intensive sectors within China’s
A-share market, indicates that ecological taxation catalyzes
innovative activities while generating positive economic
externalities. This finding aligns with Deng et al. (2023), who
document increased R&D allocation in response to
environmental fiscal measures. Conversely, Wang S. et al. (2023)
present contradictory evidence, suggesting a dampening effect on
ecological innovation initiatives. A notable limitation in existing
research lies in its disproportionate emphasis on patent volume
metrics, overlooking qualitative dimensions. Song et al. (2020)
highlight the inherent heterogeneity in patent significance, while
Li and Zheng (2016) underscore the superior value generation
potential of high-caliber innovations. Consequently, a holistic
evaluation framework incorporating both quantitative and
qualitative patent indicators becomes imperative for robust policy
assessment and refinement of environmental fiscal mechanisms.

A comprehensive examination of the literature reveals five
distinct dimensions relevant to this investigation. The theoretical
discourse regarding environmental taxation’s influence on
innovation has evolved into two contrasting schools of thought.
The first theoretical framework, embodied in the seminal work of
Porter and Linde (1995), introduces the concept of “innovation-
induced compensation,” suggesting that strategically implemented
environmental regulations can catalyze technological advancement,

optimize resource efficiency, and generate benefits exceeding
regulatory compliance expenditures. This conceptual foundation
has undergone substantial evolution. Through general equilibrium
analysis, Goulder and Schneider (1999) elucidated the mechanisms
through which carbon taxation reallocates research resources
toward emission-reduction technologies. Subsequently, Popp
(2002) furnished empirical substantiation of the correlation
between energy cost escalation and efficiency-focused patent
development. Acemoglu et al. (2012) further advanced this
understanding by constructing a dual-sector endogenous growth
framework encompassing both environmentally benign and
harmful technologies, demonstrating the synergistic potential of
coordinated environmental taxation and research incentives.

The alternative perspective, grounded in neoclassical economics,
emphasizes the “resource displacement hypothesis.” Palmer et al.
(1995) contested the Porter framework, emphasizing the burden of
regulatory compliance on corporate innovation capacity. Jaffe et al.
(2005) synthesized extensive literature documenting how market
imperfections may cause environmental levies to constrain rather
than facilitate innovation. The research by Hall and Lerner (2010)
highlighted the critical dependence of innovation funding on
internal financial resources, suggesting potential innovation
constraints from environmental compliance requirements.
Dechezleprêtre and Sato (2017) elaborated on the immediate
economic implications, particularly for resource-intensive sectors.

In reconciling these divergent perspectives, Ambec et al. (2013)
identified multiple contingent factors mediating regulatory impacts
on innovation, including implementation mechanisms, regulatory
frameworks, organizational characteristics, and competitive
dynamics. Calel and Dechezleprêtre (2016) emphasized the
significance of policy architecture, market conditions, and
technological evolution in determining outcomes. Popp et al.
(2010) introduced the concept of “bifurcated effects,”
acknowledging simultaneous stimulation and suppression across
different innovation domains. This theoretical foundation
illuminates the multifaceted relationship between environmental
taxation and innovation outcomes.

Contemporary empirical investigations have yielded substantial
insights. Analysis of the EU ETS framework has proven particularly
instructive, with Calel and Dechezleprêtre (2016) documenting a
substantial increase in environmental innovation among regulated
entities. Martin et al. (2016) identified differential impacts across
organizational scales and sectors. In the automotive sector, Aghion
et al. (2016) demonstrated the relationship between fuel costs and
clean technology innovation, while accounting for organizational
and systemic factors. Calel (2020) identified distinct mechanisms of
technology adoption and development. Recent work by Rastegar
et al. (2024) documented significant increases in sustainable energy
innovation across developed economies.

The qualitative dimension of innovation remains comparatively
unexplored. While Squicciarini et al. (2013) established
methodological frameworks for innovation quality assessment,
their application to environmental policy analysis remains
limited. Popp et al. (2010) suggested a predisposition toward
incremental rather than transformative innovation under
environmental regulation. Ley et al. (2016) established
quantitative relationships between energy costs and both the
volume and relative proportion of environmental innovations.
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Examining the implementation of environmental protection
taxation within China’s regulatory framework reveals that
scholarly attention has predominantly centered on quantitative
measures of eco-innovation outcomes. A substantial body of
empirical evidence supports the policy’s efficacy in stimulating
environmental innovation. Provincial-level analysis by Liu Q.
et al. (2022) demonstrates enhanced regional eco-patent activity
following tax implementation. Municipal-level investigations by
Guo et al. (2022) corroborate these findings through urban
innovation metrics. Sector-specific research by Huang et al.
(2022) documents elevated environmental patent acquisition
among high-emission enterprises, while Liu and Xiao (2022)
identify increased proportional representation of environmental
patents within manufacturing entities’ intellectual property
portfolios. Contrasting perspectives emerge from alternative
empirical investigations. Wang S. et al. (2023) document
diminished environmental patent procurement among publicly
traded non-financial entities, while Zhao Z. et al. (2024) identify
particularly pronounced negative effects on qualitative innovation
metrics within the manufacturing sector. The relationship’s
complexity is further illuminated by investigations revealing non-
monotonic patterns. Wei et al. (2023) identifies curvilinear
dynamics in process innovation, characterized by initial
stimulation followed by subsequent decline at elevated tax
thresholds. Jiang et al. (2023) documents transitional innovation
responses, with initial suppression yielding to enhanced activity as
taxation intensifies.

Mechanistic investigations have elucidated various pathways of
policy influence. Liang et al. (2023) emphasizes institutional
legitimacy pressures in high-emission sectors, while Lu and Zhou
(2023) delineate dual pathways of legitimacy influence. Cao et al.
(2024) highlights the mediating roles of digital transformation and
sustainability performance metrics.

The policy’s impact exhibits substantial heterogeneity across
organizational characteristics. Li and Li (2022) document
differential effects based on ownership structures and geographic
locations. Deng et al. (2023) reveals varying responses across
organizational life cycles and market development levels. Lu and
Zhou (2023) identifies distinctive patterns related to financial
constraints and regional economic conditions.

Synthetic analysis of extant literature reveals four critical
knowledge gaps: (1) predominant focus on quantitative metrics
at the expense of qualitative innovation assessment; (2)
insufficient theoretical integration of compensatory and
compliance perspectives in explaining differentiated innovation
outcomes; (3) limited temporal analysis of policy effects across
different time horizons; and (4) incomplete evaluation of policy
outcomes within China’s specific institutional context. This
investigation seeks to address these limitations through
development of a comprehensive analytical framework
integrating qualitative and quantitative dimensions of
environmental innovation outcomes.

The scholarly significance of this investigation extends across
multiple dimensions: (1) This study advances beyond conventional
approaches that emphasize patent volume metrics by introducing
and implementing a comprehensive analytical framework
integrating both qualitative excellence and quantitative
dimensions of innovation, establishing fresh methodological

paradigms for environmental policy assessment; (2) The research
identifies previously unrecognized policy dynamics wherein
environmental protection taxation exhibits dual effects: a
constraining influence on innovation frequency coupled with
enhancement of innovation sophistication, illuminating nuanced
policy implications that prior investigations have not addressed; (3)
The investigation offers granular analysis of policy impacts across
diverse innovation categories (encompassing both invention patents
and utility models) while examining differential responses across
varied organizational characteristics; (4) Through temporal
decomposition of policy effects, this study illuminates
evolutionary patterns in regulatory impact, specifically
documenting the progressive intensification of quality-
enhancement outcomes concurrent with diminishing quantity-
suppression effects, thereby contributing novel chronological
insights for policy refinement. The manuscript proceeds as
follows: Section 2 establishes the theoretical foundation and
hypotheses development; Section 3 outlines methodological
considerations; Section 4 presents core empirical findings; Section
5 explores effect heterogeneity; Section 6 offers supplementary
analyses; and Section 7 concludes with policy recommendations
and future research directions.

2 Theoretical analysis and research
hypotheses

The interplay between environmental regulatory frameworks
and firm-level innovation dynamics represents a fundamental
research paradigm in environmental economics. Contemporary
theoretical discourse is characterized by two contrasting
perspectives: the dynamic efficiency approach derived from
Porter’s paradigm, and the static burden hypothesis grounded in
neoclassical economic theory. The Porter framework suggests that
strategically designed environmental governance mechanisms can
catalyze technological advancement, enhancing operational
efficiency and market competitiveness, thereby generating
compensatory benefits that exceed regulatory compliance
expenditures (Porter and Linde, 1995). The longitudinal
implications of environmental policies manifest primarily
through innovative adaptations, which function as essential
catalysts for environmental performance enhancement and
facilitate the ecological modernization of economic systems (Lv
and Guo, 2025). The implementation of eco-innovative
technologies enables organizations to achieve dual objectives:
minimizing resource utilization and environmental impact while
optimizing operational efficiency and output quality (Guo et al.,
2025). Conversely, the neoclassical paradigm prioritizes immediate
cost implications, positing that despite potential societal benefits,
environmental mandates impose significant private sector burdens.
This framework suggests that compliance-related resource
allocation constraints may impede innovation investment
through resource displacement mechanisms (Wang Y. et al., 2023).

The transition from pollution charges to environmental taxation
represents a fundamental shift toward more stringent regulatory
enforcement with enhanced judicial authority. This policy
transformation intensifies institutional pressure on emission-
intensive sectors regarding environmental compliance. The
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immediate economic implications include elevated tax obligations
and pollution mitigation costs, potentially necessitating resource
reallocation away from research initiatives to maintain financial
viability. Additionally, the inherent characteristics of ecological
innovation - substantial capital requirements, elevated
uncertainty, and extended development horizons - present
significant barriers to near-term innovative output (Gong et al.,
2020). Based on these theoretical considerations, we propose.

Hypothesis 1: The implementation of environmental taxation
policies exhibits a negative cor-relation with green innovation
metrics in pollution-intensive enterprises.

The efficacy of environmental fiscal instruments exhibits
substantial heterogeneity across organizational structures,
particularly between state-controlled and private entities, due to
variations in resource accessibility, strategic objectives, and
institutional support. Private enterprises encounter significant
barriers in accessing debt and equity financing (Lu et al., 2012;
Ling et al., 2024), constraining their capacity for ecological
technological advancement. These entities typically emphasize
profit optimization, displaying reluctance toward discretionary
environmental investments under regulatory pressure (Cai et al.,
2020), particularly given the limited private returns from ecological
innovation (Liu et al., 2021). Conversely, state-controlled enterprises
benefit from enhanced policy alignment, preferential financing
channels, and robust governmental support, while private entities
adopt more conservative strategies due to resource limitations (Lin
and Zhang, 2023). Consequently, the implementation of
environmental taxation may disproportionately constrain
innovation initiatives in private enterprises.

Organizational scale emerges as another critical determinant of
innovation response to environmental fiscal measures. Large-scale
enterprises possess inherent advantages in absorbing policy-induced
shocks. Their robust financial capabilities and sophisticated
management infrastructures facilitate substantial investment in
environmental compliance and research activities (Lin and
Zhang, 2023). Conversely, smaller entities face significant
resource constraints in pursuing ecological innovation (Huang
et al., 2022; Beck and Demirguc-Kunt, 2006). Scale economies
and specialized operational structures enable large enterprises to
optimize production efficiencies while maintaining continuous
innovation through technological reserves (Sun and Wang, 2014;
Dean et al., 1998). Smaller entities often struggle with technological
limitations and information asymmetries, impeding their adaptive
responses to policy shifts (Long et al., 2022). Additionally, enhanced
public scrutiny and regulatory oversight motivate larger enterprises
to prioritize ecological innovation, enabling them to mitigate
compliance costs through technological advancement (Long et al.,
2022; Huang et al., 2022), while smaller entities often bear direct
compliance expenses (Cheng et al., 2022). These dynamics suggest
amplified innovation constraints for smaller enterprises under
environmental taxation regimes.

Market structure significantly moderates the relationship
between environmental regulation and innovation outcomes.
Research indicates a non-linear relationship between competitive
intensity and innovation propensity, with moderate competition
fostering innovation while excessive competition diminishes returns
(Aghion et al., 2005). The dual externalities characteristic of

ecological innovation - knowledge spillovers and environmental
benefits - create appropriability challenges that affect investment
incentives (Liu et al., 2021). Entities in highly competitive markets
face persistent market share pressures while balancing immediate
profitability against sustainability objectives (Liu et al., 2021).
Conversely, enterprises in concentrated markets benefit from
enhanced pricing power (Su et al., 2023), superior financing
capabilities (Ping and Zhou, 2007), and comprehensive industry
expertise (Blundell et al., 1999), facilitating ab-sorption of regulatory
costs and sustained innovation investment. This aligns with
Schumpeterian growth theory, suggesting that intense
competition erodes monopolistic rents necessary for sustained
R&D investment (Aghion and Howitt, 1992). Empirical evidence
indicates that environmental fiscal measures have diminished
impact on ecological productivity in competitive sectors relative
to concentrated industries (Sun et al., 2023), with concentrated
sectors demonstrating superior innovation outcomes (Liu et al.,
2021). Therefore.

Hypothesis 2: The negative impact of environmental taxation on
ecological innovation demon-strates greater magnitude in private
enterprises, smaller entities, and highly competitive sectors,
compared to their respective counterparts.

Research by Liu et al. (2021) reveals distinct risk-return profiles
between invention and utility model patents in the ecological
domain. While invention patents potentially generate superior
returns, they entail complex validation protocols, extended
examination periods, substantial initial capital requirements, and
significant outcome uncertainty (Sun et al., 2022). In contrast, utility
model patents offer a more expedient pathway to regulatory
compliance while maintaining moderate performance benefits.
This efficiency-effectiveness trade-off frequently leads firms to
adopt utility model patents as a pragmatic innovation strategy. Li
B. et al. (2024) document industrial entities’ systematic preference
for utility models, attributed to enhanced success probability and
reduced technical thresholds. Moreover, the accessibility of
governmental innovation subsidies increases for lower-complexity
utility model applications (Li and Zheng, 2016). Consequently,
under environmental fiscal pressure, emission-intensive
enterprises likely prioritize utility model patents while curtailing
invention patent initiatives. This analysis leads to.

Hypothesis 3: The implementation of environmental taxation
demonstrates asymmetric effects across patent categories, with
more pronounced constraints on invention patents relative to
utility models in emission-intensive sectors.

Environmental taxation mechanisms directly impact corporate
liquidity through elevated compliance expenditures. Czarnitzki and
Hottenrott (2011) emphasize the prohibitive costs of external R&D
financing, highlighting firms’ reliance on internal capital allocation
for research initiatives. Seminal work by Hall et al. (2016)
underscores how information asymmetries and outcome
uncertainties in R&D activities necessitate internal funding
sources. Brown et al. (2009) document the critical dependence of
research activities on internal capital flows, with R&D expenditures
frequently serving as primary adjustment variables under financial
constraints. Hall and Lerner (2010) provide empirical validation of
this relationship, demonstrating substantial R&D investment
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sensitivity to cash flow fluctuations. Furthermore, environmental
taxation may deteriorate investor sentiment toward emission-
intensive sectors, elevating their capital acquisition costs. Jaffe
et al. (2002) establish that escalating external financing expenses
significantly constrain R&D investment capacity. These

interconnected factors culminate in reduced research investment
and diminished innovation output. Therefore.

Hypothesis 4: Environmental taxation policies constrain
ecological innovation in emission-intensive enterprises through

FIGURE 1
Theoretical framework.

TABLE 1 Descriptive statistics of main indicators.

VarName Obs Mean SD Min Median Max

GPQ_sum 27270 1.3447 3.946 0.000 0.000 28.796

GIPQ_sum 27270 0.8158 2.597 0.000 0.000 19.472

GUPQ_sum 27270 0.4943 1.492 0.000 0.000 10.414

GPQ_mean 27270 0.1540 0.234 0.000 0.000 0.778

GIPQ_mean 27270 0.1322 0.231 0.000 0.000 0.782

GUPQ_mean 27270 0.0964 0.193 0.000 0.000 0.720

GP 27270 3.7712 11.076 0.000 0.000 80.000

GIP 27270 2.1565 7.006 0.000 0.000 53.000

GUP 27270 1.5329 4.488 0.000 0.000 31.000

did 27270 0.1657 0.372 0.000 0.000 1.000

Lev 27270 0.3933 0.194 0.052 0.383 0.845

Size 27270 21.7727 1.273 19.647 21.556 25.952

Fixed 27270 0.2003 0.147 0.003 0.171 0.665

Roa 27270 0.0427 0.058 −0.213 0.042 0.205

Growth 27270 0.1562 0.329 −0.504 0.108 1.795

Seperate 27270 0.0438 0.070 0.000 0.000 0.278

Mshare 27270 0.1698 0.209 0.000 0.046 0.711

Board 27270 2.1114 0.194 1.609 2.197 2.639

ListAge 27270 1.8976 0.923 0.000 1.946 3.332
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dual channels of reduced liquidity and diminished R&D
investment capacity.

The synthesized theoretical architecture of this investigation is
schematically represented in Figure 1.

3 Research design

3.1 Sample selection and data sources

Our empirical analysis utilizes ecological patent data
extracted from the WinGo Financial Text Data Platform. The
classification of environmental patents follows the taxonomic
framework established by the World Intellectual Property
Organization’s “International Patent Green Inventory” (2010),
which delineates seven distinct subcategories. These patents are
subsequently differentiated into invention patents and utility
models within the environmental domain. Supplementary
firm-level indicators are compiled from the China Research
Data Services Platform (CNRDS) and CSMAR database. The
study population encompasses firms listed on both Shanghai and
Shenzhen exchanges during 2012–2022. Sample refinement
procedures include: (1) elimination of financial sector entities;
(2) removal of companies under special treatment designations
(ST, *ST, PT); and (3) mitigation of outlier effects through
winsorization of continuous variables at the first and ninety-
ninth percentiles.

3.2 Model specification and
variable definition

3.2.1 Model specification
This paper employs a difference-in-differences (DID) model to

examine the impact of environmental protection tax on corporate
green innovation, as specified in Equation 1:

yi,t � β0 + β1*Postt*Pollutedi + γXi,t + Timet + Firmi + εi,t (1)

The subscripts i and t designate the individual entity and
temporal dimensions respectively. The outcome variable yi,t
quantifies ecological patent quality at the firm level, while our
coefficient of interest β1, associated with the interaction term
Postt*Pollutedi, captures the differential impact of environmental
fiscal policy implementation on innovative output. The binary
indicator Postt demarcates the regulatory regime shift,
complemented by Pollutedi which categorizes firms based on
emission intensity. The vector Xi,t encompasses time-varying firm
characteristics that influence innovation propensity. Our
econometric specification incorporates both temporal (Timet) and
entity-specific (Firmi) fixed effects to account for unobserved
heterogeneity. Statistical inference relies on firm-clustered
standard errors to address potential serial correlation, except
where explicitly noted otherwise.

3.2.2 Outcome metrics
Contemporary empirical investigations have adopted

divergent approaches to quantifying ecological innovation: some
emphasize volumetric measures of environmental patent

applications or grants (Liu and Xiao, 2022; Lin and Ma, 2022;
Xue et al., 2022), while others focus exclusively on qualitative
dimensions (Cao et al., 2022). Our methodological framework
integrates both quantitative and qualitative aspects of innovation
output. Building upon methodological foundations established by
Aghion et al. (2019) and Zhang and Zheng (2018), we employ
knowledge breadth methodology to assess individual patent
significance. These pa-tent-level indicators are subsequently
aggregated to construct firm-year observations of cumulative
ecological patent quality (GPQ_sum). Complementing this
approach and following Zhang et al. (2023) and Liu L. et al.
(2022), we incorporate patent ap-plication frequency (GP) and
derive mean quality metrics (GPQ_mean) through the ratio GPQ_
sum/GP.

Recognizing the distinct characteristics of different
intellectual property protection mechanisms, we further
decompose our analysis between invention patents and utility
models. This differentiation yields six distinct metrics:
aggregated quality measures for invention patents (GIPQ_sum)
and utility models (GUPQ_sum), frequency counts for each
category (GIP, GUP), and corresponding mean quality
indicators (GIPQ_mean, GUPQ_mean). This comprehensive
measurement framework enables nuanced analysis of
innovation patterns across patent types.

3.2.3 Explanatory variable
Our focal explanatory term comprises the interaction

Postt*Pollutedi (did), capturing differential policy effects across
firm categories and time periods. The temporal indicator Postt
demarcates the regulatory regime transition, with pre-2018
observations coded as 0 and subsequent periods as 1. The cross-
sectional classifier Pollutedi distinguishes emission-intensive sectors
(1) from other industries (0), utilizing classifications established by
the former Ministry of Environmental Protection’s “Listed
Company Environmental Protection Inspection Industry
Classification Management Directory1,” consistent with Sun
et al. (2023).

3.2.4 Control variable
Following Liu and Xiao (2022) and Lu and Zhou (2023), we

incorporate several firm-specific characteristics: (1) Leverage ratio
(Lev), measured as year-end total liabilities to assets ratio; (2)
Enterprise scale (Size), computed as the natural logarithm of
deflator-adjusted total assets; (3) Fixed asset intensity (Fixed),
calculated as net fixed assets to total assets ratio; (4) Profitability
(Roa), expressed as net profit to total assets ratio; (5) Revenue
expansion (Growth), measured by year-over-year revenue growth;
(6) Control-ownership divergence (Separate), reflecting the
disparity between control rights and cash flow rights; (7)
Managerial ownership (Mshare), indicating the proportion of
shares held by executive officers; (8) Board composition (Board),

1 Pollution-intensive sectors are identified throughmatching the Directory’s

classifications with the 2012 CSRC industry codes: B06, B07, B08, B09,

B10, C15, C17, C18, C19, C22, C25, C26, C27, C28, C29, C30, C31, C32,

C33, and D44.
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expressed as the natural logarithm of director count; (9) Listing
maturity (Listage), computed as the natural logarithm of years since
initial public offering plus one. Table 1 presents descriptive statistics
for these variables.

Table 1 reveals several noteworthy patterns in our sample
characteristics. The aggregate ecological patent quality metric
(GPQ_sum) exhibits substantial cross-sectional heterogeneity,
with a mean of 1.3447 and standard deviation of 3.946. A
notable qualitative differential emerges between invention patents
(GIPQ_sum: 0.8158) and utility models (GUPQ_sum: 0.4943),
reflecting systematic variation in innovation sophistication. The
distribution of innovation activity appears highly concentrated,
evidenced by the patent frequency indicator (GP) displaying a
mean of 3.7712 but median of zero, suggesting ecological
innovation clustering among select market participants.

4 Econometric analysis and
interpretation

4.1 Primary estimation results

The estimation outcomes from our baseline specification (Equation
1) are presented in Table 2. We implement a sequential approach to
model construction: specification (1) incorporates our focal interaction
term with firm-level controls (Xi,t); specifications (2) and (3)
progressively introduce temporal and entity-fixed effects. The
coefficient of interest (did) maintains statistical significance and
negative directionality across all specifications, providing robust
empirical support for Hypothesis 1 regarding the dampening effect
of environmental taxation on ecological innovation in emission-
intensive sectors. This relationship potentially stems from the

TABLE 2 Primary econometric estimates of environmental taxation effects on ecological innovation.

VarName (1) (2) (3)

GPQ_sum GPQ_sum GPQ_sum

did −0.2111** −0.7991*** −0.3175***

(-2.30) (-7.20) (-3.04)

Lev −0.0417 −0.0381 −0.2397

(-0.13) (-0.12) (-1.06)

Size 1.0799*** 1.0508*** 0.4959***

(9.44) (9.08) (5.16)

Fixed −0.6507* −0.0442 0.8026**

(-1.72) (-0.12) (2.51)

Roa 0.5512 1.4873** 0.9944***

(0.76) (1.99) (2.58)

Growth 0.0123 0.0728 −0.1152***

(0.13) (0.77) (-2.63)

Seperate −0.3442 −0.3101 −0.1835

(-0.44) (-0.39) (-0.22)

Mshare 0.1974 0.1515 1.1060***

(0.83) (0.64) (4.37)

Board −0.3022 0.0066 −0.5652**

(-0.95) (0.02) (-2.53)

ListAge −0.4934*** −0.4780*** −0.0949

(-7.09) (-6.90) (-1.10)

_cons −20.4570*** −20.5716*** −8.2959***

(-8.74) (-8.72) (-4.00)

Time NO YES YES

Firm NO NO YES

N 27603 27603 27270

R2 0.0902 0.1076 0.7508

Note: robust t-values appear in parentheses beneath coefficient estimates. Statistical inference levels: p < 0.10*, p < 0.05**, p < 0.01***.
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policy’s impact on production economics, where increased
environmental compliance expenditures may divert resources from
research initiatives to immediate regulatory adaptation measures.
Empirical analysis from Column (3) demonstrates that the
introduction of environmental taxation corresponds with a
diminution in aggregate green patent quality metrics among
pollution-intensive enterprises, with an observed decline of 0.3175,
representing 23.61% of the baseline mean (1.3447). This magnitude
suggests substantial alterations in organizational resource deployment
strategies. Entities predominantly opt for tactical operational
modifications (operational scaling, input substitution, or direct fiscal
compliance) rather than technological advancement initiatives when
confronting environmental fiscal pressures. This behavioral pattern
characterizes the distinctive adaptive responses of enterprises during
China’s economic transformation—where innovative capability
development necessitates sustained temporal investment and cannot
readily materialize as an immediate response to regulatory stimuli.
Within the economic framework, the internalization mechanisms for
negative externalities primarily operate through immediate price
elasticity rather than innovation-driven adaptations, distinguishing
these outcomes from observations in industrialized economies. This
apparent innovation constraints should not be interpreted as regulatory
ineffectiveness but rather illuminates the sequential adaptation
methodology in Chinese enterprises—prioritizing regulatory
adherence before innovation enhancement—potentially exemplifying
a broader pattern among developing economies. From a transitional
economics perspective, these temporary innovation constraints may
represent necessary structural adjustments; as market equilibrium
evolves and organizational innovation frameworks mature, sustained
benefits may emerge.

This analytical outcome corresponds with Wang Y. et al. (2023)
observations from Chinese capital markets, confirming innovation-
constraining effects of environmental taxation. However, our
findings diverge from certain contemporary investigations.
Notably, Deng et al. (2023) examination of pollution-intensive
sectors identified positive correlations between environmental
taxation and research investment intensification.

Several methodological distinctions may explain these analytical
variations: our investigation encompasses a more comprehensive
enterprise sample including non-pollution-intensive sectors; our
temporal framework extends through 2022, capturing extended
policy implications; crucially, our methodology implements more
nuanced innovation assessment metrics, integrating both quantitative
and qualitative dimensions. Within theoretical frameworks, our
evidence contradicts Porter and Linde’s (1995) innovation
compensation paradigm, while substantiating the resource constraint
hypothesis proposed by Palmer et al. (1995) and Jaffe et al. (2005),
emphasizing how environmental compliance requirements constrain
research and development resources. This effect manifests distinctively
within China’s transitional economic context, potentially characterizing
the immediate adaptive mechanisms of enterprises responding to
environmental policy implementation.

4.2 Validation of pre-treatment dynamics

The causal interpretation of difference-in-differences estimation
fundamentally depends on the assumption of comparable temporal

trajectories between experimental groups prior to intervention. As
emphasized by Angrist and Pischke (2009), this methodological
prerequisite necessitates demonstrable similarity in outcome
evolution between treatment and control cohorts in the pre-
policy period. To empirically evaluate this identifying
assumption, we implement the dynamic effects framework
developed by Jacobson et al. (1993), as specified in Equation 2:

yi,t � β0 + ∑
4

k�−6
βkYeark*Pollutedi + β1Xi,t + Timet + Firmi + εi,t

(2)
In this specification, Yeark denotes temporal indicators, while βk

captures the relative innovation divergence between emission-
intensive and non-intensive sectors across the sample period. The
temporal index k measures displacement from the reference period
(designated as “-1”), corresponding to the year immediately
preceding policy enactment. Remaining parameters maintain
their definitions from the baseline specification. The critical
coefficients of interest are the pre-intervention βk estimates (k <
0), whose statistical insignificance would validate the assumption of
parallel pre-trends between experimental groups. The temporal
evolution of point estimates and associated 90% confidence
bands is visualized in Figure 2.

As observed in Figure 2, before policy implementation (k < 0),
the estimated βk coefficients are statistically insignificant, with
confidence intervals containing zero, indicating no significant
differences in green innovation trends between treatment and
control groups pre-policy, thus satisfying the parallel trends
assumption. This provides empirical support for our use of the
DID model. Furthermore, after policy implementation (k > 0), the
estimated βk coefficients become significantly negative, though their
absolute values begin to decline rapidly after the fourth period.
Initial findings demonstrate that while environmental taxation
measures have generated sustained constraints on ecological
innovation within pollution-intensive industries, the magnitude
of these effects experiences significant attenuation beyond the
fourth observation period, indicating progressive organizational
adaptation to fiscal pressures through either cumulative
technological capabilities or regulatory accommodation
mechanisms.

4.3 Sensitivity analysis

4.3.1 Randomization inference
To substantiate our empirical findings and address potential

confounding influences in treatment assignment, we implement
a comprehensive randomization protocol. Our procedure
utilizes the full sample of 27,270 firm-year observations,
employing Monte Carlo techniques to generate counterfactual
treatment assignments. The methodology involves stochastic
allocation of treatment status, construction of synthetic policy
intervention indicators, and estimation of our baseline
specification using these artificially generated treatment
variables. This simulation process is iterated 500 times to
establish a robust null distribution. Figure 3 illustrates the
kernel density estimation of simulated treatment effects and
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their corresponding statistical significance levels. The resulting
coefficient distribution exhibits characteristics consistent with
random noise: centrality around zero, approximate normality,
and predominant statistical insignificance at conventional
thresholds. The empirically observed treatment effect,
demarcated by the vertical reference line, demonstrates

substantial deviation from this null distribution. This
systematic divergence between simulated and actual estimates
provides compelling evidence that our documented policy
effects reflect genuine regulatory impacts rather than spurious
correlations or unobserved heterogeneity, thereby reinforcing
the validity of our identification strategy.

FIGURE 2
Dynamic effects analysis: Pre-treatment evolution and post-policy response.

FIGURE 3
Placebo test.
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4.3.2 Alternative policy regime controls
To isolate the causal effect of environmental taxation, we

systematically account for concurrent regulatory initiatives that
potentially influence ecological innovation. Our analysis addresses
four significant policy interventions: Market-Based Environmental
Mechanisms: Following the 2013 introduction of emissions trading
in seven pilot jurisdictions (Beijing, Tianjin, Shanghai, Guangdong,
Hubei, Chongqing, Shenzhen), we estimate our model on the
subsample excluding these regions. Column (1) of Table 3
demonstrates persistence of the negative treatment effect
(β = −0.2694, p < 0.05). Financial Innovation Zones: To address
the 2017 establishment of ecological finance experimental regions
(Zhejiang, Jiangxi, Guangdong, et al.), we conduct analysis excluding
these provinces. Results presented in Column (2) maintain statistical

significance (β = −0.1987, p < 0.1). Regional Environmental
Oversight: Consistent with Li et al. (2023), we examine the
impact of enhanced atmospheric pollution monitoring
implemented in Beijing-Tianjin-Hebei and adjacent territories
(April 2017). The coefficient estimate from the restricted sample
remains robust (β = −0.3293, p < 0.01), as shown in Column (3).
International Development Strategy: Acknowledging potential
environmental compliance pressures associated with the
2014″Belt and Road” Initiative (Li B. et al., 2024), we exclude
firms in participating municipalities. Column (4) demonstrates
maintained significance of the treatment effect (β = −0.2685, p <
0.05). The consistency of our findings across these various policy-
controlled subsamples provides strong evidence for the robustness
of our primary conclusions.

TABLE 3 Heterogeneous policy environment analysis.

VarName (1) (2) (3) (4)

Carbon emission trading Green finance Pollution control Belt and road

did −0.2694** −0.1987* −0.3293*** −0.2685**

(−2.46) (−1.67) (−3.22) (−2.36)

Lev −0.0544 −0.1560 −0.3192 −0.3981*

(−0.20) (−0.62) (−1.39) (−1.65)

Size 0.4599*** 0.3594*** 0.5020*** 0.5466***

(4.27) (3.64) (5.06) (5.05)

Fixed 0.5665 0.6140 0.8507*** 0.9465***

(1.57) (1.63) (2.79) (2.66)

Roa 0.7857* 1.1936*** 0.9922*** 1.0944***

(1.78) (2.60) (2.59) (2.69)

Growth −0.1477*** −0.1267*** −0.0972** −0.1168**

(−2.79) (−2.59) (−2.21) (−2.38)

Seperate 0.0700 −0.9386 −0.1159 −0.1678

(0.09) (−0.92) (−0.14) (−0.18)

Mshare 1.0121*** 1.2263*** 0.6469** 1.1101***

(3.69) (4.45) (2.45) (4.05)

Board −0.5473** −0.4221* −0.4548** −0.5907**

(−2.43) (−1.70) (−2.04) (−2.36)

ListAge −0.1141 −0.0550 −0.0384 −0.0759

(−1.16) (−0.58) (−0.47) (−0.78)

_cons −7.6336*** −5.7365*** −8.7898*** −9.3225***

(−3.32) (−2.65) (−4.09) (−4.00)

Time YES YES YES YES

Firm YES YES YES YES

N 16384 18056 21504 23133

R2 0.7344 0.7623 0.7381 0.7543

Note: robust t−values appear in parentheses beneath coefficient estimates. Statistical inference levels: p < 0.10*, p < 0.05**, p < 0.01***.
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4.3.3 Temporal boundaries and selection bias
mitigation

We implement two complementary methodological
refinements to address anticipatory responses and potential
selection concerns. First, following Li C. et al. (2024), we
constrain our analysis to the 2016–2022 interval to account
for behavioral adjustments potentially triggered by the
2015 legislative amendments preceding the
2018 implementation. Column (1) of Table 4 presents
estimates from this temporally restricted sample, revealing
persistent negative policy effects (β = −0.2804, p < 0.01)
consistent with our primary specifications.

Adopting the methodological framework of Duan and
Rahbarimanesh (2024), we employ a matched-sample approach

to address potential selection concerns and enhance cross-group
comparability. Propensity score estimation was conducted via
Logistic regression incorporating the covariates specified in
model (1). The analysis employed multiple matching algorithms -
nearest-neighbor, radius-based, caliper-defined, and kernel density
estimation approaches - to establish treatment-control paired
samples. Subsequent difference-in-differences estimation was
performed on these matched datasets, with results presented in
Table 4, columns (2)–(5). The core interaction term did exhibits
statistically significant negative coefficients across all matching
specifications. This convergence between matched-sample
estimates and baseline specifications substantively reinforces our
identification strategy and strengthens the causal interpretation of
our findings.

TABLE 4 Adjusted sample period and PSM-DID.

VarName (1) (2) (3) (4) (5)

Deleted years Neighbor matching Radius matching Caliper matching Kernel matching

did −0.2804*** −0.2741** −0.3236*** −0.4302*** −0.3185***

(-3.03) (-2.30) (-3.12) (-4.50) (-3.05)

Lev −0.6497** −0.4563 −0.2062 −0.1872 −0.2187

(-2.30) (-1.64) (-0.89) (-0.83) (-0.96)

Size 0.6413*** 0.4296*** 0.4960*** 0.5320*** 0.4940***

(6.11) (3.89) (5.06) (5.45) (5.10)

Fixed 0.6548* 0.3715 0.7979** 0.7551** 0.7960**

(1.74) (1.17) (2.49) (2.36) (2.49)

Roa 0.7282* 0.6905 0.9695** 0.9730** 0.9202**

(1.86) (1.34) (2.48) (2.54) (2.37)

Growth −0.0726 −0.0762 −0.1212*** −0.1268*** −0.1222***

(-1.48) (-1.28) (-2.71) (-2.91) (-2.77)

Separate 0.6795 0.3900 −0.1633 −0.3129 −0.1595

(0.87) (0.47) (-0.19) (-0.38) (-0.19)

Mshare 1.1985*** 0.7108** 1.0780*** 1.0472*** 1.0805***

(4.24) (2.41) (4.23) (4.12) (4.25)

Board −0.5841** −0.7010*** −0.5865*** −0.6657*** −0.5677**

(-2.49) (-2.74) (-2.63) (-3.08) (-2.54)

ListAge −0.0981 −0.2195** −0.1018 −0.0739 −0.0974

(-1.11) (-2.23) (-1.17) (-0.86) (-1.13)

_cons −11.0828*** −6.3661*** −8.2493*** −8.9044*** −8.2439***

(-4.83) (-2.68) (-3.90) (-4.23) (-3.94)

Time YES YES YES YES YES

Firm YES YES YES YES YES

N 20307 14325 27089 26538 27199

R2 0.8155 0.7410 0.7509 0.7501 0.7511

Note: robust t-values appear in parentheses beneath coefficient estimates. Statistical inference levels: p < 0.10*, p < 0.05**, p < 0.01***.
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4.3.4 Fixed effects extension and clustered
robustness analysis

To substantiate our causal interpretation and address
endogeneity concerns, we implement dual methodological
refinements: augmented fixed-effects specifications and multi-
level clustering protocols. The first approach systematically
incorporates additional dimensional controls to account for
unobserved heterogeneity in regional and sectoral dynamics.
Specifically, we progressively augment our baseline
specification with city-temporal interactions, province-

temporal interactions, and industry-specific effects. The
estimation results, documented in Columns (1)–(3) of Table 5,
demonstrate persistence of the negative treatment effect across all
specifications, suggesting robustness to potential omitted
variable bias.

Our second methodological refinement addresses spatial
dependence through hierarchical standard error clustering at
municipal and provincial administrative tiers. The corresponding
estimates, presented in Columns (4) and (5), maintain statistical
significance under both clustering protocols. This resilience to

TABLE 5 Adding fixed effects and changing clustering levels.

VarName (1) (2) (3) (4) (5)

City-time fixed
effects

Province-time fixed
effects

Industry fixed
effects

Cluster city Cluster
province

did −0.2169* −0.3216*** −0.3498*** −0.3175*** −0.3175**

(-1.65) (-2.86) (-3.26) (-2.65) (-2.75)

Lev −0.2278 −0.1317 −0.2485 −0.2397 −0.2397

(-0.87) (-0.57) (-1.10) (-1.13) (-0.98)

Size 0.5311*** 0.4830*** 0.5435*** 0.4959*** 0.4959***

(5.08) (4.94) (5.45) (4.62) (4.88)

Fixed 0.9006** 0.8497*** 0.7670** 0.8026** 0.8026***

(2.51) (2.62) (2.40) (2.53) (3.36)

Roa 0.9256** 0.9888** 0.9625** 0.9944* 0.9944**

(2.10) (2.51) (2.49) (1.91) (2.24)

Growth −0.0964* −0.1155*** −0.1249*** −0.1152*** −0.1152***

(-1.94) (-2.59) (-2.84) (-2.97) (-3.40)

Seperate −0.3490 −0.2348 −0.2496 −0.1835 −0.1835

(-0.36) (-0.28) (-0.30) (-0.22) (-0.24)

Mshare 1.0323*** 1.1337*** 1.0622*** 1.1060*** 1.1060***

(3.33) (4.30) (4.16) (3.24) (3.22)

Board −0.5677** −0.5665** −0.5515** −0.5652*** −0.5652***

(-2.30) (-2.49) (-2.47) (-3.05) (-3.31)

ListAge −0.1166 −0.1048 −0.1132 −0.0949 −0.0949

(-1.19) (-1.17) (-1.30) (-1.31) (-1.62)

_cons −9.0076*** −8.0472*** −9.2980*** −8.2959*** −8.2959***

(-4.04) (-3.82) (-4.32) (-3.54) (-4.02)

Time YES YES YES YES YES

Firm YES YES YES YES YES

Industry NO NO YES NO NO

City-Time YES NO NO NO NO

Province-Time NO YES NO NO NO

N 25944 27270 27270 27270 27270

R2 0.7689 0.7536 0.7514 0.7508 0.7508

Note: robust t-values appear in parentheses beneath coefficient estimates. Statistical inference levels: p < 0.10*, p < 0.05**, p < 0.01***.
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alternative variance-covariance structures provides additional
validation of our statistical inference.

The convergence of evidence across these econometric
specifications - spanning both enhanced fixed-effects
architectures and spatial correlation controls - provides
comprehensive support for our primary finding regarding the
inhibitory effect of environmental taxation on ecological
innovation in emission-intensive sectors. This systematic
robustness to alternative model specifications substantially
strengthens our causal interpretation.

4.3.5 Comprehensive examination of identification
challenges

Supplementing our robustness analyses, we address potential
identification challenges and their implications for empirical

estimation. Within our difference-in-differences analytical
framework, methodological concerns arise from three primary
sources: unobserved heterogeneity, non-random sampling, and
bidirectional causation.

4.3.5.1 Unobserved heterogeneity
Policy outcomes may be confounded by contemporaneous

regulatory initiatives and latent factors. Our methodological
approach incorporates multiple dimensions of fixed effects in the
baseline specification, while Table 5 augments this with
municipality-temporal, provincial-temporal interaction
parameters, and sectoral controls to account for spatiotemporal
variation in unobservable characteristics (Chen et al., 2024).
Additionally, Table 3 presents estimates excluding jurisdictions
with concurrent environmental initiatives (including emissions

TABLE 6 Channel decomposition analysis.

VarName (1) (2) (3)

Cash RD1 RD2

did −0.9270** −0.4242*** −1.8407***

(-2.39) (-2.86) (-6.99)

Lev −0.1809 −1.2942*** −0.1191

(-0.15) (-3.02) (-0.11)

Size 0.6258* 1.0969*** 1.3223***

(1.91) (7.65) (4.09)

Fixed 9.9999*** 1.0307 −3.2090**

(6.82) (1.50) (-2.43)

Roa 42.3351*** −0.1726 −3.4147**

(15.91) (-0.30) (-1.99)

Growth −0.8548** 0.0681 −0.4841***

(-2.37) (0.98) (-2.88)

Seperate −5.2078* 1.4740 −3.3823

(-1.78) (1.18) (-1.41)

Mshare −0.9701 2.3981*** −3.8095***

(-0.75) (5.66) (-3.19)

Board −0.2700 0.2536 −0.1076

(-0.28) (0.90) (-0.14)

ListAge 0.7070** −0.4853*** 1.8379***

(2.08) (-4.15) (7.29)

_cons −4.9862 −7.3041** −17.3979**

(-0.70) (-2.36) (-2.56)

Time YES YES YES

Firm YES YES YES

N 27270 27270 27270

R2 0.3550 0.7896 0.8278

Note: robust t-values appear in parentheses beneath coefficient estimates. Statistical inference levels: p < 0.10*, p < 0.05**, p < 0.01***.
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trading mechanisms, ecological financial programs, enhanced
atmospheric pollution monitoring) to isolate policy effects. The
stability of core parameter estimates across these specifications
suggests robust identification.

4.3.5.2 Non-random sampling
The utilization of publicly traded enterprise data introduces

potential selection concerns. Our empirical strategy employs
propensity score matching combined with difference-in-
differences estimation to establish appropriate counterfactuals
(Table 4, specifications 2–5). The consistency of negative and
statistically significant coefficients across alternative matching
algorithms, approximating baseline estimates, demonstrates the
robustness of our findings to sample composition.

4.3.5.3 Bidirectional causation
Environmental innovation intensity could potentially influence

regulatory implementation. However, the centralized determination
of environmental taxation policy implementation timing minimizes
individual firm influence on regulatory decisions, partially
mitigating endogeneity concerns. Furthermore, our mechanism
analysis (Table 6) delineates specific transmission channels from
environmental taxation to innovation outcomes, reinforcing the
proposed causal direction.

Our investigation acknowledges several methodological
constraints despite these identification strategies: the absence of
suitable instrumental variables, the challenge of establishing pure
control groups under nationwide policy implementation, and data
limitations regarding firm-specific tax obligations. While these
constraints may influence estimation precision, they do not
fundamentally alter our primary analytical conclusions.

4.4 Transmission channel investigation

Having established the dampening effect of environmental
taxation on ecological innovation, we examine potential causal
mechanisms. Our theoretical framework posits that fiscal
environmental interventions may constrain innovation through
liquidity constraints and reduced research capacity. Given that
existing literature has extensively argued that corporate cash flow,
R&D funding investment, and the increase in R&D personnel can
promote green innovation (Chen et al., 2021; Sánchez-Sellero and
Bataineh, 2022), we focus specifically on: the impact of environmental
protection tax on corporate cash flow, R&D funding investment, and
R&D personnel. Following Wang S. et al. (2023), we formalize this
analysis through the following Equation 3:

Mi,t � α0 + α1*Postt*Pollutedi + γXi,t + Timet + Firmi + εi,t (3)
where Mi,t encompasses three channel variables: operational
liquidity (Cash), research capital allocation (RD1), and scientific
personnel intensity (RD2). Other parameters maintain their baseline
definitions.

4.4.1 Liquidity channel
Ecological innovation demands substantial sustained

investment across multiple dimensions, with extended gestation
periods and delayed returns. Operating liquidity, measured by

the natural logarithm of operational cash flows (Feng et al.,
2023), represents a critical enabling factor. Column (1) of
Table 6 documents significant negative treatment effects on
corporate liquidity, suggesting environmental taxation constrains
discretionary resources available for innovation activities, consistent
with Wang Y. et al. (2023).

4.4.2 R&D investment effect
We decompose innovation inputs into capital allocation and

human capital dimensions. The former is quantified through
logarithmic R&D expenditure, while the latter reflects the
proportion of research personnel in total employment. Columns
(2) and (3) reveal significant negative treatment effects across both
metrics. This pattern suggests environmental compliance
expenditures may crowd out innovation investments, potentially
reflecting optimal resource allocation under regulatory constraints
(Liu et al., 2024).

These empirical patterns validate Hypothesis 4, demonstrating
that environmental taxation influences innovation through both
liquidity and investment channels.

Our identification of fiscal constraints as a transmission channel
between environmental taxation and ecological innovation yields
substantial insights for understanding corporate finance and
innovation dynamics. The observed behavioral patterns align with
internal financing theoretical predictions: organizations respond to
environmental compliance costs by prioritizing liquidity preservation
through reduction in long-term research investments. This empirical
pattern illuminates how regulatory interventions translate into
modified innovation strategies through financial pathways.

Our mechanistic analysis provides more direct empirical
validation of resource constraint channels compared to alternative
explanatory frameworks in contemporary literature. While Lu and
Zhou (2023) emphasize institutional legitimacy considerations, and
Cao et al. (2024) focus on technological transformation and
sustainability metrics, Liang et al. (2023) identifies regulatory
legitimacy as driving increased environmental patent applications.
Our investigation reveals more fundamental financial mechanisms,
complementing Wang Y. et al. (2023) observations while extending
the analysis across both liquidity and research investment dimensions.
This comprehensive mechanistic examination enhances our
understanding of regulatory impacts on organizational innovation
strategies.

Financial analysis reveals a tripartite mechanism through which
environmental taxation influences innovation trajectories:
immediate resource displacement effects constraining innovation
funding; reputational implications elevating capital costs for
emission-intensive enterprises; and strategic portfolio realignment
toward environmentally oriented research initiatives. This
multifaceted framework explains the observed temporal variation
in policy effects, with initial constraints potentially yielding to more
nuanced long-term outcomes.

The findings carry significant implications for policy
coordination between environmental and financial regulatory
frameworks. Complementary ecological financing initiatives,
including sustainable credit facilities and environmental bonds,
may mitigate innovation constraints arising from environmental
taxation. This consideration becomes particularly salient for smaller
and privately-held enterprises, where pre-existing financial
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constraints may amplify regulatory impacts, necessitating targeted
support mechanisms to maintain innovation continuity.

5 Cross-sectional variation analysis

This section examines systematic heterogeneity in policy
response across organizational characteristics and institutional
environments.

5.1 Corporate governance structure

Corporate governance structures potentially moderate
institutional responses to environmental fiscal policy, particularly
regarding ecological innovation initiatives. To examine this
heterogeneity systematically, we bifurcate our sample based on
state ownership, implementing a binary indicator (State) in our
baseline specification to distinguish state-controlled enterprises
(coded 1) from private sector firms (coded 0). The empirical

TABLE 7 Policy response heterogeneity: Ownership structure analysis.

VarName (1) (2) (3)

SOEs Non-SOEs Full sample

did*State 0.7024***

(3.75)

State −0.0066

(-0.03)

did 0.1853 −0.4922*** −0.5676***

(0.79) (-4.94) (-6.43)

Lev 0.3045 −0.2606 −0.1803

(0.54) (-1.08) (-0.80)

Size −0.0756 0.7421*** 0.4945***

(-0.41) (6.25) (5.12)

Fixed 0.2450 1.1138*** 0.7871**

(0.46) (2.82) (2.46)

Roa 0.9737 0.7871* 0.9716**

(0.93) (1.91) (2.53)

Growth −0.0180 −0.1798*** −0.1237***

(-0.18) (-3.91) (-2.83)

Seperate −0.6136 −0.4895 −0.3087

(-0.30) (-0.59) (-0.37)

Mshare −1.8270 0.8822*** 1.0542***

(-0.41) (3.42) (4.09)

Board −0.7933* −0.5375** −0.5584**

(-1.70) (-2.05) (-2.48)

ListAge 0.3769 −0.0747 −0.0406

(1.37) (-0.74) (-0.47)

_cons 4.0497 −13.7186*** −8.3772***

(0.96) (-5.48) (-4.03)

Time YES YES YES

Firm YES YES YES

N 7957 19271 27270

R2 0.7945 0.7279 0.7513

Note: robust t-values appear in parentheses beneath coefficient estimates. Statistical inference levels: p < 0.10*, p < 0.05**, p < 0.01***.
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evidence, presented in Table 7, reveals asymmetric policy impacts:
private enterprises exhibit significant innovation suppression effects,
while state-controlled firms demonstrate resilience to policy
intervention. The positive coefficient on the governance-policy
interaction term (did*State) in aggregated analysis confirms the
attenuating effect of state control, corroborating findings from Zhao
X. et al. (2024). Multiple institutional mechanisms potentially
underlie this heterogeneous response. State-controlled enterprises
command superior innovation capacity and risk-bearing
capabilities, facilitating regulatory adaptation, while private firms
experience innovation displacement effects under binding resource
constraints. Additionally, preferential access to governmental
resources and policy consideration insulates state-controlled
entities from adverse regulatory impacts, while broader policy
mandates encourage sustained innovation. Private enterprises
face heightened capital constraints and limited banking
relationships, with environmental taxation potentially amplifying
these frictions. Furthermore, private sector emphasis on immediate
performance metrics may discourage long-horizon innovation
investments under increased regulatory burden. Finally, state
control potentially enhances environmental stewardship
consciousness, facilitating the transformation of regulatory
pressure into innovation stimulus.

The observed heterogeneity in regulatory impacts corresponds
with empirical evidence fromWang S. et al. (2023) and Zhao Z. et al.
(2024), who document heightened innovation constraints among
private sector entities under environmental regulation. These
findings contrast with conclusions drawn by Li and Li (2022)
and Deng et al. (2023), whose investigations indicate positive
innovation effects within state-controlled enterprises while
detecting no significant response among private sector firms.
Such analytical divergence potentially derives from
methodological variations and underscores the contextual nature
of environmental policy outcomes.

The asymmetric innovation responses between state-controlled
and private enterprises illuminate fundamental institutional
characteristics within China’s distinctive economic framework.
The divergent behavioral patterns reflect the intersection of
governmental and market-based incentive structures: state-
controlled entities integrate multiple policy objectives and societal
obligations into their operational frameworks, extending beyond
pure economic considerations to encompass political and social
imperatives. Conversely, private sector organizations exhibit
stronger alignment with market mechanisms and demonstrate
enhanced sensitivity to economic signals. These institutional
distinctions manifest in divergent innovation adaptation
strategies under uniform environmental policies.

Within the broader context of China’s economic
transformation, these findings yield substantial macroeconomic
implications. State-controlled enterprises function as policy
implementation anchors, maintaining technological advancement
trajectories despite regulatory pressures. Simultaneously, the acute
policy responsiveness exhibited by private enterprises reflects
progressive market liberalization. This bifurcated innovation
response pattern represents a distinctive feature of China’s
gradual reform approach within environmental governance,
balancing policy stability through state sector consistency while

facilitating market-driven adaptation through private sector
flexibility.

5.2 Scale economics effects

Organizational scale potentially mediates the transmission of
environmental fiscal policy to innovation outcomes. Following Liu
and Xiao (2022), we implement a scale-based analysis using median
total assets as the bifurcation threshold, introducing a dimensional
indicator (Scale) to distinguish large enterprises (coded 1) from their
smaller counterparts (coded 0). Table 8 documents differential
policy sensitivity: smaller entities exhibit pronounced innovation
contraction, while larger institutions demonstrate impact resilience.
The positive coefficient on the scale-policy interaction (did*Scale) in
aggregate estimation validates the moderating influence of
institutional scale. The observed pattern corresponds with
empirical evidence documented by Huang et al. (2022) and Liu
and Xiao (2022), demonstrating superior adaptive capacity of larger
organizations to environmental regulatory changes, attributable to
their enhanced resource endowments and operational
scale economies.

This systematic heterogeneity likely reflects multiple economic
mechanisms. Larger institutions command superior resource
endowments across capital, human capital, and technological
dimensions, facilitating absorption of regulatory costs while
maintaining innovation trajectories. Their enhanced capital
market access and reduced financing frictions enable sustained
research investment despite regulatory pressures. Scale economies
in innovation processes generate efficiency gains unavailable to
smaller entities. Market power asymmetries enable cost
transmission through value chains, while smaller firms bear
disproportionate regulatory burden. Strategic orientation
differences emerge as larger institutions emphasize long-horizon
competitive positioning through ecological innovation, contrasting
with survival-focused smaller entities preferring direct compliance.
Additionally, institutional capacity for environmental policy
analysis and strategic adaptation varies systematically with scale.

The asymmetric responses to environmental taxation across
organizational scale dimensions yield substantive economic
ramifications. Microeconomic analysis reveals these disparities as
manifestations of scale-dependent variations in innovative
capabilities and uncertainty tolerance. Through an industrial
organization lens, this heterogeneity potentially catalyzes strategic
segmentation within sectors, generating bifurcated innovation
hierarchies comprising dominant technological pioneers and
adaptive followers. The temporal evolution of these dynamics
may fundamentally alter industrial power structures and value
distribution mechanisms, as larger entities leverage
environmental innovation capabilities to reinforce market
dominance, while smaller organizations navigate toward
specialized niches within innovation networks. Within the
broader economic restructuring context, this organizational
realignment may enhance systemic innovation efficiency through
resource optimization, though vigilance is warranted regarding
potential consequences of market power consolidation and
diminished innovation heterogeneity.
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5.3 Market structure dynamics

Industrial organization characteristics potentially mediate
environmental policy transmission to innovation outcomes.
Following Zhao X. et al. (2024), we employ the Herfindahl-
Hirschman concentration metric to quantify market structure,
partitioning our sample at median concentration levels. We
introduce a structural indicator (HHI) distinguishing
concentrated sectors (above-median HHI, coded 1) from

competitive markets (coded 0). Table 9 reveals systematic
variation in policy sensitivity: competitive sectors exhibit
significant innovation suppression, while concentrated industries
demonstrate impact resilience. The positive coefficient on the
structure-policy interaction (did*HHI) in aggregate estimation
validates the attenuating effect of market power. These patterns
align with both the non-monotonic competition-innovation
relationship postulated by Aghion et al. (2005) and
Schumpeterian innovation theory (Schumpeter, 2013). Multiple

TABLE 8 Innovation response heterogeneity: Dimensional analysis.

VarName (1) (2) (3)

Large firms Small firms Full sample

did*Scale 0.4112***

(3.71)

Scale −0.1784*

(-1.68)

did −0.2303 −0.2535*** −0.5677***

(-1.30) (-4.08) (-7.52)

Lev 0.0533 −0.1224 −0.1749

(0.10) (-0.77) (-0.80)

Size 0.5757*** 0.4163*** 0.5163***

(2.92) (5.56) (4.87)

Fixed 0.0659 0.3779 0.7473**

(0.11) (1.47) (2.39)

Roa 1.5837** 0.1783 1.0379***

(2.00) (0.54) (2.71)

Growth 0.0350 −0.1001** −0.1159***

(0.52) (-2.43) (-2.66)

Seperate 0.3427 −0.3208 −0.2369

(0.23) (-0.68) (-0.29)

Mshare 1.4643** 0.1509 1.0325***

(2.15) (0.92) (4.14)

Board −0.8071** −0.0964 −0.5517**

(-2.04) (-0.62) (-2.56)

ListAge 0.3224 0.1004* −0.0524

(1.54) (1.83) (-0.63)

_cons −10.3597** −7.9419*** −8.7723***

(-2.34) (-5.17) (-3.90)

Time YES YES YES

Firm YES YES YES

N 13469 13451 27270

R2 0.7857 0.6691 0.7503

Note: robust t-values appear in parentheses beneath coefficient estimates. Statistical inference levels: p < 0.10*, p < 0.05**, p < 0.01***.
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economic mechanisms potentially drive this heterogeneity. Price-
setting capacity in concentrated markets facilitates regulatory cost
transmission, preserving innovation resources, while competitive
pressure constrains such adjustment. Margin compression in
competitive environments incentivizes cost-minimization
strategies over uncertain innovation investments. Resource
allocation dynamics under competitive pressure may prioritize
immediate market share preservation over long-horizon
innovation initiatives (Vives, 2008). Additionally, scale economies

and excess returns in concentrated sectors enhance both internal
innovation funding and external capital access. These empirical
patterns provide robust support for Research Hypothesis 2.

The heterogeneous responses to environmental taxation across
market structures yield substantial implications for industrial
economic theory. The findings illuminate how regulatory
interventions function as external catalysts in reconfiguring
competitive dynamics and innovation incentives. Within
concentrated markets characterized by limited competition,

TABLE 9 Innovation response heterogeneity: Market structure analysis.

VarName (1) (2) (3)

Low-competition High-competition Full sample

did*HHI 0.3592***

(2.94)

HHI −0.3234***

(-3.95)

did −0.2303 −0.4567*** −0.4714***

(-1.30) (-3.22) (-4.44)

Lev 0.0533 −0.0728 −0.2250

(0.10) (-0.24) (-1.02)

Size 0.5757*** 0.5018*** 0.4887***

(2.92) (4.02) (5.25)

Fixed 0.0659 0.6459 0.7879**

(0.11) (1.57) (2.52)

Roa 1.5837** 1.6144*** 1.0290***

(2.00) (3.05) (2.69)

Growth 0.0350 −0.1637** −0.1129***

(0.52) (-2.40) (-2.59)

Seperate 0.3427 2.2395* −0.1788

(0.23) (1.96) (-0.22)

Mshare 1.4643** 0.3600 1.0816***

(2.15) (1.01) (4.33)

Board −0.8071** −0.4330 −0.5605***

(-2.04) (-1.35) (-2.60)

ListAge 0.3224 −0.1589 −0.0986

(1.54) (-1.24) (-1.17)

_cons −10.3597** −8.6275*** −7.9799***

(-2.34) (-3.22) (-3.97)

Time YES YES Yes

Firm YES YES Yes

N 13469 12700 27270

R2 0.7857 0.7169 0.7504

Note: robust t-values appear in parentheses beneath coefficient estimates. Statistical inference levels: p < 0.10*, p < 0.05**, p < 0.01***.
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organizations leverage market power to distribute environmental
compliance costs while sustaining research investments through
monopolistic rents. Conversely, entities operating in highly
competitive sectors face intensified pricing constraints and
margin pressures, compromising their capacity for sustained
innovation investment.

Through the lens of economic restructuring, these asymmetric
effects potentially catalyze organizational evolution within
industries. Environmental taxation functions as a market-driven
selection mechanism, potentially facilitating consolidation within
fragmented sectors toward more efficient operational scales and
enhanced innovation capabilities. Simultaneously, within
concentrated markets, the increased cost burden may
counterbalance monopolistic inefficiencies, incentivizing
competitive advantage through technological advancement rather

than market power exploitation. This bidirectional regulatory
mechanism potentially fosters optimal competitive equilibrium,
balancing innovation incentives while preventing the inefficient
dispersion of research resources characteristic of
hypercompetitive markets.

6 Further analysis

6.1 Innovation output analysis: qualitative
and quantitative dimensions

We decompose environmental policy effects across both
qualitative and quantitative innovation metrics. Table 10
documents systematic variation in policy impacts: positive

TABLE 10 Environmental policy impact: Qualitative and quantitative innovation metrics.

VarName (1) (2) (3) (4) (5) (6)

GPQ_mean GIPQ_mean GUPQ_mean GP GIP GUP

did 0.0120* 0.0042 0.0103** −0.5241** −0.3841** −0.0552

(1.76) (0.63) (1.98) (-2.09) (-2.32) (-0.48)

Lev −0.0275 −0.0285* −0.0118 −0.1650 −0.1799 0.0379

(-1.58) (-1.74) (-0.81) (-0.28) (-0.48) (0.14)

Size 0.0196*** 0.0200*** 0.0101*** 1.0713*** 0.6813*** 0.3441***

(4.42) (4.57) (2.73) (4.32) (4.18) (3.42)

Fixed 0.0223 0.0264 0.0177 1.4308* 1.0159** 0.2370

(0.97) (1.20) (0.92) (1.73) (2.01) (0.64)

Roa 0.0297 0.0191 0.0556** 2.4538** 1.3914** 1.3093***

(0.92) (0.59) (2.09) (2.53) (2.29) (3.00)

Growth 0.0000 0.0052 −0.0076** −0.3798*** −0.1812** −0.1883***

(0.01) (1.25) (-2.17) (-3.40) (-2.50) (-3.57)

Seperate −0.0658 −0.0588 −0.0374 0.1134 0.4700 −0.7383

(-1.49) (-1.31) (-1.04) (0.05) (0.30) (-0.76)

Mshare 0.0468** 0.0556*** 0.0427*** 1.7122*** 1.1400*** 0.4662

(2.39) (3.02) (2.62) (2.63) (2.89) (1.52)

Board −0.0127 −0.0164 −0.0095 −1.5777*** −1.0331*** −0.3996

(-0.99) (-1.23) (-0.94) (-2.82) (-2.80) (-1.61)

ListAge 0.0171*** 0.0123** 0.0061 −0.1334 −0.1045 0.0199

(3.39) (2.44) (1.44) (-0.63) (-0.76) (0.22)

_cons −0.2815*** −0.2943*** −0.1234 −16.4457*** −10.6121*** −5.2787**

(-2.88) (-3.06) (-1.54) (-3.08) (-3.02) (-2.48)

Time YES YES YES YES YES YES

Firm YES YES YES YES YES YES

N 27270 27270 27270 27270 27270 27270

R2 0.4563 0.4520 0.4304 0.7925 0.7847 0.7349

Note: robust t-values appear in parentheses beneath coefficient estimates. Statistical inference levels: p < 0.10*, p < 0.05**, p < 0.01***.
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coefficients for mean patent quality indicators (GPQ_mean, GUPQ_
mean) contrast with insignificant effects on invention patent quality
(GIPQ_mean). Simultaneously, negative treatment effects emerge
for aggregate patent counts (GP) and invention patent volumes
(GIP), while utility model quantities (GUP) remain unaffected.
These patterns, supporting Hypothesis 3, reveal multifaceted
policy transmission mechanisms. The empirical evidence suggests
strategic adaptation along several dimensions. First, the policy
induces a quality-quantity trade-off, enhancing average
innovation value while contracting aggregate output, particularly
pronounced in utility models. Second, regulatory cost pressures
appear to catalyze strategic reorientation toward quality-focused
innovation portfolios, concentrating resources on selective high-
potential initiatives. Third, temporal optimization dynamics emerge
as firms balance immediate regulatory compliance costs against
extended-horizon invention patent returns, potentially favoring
expedited utility model development. Fourth, the policy appears
to trigger systematic innovation resource reallocation, with
concentrated investment in promising projects offsetting reduced
initiative breadth. Finally, heterogeneous responses across patent
categories, notably pronounced in utility model quality
enhancement, suggest differential innovation elasticities to
regulatory intervention.

The identified inverse relationship between innovation quality
and quantity represents a novel contribution to scholarly discourse.
While Song et al. (2020) acknowledged patent heterogeneity, they
stopped short of examining regulatory impacts on innovation
excellence. Our investigation advances beyond previous
frameworks, complementing Aghion et al. (2016) observations
regarding policy-induced directional shifts in innovation while
illuminating specific qualitative transformations. The findings
substantiate Popp et al. (2010) theoretical proposition regarding
bifurcated policy effects, where regulatory interventions
simultaneously stimulate and constrain distinct innovation
categories. This heterogeneity manifests through differential
impacts across patent classifications, underscoring the
multifaceted nature of environmental policy consequences on
technological advancement.

The observed enhancement in innovation sophistication
concurrent with quantitative decline yields substantial economic
insights. The phenomenon reflects fundamental alterations in
marginal innovation benefit calculations: regulatory cost
pressures induce strategic portfolio optimization, prioritizing
high-return innovative initiatives while discontinuing marginal
projects. This reallocation mechanism potentially corrects market
inefficiencies by redirecting resources toward qualitative excellence
rather than numerical expansion, enhancing aggregate productivity
dynamics. The surge in sophisticated environmental innovations,
particularly in practical applications, aligns with China’s industrial
modernization objectives.

This qualitative transformation carries profound implications
for China’s economic evolution. Historical emphasis on quantitative
metrics has generated substantial but often superficial innovation
outputs. Environmental taxation introduces selective pressures that
encourage strategic innovation portfolio management, potentially
catalyzing systemic enhancement through “constructive
disruption.” This structural realignment facilitates technological
advancement beyond basic innovation paradigms toward higher-

value creation. The documented improvement in practical
innovation quality suggests emergence of an implementation-
focused development trajectory, particularly suited to China’s
current industrial transformation requirements. Furthermore,
enhanced innovation quality potentially strengthens
organizational resilience against market volatility, reducing
systemic vulnerabilities and fostering sustainable economic
growth amid global uncertainties.

6.2 Temporal evolution of
innovation response

To capture the dynamic policy transmission mechanisms, we
examine differential innovation responses across temporal horizons.

6.2.1 Innovation quality dynamics
Following Cao and Su (2023), we establish a dynamic effect

model specified in Equation 4:

yi,t � β0 + β1Shorti,t + β2Longi,t + γXi,t + Timet + Firmi + εi,t (4)
where Shorti,t indicates immediate policy exposure (years 1-
4 post-implementation) for emission-intensive firms, Longi,t
captures extended exposure (year 5 onwards), and remaining
parameters maintain baseline specifications. Table 11
documents systematic variation in temporal response
patterns. Initial policy implementation generates significant
quality contractions across all innovation metrics (GPQ_sum,
GIPQ_sum, GUPQ_sum). Extended exposure exhibits persistent
negative effects on aggregate and invention patent quality
measures, while utility model quality impacts attenuate to
statistical insignificance.

This temporal heterogeneity suggests nuanced adaptation
mechanisms. Initial regulatory shock appears to constrain high-
quality innovation investment uniformly. However, extended
exposure reveals differential adaptation capacity, particularly
evident in utility model quality resilience, potentially reflecting
strategic reorientation toward practical innovation initiatives
under sustained regulatory pressure.

This investigation extends the analytical framework established
by Cao and Su (2023) regarding temporal variations in carbon
market policy effectiveness, by illuminating differential evolutionary
patterns across distinct innovation categories. While Wei et al.
(2023) and Jiang et al. (2023) identified nonlinear relationships
between environmental taxation and innovative activities, our
analysis specifically examines longitudinal transformation
processes, contributing novel insights into policy impact
trajectories. The identified temporal asymmetry in regulatory
outcomes carries substantial implications for policy assessment
methodologies, emphasizing the necessity of incorporating both
immediate responses and sustained adaptation mechanisms in
environmental policy evaluation frameworks.

6.2.2 Decomposition of quality and
volume dynamics

Utilizing specification (4), we examine granular temporal
variation in innovation metrics. Table 12 reveals systematic
heterogeneity across dimensions and horizons. Initial policy
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exposure generates neutral effects on aggregate (GPQ_mean) and
invention patent quality means (GIPQ_mean), while positively
impacting utility model quality (GUPQ_mean). Extended
exposure amplifies utility model quality enhancement,
maintaining neutral impacts on other quality metrics.
Simultaneously, immediate implementation suppresses aggregate
(GP) and invention patent volumes (GIP), with attenuation to
insignificance under extended exposure. Utility model quantities
(GUP) demonstrate resilience across all horizons.

The empirical evidence illuminates multifaceted strategic
responses to environmental fiscal intervention. Initial policy
exposure triggers a distinctive quality-volume trade-off:

regulatory cost pressures induce investment contraction,
manifesting in reduced patent volumes, while extended exposure
catalyzes strategic reorientation toward qualitative enhancement,
particularly pronounced in utility model innovations. Patent
category analysis reveals systematic response heterogeneity:
invention patents demonstrate sustained sensitivity to regulatory
intervention, while utility models exhibit quality improvements,
suggesting strategic migration toward efficiency-optimized
innovation channels. This asymmetric response pattern indicates
rational portfolio adjustment under resource constraints. Temporal
decomposition reveals progressive organizational adaptation to the
regulatory framework. The evolution of long-horizon effects

TABLE 11 Innovation quality response: Temporal decomposition analysis.

VarName (1) (2) (3)

GPQ_sum GIPQ_sum GUPQ_sum

Short −0.3168*** −0.1845*** −0.0976**

(-3.15) (-2.64) (-2.50)

Long −0.3203** −0.1857** −0.0748

(-2.31) (-1.97) (-1.31)

Lev −0.2397 −0.1867 −0.0488

(-1.06) (-1.24) (-0.54)

Size 0.4959*** 0.3132*** 0.1599***

(5.15) (4.88) (4.52)

Fixed 0.8026** 0.4750** 0.2512*

(2.51) (2.33) (1.89)

Roa 0.9945*** 0.5785** 0.4843***

(2.58) (2.32) (2.99)

Growth −0.1152*** −0.0515* −0.0599***

(-2.63) (-1.69) (-3.19)

Seperate −0.1832 0.0166 −0.3106

(-0.22) (0.03) (-1.00)

Mshare 1.1061*** 0.7210*** 0.3242***

(4.37) (4.62) (2.93)

Board −0.5652** −0.3705** −0.1403*

(-2.53) (-2.45) (-1.65)

ListAge −0.0950 −0.0755 −0.0009

(-1.10) (-1.34) (-0.03)

_cons −8.2966*** −5.2082*** −2.7586***

(-3.99) (-3.74) (-3.67)

Time YES YES YES

Firm YES YES YES

N 27270 27270 27270

R2 0.7508 0.7406 0.6861

Note: robust t-values appear in parentheses beneath coefficient estimates. Statistical inference levels: p < 0.10*, p < 0.05**, p < 0.01***.

Frontiers in Environmental Science frontiersin.org21

Zhang et al. 10.3389/fenvs.2025.1543949

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1543949


indicates strategic rebalancing across innovation dimensions,
providing crucial insights into policy effectiveness trajectories.
Additionally, the amplified positive responses in specific metrics
(notably GUPQ_mean) under extended exposure highlight
implementation latency, emphasizing the necessity of extended
evaluation horizons for comprehensive impact assessment.

The observed temporal asymmetry in environmental taxation’s
impact on ecological innovation illuminates organizational strategic
evolution and systemic adaptation processes. Initial regulatory
effects manifest primarily through immediate cost transmission
mechanisms, inducing contractionary resource reallocation within
innovation portfolios. Subsequently, organizations progressively

accommodate regulatory parameters, implementing strategic
realignments with emphasis on qualitative enhancements. This
evolutionary sequence of adaptive responses characterizes the
nonlinear dynamics of economic systems under policy stimuli.

Within macroeconomic cyclical frameworks, these temporal
variations yield substantial implications. Initial regulatory
implementation may exacerbate recessionary pressures,
particularly through innovation constraints that potentially
decelerate technological advancement and productivity growth.
However, extended temporal horizons reveal potential benefits
through quality-enhanced innovation and structural
modernization, potentially catalyzing renewed economic

TABLE 12 Temporal-dimensional innovation response analysis.

VarName (1) (2) (3) (4) (5) (6)

GPQ_mean GIPQ_mean GUPQ_mean GP GIP GUP

Short 0.0109 0.0027 0.0090* −0.5494** −0.3956** −0.0802

(1.58) (0.40) (1.70) (-2.25) (-2.45) (-0.71)

Long 0.0164 0.0104 0.0155* −0.4199 −0.3368 0.0480

(1.58) (1.00) (1.88) (-1.30) (-1.59) (0.32)

Lev −0.0275 −0.0284* −0.0117 −0.1642 −0.1796 0.0386

(-1.58) (-1.74) (-0.81) (-0.28) (-0.48) (0.15)

Size 0.0196*** 0.0199*** 0.0101*** 1.0701*** 0.6808*** 0.3429***

(4.41) (4.55) (2.71) (4.31) (4.18) (3.41)

Fixed 0.0223 0.0264 0.0176 1.4304* 1.0157** 0.2365

(0.97) (1.20) (0.92) (1.73) (2.01) (0.64)

Roa 0.0296 0.0189 0.0554** 2.4509** 1.3900** 1.3064***

(0.91) (0.58) (2.09) (2.53) (2.29) (2.99)

Growth 0.0000 0.0051 −0.0076** −0.3806*** −0.1816** −0.1891***

(0.00) (1.24) (-2.18) (-3.40) (-2.50) (-3.58)

Seperate −0.0662 −0.0594 −0.0379 0.1040 0.4657 −0.7477

(-1.50) (-1.32) (-1.05) (0.04) (0.30) (-0.77)

Mshare 0.0466** 0.0553*** 0.0424*** 1.7073*** 1.1377*** 0.4613

(2.38) (3.00) (2.60) (2.62) (2.89) (1.50)

Board −0.0127 −0.0164 −0.0095 −1.5782*** −1.0334*** −0.4002

(-0.99) (-1.23) (-0.94) (-2.82) (-2.80) (-1.62)

ListAge 0.0172*** 0.0124** 0.0062 −0.1315 −0.1037 0.0217

(3.41) (2.47) (1.46) (-0.62) (-0.75) (0.24)

_cons −0.2805*** −0.2928*** −0.1222 −16.4208*** −10.6008*** −5.2541**

(-2.87) (-3.04) (-1.52) (-3.07) (-3.01) (-2.47)

Time YES YES YES YES YES YES

Firm YES YES YES YES YES YES

N 27270 27270 27270 27270 27270 27270

R2 0.4563 0.4521 0.4304 0.7925 0.7847 0.7349

Note: robust t-values appear in parentheses beneath coefficient estimates. Statistical inference levels: p < 0.10*, p < 0.05**, p < 0.01***.
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momentum. This pattern necessitates strategic policy patience,
acknowledging temporary adjustment costs while awaiting
sustained benefits. Transitional challenges might be mitigated
through complementary policy instruments, including temporary
innovation incentives and financial support mechanisms.

Examining resource allocation dynamics, the temporal
divergence in policy effects demonstrates inherent market
equilibration processes. Initial market responses exhibit potential
oversensitivity to regulatory signals, manifesting in innovation
activity contraction. Progressive market adjustment reveals new
equilibrium states, transforming organizational approaches from
reactive to proactive innovation strategies, enhancing allocative
efficiency. The sustained enhancement in practical environmental
innovation quality suggests organizational discovery of strategically
aligned ecological innovation pathways. This endogenous
adaptation process potentially yields more sustainable innovation
paradigms compared to direct regulatory intervention.

Our longitudinal analytical framework advances beyond the
static methodologies employed by Liu et al. (2021), enabling
enhanced identification of organizational innovation strategy
evolution. While their research documented diminishing
regulatory impacts on environmental patent applications, our
investigation illuminates concurrent qualitative enhancements
alongside quantitative adjustments. The temporal patterns we
identify correspond with Jiang et al. (2023) documented
U-shaped relationship between environmental taxation and
innovation outcomes, while extending the analysis to
demonstrate differential trajectories across qualitative and
quantitative dimensions. These insights contribute to both
theoretical frameworks for regulatory assessment and empirical
understanding of ecological innovation dynamics within Chinese
enterprises.

The temporal decomposition of environmental taxation’s
innovation effects reveals pronounced chronological heterogeneity
in policy outcomes. Initial regulatory implementation generates
substantial constraints on patent generation; however, extended
observation reveals progressive strategic adaptation, characterized
by sustained improvement in practical innovation quality
concurrent with diminishing quantitative constraints. This
evolutionary pattern demonstrates organizational progression
from reactive to proactive strategic orientation, illuminating
complex regulatory transmission mechanisms. These findings
carry substantial implications for policy architecture and
evaluation methodologies, emphasizing the necessity of
longitudinal assessment frameworks incorporating multiple
innovation metrics.

7 Policy implications and regulatory
framework

Empirical analysis of Chinese A-share listed firms
(2012–2022) utilizing difference-in-differences methodology
reveals systematic patterns in environmental fiscal policy
transmission to innovation outcomes. (1) Environmental
taxation generates significant innovation contraction in
emission-intensive sectors, robust to specification variations
and falsification tests, suggesting regulatory cost displacement

of research investment. (2) Response heterogeneity emerges
across institutional characteristics: heightened sensitivity
among private enterprises, smaller institutions, and
competitive sectors reflects differential adaptation capacity. (3)
Categorical decomposition indicates asymmetric impacts:
invention patent suppression contrasts with utility model
resilience, highlighting strategic portfolio adjustment. (4) The
mechanistic investigation reveals that environmental taxation
constrains ecological innovation initiatives through multiple
channels: elevated regulatory compliance expenditures,
diminished operational liquidity, and reduced research
expenditure. (5) Quality-quantity trade-offs emerge: volume
contraction accompanies average quality enhancement,
particularly pronounced in utility models, with temporal
evolution toward quality dominance.

These findings motivate several policy refinements.

(1) Implementation strategies accommodating organizational
diversity. Private sector entities warrant graduated taxation
frameworks incorporating progressive rate structures;
complemented by targeted ecological innovation financing
mechanisms addressing capital constraints. Small and
medium enterprises require stratified fiscal obligations
supplemented by dedicated innovation funding; establish
collaborative frameworks incentivizing larger organizations
to facilitate technological advancement among smaller
entities. Competitive sectors necessitate adaptive
environmental levies promoting cooperative innovation
initiatives; less competitive industries benefit from
reinvestment incentives directing surplus capital toward
environmental technology development.

(2) Integrated policy architecture reconciling immediate
constraints with sustained development objectives. Institute
environmental investment credit systems enabling certified
research expenditure offsets against environmental
obligations; allocate taxation proceeds toward ecological
innovation initiatives. Implement quality-centric evaluation
frameworks incentivizing excellence over quantity; establish
technological development guidelines providing strategic
direction. Acknowledging implementation lags, adopt
graduated enforcement intensification; maintain systematic
assessment procedures enabling dynamic policy calibration.

(3) Tailored support mechanisms reflecting innovation diversity.
Invention patents warrant sustained research support
incorporating extended funding horizons and risk
distribution mechanisms; enhance quality incentives for
utility innovations while facilitating technological
sophistication; develop progressive support frameworks
enabling technological advancement trajectories. Modernize
assessment methodologies emphasizing qualitative metrics;
implement sector-specific quality evaluation frameworks.

(4) Cultivate integrated innovation frameworks. Harmonize
regional environmental policies preventing regulatory
arbitrage; develop territorial innovation consortiums
optimizing resource utilization; facilitate institutional
collaboration integrating industrial, academic, and research
capabilities; enhance technological commercialization
mechanisms.
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Despite certain findings, this study has several limitations. First,
data availability constraints limiting sample data to 2022 may affect
long-term policy effect assessment. Second, missing environmental
protection subsidy and related environmental data may lead to
potential endogeneity issues. Additionally, analysis based solely
on Chinese A-share listed company data may involve sample
selection bias. Future research could attempt to expand sample
scope, include non-listed enterprises and longer time series, further
exploring interaction mechanisms between environmental
protection tax and enterprise innovation, providing more
comprehensive empirical evidence for environmental policy
optimization.
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