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The Net Ecosystem Carbon Balance (NECB) is a crucial metric for understanding
integrated carbon dynamics in Arctic and boreal regions, which are vital to the
global carbon cycle. These areas are associated with significant uncertainties and
rapid climate change, potentially leading to unpredictable alterations in carbon
dynamics. This mini-review examines key components of NECB, including
carbon sequestration, methane emissions, lateral carbon transport, herbivore
interactions, and disturbances, while integrating insights from recent permafrost
region greenhouse gas budget syntheses. We emphasize the need for a holistic
approach to quantify the NECB, incorporating all components and their
uncertainties. The review highlights recent methodological advances in flux
measurements, including improvements in eddy covariance and automatic
chamber techniques, as well as progress in modeling approaches and data
assimilation. Key research priorities are identified, such as improving the
representation of inland waters in process-based models, expanding
monitoring networks, and enhancing integration of long-term field
observations with modeling approaches. These efforts are essential for
accurately quantifying current and future greenhouse gas budgets in rapidly
changing northern landscapes, ultimately informing more effective climate
change mitigation strategies and ecosystem management practices. The
review aligns with the goals of the Arctic Monitoring and Assessment Program
(AMAP) and Conservation of Arctic Flora and Fauna (CAFF), providing important
insights for policymakers, researchers, and stakeholders working to understand
and protect these sensitive ecosystems.
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1 Importance of understanding NECB in
high arctic and northern boreal
catchments

The delicate balance of carbon (C) exchange within ecosystems,
particularly in Arctic and northern boreal catchments, holds
significant implications for understanding and mitigating the
impacts of climate change. The Net Ecosystem Carbon Balance
(NECB) considers all carbon fluxes, including both vertical net
exchange of C between ecosystems and the atmosphere and
lateral C transfer downstream. The NECB integrates processes
such as photosynthesis and autotrophic and heterotrophic
respiration (López-Blanco et al., 2019; See et al., 2024), methane
emissions (McNicol et al., 2023; Parmentier et al., 2024; Yuan et al.,
2024), and lateral C transport (Rocher-Ros et al., 2019; Casas-Ruiz
et al., 2023). Only few studies so far have included all components
(Roulet et al., 2007; Nilsson et al., 2008; Juutinen et al., 2013;
Pumpanen et al., 2014). Most often land-atmosphere exchanges,
lateral dissolved organic C (DOC) fluxes, and their links to
hydrological pathways or the impacts of grazing and
environmental disturbances are studied in isolation. Addressing
all flux components, i.e., compiling NECB, provides a
comprehensive measure of an ecosystem’s capacity at the
landscape level to act as either a C sink or a source. This is
essential for evaluating ecosystem health—referring to its
resilience and functional stability—and its role in climate
regulation (Schuur et al., 2015).

Understanding the regulation of all flux components is pivotal
now when the Arctic and boreal ecosystems are undergoing some of
the fastest warming on the planet, with temperatures increasing
three to four times faster than the global average (AMAP, 2022;
Rantanen et al., 2022). Recent climate models project Arctic
temperature increases of 3°C–4°C by mid-century, far outpacing
global averages due to Arctic amplification (Box et al., 2019). This
phenomenon, driven by feedback mechanisms such as albedo
changes from sea ice and snow loss, shifts in atmospheric and
oceanic circulation, and variations in cloud cover and water vapor,
has profound implications for C cycling in these regions (Serreze
and Barry, 2011).

Arctic amplification alters precipitation patterns and form
(Bintanja and Andry, 2017; Bintanja et al., 2020), disrupts
permafrost stability (Koven et al., 2011; Turetsky et al., 2020),
and accelerates greenhouse gas (GHG) emissions (Natali et al.,
2019; Hugelius et al., 2024; Ramage et al., 2024). While extended
growing seasons may enhance plant productivity, increased soil
respiration can counteract these gains by releasing stored C (Natali
et al., 2019). The overall intensification of biogeochemical activities
in soil and water bodies further amplifies this dynamic. Moreover,
permafrost destabilization risks releasing vast amounts of stored C,
altering hydrological regimes and affecting CO2 and CH4 emissions
and lateral C transport (Schuur et al., 2009; Vonk et al., 2023).
Additionally, warming increases the likelihood of extreme events
(Walsh et al., 2020), such as droughts or heavy precipitation, which
can exacerbate ecosystem instability and further disrupt C and water
cycles (Frank et al., 2015).

The NECB in Arctic-boreal systems plays a central role in global
climate change projections due to the enormous C stocks stored in
these regions and their sensitivity to warming (McGuire et al., 2009;

Schuur et al., 2015). Permafrost regions store approximately 1,000 ±
200 Pg of organic C within the upper 3 m (Hugelius et al., 2014;
Mishra et al., 2021; Palmtag et al., 2022)—almost double the C
present in the atmosphere. Understanding the NECB responses to
warming is crucial for predicting potential carbon-climate
feedbacks, which can significantly impact global climate
trajectories (Vonk and Gustafsson, 2013; Turetsky et al., 2020).
These feedback effects represent a significant challenge for
maintaining the stability of the Earth’s climate system (Vonk and
Gustafsson, 2013; Schuur et al., 2015; Turetsky et al., 2020).

Recent studies (Hugelius et al., 2024; Ramage et al., 2024) have
underscored the critical role of permafrost regions in the global C
cycle, providing pan-Arctic insights into GHG dynamics from
2000 to 2020. For example, GHG flux upscaling estimates
indicate the permafrost region is a net CO2 sink but a significant
source of CH4 and N2O emissions (Ramage et al., 2024). Modeling
approaches reveal a weak CO2 sink and substantial CH4 and N2O
emissions, with a net warming effect over short timescales (20 years)
but a neutral effect over 100 years (Hugelius et al., 2024). These
findings highlight substantial uncertainties and mismatches between
field observations and models, emphasizing the need for localized
investigations to better understand site-specific dynamics and
interactions affecting NECB across diverse Arctic ecosystems.
Watts et al. (2023) estimated the terrestrial domain of Arctic-
Boreal zone be a C sink as a whole, but if accounting the aquatic
ecosystems, the sink decreased notably and there were substantial
differences in the C sink strength across the boreal-arctic domain.

2 Components contributing to
the NECB

Understanding the components of the NECB is key to
comprehending how Arctic and boreal ecosystems operate and
adapt to environmental changes. These components encompass
net ecosystem CO2 exchange, methane emissions, lateral C
transport, interactions with herbivores, and ecosystem
disturbances. Below, we delve into each component in detail to
explore their individual and collective roles in shaping NECB.

2.1 Net ecosystem exchange (NEE) of CO2

NEE is the balance between gross primary production (GPP)
and ecosystem respiration (ER), and both are fundamental
components of the NECB. GPP represents the total CO2

assimilated by plants through photosynthesis, while ER
encompasses the release of CO2 from organisms and decaying
matter, including both autotrophic (plant) and heterotrophic
(microbial) respiration (López-Blanco et al., 2019). The balance
between these two processes determines whether an ecosystem acts
as an atmospheric CO2 sink or source (McGuire et al., 2009; See
et al., 2024).

In Arctic regions, GPP is typically constrained by short growing
seasons, low temperatures, snow cover, and limited nutrient
availability (Chapin III et al., 2000). However, climate change
alters these limitations, potentially enhancing GPP by extending
the growing season, increasing temperatures in air, soil and water
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bodies, and augmenting nutrient availability through permafrost
thaw (Natali et al., 2015; López-Blanco et al., 2020). Studies have
shown that GPP in tundra ecosystems is highly sensitive to
temperature fluctuations and can significantly influence NECB
(Euskirchen et al., 2006). Longer-term changes in plant
community composition, such as shrub expansion, can alter
photosynthetic rates and GPP across different landscapes (Myers-
Smith et al., 2011; Bjorkman et al., 2018). The NEE is highly sensitive
to annual variations in water table levels and temperature. For
instance, dry summers or periods with atmospheric drought can
shift peatlands, typically net CO2 sinks, into net CO2 sources,
primarily due to reductions in GPP (Alm et al., 1999; Aurela
et al., 2007; Rinne et al., 2020). Historically, peatlands have
functioned as C sinks in most years, facilitating peat
accumulation over time, which has cooled the climate due to the
stored C (Frolking and Roulet, 2007).

In high latitudes, ER, on the other hand, is expected to increase
with warming temperatures, potentially offsetting gains in GPP
(Schuur et al., 2009; Commane et al., 2017). Soil respiration, a
major component of ER, is particularly sensitive to temperature
changes in permafrost regions (Bond-Lamberty and Thomson,
2010). Recent research has highlighted the importance of winter
respiration, which can significantly contribute to annual C budgets
(Natali et al., 2019). Helbig et al. (2022) analyzed multiyear eddy
covariance data from boreal-Arctic peatland sites and found that
warm anomalies increased CO2 uptake relative to average conditions
when warming occurred in early summer, whereas late-summer
warming resulted in increased CO2 release. These anomalies were
linked to earlier vegetation development during early summer and
typically lower water levels in late summer, possibly suppressing
GPP and increasing ER.

The Arctic-boreal zone exhibits substantial variability in CO2

fluxes, with observed annual NEE ranging from −27.9 g C m−2 yr−1

(net CO2 uptake) to net release of CO2 in certain years. Seasonal
dynamics are pronounced, with monthly GPP varying
from −2 to −516 g C m−2 and ER from 0 to 550 g C m−2

(Virkkala et al., 2022; See et al., 2024). Notably, more than 30%
of the region functions as a net CO2 source, and when fire emissions
are included, the permafrost region approaches a net zero CO2

balance, highlighting the critical role of fire in shaping regional C
dynamics (Virkkala et al., 2025). The complex interplay between
GPP and ER under changing climate conditions underscores the
need for continued monitoring and improved modeling of these
processes to accurately predict future C dynamics in Arctic-boreal
ecosystems (Virkkala et al., 2022). Respiratory outputs (particularly
heterotrophic respiration), and C turnover and decomposition
processes remain highly uncertain and poorly constrained in
models (Carvalhais et al., 2014; López-Blanco et al., 2019).
Precipitation and soil moisture have been highlighted as the key
drivers of heterotrophic respiration interannual variability (Yao
et al., 2021; Guenet et al., 2024). Such uncertainties ultimately
propagate over the rate and magnitude of C accumulation.

2.2 Methane emissions (CH4)

CH4 emissions play a crucial role in the NECB of Arctic-boreal
ecosystems, particularly in wetlands and peatlands, and areas

affected by permafrost thaw. Methane is produced by microbes
under anaerobic conditions and has a much higher global warming
potential than CO2 over short time scales (Turetsky et al., 2014;
Kuhn et al., 2021). Even without considering the global warming
potential, methane emissions in wet ecosystems also form a
significant component of the mass transfer of C and may
account for 20% of the total C turnover (Christensen et al.,
2007). In many, if not all, wetlands CH4-C losses decrease
substantially the C gain of NEE (Juutinen et al., 2013; Rinne
et al., 2020). Recent studies have shown that methane emissions
in the Arctic are higher than previously estimated, especially during
the cold season (Zona et al., 2016). Treat et al. (2018a) estimated that
methane emissions from freshwater bodies (observationally
measured) contribute 4%–17% of the total annual methane
emissions for the circumpolar Arctic region, corresponding to
6.1 ± 1.5 Tg CH4/year north of 40° latitude. This is also the case
in results obtained from ecosystemsmodels for which the calibration
is mainly driven by growing season datasets and for which cold
season processes may be missing or may not be well accounted for
(Ito et al., 2023). CH4 emissions from lakes and streams are crucial
components to consider in the boreal-Arctic region, especially as
part of catchment-scale assessments. Some studies even identify
freshwater bodies as the largest CH4 source in the boreal-Arctic area
(Wik et al., 2016).

Arctic-boreal wetlands, including peatlands, are significant
sources of methane, with emissions modulated by warming and
vegetation activity. Wetlands emit in the order of 48.7 (13.3–86.9)
Tg CH4 yr-1, while freshwater systems contribute approximately
12.5 Tg CH4 yr−1 (Parmentier et al., 2024). These emissions are
influenced by temperature, vegetation activity, and permafrost thaw.
For instance, a recent study found that temperature explains 52.3%
of the increasing CH4 emission trend, followed by GPP (40.7%)
(Yuan et al., 2024). Thawing permafrost can lead to the formation of
thermokarst lakes and extend wetland areas, potentially releasing
large amounts of previously frozen organic matter and increasing
methane production (Treat et al., 2018b; Turetsky et al., 2020;
Parmentier et al., 2024).

The spatial and temporal variability of methane emissions across
Arctic-boreal landscapes presents significant challenges for accurate
quantification and prediction. Recent efforts, such as the BAWLD-
CH4 dataset, have advanced our understanding of methane flux
patterns across diverse boreal and Arctic ecosystems (Kuhn et al.,
2021). However, uncertainties remain, particularly regarding the fate
of methane in the water column and its transport through soil,
surface runoff and snow (Saunois et al., 2020). For instance, non-
growing seasons, particularly in autumn and spring, remain difficult
periods for maintaining continuous methane flux measurements
(Jentzsch et al., 2024). Vegetation composition and the presence or
absence of specific vascular plant species also significantly influence
methane emissions, making the impacts of climate change on future
vegetation composition a critical area for further study (AMAP,
2015). Uncertainties surrounding lateral methane transport from
wet tundra and peatlands are compounded by limited
understanding of dissolved methane dynamics—how much is
oxidized versus emitted from streams and ponds (Oh et al.,
2020). These processes, currently underrepresented in ecosystem
models, demand further investigation across diverse Arctic
landscapes. Challenges persist in both experimental and
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observational approaches to accurately measure methane emissions
on an annual scale in the context of NECB. Addressing these gaps is
essential for improving the parameterizations used in process
models. Ultimately, enhancing our understanding of methane
dynamics is key to accurately assessing the greenhouse gas
budget of Arctic-boreal regions and predicting their feedback to
global climate change (Hugelius et al., 2024).

2.3 Lateral C transport

Lateral C transport, the movement of DOC, particulate organic
C (POC), and dissolved inorganic C (DIC), plays a crucial role in the
Arctic-boreal C balance, yet it remains underrepresented in NECB
assessments (Dean et al., 2020). Carbon moves from terrestrial
ecosystems to aquatic systems via groundwater leaching, runoff,
streams, and rivers, contributing to substantial C losses from
terrestrial ecosystems, influencing both local and regional C
budgets (Tank et al., 2012; Tank et al., 2018; Vonk et al., 2023).
A significant portion of this C is either emitted as CO2 and CH4 from
freshwater systems or transported to the ocean, with global fluxes
estimated at 5.1 Pg C yr−1—of which 0.9–1.3 Pg C yr−1 reaches the
ocean, 2.1–2.9 Pg C yr−1 is released as CO2, and 0.6–1.5 Pg C yr−1 is
buried in sediments (Tank et al., 2018). Globally, lateral C fluxes
have been estimated to be comparable to the terrestrial CO2 sink,
approximately 3.1 Pg C yr−1 (Le Quéré et al., 2016), ranging from
1.1 Pg C yr−1 to 5.1 Pg of C yr−1 (Drake et al., 2018). In Arctic-boreal
ecosystems, studies suggest that lateral C fluxes represent 0.2%–1.4%
of the terrestrial C stock, depending on the region and landscape
characteristics (Martens et al., 2022), and nearly 20% of the net
terrestrial C uptake (Kling et al., 1991).

Recent high-resolution studies have revealed complex seasonal
and interannual variations in DOC transport processes in subarctic
headwater catchments (Croghan et al., 2024) and indicated complex
variations between C sources at the landscape level. Climate change
is altering these transport mechanisms, with spring snowmelt floods
and summer/autumn storm events becoming increasingly
important for DOC export (Rawlins and Karmalkar, 2024), and
also winter runoff in southern Arctic sites. The thawing of
permafrost is expected to enhance the mobilization and transport
of previously frozen organic matter, potentially leading to increased
DOC and DIC fluxes to aquatic systems (Vonk and
Gustafsson, 2013).

The fate of this laterally transported C is crucial for
understanding its impact on the global C cycle. While some of
the C may be deposited in sediments or transported to the ocean, a
significant portion can be evaded directly to the atmosphere or
processed within inland waters, leading to CO2 and CH4 emissions
(Casas-Ruiz et al., 2023; Mustonen et al., 2024). Recent research has
highlighted that small watersheds and water bodies including
streams, ponds and lakes may play a disproportionate role in
Arctic land-ocean fluxes, emphasizing the need for better
representation of these systems in C budget assessments (Vonk
et al., 2023). However, the lack of watershed-scale studies across
Arctic limit our ability to identify the main controlling factors and
key locations at the landscape level.

Integrating aquatic C fluxes and the ecosystem-atmosphere
exchange of C remain a challenge due to the high spatial and

temporal variability of these processes. Improved monitoring
networks including high-resolution sensors, coupled with
advanced modeling approaches, are necessary to better constrain
estimates of lateral C transport and its contribution to NECB in
Arctic-boreal ecosystems (Rocher-Ros et al., 2019; Olefeldt
et al., 2021).

2.4 Herbivore interactions

The role of herbivores in C cycling within high-latitude
ecosystems has gained increasing recognition in recent years
(Schmitz et al., 2014). Both large herbivores, such as reindeer/
caribou (Ylänne et al., 2018), muskox (Falk et al., 2015) and
small mammals (Tuomi et al., 2019), significantly influence C
cycling in Arctic and boreal ecosystems through grazing,
trampling, and nutrient deposition (Koltz et al., 2022), also
during the snowy seasons. Their trampling and cratering in
search of food under the snow can damage the vegetation,
potentially hindering treeline expansion (Heggenes et al., 2017).
Additionally, tree girdling caused by reindeer rubbing against young
trees (“buck rub”) can further inhibit forest regeneration (Roturier
and Bergsten, 2006). Their interactions can alter vegetation
dynamics, soil properties, hydrology, energy balances, and C and
nutrient cycling, ultimately affecting the NECB (Ylänne et al., 2015;
Schmitz et al., 2023; Schmidt et al., 2024). In the Arctic, grazing and
trampling activities compact snow reducing insulation, which
consequently prevents permafrost thawing, thereby reducing CH4

emissions. For example, increasing herbivore densities in Arctic
regions could protect up to 80% of the Yedoma permafrost domain,
which stores around 500 Gt of organic C (Schmitz et al., 2023).
However, herbivory can also have mixed effects on C dynamics, with
some studies showing reductions in C uptake by 15%–70% due to
changes in plant community composition and ecosystem respiration
rates (Schmitz et al., 2018).

Large herbivores are known to influence plant community
structure, often reducing shrub and moss abundance and
promoting graminoid-dominated vegetation (Olofsson et al.,
2009), or reducing overall plant biomass (Olofsson et al., 2014).
This shift can have cascading effects on ecosystem processes,
including C sequestration, soil respiration (Väisänen et al., 2014),
and methane emissions (Falk et al., 2015), as well as on ecosystem
energy balance via changes in, e.g., evapotranspiration (Zimov et al.,
1995), albedo (te Beest et al., 2016), soil thermal regimes, and thaw
depth (Windirsch et al., 2022). Recent studies have highlighted the
substantial impacts of herbivores on C fluxes and stocks; for
example, muskox and lemming herbivory can reduce net CO2

uptake in the short term, though vegetation often recovers
quickly (Falk et al., 2015; Plein et al., 2022), while different types
of large animals can increase the C storage in permafrost soils
(Zimov, 2005; Windirsch et al., 2022). Further research is needed
however to disentangle whether increased C content results from
reduced decomposition or higher C input. Herbivory-induced
changes in plant communities not only impact NECB directly
but also indirectly through various belowground alterations, such
as changes in the quantity and quality of litter (Francini et al., 2014)
and soil organic matter (Väisänen et al., 2015). Additionally,
herbivores can induce shifts in soil faunal (Sørensen et al., 2009)
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and microbial communities (Ahonen et al., 2021). Herbivores also
influence their environment through the redistribution of nutrients,
contributing to local fertilization (Van Der Wal et al., 2004) and
physical disturbances, such as trampling (Mosbacher et al., 2019).

The overall strength and direction of herbivore effects on NECB
can vary spatially and temporally, influenced by factors such as
herbivore traits and density, plant community composition, and
climate conditions (Schmitz and Leroux, 2020). Understanding
these complex herbivore-ecosystem interactions is essential for
accurately assessing and predicting C dynamics in rapidly
changing Arctic and boreal regions (Koltz et al., 2022).

2.5 Disturbances

Disturbances can significantly impact the NECB of tundra and
boreal ecosystems (Foster et al., 2022) by altering C storage and
fluxes (Phoenix and Bjerke, 2016). Climate change is intensifying
various disturbance regimes in the Arctic, including extreme
weather events (Christensen et al., 2020; van Beest et al., 2022),
thermokarst formation (Lewkowicz and Way, 2019; Turetsky et al.,
2020), wildfires (Mack et al., 2011; Byrne et al., 2024), and insect
outbreaks (Heliasz et al., 2011; Lund et al., 2017).

These natural disturbances, combined with anthropogenic
activities like resource extraction (mining, land use and
settlements) and infrastructure development (Raynolds et al.,
2014), are reshaping tundra landscapes and C dynamics. Extreme
weather events disrupt vegetation growth and soil processes
(Phoenix and Bjerke, 2016), while thermokarst formation
mobilizes frozen soil C (Turetsky et al., 2020). Increasingly
frequent wildfires consume surface vegetation and alter post-fire
succession (Mack et al., 2011), and expanding insect outbreaks can
reduce productivity and increase shrub and tree mortality (Heliasz
et al., 2011; López-Blanco et al., 2017; Lund et al., 2017). The
northward expansion of beavers into Arctic tundra ecosystems is
emerging as a significant disturbance regime, profoundly altering
hydrological patterns, accelerating permafrost thawing and
enhancing methane emissions (Tape et al., 2022; Clark et al.,
2023). The complex interplay between these disturbances creates
feedbacks that amplify climate change impacts in tundra and boreal
ecosystems (Raynolds et al., 2014; Phoenix and Bjerke, 2016),
highlighting the need for comprehensive monitoring and
modeling of Arctic C balance.

Understanding and quantifying these components together
provides a comprehensive view of the key ecosystem processes
influencing NECB in Arctic and boreal ecosystems. Future
research should focus on integrating these components to better
predict ecosystem responses to ongoing climate change.

3 Methodological advances

Recent years have seen significant advancements in our
understanding of high-latitude C dynamics, driven by
improvements in both observational techniques and modeling
approaches. These advances have enhanced our ability to
understand, quantify, and predict NECB in Arctic and boreal
ecosystems.

3.1 Eddy covariance flux measurements

Eddy covariance (EC) has become the gold standard for
measuring ecosystem-scale greenhouse gas fluxes (Baldocchi,
2003), and recent years have seen significant advancements in
this technique. High-frequency open-path and closed-path gas
analyzers have improved, allowing for more precise
measurements of CO2, CH4, and H2O fluxes (Burba, 2013). The
development of low-power, low-maintenance EC systems has
enabled year-round measurements in remote Arctic and boreal
locations, addressing critical data gaps during the non-growing
season (Oechel et al., 2014). Additionally, novel approaches such
as the use of unmanned aerial vehicles (UAVs) equipped with
miniaturized EC systems (Bolek et al., 2024) or connected with
high-resolution portable GHG analysers (Scheller et al., 2022) have
emerged, allowing for spatial mapping of fluxes and concentration
hot spots over heterogeneous landscapes.

Recent studies have also focused on improving flux gap-filling
and partitioning methods. Vekuri et al. (2023) have recently shown
that the commonly used marginal distribution sampling (MDS)
method produces significant systematic error for data sets collected
from northern (>60°N) sites, and should be replaced by machine
learning methods which avoid this error. The partitioning methods,
which are typically used after gap-filling the NEE time series,
separate NEE into its component fluxes of GPP and ER. There
are novel machine learning approaches that have been developed to
improve the accuracy of flux partitioning, particularly in Arctic
ecosystems where traditional methods may fall short (Tramontana
et al., 2020). Furthermore, advances in CH4 isotope measurement
techniques have provided new insights into the sources and sinks of
C in these ecosystems, revealing significant spatial variations in
δ13C-CH4 values and highlighting the importance of substrate
availability for methanogenesis in driving CH4 emissions patterns
(Rinne et al., 2022).

3.2 Automatic chambers flux measurements

Automatic chamber systems have become increasingly
important for measuring GHG fluxes in Arctic-boreal
ecosystems, particularly during the challenging non-growing
season (Koskinen et al., 2014) and in aquatic systems (Thanh
Duc et al., 2020). These systems allow for continuous, high-
frequency measurements of CO2 and CH4 fluxes, providing
crucial data on temporal and spatial variability (Pirk et al., 2017;
Natali et al., 2019), also documenting surprising seasonal dynamics
and episodic events (Mastepanov et al., 2008). Recent advancements
in automatic chamber design have improved their reliability in harsh
Arctic conditions, with better insulation and heating systems to
prevent snow and ice accumulation (Mastepanov et al., 2013;
Korkiakoski et al., 2017).

Multi-chamber systems have been developed to capture spatial
heterogeneity in flux patterns, especially important in ecosystems
with high microtopographic variability (Mastepanov et al., 2013;
Pirk et al., 2017). Additionally, the integration of soil temperature
and moisture sensors within chamber systems has enhanced our
understanding of the environmental drivers of flux variability
(Göckede et al., 2019). These systems can now be coupled with
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real-time gas analyzers, allowing for immediate data processing and
quality control (Korkiakoski et al., 2020). This advancement enables
researchers to obtain and analyze high-quality greenhouse gas flux
data in near real-time, improving the efficiency and accuracy of field
measurements in Arctic and boreal ecosystems.

3.3 Lateral C transport measurements

Lateral transport of C, with particular focus on understanding
the speciation of the C pool, has gained attention as a crucial
component of the NECB in Arctic-boreal systems (Tank et al.,
2018). Recent methodological advances have improved our ability to
quantify these fluxes. High-frequency in situ sensors for DOC and
POC using optical sensors have been deployed in river systems,
allowing for continuous monitoring of C export from terrestrial to
aquatic ecosystems (Shogren et al., 2021; Rawlins and Karmalkar,
2024). Coupling high-frequency dissolved C concentrations with
discharge (e.g., concentration-discharge relationships) provides a
tool to identify processes that control C export (Gómez-Gener et al.,
2021; Speir et al., 2024). To understand the fate of this C export,
there is a need to couple these measurements with in-situ aquatic
flux measurements, especially given the spatial variability of these
fluxes (Bretz et al., 2021).

Tracer techniques, using both stable and radioactive isotopes,
have been refined to better understand the sources and ages of water
and laterally transported C. These methods have revealed the
importance of old C mobilisation from thawing permafrost in
lateral fluxes (Serikova et al., 2018), novel approaches combining
hydrological measurements with C concentration data have
improved estimates of annual C export, particularly during the
critical spring freshet period (Beel et al., 2021). Further, recent
studies using 222Rn have provided estimations of methane
transport in groundwater (Olid et al., 2022).

There has been a recent call for more spatially resolute sampling
to identify landscape control points that influence lateral C transport
and, consequently, emissions from land-water systems (Bernhardt
et al., 2017). To accurately scale these fluxes to the catchment level, it
is essential to account for both the landscape features that supply C
to freshwater systems (e.g., wetlands, thaw slumps) and in-situ
controls such as gas transfer velocity (Kokelj et al., 2013; Rocher-
Ros et al., 2019; Shogren et al., 2019).

3.4 Exclosure experiments to understand
the herbivory component

Fences that either exclude or enclose herbivores are an essential
tool for quantifying the impact of herbivory on NECB in Arctic-
boreal ecosystems. Long-term exclosure studies, spanning several
decades to over a century, have provided valuable insights into the
cumulative effects of herbivores on vegetation structure, soil C
stocks, and greenhouse gas fluxes (Ylänne et al., 2018). Moreover,
exclosure designs that selectively exclude different herbivore guilds
(e.g., large, small mammals, and geese) help the disentanglement of
their specific impacts (Köster et al., 2017; Petit Bon et al., 2023),
which is particularly relevant in the context of shifting tundra
herbivory communities (Barbero-Palacios et al., 2024).

The integration of flux measurement techniques with exclosure
and enclosure experiments has significantly improved our
understanding of herbivory effects on C cycling. For instance,
portable flux chambers have been used to compare CO2 and CH4

fluxes inside and outside exclosures, revealing how herbivores
influence both primary productivity and soil respiration (Cahoon
et al., 2012; Lara et al., 2017; Silfver et al., 2020), and how plant
abundance, phenology, and nitrogen dynamics change (Mosbacher
et al., 2019). Some studies have combined exclosures with
manipulative experiments (e.g., warming, fertilization) to
investigate how herbivory interacts with other environmental
changes to affect NECB (Sjögersten et al., 2012; Väisänen et al.,
2014), and to provide crucial data on potential feedbacks between
climate change and herbivore impacts on C cycling (Post
et al., 2021).

3.5 Long-term monitoring networks and
data-model synthesis efforts

Long-term monitoring networks have become increasingly
crucial for understanding the complex dynamics of Arctic-boreal
C cycling. The FLUXNET network, for example, and its regional
counterparts (e.g., ICOS in Europe, AmeriFlux and NEON in North
America), has been instrumental to provide continuous, multi-year
datasets of C, water, and energy fluxes from numerous sites in high-
latitude regions (Pastorello et al., 2020). Specifically, the FLUXNET-
CH4 community network has greatly enhanced our understanding
of methane dynamics in wetland ecosystems across the Arctic-boreal
zone (Knox et al., 2019). The Greenland Ecosystem Monitoring
(GEM) program (Christensen et al., 2017), established in 1995,
provides a unique integrated and interdisciplinary approach to
understanding Arctic ecosystems and climate change effects, by
measuring a wide range of cross-cutting variables across a catchment
scale, from glaciers to marine systems within a 20 km range. GEM
serves as example of coordinated observational data gathering across
meteorological, hydrological, terrestrial and limnic ecosystem
domains in a confined catchment area providing the opportunity
for true data-based NECB budgeting (Figure 1). This may in turn
serve as pivotal data for NECB model calibration and validation.

These networks not only provide essential data for
understanding current C dynamics but also serve as early
warning systems for detecting ecosystem changes. For instance,
the International Tundra Experiment (ITEX) network (Henry
et al., 2022), established in the early 1990s, continues to provide
valuable long-term data on the impacts of experimental warming on
tundra vegetation and associated C fluxes (Bjorkman et al., 2018).
Likewise, the Back to the Future project reveals multi-decadal
changes in vegetation and soil C stocks (Callaghan et al., 2011).

In-situ GHG budget synthesis efforts have been instrumental in
integrating diverse datasets to derive comprehensive insights across
the pan-Arctic region. For example, the recent second phase of the
Regional Carbon Cycle Assessment and Processes project
(RECCAP2) (Ciais et al., 2022) has specifically focused on the
permafrost region (Hugelius et al., 2024; Ramage et al., 2024),
synthesizing multiple lines of evidence to deliver thorough
assessments of current C dynamics in these critical areas. This
budgeting initiative includes three extensive compilations of
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GHG flux datasets for CO2 (Virkkala et al., 2022), CH4 (Kuhn et al.,
2021), and nitrous oxide, N2O (Voigt et al., 2020), all derived from
valuable in-situ observations. These collective efforts have not only
advanced our understanding of existing C cycling patterns but have
also underscored the numerous unresolved uncertainties that persist
in this field.

3.6 Modeling approaches and data
assimilation

Since the 1970s, Earth System Models (ESM) have been used to
study the NECB by accounting for biophysical processes. However,
it is only in the 2000s that these models began to incorportate the full
complexity of the C cycle and its interactions with the other
biophysical components (Fisher and Koven, 2020). Since then,
significant progress has been made in modeling approaches and
data assimilation techniques to improve Arctic-boreal C cycling
representation. The development of more sophisticated ESM that
incorporate permafrost dynamics, coupled carbon-nitrogen cycles,
and improved representations of Arctic vegetation has enhanced our
ability to project future changes in the NECB. Specifically, ESM have
been refined to explicitly represent key processes specific to high-
latitude ecosystems, such as permafrost dynamics (Guimberteau
et al., 2018; Chaudhary et al., 2020), snow insulation effects (Wang

et al., 2013; Pongracz et al., 2021; Charbit et al., 2024), Sphagnum
dominated peatland ecosystems (Qiu et al., 2022), vegetation shifts
(van den Hurk et al., 2016) and lateral transfer of C from land to
rivers (Bowring et al., 2019; Bowring et al., 2020). The incorporation
of microbial dynamics and soil organic matter decomposition
models has improved simulations of soil C responses to warming
(Huang et al., 2021).

Data assimilation techniques have evolved to better integrate
diverse observational datasets with model simulations and
ultimately allowing for better constraints on regional and pan-
Arctic C budgets. For example, the Carbon data model
Framework (CARDAMOM) (López-Blanco et al., 2019; Hugelius
et al., 2024) or the Carbon Cycle Data Assimilation System
(CCDAS) (Kemp et al., 2014; Scholze et al., 2019) now
incorporate a wide range of observations, including atmospheric
CO2 concentrations, satellite-derived vegetation indices, soil organic
C, plant biomass, burned area, and forest loss to provide more
accurate estimates of C fluxes, stocks, and transit times and quantify
their uncertainties.

Moreover, machine learning approaches, such as neural
networks and random forests, have been increasingly used to
upscale site-level flux measurements to regional and pan-Arctic
scales, providing new insights into spatial patterns and drivers of C
fluxes (Väisänen et al., 2014; Peltola et al., 2019; Virkkala et al., 2021;
Yao et al., 2021; McNicol et al., 2023; Nelson et al., 2024).

FIGURE 1
Integrated assessment of Net Ecosystem Carbon Balance (NECB) components (Sections 2.1–4) in the Rylekærene fen, Zackenberg, East Greenland.
The 3D terrain representation, viewed from the southwest corner, illustrates the spatial distribution and measurement approaches for key C flux
processes: net ecosystem CO2 exchange (orange box, measured via eddy covariance towers), methane emissions (purple box, quantified through
automatic chambers), herbivore-vegetation interactions (green box, studied using exclosure experiments), and lateral C transport (blue box,
monitored via river discharge and DOC measurements). This landscape-scale integration enables comprehensive NECB modeling and assessment of
ecosystem responses to environmental changes. Themap has been edited for illustrative purposes, combining hand-drawn features with enhancements
using GIS and photo-editing software. It is based on original image mosaics from Greenland Ecosystem Monitoring (2014 and 2020). The topography is
vertically exaggerated by a factor of 5, and the locations of buildings and instruments have beenmodified for presentation purposes. The stream network
is simplified for clarity. Picture acknowledgements, from top to bottom: Efrén López-Blanco, Lars Holst Hansen, Falk et al. (2015) from Fig. 3, Efrén
López-Blanco.
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Additionally, the development of benchmarking systems that use
multiple observational constraints has enhanced our ability to
evaluate and improve Earth System Models for high-latitude
regions (Collier et al., 2018; Hou et al., 2023).

In situ data are also crucial for the calibration and validation of
process-based models (Le Noë et al., 2023). Specifics of Arctic
regions promoted sensitivity model analysis studies assessing
models’ capacity in simulating Arctic ecosystems (Dantec-
Nédélec et al., 2017; Pongracz et al., 2021). Today, more and
more models are employing harmonized monitoring databases
with statistical optimisation approaches such Bayesian methods
and history matching (Salmon et al., 2022; Bacour et al., 2023;
McNeall et al., 2024), among others, to calibrate model parameters at
regional or global scales and to pinpoint model weaknesses.
Additionally, in situ data synthesis and meta-analysis are guiding
modellers to assess model development priority that aims to reduce
model uncertainty or to enhance physical process representation.

4 Remaining uncertainties

Despite the recent advancements in our understanding of C
cycling dynamics, significant uncertainties persist, particularly in
permafrost regions. The release of CO2, CH4, and N2O, and also
lateral DOC transport from thawing permafrost represents a critical
yet poorly constrained component of the global C budget. Climate
change hydrologically activates different layers of Arctic soils,
potentially triggering new C processes. The recently published
permafrost RECCAP2 update, following an initial budgeting
effort (McGuire et al., 2012), aimed to address these uncertainties
by synthesizing two decades of observations and modeling efforts
(Hugelius et al., 2024; Ramage et al., 2024). Insights from
RECCAP2 highlight the complexity of permafrost region GHG
dynamics and underscore the need for improved monitoring and
modeling approaches to accurately quantify their contribution to
atmospheric GHG concentrations. Two important take-home
messages have been found: First, there are large discrepancies
between bottom-up and top-down estimates (Hugelius et al.,
2024) - Bottom-up approaches (data-driven upscaling and
process-based models) generally estimate higher land-to-
atmosphere fluxes for all GHGs compared to top-down
approaches (atmospheric inversions). This points to fundamental
differences in methodologies that need to be reconciled. From a
modeling perspective, priorities for future research include
improved representation of inland water ecosystems including
rivers, lakes, reservoirs and materials lateral transfer, and
disturbances like fire dynamics and abrupt permafrost thaw in
process-based models, and the compilation of process-based
model ensembles for CH4 and N2O (Hugelius et al., 2024). The
increased complexity of models, driven by the explicit
representation of processes, is both challenging and essential to
accurately capture the spatial heterogeneity and temporal dynamics
of NECB. Second, there is a need for more and better well-
distributed in-situ data coverage - there are significant gaps in
spatial and temporal coverage of in situ GHG measurements,
especially for winter and shoulder seasons (Ramage et al., 2024).
On a related note, the ongoing geopolitical conflict and war between
Russia and Ukraine have severely deteriorated our ability to study

and understand not only current but also future pan-Arctic changes
(López-Blanco et al., 2024).

The northward advancement of the tree- (Harsch et al., 2009)
and shrub- (Myers-Smith and Hik, 2018) lines in the boreal-Arctic
transition zone represents two significant ecological processes
driven by climate warming, with implications for vegetation
composition, surface albedo, and C dynamics. These shifts can
enhance aboveground C storage but may also reduce surface
albedo, as darker canopies replace tundra vegetation, thereby
amplifying regional warming through feedback mechanisms
(Sturm et al., 2005; Bjorkman et al., 2018; Schmidt et al., 2024).
However, the advancement of tree and shrub lines is neither uniform
nor as rapid as anticipated (Myers-Smith et al., 2011; Rees et al.,
2020), due to local factors such as nutrient availability, soil
conditions, and herbivory, which further modulate these
processes. For example, nitrogen limitation in Arctic soils has
been shown to constrain tree growth despite warming (Körner
and Paulsen, 2004). Moreover, shifts in vegetation composition
can alter soil organic C dynamics and decomposition rates,
influencing net C balance (Natali et al., 2019). Herbivory also
plays a significant role by altering vegetation structure and soil
properties; for example, reindeer grazing can reduce shrub density
and limit C uptake, further effecting ecosystem C storage (Koltz
et al., 2022).

At a local-to-regional scale, addressing these uncertainties
will require expanded and comparable long-term monitoring
measurements, continued data synthesis efforts for CO2, CH4

and N2O (e.g., , improved resolution in upscaling techniques
(Ramage et al., 2024), and ultimately advancing integration
between field observations, remote sensing data, and
numerical models to more effectively constrain previously
unconstrained ecosystem processes (Hugelius et al., 2024).
Reducing these uncertainties is critical for accurately
quantifying the contemporary and future GHG budgets of the
permafrost region.

5 Future perspective

This paper highlights the critical importance of Arctic and
boreal ecosystems in the global C cycle and their vulnerability to
rapid climate change. Our review of the key NECB components,
methodological advances, and remaining uncertainties, emphasizes
the critical need to address and quantify uncertainties in GHG
budgeting for permafrost regions and provides several key insights
for future research and policy directions:

1. Integrated monitoring approaches: There is a pressing need for
more comprehensive, year-round monitoring networks that
integrate multiple NECB components, including CO2 and CH4

fluxes, lateral C transport, and disturbance impacts. Long-
term, catchment-scale studies like the one flagged in
Zackenberg Valley offer valuable models for future
research efforts.

2. Focus on understudied components: Greater attention should
be given to quantifying and understanding the roles of winter
fluxes, lateral transport of C, disturbance regimes, and
herbivore interactions in the NECB of Arctic-boreal
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ecosystems. This will likely help reduce discrepancies between
bottom-up and top-down GHG estimates.

3. Advancing methodologies: Reducing uncertainties in NECB
assessments requires the adoption of state-of-the-art
technologies and methods. For example, this includes
deploying high-resolution GHG analyzers that can operate
in extreme Arctic winters and remote areas with limited
power supply, using high-resolution remote sensing tools to
improve upscaling capabilities, and integrating isotopic/
radioactive tracing techniques to better understand the
sources and ages of transported C. Additionally, heavily
data-constrained modeling approaches and innovative field
experiments are crucial to quantifying and disentangling the
individual processes shaping the Arctic-boreal C budget.

4. Interdisciplinary collaboration: Addressing the complex
challenges of Arctic C cycling requires increased
collaboration across disciplines, including ecology,
biogeochemistry, hydrology, and climate science and across
approaches, including measurements, remote sensing and
modeling. This interdisciplinary approach is essential for
developing a holistic understanding of NECB dynamics.

5. Policy and collaboration frameworks: Strengthening NECB
research within the context of the Arctic Council,
integrating the AMAP and CAFF agendas, is vital. This
includes fostering collaboration between local data-model
initiatives and pan-Arctic networks, encouraging the
development of holistic, site-specific programs with broader
regional relevance, and aligning these efforts with international
climate goals.

By addressing these key areas, researchers can significantly
enhance our ability to predict and mitigate the impacts of
climate change on Arctic and boreal C cycles. This improved
understanding will be crucial for informing effective climate
policy, ecosystem management strategies, and global climate
change mitigation efforts in these rapidly changing northern
landscapes.
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