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Guilin City, located in a typical karst landform area in China, is one of the
sustainable development demonstration zones. Evaluating the habitat quality
of Guilin City and exploring its driving factors are helpful in formulating effective
measures for sustainable development. Based on the Integrated Valuation of
Ecosystem Servicesand Tradeoffs (InVEST) model and combined methods such
as spatial autocorrelation analysis, Geographical detector model and
Geographically weighted regression (GWR) model, this study evaluated the
habitat quality of Guilin City from 2001 to 2022. The study also analyzed the
spatiotemporal characteristics and their possible driving factors. The results
indicate that: (1) The average habitat quality in Guilin City was 0.59, with
47.98% of the area classified as having good or excellent habitat quality;
however, habitat quality has shown a downward trend over the past 22 years.
(2) Moran’s I values for habitat quality in Guilin City were all greater than 0.8,
indicating a significant positive spatial correlation and spatial clustering. Among
these, the low–low aggregation regions were the largest, whereas the high–high
aggregation regions showed the most significant decrease. (3) Elevation was the
most significant factor affecting the spatial differentiation of habitat quality in
Guilin. The interactions between various driving factors were stronger than those
between any single factor, with most interactions exhibiting a dual-factor
enhancement effect. This study highlights the complexity of the
comprehensive impact of multiple factors on habitat quality changes and
provides a scientific basis and policy recommendations for ecological
protection within the national sustainable development agenda’s innovative
demonstration zones.
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1 Introduction

Against the backdrop of rapid industrialization and
urbanization, human activities are compressing ecological spaces
such as forests, grasslands, and wetlands, leading to a series of
ecological problems such as habitat destruction, sharp declines in
biodiversity, ecosystem imbalance, threatening ecosystem vitality,
and sustainable economic and social development (Bai et al., 2019;
Huo et al., 2023). In 2015, the United Nations proposed
17 Sustainable Development Goals aimed to address social,
economic, and environmental development issues. Habitat
quality, an important component of the Sustainable Development
Goal (SDG15), is the foundation for maintaining regional biological
sustainability and has a significant promoting effect on human
wellbeing (Hou and Wu, 2024). Therefore, exploring the
spatiotemporal characteristics of regional habitat quality and
analyzing the impact of various driving factors on the spatial
distribution of habitat quality can help relevant departments
optimize land use structures and formulate ecological protection
policies, which is of great significance for achieving coordinated
development between economic growth and ecological protection.

In the context of increasingly important ecological and
environmental protection, habitat quality assessment has become
a research hotspot for scholars. Currently, there are two main
methods for evaluating regional habitat quality: comprehensive
evaluation index systems (Li et al., 2024a; Li et al., 2024b) and
ecological evaluation models (Zhang et al., 2022). The construction
of a comprehensive evaluation system requires extensive data
collection, which is time-consuming and challenging, making it
suitable for small-scale regional studies. The modeling method has
the advantages of low data requirements, visual and intuitive results,
and the ability to achieve long-term dynamic monitoring. It can
provide more comprehensive and accurate habitat quality
evaluation results, such as the Social Values for Ecosystem
Services (SolVES) model (Zhang et al., 2021), Habitat Suitability
Index (HIS) model (Bhattacharya et al., 2020), and InVEST model
(Wei et al., 2024). Among these, the InVEST model achieves a
quantitative spatial assessment of habitat quality using land use data.
Compared to other models, it has the advantages of high evaluation
accuracy, a mature theoretical system, and low data requirements
(Wang et al., 2024a). Therefore, it is widely used in ecological
environment quality assessment research in different areas, such
as urban agglomerations (Han et al., 2024a), provinces (Xiao et al.,
2023), cities (Luan et al., 2022), watersheds (Huang et al., 2024a, b),
protected areas (Lin et al., 2024), and mountainous areas
(Yang, 2021).

Habitat quality is influenced by economic, social, and
environmental factors. An in-depth analysis of the interactions
and feedback mechanisms among these factors could reveal more
complex ecological dynamics. Current research has primarily used
geographically weighted regression model (Cao et al., 2024; Chen
et al., 2024b), correlation analyses (Mirghaed and Souri, 2021;
Yohannes et al., 2021), and geographical detector model (Cui
et al., 2022; Li et al., 2023) to explore the impacts of different
driving factors on habitat quality. These studies have made
significant progress in analyzing the impact of factors such as
land use change (Li et al., 2022; Qin et al., 2024), landscape
pattern change (Yang et al., 2024; Zhang et al., 2024), urban

expansion (Xie and Zhu, 2023; Wu et al., 2024a), and policy
interventions (Zheng et al., 2022) on habitat quality. The
geographical detector model can detect the interaction of various
driving factors, achieve higher accuracy with a small number of
samples, and avoid the influence of the multicollinearity of multiple
independent variables (Wang and Xu, 2017). GWR model accounts
for spatial characteristics when explaining relationships between
variables, enabling a more accurate capture of local spatial
relationships and spatial heterogeneity (Li et al., 2024a, b). By
integrating the Geodetector model and GWR model, the
dominant driving factors influencing habitat quality and their
spatial heterogeneity can be comprehensively analyzed at both
global and local perspectives, further revealing the spatial
differentiation patterns of driving mechanisms.

Guilin, an international tourist city and innovative
demonstration zone for the national sustainable development
agenda (He et al., 2023), offers an environmental evaluation that
holds significant guiding value for the sustainable development of
Chinese landscape resource cities. Therefore, real-time dynamic
monitoring of habitat quality is crucial. However, there is
currently limited research on the habitat quality of Guilin City,
and the research time interval is long, which may not capture
ecological changes and short-term fluctuations in detail. Existing
research on the mechanisms of habitat quality change primarily
focuses on the impacts of landscape patterns (Wu et al., 2024b) and
land use changes (Duan et al., 2024), and the analysis of influencing
factors usually focuses on a single aspect of economic, social, and
environmental factors (Zhu et al., 2020; Xiang et al., 2023; Han et al.,
2024b). There is a lack of analysis on the interactions between these
factors and the long-term changes in their impacts. Therefore, based
on land use data from 2001 to 2022, this study quantitatively
evaluated the habitat quality of Guilin City at 3-year intervals
using the InVEST model. By using the spatial autocorrelation
analysis, geographical detector model and GWR model, this
study analyzed the spatiotemporal characteristics and driving
factors of habitat quality in Guilin City over the past 22 years
and further revealed the interaction of driving factors to provide a
scientific basis for the ecological civilization construction and green
development of Guilin City.

2 Study area and data

2.1 Study area

Guilin is located in southern China, in the northeast of Guangxi
Zhuang Autonomous Region (109°36′ – 111°29′ E and
24°15′ – 26°23′ N). The city features typical karst landforms and
limestone terrain, primarily consisting of mid-mountain or low-
mid-mountain landscapes (see Figure 1). Guilin lies within the
subtropical monsoon climate zone, with an average annual
temperature of approximately 19°C and an average annual
precipitation of approximately 1,887.6 mm. The region has
abundant forest resources, a wide variety of wildlife species, and
a well-preserved ecological environment. In 2022, the permanent
population of Guilin was 4.9563 million, with a total GDP of
243.575 billion yuan. Committed to building a world-class tourist
city, Guilin attracts a large number of domestic and international
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visitors with its unique natural landscapes and rich cultural heritage.
In 2022, Guilin received 106.9314 million domestic tourists, with a
total domestic tourism consumption of 127.739 billion yuan, while
international tourism consumption amounted to
7.553 million dollars.

2.2 Study data

2.2.1 Land use data
The land use data used in this study was sourced from the annual

China Land Cover Dataset (CLCD), which was published by
Professor Yang Jie and Professor Huang Xin from Wuhan
University (Yang and Huang, 2021). Compared to MCD12Q1
(Friedl et al., 2010), ESACCI_LC (Bontemps et al., 2015),
FROM_GLC (Gong et al., 2013), and GlobeLand30 (Chen et al.,
2014), this dataset offers a longer temporal coverage. It has a spatial
resolution of 30 m and includes nine land use categories: Cropland,
Forest, Shrub, Grassland, Water, Snow/Ice, Barren, Impervious, and
Wetland. As of now, the dataset has been updated to 2023. This
study selected land use data from eight time points: 2001, 2004,
2007, 2010, 2013, 2016, 2019, and 2022.

2.2.2 Driving factors data
Habitat quality is influenced primarily by a combination of

economic, social, and environmental factors. Based on previous
studies (Guo et al., 2023; Zhang et al., 2023; Lan et al., 2024; Zhao
et al., 2024; Gu et al., 2024) and the representativeness and
availability of the driving factor data, 13 driving factors were
selected for analysis. Economic factors include gross domestic
product, the proportion of primary industry, the proportion of
secondary industry, and the proportion of tertiary industry.

Social factors included population density, nighttime lights, and
the land use degree comprehensive index. The environmental
factors included slope, elevation, annual average temperature,
annual average precipitation, distance from the river, and soil
type (Table 1; Figure 2).

3 Materials and methods

The framework of this study is shown in Figure 3. Based on
land use data, sensitivity data, and threat factor data, this study
evaluated the spatiotemporal characteristics of habitat quality
using the InVEST model and further revealed the relationships
between habitat quality and economic, social, and
environmental factors using the geographical detector model
and GWR model.

3.1 Sensitivity analysis

Morris (1991) proposed the one-at-a-time (OAT) method,
which is commonly used for local sensitivity analysis. In this
study, it was applied to assess the influence of different input
parameters on the model’s output. Each parameter is individually
perturbed within a range of −15%–15%, using a fixed step size of 5%.
as shown in Equations 1:

Si � f X1,X2, ...,Xi + Δi, ...,Xn( ) − f X1,X2, ...,Xi, ...,Xn( )
Δi

(1)

where Si represents the sensitivity of parameter Xi, X = [ X1, X2 ,. . .,
Xn] denotes the input parameters. Δi represents the variation of
parameter Xi. f (X1, X2,. . ., Xi+Δi,. . ., Xn) denotes the model output

FIGURE 1
Geographical overview of Guilin City. (a) The location of Guangxi within China; (b) The location of Guilin City within Guangxi; (c) Elevation of
Guilin City.
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when Xi varies by Δi, while f (X1, X2,. . ., Xi,. . ., Xn) represents the
model output without any variation in Xi.

3.2 Habitat quality

This study used the habitat quality module in the InVESTmodel to
evaluate the habitat quality in Guilin City. This model assumes that the
degree of habitat degradation is influenced by the cumulative effects of
multiple threats when analyzing habitat quality. Different threat factors
have varying degrees of impact on the habitat, and under the same
conditions, certain threats may causemore severe effects. The impact of
threats weakens as the distance from the threat source increases, with
areas closer to the threat source being more affected. Each habitat type
responds differently to threats, and the stronger the sensitivity to the
threat source, the more susceptible it is to the impact of threats leading
to degradation. Based on the actual land cover situation in Guilin City
and referring to the InVEST software manual and related research
(Huang et al., 2023; Yang et al., 2023; Wang et al., 2024b; Qiu and
Wang, 2022), impermeable surfaces, farmlands, and roads were selected
as threat factors in this study. The parameter settings for the threat
factors and sensitivity of each habitat type to these threat sources are
detailed in Tables 2, 3, respectively.

The impact of threat sources on habitat grids decreased with
increasing distance, and this change in impact was described by a
linear or exponential distance decay function (Wang et al., 2024b),
as shown in Equations 2, 3:

irxy � 1 − dxy

drmax
( ) linear decay( ) (2)

irxy � exp − 2.99
drmax

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣dxy

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ exponential decay( ) (3)

where irxy is the degree of impact of a threat source on the habitat, dxy
is the distance between the habitat grid and the threat source, and
drmax is the maximum impact distance from the threat source.

The degree of habitat degradation was calculated based on the
impacts of threat sources on habitat type, as shown in Equation 4:

Dxj � ∑R
r�1
∑Yr

y�1

ωr

∑R
r�1ωr

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ryirxyβxSjr (4)

where Dxj is the degree of habitat degradation of habitat type j, R is
the number of threat factors, ωr is the weight of threat factor r, Yr is
the number of grid units of threat factors, and βx is the statutory
protection level, the value of which is in the range of 0–1. The larger
the value is, the higher the accessibility of the threat source to the
habitat grid is. Sjr is the sensitivity of land use type j to threat factor r.

Habitat quality was evaluated based on the degree of habitat
degradation, as shown in Equation 5:

Qxj � Hj 1 −
Dz

xj

Dz
xj + kz

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ (5)

where Qxj is the habitat quality of position x in land use type j, Hj is
the habitat suitability of land use type j, constant k is a semi-
saturation constant usually taken as 0.5, and z is a normalization
constant usually taken as 2.5. In order to further analyze the
spatiotemporal characteristics of habitat quality in Guilin City,
this study divided habitat quality into five levels: Poor (0–0.2),
Fair (0.2–0.4), Moderate (0.4–0.6), Good (0.6-0.8), and Excellent
(0.8–1). Additionally, habitat quality change levels were categorized
into five levels: Significantly reduced (<−0.16), Slightly reduced
(−0.16 - 0), Unchanged (0), Slightly increased (0–0.16), and
Significantly increased (>0.16).

3.3 Spatial autocorrelation analysis

Spatial autocorrelation includes two types: global spatial
autocorrelation and local spatial autocorrelation, which are used
to measure whether spatial variables have spatial clustering, describe

TABLE 1 Selection of driving factors for habitat quality.

Data type Driving factor Data sources

Economic factors Gross domestic product (GDP) Guilin Economic and Social Statistical Yearbook

Proportion of primary industry (PPI)

Proportion of secondary industry (PSI)

Proportion of tertiary industry (PTI)

Social factors Population density (PD) ORNL LandScan Viewer (https://landscan.ornl.gov/, Bhaduri et al., 2007)

Nighttime lights (NL) National Earth System Science Data Center (http://www.geodata.cn, Chen et al., 2021)

Landuse degree comprehensive index (LUI) Calculate through landuse data

Environmental factors Elevation (DEM) Geospatial data cloud (https://www.gscloud.cn/)

Slope (SLOPE) Calculate through DEM data

Annual average temperature (TEM)
Annual average precipitation (PRE)

National Tibetan Plateau/Third Pole
Environment Data Center (http://data.tpdc.ac.cn, Peng et al., 2019)

Distance from the river (Dis_River) National Geomatics Center of China (https://www.ngcc.cn/)

Soil type (ST) Resource and Environmental Science Data Platform (https://www.resdc.cn/DataList.
aspx)

Frontiers in Environmental Science frontiersin.org04

Xu et al. 10.3389/fenvs.2025.1545221

https://landscan.ornl.gov/
http://www.geodata.cn
https://www.gscloud.cn/
http://data.tpdc.ac.cn
https://www.ngcc.cn/
https://www.resdc.cn/DataList.aspx
https://www.resdc.cn/DataList.aspx
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1545221


FIGURE 2
Spatial distribution of land use types and driving factors. (a) Gross domestic product, (b) Proportion of primary industry, (c) Proportion of secondary
industry, (d) Proportion of tertiary industry, (e) Slope, (f) Elevation, (g) Annual average temperature, (h) Annual average precipitation,(i) Population density,
(j) Nighttime lights, (k) Land use degree comprehensive index, (l) Land cover, (m) Distance from the river, (n) Soil type.
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the spatial distribution pattern of spatial variables within the entire
study area, and describe the spatial heterogeneity of local regions
(Cai et al., 2023). The formulas for global and local spatial
autocorrelation analyses are as follows:

Moran′sI �
n × ∑n

i�1
∑n
j�1
Wij xi − �x( ) xj − �x( )

∑n
i�1
∑n
j�1
Wij × ∑n

i�1
xi − �x( )2

(6)

FIGURE 3
Flowchart of this study.
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LISA �
xi − �x( ) × ∑n

j�1
Wij xj − �x( )

∑n
i�1

xi − �x( )2
(7)

where n is the total number of spatial units; xi and xj are the attribute
values of the ith and jth spatial units, respectively; �x is the average
attribute value of all spatial units; and Wij is the spatial weight. The
value of Moran’s I is between −1 and 1. A value of Moran’s I greater
than 0 indicates positive spatial correlation among spatial units,
manifested as “high–high” or “low–low” clustering. A value of
Moran’s I less than 0 indicates negative spatial correlation among
spatial units, manifested as “high–low” or “low–high” clustering.

3.4 Geographical detector model

Geographical detector is a statistical method used to detect spatial
heterogeneity and analyze the explanatory power of driving factors (Yin
and Lin, 2024). This model can evaluate the impact of a single factor and
the interaction of two factors on the target variable and includes factor
detectors, interaction detectors, risk area detectors, and ecological
detectors (Wang and Xu, 2017). This study employs factor and
interaction detectors to analyze the explanatory power of 13 driving
factors on habitat quality in Guilin City. Socioeconomic data were first
spatialized and rasterized, and the 13 factors were discretized using the
natural breakmethod. A total of 7,220 sample points were then generated
by creating a fishnet. Finally, factor and interaction detectors were used to
compute q-values, evaluating the influence of each driving factor on
habitat quality. The calculation method for q is shown in Formula 8.

q � 1 − ∑L
h�1Nhσ2h
Nσ2

(8)

Where q is the explanatory power of the driving factor, h is
the stratification of the driving factor and habitat quality, σh and σ
are the variances of layer h and the entire region, and Nh and N
are the number of units in layer h and the entire region,
respectively.

Interaction detection evaluates whether the impact of two
driving factors on habitat quality is enhanced or weakened when
they act together by comparing their q-values when they
act together with their q-values when they act alone. The
interactive relationships between these two factors are
presented in Table 4.

3.5 Geographically weighted
regression model

GWR is a local linear regression method that constructs a
local regression model at each spatial location to more accurately
capture the local spatial impact characteristics of various driving
factors on habitat quality (Kang et al., 2024). The model is
expressed as follows:

yi � β0 ui, vi( ) +∑m
j�1
βj ui, vi( )xij + εi (9)

Where yi represents the dependent variable value at sampling
point i, (ui,vi) represents the coordinates of sampling point i,
β0(ui,vi) denotes the intercept term, βj(ui,vi) denotes the
regression coefficient of the j-th independent variable at
sampling point i, xij represents the value of the j-th
independent variable at sampling point i, and εi represents
the error term.

TABLE 2 Maximum impact distance, weight, and attenuation type of threat factors.

Threat factors Maximum influence distance (km) Weight Spatial decay type

Cropland 4 0.7 Linear

Impervious 6 1 Exponential

Path 2 0.6 Exponential

TABLE 3 Habitat suitability and sensitivity to threat sources for different land use types.

Land use types Habitat suitability Cropland Impervious Path

Cropland 0.4 0.2 0.65 0.2

Forest 1 0.8 0.8 0.5

Shrub 0.8 0.3 0.6 0.5

Grassland 0.8 0.7 0.75 0.4

Water 0.75 0.55 0.75 0.3

Barren 0.2 0.1 0.2 0

Impervious 0 0 0 0
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4 Result

4.1 Sensitivity analysis results

Figure 4 presents the sensitivity analysis results of the InVEST
model’s input parameters. Among all parameters, Sensitivity to
Threat Sources has the highest sensitivity index (S = 0.409),
indicating its most significant impact on the InVEST model
results. Habitat Suitability follows with a sensitivity index of
0.319, making it the second most influential parameter, while
Weight has the least impact on the model results. Within
the −15%–15% perturbation range, the result of average habitat
quality increases with Habitat Suitability, while an increase in the
other three parameters presents a downward trend.

4.2 Spatiotemporal characteristics of
habitat quality

Figure 5 shows the proportions of different levels of habitat
quality in Guilin City from 2001 to 2022. Over the past 22 years, the
average habitat quality in Guilin City has shown an overall
downward trend, with the HQ value decreasing from 0.606 to
0.571, a decrease of 5.78%. From 2001 to 2022, the proportion of
excellent habitat quality level in Guilin City decreased from 27.92%
to 21.02%, a decrease of 24.29%; the proportion with a habitat

quality level of fair increased from 25.55% to 28.28%, with a growth
rate of 10.69%. Table 5 show the transfer of different habitat quality
levels in Guilin from 2001 to 2022. In the past 22 years, areas with
excellent habitat quality were primarily transformed into good
habitat, with a transformation area ratio of 6.74%; the areas with

TABLE 4 Types of interaction.

Judgment Interactions

q (X1∩X2) < Min (q (X1), q (X2)) Nonlinear weakening

Min (q (X1), q (X2)) < q (X1∩X2) < Max (q (X1), q (X2)) Single factor Nonlinear weakening

Max (q (X1), q (X2)) < q (X1∩X2) Two factor enhancement

q (X1∩X2) = q (X1) + q (X2) Independent

q (X1) + q (X2) < q (X1∩X2) Nonlinear enhancement

FIGURE 4
(a) Sensitivity index of model input parameters; (b) Perturbation results of model input parameters. (X1 represents habitat suitability, X2 denotes
sensitivity to threat sources, X3 refers to the weight of threats, and X4 indicates the maximum influence distance).

FIGURE 5
2001–2022 Proportions of each habitat quality grade in Guilin.
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good habitat quality levels were primarily transformed into
moderate habitat, with a transformation area ratio of 4.04%;
and the areas with moderate habitat quality levels were
primarily transformed into fair habitat, with a transformation
area ratio of 4.24%. These data indicated that the proportion of
areas with good habitat quality in Guilin gradually decreased,
whereas the proportion of areas with poor habitat quality
gradually increased. The ecological environmental quality
showed a deteriorating trend.

According to the results shown in Figures 6, the overall habitat
quality in Guilin City was moderate from 2001 to 2022. The habitat
quality in the northwestern and eastern regions was relatively high,
with quality levels mainly classified as excellent and good. In
contrast, the habitat quality in the central, northeastern, and
southern regions was relatively low, primarily rated as fair and
poor. Areas with high habitat quality were primarily composed of
land types such as forests, grasslands, and shrubs, which were less
affected by human activities. Areas with low habitat quality
primarily comprised impermeable surfaces and cultivated land,
which serve as concentrated areas for human life and production
activities. Areas with degraded and improved habitat qualities
exhibited spatial clustering characteristics (Figure 7). The areas of
habitat quality degradation were primarily concentrated in the
western and northwestern parts of Guilin City, such as in Ziyuan
County, Lingui County, and Yongfu County. The areas with
improved habitat quality were primarily concentrated in the
northeast of Guilin City, such as Quanzhou County, Guanyang
County, and Xing’an County.

4.3 Spatial autocorrelation analysis of
habitat quality

To explore the spatial clustering of habitat quality in Guilin City,
this study conducted global and local Moran’s index analyses of
habitat quality. The analysis results showed that from 2001 to 2022,
the global Moran’s index of habitat quality in Guilin City was 0.848,
0.847, 0.824, 0.845, 0.837, 0.830, 0.807, and 0.826, with P-values of 0,
indicating a significant positive spatial correlation in habitat quality
in the region. The declining trend of Moran’s I indicates a gradual
weakening of the spatial clustering of habitat quality. This is mainly
influenced by urban expansion, agricultural land conversion, and
infrastructure development, leading to the degradation of high-

quality habitat areas and exacerbating the degree of habitat
fragmentation.

Figure 8 presents the results of the local spatial autocorrelation
analysis of habitat quality. The spatial distribution of habitat quality
in Guilin City showed evident characteristics of high–high
aggregation and low–low aggregation. The high–high clustering
areas were primarily concentrated in the western, northwestern,
and eastern parts of Guilin City and were primarily composed of
forests and shrubs with dense vegetation growth. The low–low
clustering areas were primarily distributed in the central,
northeastern, and southern regions, with impermeable surfaces
and cultivated land as the main land types and where human
activities were more frequent. There were relatively few areas of
high–low aggregation and low–high aggregation, presenting a
scattered distribution. Table 6 lists the patch areas and their
proportions in each type of aggregation. From 2001 to 2022, the
habitat quality of Guilin City primarily showed high–high
aggregation and low–low aggregation spatial characteristics,
accounting for an average of 31.55% and 33.85% of the study
area, respectively. Compared with 2001, the high–high and
low–low clustering areas in Guilin City will decrease in 2022,
with reductions accounting for 2.59% and 0.73% of the study
area, respectively, with the largest decrease in high-value
clustering areas.

4.4 Factor detection analysis

The impact of each driving factor on habitat quality in Guilin
City was evaluated by calculating the q-value, and all variables
passed the significance test at the 0.01 level (Table 7). According
to the average explanatory power of each factor, the rankings were as
follows: DEM > TEM > PD > SLOPE >ST > LUI > GDP > PRE >
Dis_River > NL > PTI > PPI > PSI. This indicated that natural and
social factors had a significant impact on the habitat quality of Guilin
City, whereas the influence of economic factors was relatively small.
Throughout the study period, the main factors affecting the spatial
differentiation of habitat quality were DEM, TEM, PD, and SLOPE,
all of which had explanatory powers greater than 0.29. DEM and
TEM were the two strongest explanatory factors. In 2001, the
explanatory power of each driving factor was in the order
DEM > TEM > PD > SLOPE > ST > GDP > LUI > Dis_River >
PPI > PSI > PRE > PTI >NL. By 2022, the explanatory power of each

TABLE 5 Transfer matrix of habitat quality at different levels in guilin city from 2001 to 2022.

2001 2022

Poor Fair Moderate Good Excellent Total

Poor 0.60% 0.13% ~0.00% ~0.00% ~0.00% 0.74%

Fair 0.77% 22.59% 1.97% 0.19% 0.03% 25.55%

Moderate 0.02% 4.24% 18.41% 0.47% 0.02% 23.16%

Good ~0.00% 1.07% 4.04% 16.96% 0.56% 22.64%

Excellent ~0.00% 0.25% 0.52% 6.74% 20.41% 27.92%

Total 1.39% 28.28% 24.94% 24.36% 21.02% 100.00%
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driving factor is ranked as follows: DEM > TEM > PD > SLOPE >
ST > NL > LUI > GDP > Dis_River > PRE > PTI > PPI > PSI. The
explanatory powers of NL, PD, and PTI generally increased,
whereas those of DEM, PPI, PSI,and GDP decreased. The
explanatory power changes of the other driving factors were
not significant. Among them, the explanatory power of NL
increased the most significantly, indicating that with the
advancement of urbanization, the impact of human activities
on habitat quality was increasingly significant.

4.5 Interaction detection analysis

Figure 9 shows the interaction results for the 13 driving factors
from 2001 to 2022. The q-value of the interaction between each pair
of factors was higher than that of a single factor, indicating a dual-
factor enhancement or nonlinear enhancement. This indicates that
the combined effect of these 13 driving factors had a greater impact
on the spatial differentiation of habitat quality in Guilin City. The
interaction between the DEM and other driving factors had the

FIGURE 6
Spatial distribution of habitat quality in Guilin City from 2001 to 2022. (a–h) represent the years 2001, 2004, 2007, 2010, 2013, 2016, 2019, and 2022,
respectively.
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strongest explanatory power, exceeding 0.64; however, the
enhancement effect was not significant. From 2001 to 2022, most
driving factor interactions exhibited dual-factor enhancement, while
a smaller proportion showed nonlinear enhancement. In 2001, the
interaction between DEM and PSI was the strongest (q = 0.706). In
2004 and 2022, the interaction between DEM and PD was the
strongest, with q-values of 0.707 and 0.702, respectively. From
2007 to 2016, the interaction between DEM and PRE was the
strongest, with q-values of 0.724, 0.698, 0.695, and 0.680,
respectively. Over the past 22 years, the interactions of nighttime
light and population with other driving factors exhibited a
noticeable increase in explanatory power, whereas no significant
changes were observed in the interactions among the other driving
factors. The interaction between DEM, TEM, PD, SLOPE and PRE
was the main reason for the spatial variability in habitat quality in
Guilin City.

4.6 GWR analysis

The geographical detector can only identify the influence
strength of driving factors on habitat quality from a global
perspective. Therefore, this study introduces the GWR model to
further analyze the local spatial effects of these driving factors on
habitat quality. According to the factor detection and VIF test results
(Table 8), DEM, SLOPE, and PD were finally selected as the main
driving factors for inclusion in the GWR model. The results showed
that all selected factors had low VIF values (Table 9), indicating no
multicollinearity issues.

Figures 10–12 show the spatial distribution of the local
regression coefficients between PD, DEM, SLOPE, and habitat

quality. The adjusted R2 values for all results exceed 0.77,
indicating excellent model fit and that PD, DEM, and SLOPE
effectively explain the spatial variation of habitat quality.The local
regression coefficients of PD show a trend of increasing first and
then decreasing from 2001 to 2022, suggesting that the impact of
population density on habitat quality varies across different periods.
In contrast, the local regression coefficients of DEM and SLOPE
exhibit no significant changes over time.

The spatial pattern reveals that areas with negative local
regression coefficients for population density account for more
than 91% of the total area, indicating that population density
exerts a negative impact on habitat quality. Moreover, the local
regression coefficients gradually increase from the urban center
towards the periphery. This pattern can be attributed to the
severely degraded habitat quality in the city center, where
changes in population density have limited effects. Conversely,
habitat quality is relatively high in the peripheral areas, making
these regions more sensitive to changes in population density.

For elevation, regions with positive local regression
coefficients cover more than 98% of the area, indicating that
elevation positively contributes to habitat quality. The most
significant positive impact is observed in the central and
southern parts of Guilin, while the effects in the northwest
and eastern regions are relatively weaker. Areas with positive
local regression coefficients for slope account for over 90% of the
total area, suggesting a positive correlation between slope and
habitat quality. Regions with higher coefficients are mainly
concentrated in the northeast, west, and south of Guilin,
where the dominant land use is cultivated land, indicating that
slope affects habitat quality primarily through its influence on the
spatial distribution of cultivated land in these regions.

FIGURE 7
Spatial distribution of habitat quality changes in Guilin City.
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FIGURE 8
Spatial differentiation of habitat quality in Guilin City from 2001 to 2022. (a -h) represent the years 2001, 2004, 2007, 2010, 2013, 2016, 2019, and
2022, respectively.

TABLE 6 Local spatial autocorrelation classification statistics of habitat quality in guilin city (km2).

LISA Cluster Type 2001 2004 2007 2010 2013 2016 2019 2022

Not Significant 9794 (33.87%) 9858 (34.09%) 8281 (28.64%) 10000 (34.58%) 10282 (35.55%) 10532 (36.42%) 9148 (31.63%) 10684
(36.94%)

High-High Cluster 9287 (32.11%) 9244 (31.97%) 9919 (34.30%) 9200 (31.81%) 8959 (30.98%) 8684 (30.03%) 9153 (31.65%) 8537 (29.52%)

High-Low Outlier 57 (0.20%) 59 (0.20%) 140 (0.48%) 43 (0.15%) 58 (0.20%) 62 (0.21%) 176 (0.61%) 73 (0.25%)

Low-High Outlier 61 (0.21%) 72 (0.25%) 96 (0.33%) 79 (0.27%) 104 (0.36%) 132 (0.46%) 149 (0.52%) 116 (0.40%)

Low-Low Cluster 9720 (33.61%) 9686 (33.49%) 10483 (36.25%) 9597 (33.19%) 9516 (32.91%) 9509 (32.88%) 10293 (35.59%) 9509 (32.88%)
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5 Discussion

5.1 The impact of land use change on
habitat quality

The overall ecological environmental quality of Guilin City was
moderate, with an average habitat quality of 0.59. This higher habitat
quality is primarily because of the extensive vegetation coverage and
sufficient ecological space in Guilin City (Wang et al., 2023a; Wang
et al., 2023b), with the ecological space area accounting for more
than 77%. Habitat quality in the northwest and eastern regions of
Guilin City was relatively high. These areas had large areas of forest
land and a small amount of arable land with high vegetation
coverage, which helped improve the quality of the ecological
environment. Habitat quality in the central, northeastern, and
southeastern regions was relatively low. These areas are
technological development and industrial concentration zones
with high development intensity and significant ecological
pressure. These results are consistent with those of previous
studies (Yang, 2021; Liu et al., 2023).

Over the past 22 years, the habitat quality in Guilin City has
continued to decline. The specific manifestation was that areas with
good habitat quality levels were primarily transformed into
Moderate quality levels, whereas areas with medium habitat
quality levels were primarily transformed into poor quality levels,
and the overall habitat quality showed a gradually decreasing trend.
According to the Guilin Economic and Social Statistical Yearbook,
the gross domestic product of Guilin City has grown by 632.48%
over the past 22 years. Rapid economic development has resulted in
a large amount of infrastructure construction and the development
of new residential areas, and urban areas have continued to expand.
The results showed that from 2001 to 2022, the ecological land area
decreased by 754.96 km2, the cropland and impervious surface area
increased by 754.78 km2, and the bare land area increased by

0.18 km2. According to the land use transfer results from 2001 to
2022 (Figure 13), a large amount of forest land, shrubs, grasslands,
and water bodies will be converted into cropland and impervious
surfaces, seriously damaging the original natural ecology and leading
to an overall decline in habitat quality. Wang et al. (2024a); Wang
et al. (2024b) found in their research that purposeful construction
and development activities by humans can lead to land conversion
and accelerate the loss and quality decline of biological habitats.

During the period 2016–2022, the rate of decline in habitat
quality in Guilin City significantly slowed down. This change is
primarily attributable to the implementation of the “13th Five-Year
Plan for Environmental Protection in Guilin,” which strengthened
ecological restoration and supervision; actively promoted multiple
ecological restoration projects, such as karst heritage areas,
abandoned mines, island wetlands, and shoreline slopes; and
gradually improved the fragile ecological situation. The
Sustainable Development Goals (SDG15) emphasize the need
to protect, restore, and promote the sustainable use of terrestrial
ecosystems, sustainably manage forests, combat desertification,
halt and reverse land degradation, and curb biodiversity loss.
Therefore, while promoting economic development, Guilin City
needs to continue strengthening ecological restoration and urban
greening policies, enhance the protection of ecological spaces,
and mitigate the risk of continuous deterioration of
habitat quality.

5.2 Analysis of spatial heterogeneity and
driving factors of habitat quality

The habitat quality of Guilin City was influenced by a
combination of economic, social, and environmental factors,
and different driving factors had significantly different impacts
on the spatial heterogeneity of habitat quality. The results showed

TABLE 7 Results of factor detection of habitat quality driving factors in guilin city.

Detection

Factor

P-values q-values Average

2001 2004 2007 2010 2013 2016 2019 2022 Values

PPI <0.001 0.047 0.046 0.039 0.038 0.055 0.032 0.032 0.033 0.040

PSI <0.001 0.030 0.048 0.028 0.024 0.026 0.024 0.026 0.006 0.027

PTI <0.001 0.026 0.010 0.043 0.058 0.063 0.060 0.045 0.037 0.043

GDP <0.001 0.096 0.083 0.075 0.081 0.077 0.096 0.094 0.084 0.086

LUI <0.001 0.091 0.095 0.091 0.093 0.102 0.102 0.100 0.104 0.098

NL <0.001 0.017 0.027 0.027 0.028 0.063 0.069 0.094 0.112 0.055

PD <0.001 0.352 0.346 0.340 0.307 0.327 0.325 0.334 0.435 0.346

TEM <0.001 0.472 0.487 0.496 0.487 0.496 0.463 0.447 0.475 0.478

PRE <0.001 0.028 0.249 0.086 0.038 0.084 0.063 0.053 0.038 0.080

DEM <0.001 0.660 0.663 0.660 0.655 0.647 0.637 0.637 0.638 0.650

SLOPE <0.001 0.335 0.338 0.339 0.339 0.340 0.339 0.337 0.331 0.337

Dis_River <0.001 0.071 0.069 0.067 0.067 0.063 0.062 0.064 0.064 0.066

ST <0.001 0.206 0.206 0.209 0.206 0.206 0.201 0.197 0.202 0.204
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that environmental factors had the greatest impact on habitat
quality, followed by social factors, whereas economic factors had
the smallest impact.

Among the 13 driving factors, DEM had the greatest impact on
habitat quality, followed by TEM and SLOPE. The average single-
factor explanatory powers of these factors were all greater than 0.2,

FIGURE 9
Interactive detection results of driving factors of habitat quality in Guilin City from 2001 to 2022. (a -h) represent the years 2001, 2004, 2007, 2010,
2013, 2016, 2019, and 2022, respectively.
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indicating that the suitability of the region significantly affected
habitat quality distribution (Chen and Liu, 2024a). DEM is
positively correlated with habitat quality in spatial distribution, as
the complex terrain in high-altitude areas greatly limits human
activities and development, while low altitude areas have natural
conditions such as flat terrain and suitable climate, which are
conducive to large-scale agricultural development and urban
infrastructure construction, and have a negative impact on
habitat quality (Aneseeye et al., 2020). TEM affects the
distribution of vegetation, and suitable temperatures promote
vegetation growth and enhance ecosystem diversity, thereby
ensuring stable habitat quality. This is consistent with the
conclusions of previous studies (Hu et al., 2021; Wang et al.,
2023a) that temperature has a significant impact on habitat
quality. SLOPE has a positive impact on habitat quality. This is
because it significantly influences the spatial distribution pattern of
construction land and farmland. Steep terrain is not conducive to
human life and production, thereby playing a protective role in the

ecosystem. ST play a role in habitat quality, with differences in
water-holding capacity, permeability, and organic matter content
influencing vegetation growth and development.

Socioeconomic factors had a relatively small impact on the
habitat quality of Guilin City. PD had the strongest explanatory
power, followed by LUI, while the explanatory power of other
driving factors, including PPI, PSI, PTI, and GDP, was less than
0.1. The local spatial relationship between population density and
habitat quality showed a significant negative correlation. According
to the Guilin Economic and Social Statistical Yearbook, the city’s
total population increased by approximately 11.65% from 2001 to
2022. Population growth has driven higher demand for residential
land and public infrastructure, leading to intensified land
development and utilization, which poses greater challenges to
ecological and resource management. As a famous tourist city,
Guilin’s tourism industry has become the main driver of steady
economic growth. In recent years, Guilin has focused on ecological
protection and restoration of natural resources, with a cumulative

TABLE 8 VIF detection results of 13 driving factors.

Detection

Factor

VIF

2001 2004 2007 2010 2013 2016 2019 2022

PPI 1.748 (0.174) 69562.121
(0.013)

5.622 (0.017) 55359.441
(<0.001)

114170.645
(<0.001)

141651.851
(<0.001)

4.858 (<0.001) 60021.205
(0.443)

PSI 2.219 (<0.001) 2.232 (<0.001) 12680.519
(0.116)

1.503 (0.005) 1.546 (0.447) 1.362 (0.306) 4.324 (<0.001) 1.463 (<0.001)

PTI 40497.461
(<0.001)

1.514 (<0.001) 4.265 (<0.001) 1.51 (<0.001) 1.715 (0.018) 1.822 (0.009) 16425.111
(0.025)

1.563 (<0.001)

GDP 14.152 (<0.001) 9.206 (<0.001) 9.694 (0.16) 9.885 (0.346) 12.302 (0.968) 10.494 (0.225) 8.058 (0.069) 8.168 (0.572)

LUI 11.361 (<0.001) 7.633 (<0.001) 8.164 (0.777) 8.651 (0.057) 11.04 (0.182) 9.859 (0.617) 7.842 (0.459) 8.237 (0.582)

NL 1.218 (<0.001) 1.276 (<0.001) 1.408 (0.386) 1.468 (0.01) 1.589 (<0.001) 1.556 (<0.001) 1.408 (<0.001) 1.549 (<0.001)

PD 1.179 (<0.001) 1.237 (<0.001) 1.35 (<0.001) 1.36 (<0.001) 1.521 (<0.001) 1.495 (<0.001) 1.318 (<0.001) 1.592 (<0.001)

TEM 11.975 (<0.001) 8.132 (0.002) 10.91 (<0.001) 10.285 (0.689) 13.108 (<0.001) 10.545 (0.141) 13.681 (0.008) 14.564
(<0.001)

PRE 2.685 (<0.001) 1.543 (0.016) 1.835 (<0.001) 1.61 (<0.001) 1.82 (<0.001) 1.539 (<0.001) 2.281 (<0.001) 2.271 (<0.001)

DEM 9.695 (<0.001) 7.841 (<0.001) 9.608 (<0.001) 9.466 (<0.001) 10.996 (<0.001) 9.315 (<0.001) 10.794 (<0.001) 11.649
(<0.001)

SLOPE 1.253 (<0.001) 1.247 (<0.001) 1.367 (<0.001) 1.249 (<0.001) 1.25 (<0.001) 1.242 (<0.001) 1.249 (<0.001) 1.257 (<0.001)

Dis_River 1.074 (<0.001) 1.071 (<0.001) 1.072 (<0.001) 1.071 (<0.001) 1.072 (<0.001) 1.072 (<0.001) 1.075 (<0.001) 1.082 (<0.001)

ST 1.036 (<0.001) 1.042 (<0.001) 1.053 (<0.001) 1.035 (<0.001) 1.038 (<0.001) 1.042 (<0.001) 1.043 (<0.001) 1.058 (<0.001)

Note: The values in parentheses represent the significance value.

TABLE 9 VIF detection results of selected driving factors.

Detection

Factor

Sig VIF

2001 2004 2007 2010 2013 2016 2019 2022

DEM <0.001 1.237 1.237 1.237 1.237 1.239 1.239 1.24 1.253

SLOPE <0.001 1.234 1.234 1.339 1.234 1.234 1.234 1.236 1.244

PD <0.001 1.032 1.033 1.033 1.033 1.035 1.035 1.04 1.069
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mining ecological restoration area of over 2.8 km2. Effective
ecological restoration and protection measures have offset some
negative impacts of social and economic activities (Yuan
et al., 2023).

The interactions between different factors significantly
affected the changes in habitat quality. The interaction
detection results indicated that the explanatory power of the

interactions of the 13 driving factors on habitat quality was
greater than that of a single factor, showing dual-factor and
nonlinear enhancement effects. This suggests that the combined
effects of these factors have a greater impact on habitat quality.
The interaction between DEM, TEM, PD, SLOPE and PRE had a
significant impact on changes in habitat quality in Guilin City.
These factors collectively affect the environmental conditions for

FIGURE 10
The local coefficients for PD from 2001 to 2022. (a -h) represent the years 2001, 2004, 2007, 2010, 2013, 2016, 2019, and 2022, respectively.

FIGURE 11
The local coefficients for DEM from 2001 to 2022. (a -h) represent the years 2001, 2004, 2007, 2010, 2013, 2016, 2019, and 2022, respectively.
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vegetation growth and the intensity of human activity, thereby
influencing the habitat quality of the region. PPI, PSI, PTI, and
NL had relatively small impacts on habitat quality; however, their

interactions with other driving factors remained significant. The
interactive detection results showed that changes in habitat
quality were driven by the combined influence of multiple

FIGURE 12
The local coefficients for SLOPE from 2001 to 2022. (a-h) represent the years 2001, 2004, 2007, 2010, 2013, 2016, 2019, and 2022, respectively.

FIGURE 13
Mulberry plot of land use change in Guilin City from 2001 to 2022 (km2).
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factors, with no single factor fully explaining its variation.
Therefore, when addressing ecological and environmental
issues, multiple factors should be considered, and more
effective governance measures should be developed via
scientific monitoring to achieve more comprehensive and
effective ecological protection.

5.3 Policy recommendations

The karst ecosystem in Guilin is highly fragile and sensitive, with
limited restoration capacity, making it particularly prone to rocky
desertification. Thus, preserving the region’s ecological integrity is
crucial. The study findings indicate that low-quality habitat areas are
expanding outward from the city center, while high-quality habitat
areas are shrinking, and the average habitat quality in Guilin has
shown an overall downward trend. This trend reflects the
continuous impact of urban expansion and infrastructure
development on the surrounding ecological environment,
underscoring the urgent need for ecological restoration. Based on
the findings of this study, the following policy recommendations
are proposed:

The northeastern, central, and southern regions of Guilin city
have a high degree of land use and development, high population
density, and long-term low habitat quality. These areas need to
improve the construction of green infrastructure such as parks,
green spaces, and ecological corridors to enhance the ecological
carrying capacity of the city and alleviate the environmental pressure
brought about by high-density urbanization. The local government
needs to strictly control urban infrastructure such as industrial
parks, residential land, and roads to prevent habitat
fragmentation. The cultivated land around Guilin city can be
combined with ecotourism to develop sustainable industries such
as leisure and ecology, and improve the production and ecological
service functions of cultivated land through the construction of high
standard farmland.

The habitat quality in the northwest and eastern regions of
Guilin is relatively high, but it is sensitive to human activities and
requires the development of sound ecological protection policies.
These areas should focus on afforestation and grassland restoration,
and regularly conduct environmental monitoring and evaluation to
improve vegetation coverage and ecosystem stability. As a famous
tourist city, Guilin can fully utilize the advantages of karst
landforms, biological landscapes, and cultural resources,
encourage the development of green industries such as
ecotourism and characteristic orchards, and promote the
coordinated development of economic growth and environmental
protection.

5.4 Limitations and future research
directions

The current research aimed to analyze the spatiotemporal
characteristics of habitat quality and the influence of various
driving factors on the spatial heterogeneity of habitat quality;
however, there are still some limitations: (1) This study spans a
21-year period but analyzes data from only eight time points. Future

research will incorporate more time points to enhance the continuity
of the analysis, enabling a more detailed analysis of habitat quality
dynamics. (2) This study primarily focuses on past changes in
habitat quality. In the future, the PLUS model or deep learning
models will be used to explore how habitat quality evolves under
different policy or development conditions. (3) Although
geodetectors perform well in single-factor detection and
interaction detection, they have not been able to reveal the
complex interactions between two or more driving factors that
affect changes in habitat quality. Future research will consider
coupling machine learning algorithms to more deeply analyze the
impact mechanisms of these factors (Xiang et al., 2024). (4) This
study focused on analyzing the impact of major driving factors on
habitat quality without considering factors such as sunshine
duration, hydrological processes, climate change, and energy
consumption. Therefore, the current research may not fully
consider the driving factors that affect habitat quality, and future
research should expand to include these factors to obtain a more
comprehensive understanding.

6 Conclusion

This study evaluated the habitat quality of Guilin City from
2001 to 2022 based on the InVEST model and used spatial
autocorrelation analysis methods to analyze the spatiotemporal
characteristics of habitat quality. The impact of the driving
factors on the spatial differentiation of habitat quality was
analyzed using a geographical detector model and the GWR
model. The main conclusions are as follows.

(1) The overall habitat quality in Guilin was moderate, with an
average proportion of 47.98% of the areas having habitat
quality greater than 0.6. Habitat quality in the northwest
and eastern regions was relatively high, whereas that in the
central, northeast, and southern regions was relatively low.
During the research period, the overall habitat quality in
Guilin City showed a downward trend, with areas with
good habitat quality levels primarily turning toward
moderate levels and areas with moderate habitat quality
levels primarily turning toward fair levels. The habitat
quality level gradually declined.

(2) Habitat quality in Guilin City had a significant positive spatial
correlation and spatial clustering. During the research period,
the average areas of low and low aggregation accounted for
the largest proportion, whereas the areas of high and high
aggregation decreased the most significantly, indicating that
the ecological environment of Guilin City faced
significant pressure.

(3) From 2001 to 2022, there was no significant change in the
explanatory power of habitat quality driving factors in Guilin.
DEM, TEM, PD, and SLOPE were the main driving factors
with a significant impact on the spatial differentiation of
habitat quality. DEM and SLOPE showed a positive
correlation with habitat quality, while PD exhibited a
negative correlation. Compared with the effect of a single
factor, the interaction of multiple factors exhibited a stronger
comprehensive effect, showing dual-factor enhancement and

Frontiers in Environmental Science frontiersin.org18

Xu et al. 10.3389/fenvs.2025.1545221

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1545221


nonlinear enhancement, among which the interaction
between DEM and PRE was the most significant.
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