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Indroduction: Northeast China is a traditional industrial region. Studying the
dynamic land utilization efficiency during urbanization is crucial for
understanding the human-land relationship in cities facing economic decline.

Methods: Using land utilization and population data from 2000 to 2020, a
dynamic land utilization efficiency index was developed to identify patterns in
land utilization dynamics at the district and county level and assess the
coordination of human-land relationships at the municipal level. The spatial
structural relationships among districts and counties are analysed using the
Getis-Ord Gi* statistical model, while the co ordination mechanisms of
human-land interactions are explored through the Kaya identity and the
Logarithmic Mean Divisia Index (LMDI).

Results: The results demonstrate that 40.9% of counties suffer from low land
utilization efficiency. 57.6% of cities experience simultaneous population decline
and expansion of urban-rural construction land. The de-industrialization process
in the region is not limited to a shift toward the service sector. 70.5% of cities
exhibit significant characteristics of farmland restoration and reforestation during
the process of urban and rural construction land reduction. Overall, the complex
relationship between population migration and land use efficiency has a
significant impact on the urban development patterns in the three
northeastern provinces.

Discussion: Net population inflow has not significantly improved land use
efficiency, and the decrease in the proportion of permanent residents, along
with the increase in the floating population, are key factors influencing the
changes in urban-rural construction land. This study reveals the spatial
differentiation of land use efficiency and its complex interaction with human-
land relationships during the de-industrialization process, providing a theoretical
basis for land management and regional sustainable development in traditional
industrial cities.
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1 Introduction

Since the 1990s, urbanization has emerged as a key driver of
global economic development, profoundly influencing the global
ecological environment (Jiang et al., 2016). Since the reform and
opening up, China has experienced the largest and fastest
urbanization in history. The urbanization rate has increased
from 17.92% in 1978 to 59.58% in 2018, with an annual growth
rate of nearly 1.04% (Lin and Zhu, 2021). In this process, de-
industrialization has gradually become a major economic
phenomenon faced by certain countries and regions. De-
industrialization is typically manifested by a decline in the
share of manufacturing, an increase in resource-dependent
economies, and the relative expansion of the tertiary sector,
which leads to the decline of industrial production and,
consequently, affects urban spatial structures and land use
efficiency. De-industrialization refers to a reduction in the
proportion of the industrial sector within the overall
economy, especially the decline in the output and
employment of manufacturing, while the share of the service
sector rises, causing resources to flow from the industrial sector
to the service sector and other fields. De-industrialization is not
unique to China; many other countries have undergone similar
economic transformations (Niftiyev, 2025). For instance, the
Dutch disease is a classic example, particularly prominent in
resource-rich countries. Niftiyev explored the impact of Dutch
disease on Azerbaijan’s economic de-industrialization,
emphasizing the necessity of institutional reforms and policy
interventions (Niftiyev, 2020). This research provides an
important perspective for the sustainable development of
resource-dependent economies, revealing how policy
regulation can alleviate the negative effects of excessive
resource dependence. The Northeast China, among the
earliest to industrialize, have gradually encountered the
“development trap” issues characteristic of the later stages of
industrialization (Wu, 2010). In contrast to economically
advanced regions, where the growth of the service sector is
accompanied by increasing populations and expanding
construction land, the Northeast China—once dominated by
traditional industries—have experienced a simultaneous
occurrence of population loss and urban land expansion.
Since 2014, this region has faced a range of urban
development challenges, including population decline,
economic recession, and inefficient land utilization, which
markedly differ from the de-industrialization trends observed
in more developed regions.

Previous studies have primarily explored the distribution and
evolution of population and land utilization in cities by
integrating multi-source data, such as remote sensing, focusing
on factors like socio-economic and natural geographical
conditions (Azhdari et al., 2018; Dewan and Yamaguchi, 2009;
Taubenböck et al., 2009). Some studies have used elasticity
coefficient to quantify the relationship between the growth
rate of urban population and urban construction land (Yu
et al., 2019). However, these studies typically address the shift
in urban construction land from a unidirectional perspective,
offering limited exploration of the mechanisms of human-land
interaction. Additionally, other research has taken a large-scale

approach to investigate the relative importance of urban
population growth and GDP growth in driving urban land
expansion across over 300 cities worldwide, considering
variations in regions, economic development levels, and
governance types (Mahtta et al., 2022). Relevant studies
indicate that the annual growth rate of per capita GDP in
China accounts for approximately 50% of urban land
expansion. However, in the research models, neither
population nor other variables change in coordination with
urban expansion, with the research perspective being largely
macro-level (Seto et al., 2011). Such research content involves
multi-level analysis, including provincial, municipal, and other
levels in addition to the research of global cities (Li et al., 2020;
Luo et al., 2018; Han et al., 2024). Within the context of domestic
research in China, earlier discussions on de-industrialization
were primarily focused on the southeastern coastal regions or
more developed urban clusters, with relatively few studies
conducted at the county level or below. Developed economies
often enter the de-industrialization process first and shift towards
the development of the tertiary industry. There is a lack of
research on economically backward areas or traditional
industrial cities, neglecting the issue of de-industrialization in
China’s remote areas (Chaolin et al., 2012). Different from the
city-centered urbanization in China’s coastal areas, the
urbanization of Northeast China has been primarily driven by
agricultural modernization and economic liberalization, with
urban region generally exhibiting a single-core characteristic
(Liu et al., 2014). Given the region’s unique background of
industrial decline, the urbanization process in Northeast
China holds distinct research significance. Achieving a
harmonious relationship between human-land is a complex
process, influenced by a variety of decisive factors (Smailes
et al., 2002).

In terms of research methods, some scholars analyzed the
spatio-temporal pattern of rural in situ urbanization (RISU)
through RISU and rural in situ urbanization index (RISUI)
based on Beijing-Tianjin-Hebei land utilization change data and
explored the driving mechanisms, but did not address the
contradictions in human-land relations and the dynamic
evolution process of human-land interactions (Zhou et al.,
2018). In addition, other studies conducted at the provincial
and municipal levels, aimed to eliminate the impact of
environmental factors and random interference on Urban Land
Use Efficiency (ULUE) measurements by placing different cities
under similar environmental conditions, but did not respond to
the dynamic changes in the human-land relationship or go deeper
into district and county-level studies (Ma et al., 2023). From a
research perspective, some scholars have focused on the Northeast
China, exploring land utilization functions (LUF) from the
perspective of regional sustainable development. They have
combined regional land utilization demand and external service
functions to conduct a comprehensive classification, aiming to
understand the impacts of globalization, policies, and other
external factors on land utilization transformation. However,
these studies did not treat the human-land relationship as a
central factor in the classification of land utilization patterns
(Wang et al., 2022). Other scholars have explored the spatial-
temporal coordination and the gradient land utilization change
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between urban-rural areas (Li et al., 2023). In terms of spatial
layout, compared with in situ urbanization in the Beijing-Tianjin-
Hebei region with the joint influence of the siphon effect and
spillover effect, the Northeast China’s single-core urban structure
shows a different pattern, expanding spatially from the center to
the periphery. This distinct feature presents important research
value. Different from the Yangtze River Delta and Beijing-Tianjin-
Hebei regions, which experience sustained economic growth with
high concentrations of population and industry, Northeast China
have historically been a major industrial base and continue to
attract significant attention from the Chinese government. To
enhance the vitality and competitiveness of Northeast China,
the government has implemented the “revitalization of
Northeast China” initiative, which significantly influences land
utilization patterns through policies (such as subsidies, tax
incentives, and land utilization regulations) (Shi et al., 2022;
Peng et al., 2024).

Existing studies have primarily focused on land use changes in
developed regions such as the Beijing-Tianjin-Hebei area, but
systematic analyses of land use patterns and the dynamic
evolution of human-land relationships in the context of de-
industrialization in former heavy industrial bases, such as the
three northeastern provinces, remain scarce. To address this gap,
this study approaches the issue from a micro-county scale,
constructing dynamic land use efficiency indicators, and
combining cold-spot analysis and the KAYA-LMDI model to
comprehensively explore the complex relationship between
population migration and land use efficiency. The research not
only focuses on the driving mechanisms of the non-intensive land
use state in Northeast China but also aims to reveal the impact
pathways of population loss on land use efficiency, providing a
theoretical foundation for optimizing land use patterns, alleviating

rural population loss, and enhancing regional sustainable
urbanization levels.

The research questions addressed in this study include: How
does land use efficiency in Northeast China change with population
migration in the context of de-industrialization? What are the
driving mechanisms behind the phenomenon of non-intensive
land use? How does the relationship between population loss and
land use efficiency influence urbanization and regional sustainable
development in Northeast China? The research objectives include:
(1) Constructing a dynamic land use efficiency index and
categorizing dynamic land use patterns to analyze the
relationship between changes in construction land and
population from 2000 to 2020. (2) Using cold and hot spot
analysis to identify clustering trends, thereby clarifying the spatial
distribution characteristics and exploring the underlying causes of
spatial structure formation. (3) Analyzing the transformation of
urban-rural construction land types, assessing the current state of
land use, employing the Kaya-LMDI model to explore the driving
mechanisms and key factors behind urban-rural human-land
interactions, and investigating the causes of the
observed phenomena.

2 Study area and study methods

2.1 Study area

Heilongjiang, Jilin, and Liaoning provinces are located in
Northeast China, with a total area of 787,300 square kilometers,
including 34 prefectural-level cities, one state, one autonomous
prefecture, and 282 districts and counties (Figure 1) (Jiang et al.,
2022). Northeast China is one of the country’s four major

FIGURE 1
Location of the study area.
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economic regions, characterized by a relatively complete and
independent economic structure, as well as a concentration of old
industrial bases and resource-based cities (Sun and Wang, 2021).
However, with the overexploitation of resources, a highly
specialized industrial structure, and delayed economic
transformation, the region’s competitiveness has significantly
declined. Many cities are experiencing large-scale population
loss and industrial hollowing-out, which in turn has had a
profound impact on the dynamic changes in land use
efficiency. In response to economic decline and inefficient
land use, the Chinese government has introduced a series of
policies, including the “Revitalization of Northeast China”
strategy in 2003 and the “New-Type Urbanization” policies in
2014 and 2020, aiming to facilitate economic transformation,
promote urban renewal, optimize land use structure, and
enhance regional competitiveness.

Similar to other underdeveloped regions, the primary land
utilization types in Northeast China are forested land and
cultivated land, which account for 45.34% and 39.74% of the
total land area, respectively (Liu et al., 2014). With the
advancement of urbanization, the expansion of urban
construction continues to encroach upon forest and cultivated
lands (Brend’Amour et al., 2016). While the Northeast China
remain major agricultural provinces, they are consistently facing
population decline, which results in the underutilization of vast
amounts of land. While Northeast China remains a major
agricultural region, it is consistently facing population
decline, which results in the underutilization of vast amounts
of land. However, despite existing studies addressing the context
of de-industrialization, in-depth research on the dynamic
changes in land use efficiency, population migration, and
human-land relationships in Northeast China—especially at
the county scale—remains scarce. Therefore, this study selects
the three northeastern provinces as the research area, aiming to
explore the underlying causes of issues such as low land use
efficiency and population loss, providing theoretical support for
improving land use patterns in the region, alleviating population
decline, and offering empirical evidence for regional sustainable
development.

2.2 Data sources

The population data for 2000 and 2020 were obtained from the
county-level statistical yearbooks of the Fifth and Seventh Censuses,
respectively. For districts and counties with administrative changes,
the 2020 administrative divisions were used, and the
2000 population data were recalculated according to the
2020 administrative divisions, with reference to township-level
statistical yearbooks for accuracy.

The data on urban-rural construction land in 2000 and 2020 are
derived from the dataset of Chinese Comprehensive National Land
Utilization and Cover Change (CNLUCC), which is based on
Landsat satellite imagery as the primary information source, was
constructed through manual visual interpretation to create a multi-
period national-scale land utilization/land cover thematic database
for China. This study uses 30-m resolution raster data, which is
classified by a two-level classification system. The first-level includes

six categories: cultivated land, forest land, grassland, water land,
construction land and unused land, and the second-level
classification is further divided into 25 types.

2.3 Dynamic land utilization efficiency index
and corresponding models

Reasonable adjustment of per capita residential land area (Pcrla)
is one of the most effective methods for improving land utilization
efficiency (Xiang et al., 2023). Among these, determining the ideal
urban-rural land utilization level is the key challenge. It represents a
land utilization level that aligns with the regional land resource
endowment and a specific socio-economic and technological
development level. This study employs a reasonable dynamic
land utilization efficiency evaluation model (Xiang et al., 2023).
The planned land-utilization level should be comprehensively
determined according to the current land-utilization level, the
climate zone where it is located, and the planned population size,
which should meet the two-factor restriction requirements of the
allowable planned land utilization level and adjustment range at the
same time (Wang et al., 2012). The new edition of the Code for
Classification of urban land use and planning standards of
development land has improved many of the above-mentioned
aspects, so the planned land level specified in the standard can
be regarded as the ideal urban-rural land level. This standard can
also be regarded as the ideal value of Pcrla. Additionally, the
calculation formula of the dynamic land utilization efficiency
index is defined, with six land utilization modes classified and
identified based on the value range of calculated results. Finally,
to compare the dynamic land utilization efficiency index with the
traditional coupling coordination index, the calculation results of
this index are also obtained.

2.3.1 Selection of ideal value of Pcrla
The new edition of the Code for classification of urban land use

and planning standards of development land has been revised by
summarizing the problems and experiences in the implementation
of the original standard. Therefore, the planned land utilization level
specified in the standard can be deemed as the ideal urban-rural land
utilization level. The ideal value of urban-rural construction land per
capitamainly refers to the new edition of the Code for classification
of urban land use and planning Standards of development land and
planning standards of village and town, with Pcrla(ideal) as shown
in Table 1.

The judgment of urban-rural areas is determined by the C
R ratio

of urban construction land to rural residential land at the end of the
period in the county and district range, with reference to Equation 1.

c

r
� urban construction land

rural residential land
(1)

Due to the different urbanization of different cities, according to
the ratio of the districts with the lowest ratio in the municipal
districts of this city, counties and districts less than this ratio are
classified as rural types, while those greater than this ratio are
classified as urban types. On this basis, according to different
types of Pcrla(ideal), the standard delineates the ideal values of
different districts and counties.
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2.3.2 Definition of dynamic land utilization
efficiency index and corresponding six patterns of
recognition

Dynamic land utilization efficiency index (ΔPcrla(dynamic)) is the
ratio of the change of construction land area to the change of
population to the ratio of ideal urban-rural construction land per
capita. This index can reflect the relationship between the
construction land per capita and the ideal value in reality under
different dynamic land utilization modes, which can also be used to
judge whether the land utilization type in the study area is intensive
or non-intensive. The dynamic land utilization efficiency index is
defined in Equations 2-4.

ΔPcrla dynamic( ) �
ΔLand
ΔPop( )/Pcrla ideal( ) (2)

ΔPop � Pop2020 − Pop2000 (3)
ΔLand � Land2020 − Land2000 (4)

where ΔPcrla(dynamic) is a dynamic index of Pcrla. Pcrla(ideal) is the
ideal value of urban-rural construction land per capita. Pop2000 and
Pop2020 are the numbers of people counted in the census of that year.
Land2000 and Land2020 are the areas of urban-rural construction land
that year. ΔPop and ΔLand are the quantitative changes in
population and urban-rural residential land between different
study years. By comparing the changes in urban-rural residential
land and population in different years, the changes in dynamic land
utilization efficiency in 20 years can be drawn to analyze the
corresponding conclusions.

Given that the calculation results of ΔPcrla(dynamic) can be
positive or negative, we set two basic principles for the
classification of dynamic land utilization patterns:

Principle 1: Construction land can be moderately increased in
districts and counties with net population inflow, while the actual
value of Pcrla of net population growth should not exceed the
current ideal value.

Principle 2: In districts and counties with net population outflow,
the construction land should be reduced, and the area of each net

population outflow reduction should not be lower than Pcrla(ideal)
under general utilization conditions.

Any situation that meets both of the above principles is
considered intensive. Otherwise, it is non-intensive. Therefore,
dynamic land utilization patterns can be classified into six
categories, as defined in Equation 5, in which the indicator
ΔPcrla(dynamic) is represented by cot θ.

f ΔLand,ΔPop, cot θ( )
�

Non − intensive − 1,ΔLand> 0,ΔPop> 0, cot θ ∈ 1 +∞( )
Intensive − 1,ΔLand> 0,ΔPop> 0, cot θ ∈ 01[ ]
Intensive − 2,ΔLand< 0,ΔPop> 0, cot θ ∈ −∞ 0( ]
Intensive − 3,ΔLand< 0,ΔPop< 0, cot θ ∈[1 +∞ )
Non − intensive − 3,ΔLand< 0,ΔPop< 0, cot θ ∈ 01( )
Non − intensive − 2,ΔLand> 0,ΔPop< 0, cot θ ∈ −∞ 0( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(5)

Specifically:

① Based on Principle 1, when the population inflow is accompanied
by rural residential land expansion, ΔPcrla(dynamic) ≤1 is
intensive, while ΔPcrla(dynamic) >1 is non-intensive.

② Based on Principle 2, when the population outflow is
accompanied by rural residential land expansion,
ΔPcrla(dynamic) <0 is non-intensive.

③ Based on Principle 2, when the population outflow is accompanied
by rural residential land shrinkage, ΔPcrla(dynamic) >1 is intensive,
whereas ΔPcrla(dynamic) ≤1 is non-intensive.

④ Based on Principle 1, when the population inflow is
accompanied by rural residential land shrinkage,
ΔPcrla(dynamic) <0 is intensive (Xiang et al., 2023).

2.4 Statistics of Getis-Ord Gi*

To quantify the spatial dependence of human-computer
interaction, the Getis-Ord Gi* statistical model was adopted to
determine the clustering level of population and urban-rural
residential land. The formula is defined in Equations 6, 7 (Singh
et al., 2021):

TABLE 1 Ideal value of urban-rural construction land per capita.

Urban Rural

Current per capita
construction land

Planning per
capita

construction land

Ideal per capita
construction

land

Current per
capita

construction
land

Planning per capita
construction land

standard

Ideal per capita
construction

land

≤65 65.0–85.0 75.0 ≤50 50–80 65.0

65.1–75.0 65.0–95.0 80.0 50.1–60.0 50–80 65.0

75.1–85.0 75.0–100.0 87.5 60.1–80.0 60–100 80.0

85.1–95.0 80.0–105.0 92.5 80.1–100 60–120 90.0

95.1–105.0 85.0–105.0 95.0 100.1–120 80–120 100.0

105.1–115.0 90.0–110 100.0 120.1–150 100–150 125.0

>115.0 ≤110.0 110.0 >150 ≤150 150.0

Frontiers in Environmental Science frontiersin.org05

Kong et al. 10.3389/fenvs.2025.1546213

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1546213


G*
i � ∑n

j�1
Wijxj

⎛⎝ ⎞⎠/ ∑n
j�1
xj

⎛⎝ ⎞⎠ (6)

Z G*
i( ) � ∑n

j�1Wijxj − �x∑n
j�1W

2
ij

s

����������������������������
n∑n

j�1W
2
ij − ∑n

j�1Wij( )2[ ]/ n − 1( )
√ (7)

where n is the number of districts and counties; Wij is the weight
value between districts and counties i and j, indicating their spatial
relationship;Xj is the size of the variable x of districts and counties j
to all districts and counties, �x is the sample mean, and s is the
sample variance.

Through the Getis-Ord Gi* statistics, clustering patterns and
random patterns can be identified separately. The Getis-Ord Gi*
statistical results for each district-county were calculated values of
z-score (standard deviation) and p-value (independent probability),
both of which were used to estimate the statistical significance of
spatial auto-correlation.

2.5 Driving mechanism of urban-rural
human-land interaction

To further explore the relationship between population mobility
and urban-rural construction land, this paper uses the Kaya identity
to establish a model of driving force factors, with LMDI used to
quantitatively analyze the influence of different driving force factors.
Because some districts and counties are in a state of population loss
and others are in a state of population inflow, the influence of
driving force factors in different states may vary. Therefore, the
districts and counties in the study area are divided into two
categories, including net population outflow and net population
inflow, with their driving mechanisms explored respectively.

2.5.1 Kaya identity
The Kaya identity was first proposed by Kaya in 1989 at the

Intergovernmental Panel on Climate Change (IPCC). It is
commonly used to quantify the total greenhouse gas emissions
(in CO2 equivalent) resulting from anthropogenic activities
(Kaya, 1989; Piwowar, 2019; Yamaji et al., 1993; You et al.,
2023). It also can be used to detect the driving forces of rural
residential area changes under urbanization effects (Shi and Wang,
2021). In this paper, the driving force factors are decomposed into
land utilization efficiency factor (I), population structure factor (S),
population mobility factor (F) and total population factor (P). The
formula is defined in Equation 8:

LS � Land

Poplocal
×
Poplocal

Popflow
×
Popflow

Poptotal
× Poptotal � I*S*F*P (8)

where LS is the total change of urban-rural construction land, I
[Land/ Poplocal] is land utilization efficiency. S[Poplocal/Popflow] is
the population structure, F [Popflow/Poptotal] is the proportion of
floating population. P[Poptotal] is the total population. Land is the
urban-rural construction land of each district-county. Poptotal,
Poplocal and Popflow is the total population, permanent
population (or registered population) and floating population,
respectively.

2.5.2 LMDI
Since 2000, the most popular method of exponential

decomposition analysis has been the LMDI (Ang., 2015). As a
renowned decomposition technique, the LMDI was initially used
to quantify the impact of energy expenditure, with the practical
advantage of providing a perfect decomposition without residuals
(Wang et al., 2014). The driving forces in the Kaya identity are
disaggregated as presented in Equations 9-13:

ΔEtotal � ΔEI + ΔEs + ΔEF + ΔEP (9)
ΔEI � Land2020 − Land2000

ln Land2020( ) − ln Land2000( )
· ln ⃒

Land2020

Poplocal2020
/ Land2000

Poplocal2000
⃒( ) (10)

ΔES � Land2020 − Land2000

ln Land2020( ) − ln Land2000( )

· ln ⃒
Poplocal2020

Popflow2020
/Poplocal2000

Popflow2000
⃒⎛⎝ ⎞⎠ (11)

ΔEF � Land2020 − Land2000

ln Land2020( ) − ln Land2000( )
· ln ⃒

Popflow2020

Poptotal2020
/Popflow2000

Poptotal2000
⃒( ) (12)

ΔEP � Land2020 − Land2000

ln Land2020( ) − ln Land2000( ) · ln ⃒
Poptotal2020

Poptotal2000
⃒( ) (13)

where ΔEtotal is the driving factor of urban-rural construction land
change. ΔEI is a land utilization efficiency factor reflecting the
change in urban-rural construction land per capita. ΔES is a
population structure factor reflecting the change in population
structure proportion. ΔEF is a population mobility factor
reflecting the change of the proportion of the floating population
in the total population. ΔEP is a total population factor reflecting the
change of the total population. Land2020 and Land2000 are the urban-
rural construction land of each district-county in 2020 and 2000,
respectively.

For districts and counties with net population inflow and those
with net population outflow, the corresponding index is calculated,
respectively:

For districts and counties with net population inflow,
Poptotal2020 and Poptotal2000 are the numbers of permanent
residents in the district and county that year. Poplocal2020 and
Poplocal2000 are the registered population of the district and
county that year. Popflow2020 and Popflow2000 are the net inflow
population of the district and county that year. For districts and
counties with net population outflow, different from districts and
counties with net population inflow, Poptotal2020 and Poptotal2000 are
the registered population of the district and county that year.
Poplocal2020 and Poplocal2000 are the numbers of permanent
residents in the district and county that year. Popflow2020 and
Popflow2000 are the net outflow population of the district and
county that year. Popflow2020 and Popflow2000 is defined in
Equations 14, 15:

Popflow2020 � Pop
∣∣∣∣ total2020

− Poplocal2020| (14)
Popflow2000 � Pop

∣∣∣∣ total2000
− Poplocal2000| (15)

Frontiers in Environmental Science frontiersin.org06

Kong et al. 10.3389/fenvs.2025.1546213

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1546213


The calculation results of each driving force factor are positive,
which indicates that it promotes the increase of urban-rural
construction land. Negative results indicate that it inhibits the
increase of urban-rural construction land.

3 Results and analysis

3.1 Quantitative characteristics and spatial
distribution of urban-rural human-land
interaction in urbanization

The types of changes in human-land action are divided into four
categories, with hotspot analysis used to test the statistical
significance of the changes (Figure 2). From the perspective of
human-land changes from 2000 to 2020, the interaction between
urban-rural human-land in Northeast China is dominated by
population outflow accompanied by construction land expansion
(POLE), accounting for 57.7%. Population inflow accompanied by
construction land expansion (PILE) accounts for 27.8%. Meanwhile,
population outflow accompanied by construction land shrinkage
(POLS) is less, accounting for 12.8%, of which only 1.4% is
population inflow accompanied by construction land shrinkage
(PILS). PILS as the type of human-land interaction accounted for
the least proportion in 20 years, and POLE accounted for the largest
proportion in 20 years. From the perspective of spatial distribution
characteristics, POLE is basically distributed in Northeast China,
while POLS is mainly distributed in the central and eastern
Heilongjiang Province as well as the central Jilin Province and
Liaoning Province. PILE is mainly distributed on both sides of
POLS. PILS mainly distributed in the southeastern
Heilongjiang Province.

According to the results of Getis-Ord Gi*, the clusters are
divided into low cluster, second-lowest cluster, second-highest
cluster, and high cluster by natural breakpoint. Regarding
population changes, according to Figures 2a,b from 2000 to 2020,

the Northeast China were dominated by population loss. However,
the northernmost area, Harbin, Shenyang and Dalian, showed the
second-highest population and high cluster zone. Two low cluster
centers are formed around Heihe, Qiqihar, Suihua and Changchun
North, Songyuan and Siping, which is in line with the characteristics
of provincial capitals and coastal cities with an agglomeration effect.
In the past 20 years, although the population gathered in northern
Heilongjiang and near Harbin, the construction scale decreased
instead, while Jilin Province showed apparent low population
clustering. The central and southern Heilongjiang Province
almost completely shows a low cluster, and the urban-rural
residential land shrinks, while the opposite is found in Liaoning
Province. It proves that the development and construction intensity
in the south of Northeast China is stronger, but less in the north.
Based on the above results, it is proven that there are apparent
characteristics of disharmony between human-land during the
urbanization in Northeast China.

3.2 Dynamic land utilization efficiency and
pattern recognition

Based on Equation 4, the dynamic land utilization efficiency
index is calculated, which allows for the identification and
classification of dynamic land utilization types (Figure 3). After
subdividing the six types, the number of six dynamic land utilization
patterns in different municipalities is summarized by taking the
municipal administrative district as the basic statistical unit. Then,
to better visualize the spatial distribution law, the data at the
municipal level of each type are classified. Meanwhile, the units
with high value and specific units are marked to represent the
number of districts and counties of a certain type in each
municipal unit.

From 2000 to 2020, the types of districts and counties in the
Northeast China were mainly non-intensive and less intensive,
accounting for 89% and 11%, respectively. Among the non-

FIGURE 2
The quantity changes of population (a), the quantity change of land (b), human-land changing types (c) (2000–2020).
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intensive types, the N-2 type accounting for 64.8%. During these
20 years, Jilin, Harbin and Qiqihar are areas of population outflow
with high values, while Shenyang and Dalian are areas of population
inflow with high values. Harbin, Changchun, Shenyang and Dalian
are areas with high values for construction land expansion.
However, Shuangyashan and its surrounding areas, Jilin City and
Mudanjiang City, are areas with high values for construction land
shrinking. Both N-1 and N-2 belong to construction land expansion,
regardless of population inflow or population outflow.

In terms of the spatial distribution of six types of dynamic land
utilization patterns (Figure 3), Harbin has the most N-1 type of
districts and counties, with population inflows accompanying the
expansion of construction land. Daqing, Qiqihar, and Suihua have
more N-2 type districts and counties with population outflow, but
the area of construction land is expanding, which indicates an
imbalance between land utilization and population dynamics.
The I-1 type districts and counties start from Jiamusi and are
distributed along the northeast to southwest direction.
Mudanjiang has a large number of I-2 type districts and
counties, while Jixi has a distinct I-3 characteristics, showing a
shrinking situation of population outflow and decreasing

construction land. It is inferred that the population inflows from
Jixi to Mudanjiang, but urban-rural construction land did not grow
in parallel, with land changes are lagging behind the
population changes.

3.3 Characteristics of type transition of
urban-rural construction land

The first to propose the concept of land utilization transition was
a British scholar, who pointed out that land utilization transition is a
dynamic process that changes with socio-economic development
(Gong et al., 2023). The dynamic land utilization pattern from
2000 to 2020 was dominated by N-2, and most cities experienced a
decrease in population with the expansion of construction land.
Provincial capital cities and coastal cities are mainly N-2, most of
which are transferred from paddy fields and dry land to urban-rural
construction land. Some of them are transferred from forest and
grass land. I-2-type cities (represented by Mudanjiang) have
witnessed a decrease in urban-rural construction land, but their
population has increased. Some urban-rural construction land has

FIGURE 3
Spatial distribution of six types of dynamic land utilization patterns (2000–2020).
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been transferred into other construction land for mining, factories
and transportation, which may attract population due to industrial
and infrastructure development (Figure 4). Both N-3 and I-3 are
accompanied by population loss. It can be seen from the figure that
in addition to cultivated land, part of N-3 is transferred into the
reservoir, and part of I-3 is transferred into woodland, except most
of the land is transferred into dry land. For cities where construction
land is expanding, paddy fields and dry land are still mainly
transferred. The whole is also characterized by some transitions
from forest and grass land. In cities where the reduction of urban-
rural construction land is the primary trend, the land utilization
types being transferred out are predominantly paddy fields (mainly
used for growing rice and other aquatic crops) or dry land (mainly

used for vegetable cultivation), indicating an overall trend of land
being returned to agriculture.

3.4 Driving mechanism of urban-rural
human-land interaction under Kaya-
LMDI model

According to various population mobility patterns, the
Northeast China, districts and counties are divided into
83 districts and counties with net population inflow and
198 districts and counties with net population outflow. The
driving force factors of the two groups of data were

FIGURE 4
Transfer of urban-rural construction land types (2000–2020).
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quantitatively calculated, respectively. For districts and counties
with ΔEtotal > 0, the maximum positive driving force factor is
taken as the most important influencing factor. For districts and
counties with ΔEtotal < 0, the maximum absolute value of negative
driving force factors is taken as the most important
influencing factor.

3.4.1 Analysis of district and county’s driving
mechanism of net population inflow
3.4.1.1 Districts and counties with ΔEtotal > 0

Among the 83 districts and counties with net population inflow,
most districts and counties belong to N-2 and N-1 dynamic land
utilization patterns. There are 72 districts and counties with positive
ΔEtotal, accounting for 86.7%. Among them, 52.8% are mainly affected
by populationmobility factors (ΔEF > 0),meaning that the expansion of
urban-rural construction land is mainly driven by the increase in net
inflow of population. In addition, 20.8% are mainly affected by
population structure factors (ΔES > 0), indicating that an increase in
the proportion of the resident population also leads to the expansion of
urban-rural construction land. 16.7% of districts and counties are
associated with an increase in the total population factor (ΔEP > 0),
where growth in the resident population correlates with the expansion
of construction land. The least number of districts and counties are
influenced by land utilization efficiency factors.

3.4.1.2 Districts and counties with ΔEtotal < 0
Among the districts with ΔEtotal < 0, 36.4% are primarily

influenced by changes in demographic structure factors (ΔES <
0) and total population factors (ΔEP < 0). For the net population
inflow in districts and counties with reduced urban-rural
construction land, the main influence is the decline in the
proportion and number of permanent residents. In addition,
27.3% of districts and counties are mainly affected by population
mobility factors (ΔEF < 0), indicating a decrease in the proportion of
net inflow population. In districts and counties where urban-rural
construction land has decreased, the decline in land utilization
efficiency factors (ΔEI > 0) is not the primary reason.

3.4.2 Analysis of district and county’s driving
mechanism of net population outflow
3.4.2.1 Districts and counties with ΔEtotal > 0

Among the 198 districts and counties with net population
outflow, there are 162 districts and counties with positive ΔEtotal.
Among them, 64.2% of districts and counties are mainly affected by
population mobility factors (ΔEF > 0), where the expansion of
urban-rural construction land is mainly driven by an increase in
the proportion of net outflow population. In addition, 17.9% of
districts and counties are mainly affected by population structure
factors (ΔES > 0), with the increase in the proportion of the
permanent population contributing to the expansion of urban-
rural construction land. 10.5% of districts and counties are
affected by a decline in land utilization efficiency factor (ΔEI > 0).

3.4.2.2 Districts and counties with ΔEtotal < 0
Among the districts and counties with a decrease in the area of

urban-rural construction land, 68.6% were primarily affected by
demographic structure factors (ΔES < 0), meaning that the reduction
in construction land was mainly driven by a decline in the

proportion of the resident population. Additionally, 22.9% of
districts and counties are primarily influenced by population
mobility factors (ΔEF < 0), where the reduction in urban-rural
construction land is mainly due to a decrease in the proportion of
net outflow. Another 8.6% of districts and counties are primarily
affected by a reduction in the total population factor (ΔEP < 0),
primarily attributed to a decrease in the registered population, which
has led to the contraction of urban-rural construction land.

3.4.3 Comparative analysis
In districts and counties with net population inflows, urban-rural

construction land expansion is primarily driven by an increase in the
inflow of population, while land reduction is mainly due to a decline in
the proportion of the permanent population. In districts and counties
with net population outflows, construction land expansion occurs
mainly when the proportion of out-migrants increases, while land
reduction is primarily due to a decrease in the resident population
proportion. Among the districts and counties with net population
inflow, there is no increase in land utilization efficiency in districts
and counties (ΔEI < 0). Among the districts and counties with net
population outflow, only 4.0% showed improved land utilization
efficiency, suggesting that population inflows do not enhance land
utilization efficiency in the Northeast China. Decreased land utilization
efficiency (ΔEI > 0) has promoted the expansion of urban-rural
construction (ΔEtotal > 0). 86.7% of the districts and counties with
net population inflow and 79.3% of the districts and counties with net
population outflow have the above-mentioned phenomenon. The
results show that the districts and counties with net population
inflow use more land, leading to a larger proportion of urban-rural
construction land expansion.

4 Discussion

4.1 Different characteristics of urban-rural
construction land transition

For cities characterized by different dynamic land utilization
patterns, the change in urban-rural construction land may be caused
by different reasons. For provincial capital cities and coastal cities, the
predominant type is N-2. Although the population continues to lose, to
attract population or urban development, urban-rural construction land
will continue to expand. Some may occupy ecological spaces such as
forest and grass land. In addition, some other construction land has
been transferred to urban-rural construction land. Combined with the
16-year supply-side structural reform in Northeast China, traditional
industries such as coal and steel have been removed, and new industries
have been developed, which may give rise to an increase in urban-rural
construction land.

De-industrialization is not only the result of economic restructuring
but also a process driven by the dual mechanisms of resource extrusion
and declining cost competitiveness. This mechanism has prompted
many cities to repurpose construction land that was once dependent
on heavy industry to adapt to new economic structures and social
demands. Similar to other regions in China, the de-industrialization
process in Northeast China differs in some respects from the traditional
service sector transformation model. Existing studies have shown that
de-industrialization is not merely the result of industrial structural
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transformation, but is also profoundly influenced by policy interventions
and regional resource endowments (Chen, 2024; Ren et al., 2020).
However, during the de-industrialization process in Northeast China,
some cities face significant challenges in their transformation, such as the
lack of sufficient technical support and policy guidance (Wang et al.,
2018). Compared to de-industrialized cities such as Detroit, Cleveland,
and Pittsburgh in theUnited States, where industrial land conversion has
been relatively efficient, particularly with strong land use performance in
service and management sectors (Han et al., 2024). However, in
Northeast China, some cities have seen urban-rural construction land
converted into forested land, grassland, or mining-industrial land, which
may be attributed to differences in functional roles among cities. For
example, in Jilin City, the majority of land has been converted into dry
land, with some areas transformed into forested land. This shift is likely
related to the region’s prominent agricultural and forestry advantages,
which may drive the development of high-standard agricultural and
forestry economies. In cities where substantial urban construction land
has been converted into cultivated land, this trend may stem from the
advantages of land resources and higher levels of agricultural
mechanization, leading to a prioritization of agricultural production
and the full utilization of regional strengths. The study indicates that
Liaoning Province has the most significant expansion of urban-rural
construction land. Jilin Province shows a noticeable trend of
construction land being repurposed for other uses at the county level.
While Heilongjiang Province faces severe population decline and
urgently needs to attract more residents. These shifts align with the
specific provincial policies under the Northeast Area Revitalization Plan.
Liaoning Province focuses on innovation and entrepreneurship and the
development of functional zones. Heilongjiang Province focuses on
opening-up policy, state-owned enterprise policy and government
reform strategy. Jilin Province emphasis on infrastructure
construction and social security policies aligns with its provincial
context (https://www.gov.cn). In China, land utilization research
started late, but the research field is wider with a higher degree of
integration with policy research (Lei et al., 2023).

Furthermore, the long-term impacts of urban and rural
construction land conversion deserve attention. Underdeveloped
cities in Northeast China, such as some prefecture-level cities in
Heilongjiang Province, have experienced weakened land
development demand due to issues like a single industrial
structure and continuous population outflow, leading to a
reduction in the scale of urban and rural construction land. For
example, in resource-based cities like Hegang and Shuangyashan,
after the decline of the coal industry, some industrial land has been
converted into agricultural or ecological restoration land to alleviate
the economic pressure caused by resource depletion. Although some
regions have shifted toward agricultural production to improve land
use efficiency, if agricultural modernization fails to keep pace, land
use efficiency may still be constrained. Future policies should further
promote industrial upgrading to enhance the long-term
sustainability of land use.

4.2 Relationship between population
mobility and land utilization efficiency

In the Northeast China, 40.9% of districts and counties
experiencing either net population inflows or outflows have seen

a decline in land utilization efficiency. However, all the districts and
counties with net population inflow showed a decline in land
utilization efficiency, which was more pronounced than in the
districts and counties with net population outflow. It is worth
noting that the decline in land utilization efficiency in areas with
net inflow was more significant than in those with net outflow,
suggesting that population inflow has not effectively driven an
improvement in land utilization efficiency. However, all the
districts and counties with net inflow showed a decline in land
utilization efficiency, which was more apparent than the districts
and counties with net population outflow. During the process of de-
industrialization, many traditional industrial cities have experienced
a decline in urban and rural construction land due to industrial
recession and population loss, which has directly led to a decrease in
land use efficiency. This phenomenon contradicts the traditional
theory that ‘population inflow inevitably improves land utilization
efficiency,’ indicating that in Northeast China, land function
reconfiguration, rather than industrial substitution, is more
effective in improving land utilization efficiency. For example,
some land has been converted from construction land to
farmland, leveraging agricultural mechanization and land
resource advantages. This de-industrialization model is more
adaptable and effective than the development of the service
sector. Compared to the de-industrialization model in the
southeastern coastal regions, which is led by industrial upgrading,
the less-developed northeastern regions rely more on the
reallocation of land resources and agricultural development, and
this model has positively contributed to the improvement of land
utilization efficiency. In this process, cities experiencing population
inflow but a reduction in construction land, attract seasonal migrant
workers due to agricultural development, but most of them will not
become registered residents. The low percentage of registered
residents makes developers not to develop and build more. This
finding coincides with the optimization path of moderately
weakening the relationship between construction land growth
and agricultural migration population in other studies, which can
improve the functionality and utilization efficiency of construction
land driven by population migration (Wang et al., 2022). On the
other hand, as urbanization accelerates, the share of rural industry in
GDP has further decreased (Chen et al., 2014), resulting in limited
population inflows in rural areas. Therefore, optimizing land use
efficiency solely through population inflows is unrealistic. The
efficiency improvement is more reliant on controlling the scale of
rural homesteads than on population influx. Consequently, future
policies should focus on enhancing the sustainability of agricultural
land use in cities with low household registration populations, using
tools such as fiscal subsidies, technical support, and promoting
regional economic diversification.

4.3 Limitations

This study explores the impact of population mobility on land
use efficiency by analyzing population movement and urban-rural
construction land changes in Northeast China between 2000 and
2020. However, there are certain limitations in the study. First, due
to administrative adjustments in some districts and counties, data
based on the 2020 administrative divisions were used, and
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population numbers were estimated using township-level statistical
yearbooks. While this approach helps improve data consistency, it
may affect the accuracy of some districts and counties. Future
research should address administrative division changes with
greater precision. Second, the interpretation accuracy and
consistency of the CNLUCC dataset remain limited, with manual
interpretation of Landsat imagery potentially introducing biases.
Future studies could utilize higher resolution data or automated
interpretation techniques to enhance data precision. Furthermore,
while the data in this study reflect factors such as population change,
land development intensity, and urban expansion, socio-economic
variables, policy regulations, and natural resource constraints may
not have been fully considered, which could affect a comprehensive
assessment of land use efficiency.

5 Conclusion

Based on data from Northeast China between 2000 and 2020,
the complex relationships between population migration, urban-
rural construction land changes, and land use efficiency in
traditional industrial cities are revealed. Most districts and
counties in the region exhibit an N-2 pattern (increased urban-
rural construction land and declining population), which is
primarily driven by population loss and the increase in
permanent residents. The expansion of urban-rural construction
land is often aimed at attracting population or supporting industries
such as agriculture and forestry. Many cities have seen construction
land converted into cultivated land and forested areas, reflecting
changes in urban functions and land use patterns under the de-
industrialization process. Although population migration has a
significant impact on urban-rural construction land changes,
population inflows do not necessarily enhance land use efficiency
and may, in fact, lead to resource inefficiencies. Future research
should focus on optimizing land management policies, balancing
population migration with land use efficiency, particularly in the
context of de-industrialization, and exploring how to achieve
coordinated development between agriculture and the service
sector, while promoting integrated land resource utilization. This
is crucial for driving urban transformation, improving land use
efficiency, and achieving sustainable development goals. Policies
should be tailored to the economic and social contexts of different
regions, especially the unique needs of resource-dependent areas, by
formulating differentiated land use and industrial policies to
facilitate the effective transformation of regional economic
structures and ensure the long-term sustainability of land use.
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