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Introduction: Improving agricultural efficiencywhile ensuring environmental and
economic sustainability remains a global challenge.

Methods: This study introduces the Integrated Agro-Economic Sustainability
Framework (IAESF), a novel architecture that fuses multi-source remote
sensing data—including satellite, UAV, and ground sensors—with multi-
objective optimization and real-time feedback mechanisms. IAESF leverages
predictive analytics and adaptive resource allocation to balance profitability
with sustainability metrics such as carbon emissions, water usage, and
biodiversity preservation. The framework is evaluated across four benchmark
datasets (GF-FloodNet, SSL4EO-L, OpenSARShip, TimeSen2Crop) covering
spatial, temporal, and spectral variability.

Results: Experimental results show significant improvements in segmentation
accuracy (IoU up to 91.34%) and yield forecasting precision (RMSE reduced by
29.5%) over state-of-the-art models. Scalability is demonstrated through
deployment across both smallholder and industrial-scale simulations,
supported by dynamic optimization and lightweight model design.

Discussion: IAESF aligns with global sustainability goals (e.g., SDG 2, SDG 13) and
offers actionable insights for precision agriculture policy and planning. This work
advances a transparent, interpretable, and resilient decision-making paradigm for
sustainable agricultural systems.
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1 Introduction

The improvement of agricultural production efficiency is central to addressing global
food security and supporting economic sustainability in the face of climate change,
population growth, and resource limitations (Zhao et al., 2024). The agricultural sector
faces increasing pressure to optimize resource utilization while minimizing environmental
degradation, necessitating advanced solutions to balance productivity with sustainability
(Wang et al., 2024). Remote sensing technologies have emerged as indispensable tools in
this endeavor, providing high-resolution, timely, and large-scale data for monitoring
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agricultural systems (Joshi et al., 2024). By integrating multi-source
remote sensing data, such as satellite imagery, drone-based sensors,
and ground-based measurements, researchers can analyze crop
growth, soil health, and resource use efficiency with
unprecedented precision (Qu et al., 2023). These insights not
only enhance productivity but also guide sustainable practices by
optimizing resource allocation, reducing environmental impact, and
enabling data-driven policymaking (Liang et al., 2023). The analysis
of multi-source remote sensing data plays a vital role in advancing
sustainable agriculture and economic resilience, particularly in the
face of global challenges such as drought, changingmarket demands,
and geopolitical uncertainties (Li et al., 2023b). In this study, we
consider three main categories of remote sensing sources: satellite-
based (e.g., Sentinel-2, GF-1), UAV-based, and ground-level IoT
sensors. The satellite imagery offers multi-spectral data with spatial
resolutions ranging from 10 m to 30 m and covers visible to near-
infrared (VNIR) bands. UAV-mounted sensors provide ultra-high-
resolution RGB and multispectral imagery (5 cm–20 cm), enabling
fine-grained monitoring at the field level. Ground sensors capture
real-time parameters such as soil moisture, air temperature, and leaf
chlorophyll content. These complementary data sources monitor
vegetation indices (e.g., NDVI, EVI), thermal anomalies, water
stress, and crop growth cycles, supporting precise and timely
decision-making in dynamic agricultural settings.

To address the limitations of conventional approaches to
agricultural efficiency analysis, early methods relied on symbolic
AI and knowledge representation frameworks (Xiao et al., 2023).
These approaches used rule-based systems and expert knowledge to
model agricultural processes (Wu H. et al., 2023). For example, crop
models simulated growth dynamics based on deterministic rules
derived from agronomic studies (Xu et al., 2021). These models
provided interpretable results and enabled scenario-based planning,
which was particularly valuable for forecasting yields and evaluating
resource allocation strategies (Zhang et al., 2022). However, their
reliance on handcrafted rules and static inputs limited their ability to
handle the complexity and variability of real-world conditions, such
as unexpected climate events, pest outbreaks, and market shifts.
Furthermore, these systems struggled to integrate heterogeneous
data sources, such as weather information and spectral indices,
which are critical for accurate assessments in diverse agricultural
landscapes. As a result, these methods often lacked the flexibility
required for dynamic decision-making in rapidly evolving
agricultural contexts (Wu et al., 2024).

With the advancement of computational capabilities, data-
driven methods and machine learning (ML) became pivotal for
analyzing agricultural production efficiency (Ma et al., 2023). These
methods employed statistical and machine learning algorithms to
extract patterns and correlations from multi-source data. Feature
engineering techniques such as vegetation indices and texture
analysis were coupled with regression or classification models to
predict crop yields and resource efficiency (Hou et al., 2022).
Machine learning approaches, such as support vector machines
and random forests, significantly improved adaptability and
accuracy compared to symbolic methods, particularly in handling
large datasets and non-linear relationships (Qi et al., 2022).
However, their dependence on domain-specific features and
labeled data, as well as their limited generalizability across
diverse geographies, posed significant challenges. The

interpretability of ML models was often insufficient for
supporting actionable recommendations, particularly for complex
agricultural systems that require transparency to align with policy
and practical implementation (Zheng et al., 2023). These limitations
made it difficult to use such methods for long-term planning or in
environments with scarce training data (Li L. et al., 2023). To
address these limitations, our proposed IAESF framework
integrates explainable AI components such as SHAP and Grad-
CAM to enhance model transparency and support actionable
insights. The use of multi-source data fusion and spatiotemporal
attention mechanisms improves generalizability across regions and
conditions, while the framework’s design reduces dependence on
densely labeled datasets by leveraging heterogeneous information
sources and adaptive feedback loops.

The emergence of deep learning (DL) and pre-trained models
has revolutionized the analysis of multi-source remote sensing data
in agriculture (Li Z. et al., 2023). Convolutional neural networks
(CNNs) and attention-basedmodels enable the automatic extraction
of spatial and temporal features from high-dimensional data, such as
satellite imagery and multi-temporal datasets (Wang et al., 2022).
These approaches eliminate the need for manual feature
engineering, significantly improving the efficiency and accuracy
of analyses. Pre-trained architectures and transfer learning
approaches further enhance performance by leveraging large-scale
datasets, even in data-scarce regions (Dai et al., 2023). These
methods have demonstrated success in applications like crop
classification, yield prediction, and resource optimization,
particularly when applied to complex datasets that integrate
remote sensing and environmental variables (He et al., 2022).
However, deep learning approaches are computationally intensive
and often lack transparency, making it challenging to align their
outcomes with sustainable agricultural practices (Yang et al., 2024).
The “black-box” nature of these models also raises concerns about
their applicability for stakeholder decision-making, as their
predictions often lack the interpretability required for trust and
policy alignment (Li et al., 2023c). Despite these advances, a key
research gap remains in integrating deep learning with transparent,
interpretable mechanisms that can support evidence-based
agricultural decision-making. Most existing approaches
emphasize performance but overlook the need for stakeholder
trust and policy alignment. To address this challenge, our study
proposes a framework that embeds explainability directly into deep
learning workflows to enhance both usability and credibility in real-
world deployments.

Building upon these limitations, we propose the Integrated
Agro-Economic Sustainability Framework (IAESF), an innovative
architecture that combines explainable AI techniques with multi-
source remote sensing data to improve agricultural production
efficiency and long-term sustainability. Unlike prior systems that
treat interpretability as an external step, IAESF embeds interpretable
models—specifically SHAP for feature attribution and Grad-CAM
for spatial visualization—within the optimization loop to enable
real-time, actionable insights. The framework fuses heterogeneous
data sources, including satellite sensors (e.g., Sentinel-2, GF-1),
UAV-mounted multispectral cameras, and IoT-based field-level
measurements. These are integrated via a dynamic
spatiotemporal attention mechanism that captures contextual
interactions across resolution levels. This design supports high-
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resolution modeling of crop growth, soil status, and climate
variability over time and space. By aligning model predictions
with domain knowledge and embedding them in a robust multi-
objective optimization formulation, IAESF explicitly balances
performance, interpretability, and usability. This approach
represents a significant advancement over traditional pipeline
models that isolate learning, prediction, and decision-making
components. To support scalability and real-time deployment,
IAESF is designed with computational efficiency in mind. The
framework leverages parallelized processing pipelines and cloud-
based deployment for handling large-scale remote sensing data.
Lightweight attention modules and model pruning strategies are
applied to reduce inference time without sacrificing accuracy.
Moreover, the architecture supports integration with edge
computing devices and IoT platforms, enabling near real-time
decision support in field environments. This integration is
performed at the feature level using a dynamic attention-based
fusion module, which aligns multi-resolution signals across
temporal and spatial dimensions. Features from satellite, UAV,
and IoT sources are unified into a shared latent representation
via cross-modal attention blocks, enabling coherent interpretation
across sensor modalities.

We summarize our contributions as follows:

• Combines multi-source remote sensing data with explainable
AI for actionable insights in agriculture.

• Applicable across diverse agricultural systems, enabling
scalable and real-time decision-making.

• Demonstrated improved predictive accuracy and
interpretability, supporting both efficiency improvement
and sustainability goals. This approach represents a
significant advancement over traditional pipeline models
that isolate learning, prediction, and decision-making
components, by unifying them through interpretable,
feature-level fusion and real-time optimization.

2 Related work

2.1 Remote sensing for
agricultural efficiency

Remote sensing has revolutionized agricultural monitoring and
productivity analysis by providing large-scale, high-resolution data
on land use, crop health, and environmental conditions (Li et al.,
2021). Optical and radar-based remote sensing systems, such as
Landsat, Sentinel, and MODIS, are widely employed to assess
vegetation indices like NDVI (Normalized Difference Vegetation
Index) and EVI (Enhanced Vegetation Index), which correlate
strongly with crop growth, biomass production, and yield. These
indices are fundamental for identifying spatial variability in fields
and targeting specific areas for intervention (Xu et al., 2023).
Advancements in hyperspectral imaging and thermal sensing
allow for more precise detection of water stress, nutrient
deficiencies, and pest infestations, offering critical insights for
precision agriculture (Zheng and Chen, 2021). UAVs
(Unmanned Aerial Vehicles) equipped with multispectral and
thermal sensors have complemented satellite systems by

delivering high-resolution data at field scales, enabling near-real-
time monitoring of crop health (Zhao et al., 2021). To enhance the
utility of remote sensing, advanced machine learning algorithms
such as CNNs, gradient boosting machines, and random forest
regressors have been developed to integrate remote sensing data
with predictive models for crop yield estimation and resource
optimization. Multi-temporal analysis, which combines datasets
from different time points, captures phenological changes and
seasonal patterns, improving the accuracy of predictions. Various
data fusion strategies have been employed in the literature to
integrate multi-source agricultural data. Data-level fusion
techniques such as pixel stacking and band concatenation (Feng
et al., 2019; Li et al., 2020) allow early combination of multispectral
and thermal imagery. Feature-level fusion methods including
canonical correlation analysis and joint embedding networks
(Zhu et al., 2021; Yang et al., 2022) align semantic features
extracted from heterogeneous sources. Decision-level fusion
approaches like majority voting and Bayesian ensemble models
(Gao et al., 2020) aggregate predictions from individual models
to improve robustness. These fusion strategies provide a holistic
understanding of agro-ecological conditions and support
applications such as precision irrigation, fertilization scheduling,
and yield forecasting. These integrated approaches facilitate
applications such as variable-rate fertilizer application, precision
irrigation scheduling, and pest control, ultimately increasing yields
and reducing resource inputs. Despite these advancements,
challenges persist, including the presence of data gaps caused by
cloud cover interference, inconsistencies between datasets from
different platforms, and the computational intensity required to
process large, high-dimensional datasets. Addressing these
challenges remains a critical focus area for researchers aiming to
maximize the potential of remote sensing in agriculture (Dong and
Chen, 2021).

2.2 Economic sustainability in agriculture

Improving economic sustainability in agriculture involves
balancing productivity gains with cost-effective practices and
environmental stewardship (Zheng et al., 2022). Research
increasingly focuses on integrating precision agriculture
techniques with economic models to optimize the use of critical
inputs, such as fertilizers, water, and pesticides. This optimization
not only reduces input costs but also minimizes environmental
impacts, such as water pollution and soil degradation, creating a dual
benefit for farmers and ecosystems. Multi-source remote sensing
data plays a pivotal role in informing these practices by identifying
field-specific needs and enabling variable-rate applications, which
ensure that inputs are applied only where necessary and in optimal
quantities (Qi et al., 2020). For instance, spectral data from satellites
and UAVs can identify zones within fields that require more
irrigation or fertilization, reducing waste and improving
efficiency. To provide a more comprehensive view of spectral
data usage in economic sustainability assessments, in addition to
NDVI (Normalized Difference Vegetation Index) and EVI
(Enhanced Vegetation Index), we also employ several other
indices that capture nuanced aspects of crop health and stress.
These include the Normalized Difference Water Index (NDWI),
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which is sensitive to leaf water content and supports efficient
irrigation scheduling; the Photochemical Reflectance Index (PRI),
which indicates photosynthetic efficiency and helps estimate crop
productivity and light-use efficiency; and the Soil Adjusted
Vegetation Index (SAVI), which adjusts for soil brightness and is
particularly effective in sparsely vegetated areas. The Chlorophyll
Vegetation Index (CVI) and Red Edge NDVI (RENDVI) provide
enhanced sensitivity to chlorophyll content and early stress
detection, respectively. By integrating these indices, we are able
to generate detailed spatial variability maps that inform precision
input management—such as site-specific fertilization and targeted
pesticide application—ultimately optimizing input costs while
maintaining or improving yields. This spectral-based insight thus
forms a foundational element of economic sustainability analysis by
reducing waste, improving efficiency, and supporting profitable
decision-making. Studies also emphasize the economic
advantages of adopting remote sensing technologies (Shi et al.,
2020). These benefits include cost savings from lower input use,
improved yields from targeted interventions, and reduced risks of
crop failure due to timely detection of stress factors. Integrating
remote sensing data with farmmanagement systems enables farmers
to align resource allocation with market demands, thereby
improving profitability. Decision support systems based on
economic modeling and remote sensing insights help farmers
adapt to fluctuating market conditions, such as price volatility or
demand changes, enhancing their ability to compete in global
markets. Research highlights the importance of policy incentives,
subsidies, and education programs in encouraging the adoption of
these technologies, particularly among smallholder farmers and in
resource-constrained agricultural systems. Furthermore,
sustainability metrics, such as net present value (NPV), cost-
benefit ratios, and environmental impact assessments, are
increasingly applied to evaluate the long-term viability of remote
sensing technologies. These metrics demonstrate the potential of
precision agriculture innovations to enhance profitability while
reducing ecological footprints, thus aligning economic goals with
sustainability objectives (Liu et al., 2023).

2.3 Data integration for agricultural insights

The integration of multi-source remote sensing data has become
a cornerstone in advancing agricultural insights and decision-
making (Yuan et al., 2023). By combining satellite imagery with
UAV-based data, IoT (Internet of Things) sensor networks, and
ground-level observations, researchers can create a comprehensive
understanding of spatiotemporal dynamics in agricultural systems.
This integration enables holistic assessments of critical factors such
as soil fertility, crop health, water availability, and microclimatic
conditions (He et al., 2023). Data fusion techniques, such as
Bayesian frameworks, machine learning models, and spatial
interpolation methods, are employed to synthesize heterogeneous
datasets into actionable insights. These methods improve
predictions and decision-making in applications such as precision
irrigation management, soil fertility mapping, disease monitoring,
and yield forecasting. One of the significant advancements in this
domain is the use of cloud computing platforms and geospatial data
infrastructures to process and analyze large-scale datasets efficiently

(Wu T. et al., 2023). These platforms enable researchers and farmers
to access, visualize, and analyze remote sensing data in near-real
time, facilitating timely decision-making. Moreover, integrating
socio-economic data, such as market trends, labor costs, and
transportation logistics, with remote sensing data provides a
more holistic perspective for sustainable agricultural planning.
For example, combining crop health data with market demand
forecasts can guide farmers in selecting crops that maximize
profitability under prevailing conditions. However, challenges
remain in ensuring seamless data integration, particularly due to
differences in spatial resolution, temporal coverage, and data
formats across platforms. Efforts are ongoing to develop robust
data pipelines, interoperability standards, and user-friendly
interfaces that simplify data integration and make it accessible to
diverse stakeholders, including smallholder farmers. Studies
underscore the importance of integrating domain-specific
knowledge with automated analytics to ensure that models align
with real-world agricultural practices. This direction highlights the
potential of multi-source data integration to drive innovations in
agriculture by fostering data-driven decision-making and
supporting scalable solutions for sustainable management. In
recent agricultural remote sensing research, several machine
learning and data fusion techniques have emerged as dominant
approaches for integrating heterogeneous datasets and extracting
actionable insights. Among data fusion techniques, Bayesian data
fusion frameworks are widely used due to their probabilistic
modeling capacity, enabling the integration of uncertainty across
data sources. Ensemble learning methods, such as random forests
and gradient boosting machines, have also proven effective for
combining predictions from multi-sensor inputs to enhance
generalizability and robustness. Spatial-temporal fusion
algorithms, particularly the STARFM (Spatial and Temporal
Adaptive Reflectance Fusion Model), are frequently applied to
blend high-resolution UAV or satellite imagery with temporally
rich, lower-resolution sources. On the machine learning side,
Convolutional Neural Networks (CNNs) dominate spatial
analysis tasks, especially for object detection, classification, and
segmentation in satellite imagery. For time-series data, Recurrent
Neural Networks (RNNs) and Long Short-Term Memory (LSTM)
networks are preferred due to their ability to capture temporal
dynamics. Moreover, transformer-based architectures, such as
Vision Transformers (ViTs), are gaining popularity for their
global attention mechanisms, outperforming traditional CNNs in
many segmentation tasks. These methods collectively drive current
progress in precision agriculture, enabling real-time, accurate
modeling of crop conditions, resource use, and yield forecasting
under complex environmental settings.

3 Methods

3.1 Overview

The concept of Agricultural Economic Sustainability delves into
the intricate challenge of harmonizing economic productivity,
environmental preservation, and social equity in agricultural
systems. This subsection provides a comprehensive introduction
to the methodologies and strategies designed to address these
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intertwined dimensions, offering a roadmap for advancing
sustainable agricultural practices through innovative approaches.

In Section 3.2, we begin with the Preliminaries, where we
formalize the problem of agricultural economic sustainability.
This involves identifying and defining key factors such as
resource allocation efficiency, crop yield optimization,
ecological constraints, and socio-economic impacts. Using
mathematical models, we represent the complex
interdependencies between these elements, highlighting the
tensions and synergies that define the pursuit of sustainability.
These models serve as a foundation for the detailed problem
analysis that follows. In Section 3.3, we introduce the Innovative
Model for Sustainable Agriculture, a cutting-edge framework
aimed at optimizing decision-making processes. This model
combines predictive analytics, advanced resource management
algorithms, and multi-objective optimization techniques to align
immediate economic outcomes with enduring sustainability
objectives. It incorporates data-driven insights and state-of-
the-art computational methods to ensure that short-term
economic activities contribute positively to long-term goals.
Section 3.4 presents the Dynamic Strategy for Adaptive
Agriculture, a strategy centered on the use of adaptive
practices and technological advancements to address evolving
challenges in agriculture. This includes employing precision
agriculture techniques, such as real-time data collection and
analysis, to optimize resource use and reduce environmental
impact. Furthermore, it highlights how our approach
incorporates flexibility to respond effectively to unpredictable
environmental changes, market demands, and policy shifts,
ensuring a resilient and economically robust agricultural
system capable of withstanding external pressures. Through
this integrated framework, we aim to redefine agricultural
systems for a sustainable future. The adaptive resource
allocation strategy in IAESF is operationalized using dynamic
programming principles combined with gradient-based
optimization, where updates to allocation vectors are
computed using projected gradient descent (PGD). These
updates are embedded within a time-iterative framework that
adapts decisions at each timestep based on changing inputs. The
optimization core is implemented in Python using PyTorch,
where differentiable resource allocation functions enable
backpropagation-compatible updates, facilitating integration
with deep learning modules. At each iteration, resource
vectors are projected onto the feasible domain using standard
torch. nn.functional constraints, ensuring environmental and
budgetary limits are respected. For uncertainty modeling and
robust decision-making, we employ Monte Carlo simulations to
sample perturbations in environmental variables, generating
robust policies under stochastic inputs.

3.2 Preliminaries

The problem of Agricultural Economic Sustainability can be
defined as the optimization of agricultural systems to balance
economic viability, environmental health, and social equity.
Achieving this balance requires accounting for competing
objectives, resource constraints, environmental considerations,

and temporal dynamics. This subsection provides a rigorous
mathematical formulation to encapsulate the multidimensional
challenges inherent in this domain.

LetA represent an agricultural system characterized by the tuple
Equation 1:

A � R,P, E,O( ), (1)
where: R is the set of available resources, including land, water,
labor, and capital. P denotes the set of agricultural products
or crops. E represents environmental factors, such as soil
quality, biodiversity, and climatic conditions. O defines
economic outputs, encompassing revenue, profit, or other
financial metrics.

The primary goal is to maximize the economic output O while
meeting resource and environmental constraints, and adhering to
sustainability goals. This can be formalized as Equation 2:

max
x

f x( ) � ∑
p∈P

πpxp, (2)

subject to Equation 3:

Resource constraints : gr x( )≤ br, ∀r ∈ R,
Environmental constraints : he x( )≤ ce, ∀e ∈ E,
Sustainability thresholds : sk x( )≥dk, ∀k ∈ K,

(3)

where: xp represents the allocation of resources to product p, - πp

denotes the profit per unit of p, - br and ce are the respective upper
bounds for resource usage and environmental impacts, - sk(x)
represents the k-th sustainability metric (e.g., carbon footprint,
water-use efficiency), - dk defines the minimum acceptable level
for the k-th sustainability metric.

Given that economic, environmental, and social goals often
conflict, the problem requires a multi-objective optimization
framework. The revised formulation considers multiple objectives
F(x) Equation 4:

F x( ) �
f1 x( )
f2 x( )

..

.

fm x( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (4)

where each fi(x) corresponds to a distinct goal, such as maximizing
profit (f1), minimizing water usage (f2), or reducing greenhouse
gas emissions (f3).

The optimization seeks Pareto-efficient solutions Equation 5:

A solution x* is Pareto − optimal if ex such that F x( ) ≻ F x*( ), (5)
where ≻ denotes dominance in at least one objective without
worsening others.

Agricultural systems are inherently dynamic, requiring time-
dependent decision-making. Let t ∈ T denote discrete time periods,
and let xt represent the decisions at time t. The state transition of the
system is expressed as Equation 6:

xt+1 � Φ xt,Rt, Et,Pt( ), (6)
where Φ represents the transition dynamics, governed by factors
such as resource depletion, crop growth, market fluctuations, and
environmental changes.

The corresponding optimization problem becomes Equation 7:
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max
xt{ }t ∈ T

∑
t∈T

δtF xt( ), (7)

subject to constraints on resources, environment, and sustainability,
where δ ∈ (0, 1] is a discount factor accounting for the diminishing
value of future outputs. Here, δ ∈ (0, 1] is a discount factor that
captures the time preference of decision-making. A lower δ value
places greater emphasis on short-term outcomes, while a value
closer to 1 prioritizes long-term sustainability. The function
F(xt) represents a vector of objectives at time t, such as profit
maximization and sustainability performance.

Agricultural systems are also affected by uncertainty in
environmental and market conditions. This uncertainty is
modeled as Equation 8:

Et � Ed
t + Er

t , (8)
where Ed

t represents the deterministic component (e.g., seasonal
climate patterns), and Er

t represents a stochastic perturbation
capturing variability (e.g., unexpected drought or pest outbreaks).

To account for uncertainty, we adopt a robust optimization
framework. Let U represent the uncertainty set for Er

t . The robust
optimization problem becomes Equation 9:

max
x

min
Ert∈U

F x, Et( ), (9)

ensuring the solution remains effective across the uncertainty set.
To explicitly address uncertainty in environmental and

market conditions, the IAESF adopts a scenario-based
stochastic programming approach, a widely used method in
agricultural decision modeling. Rather than relying on worst-
case assumptions alone, this framework generates multiple
possible future states (scenarios) representing variability in
environmental and economic parameters. Each scenario
corresponds to a realization of uncertain variables (e.g.,
rainfall, soil moisture, or market prices), drawn from
historical distributions. For continuous variables, uncertainty
sets U are constructed as empirical confidence intervals based
on historical quantiles (e.g., 5th to 95th percentile), ensuring
coverage of both typical and extreme conditions. This results in
a finite set of scenarios {E1, E2, . . . , Es}, each with associated
probability weights {p1, p2, . . . , ps}, derived using kernel density
estimation on historical datasets Equation 10.

max
x

min
s∈ 1,...,S{ }

F x, Es( ) (10)

This ensures that the solution x* performs satisfactorily across
all sampled scenarios, thereby hedging against worst-case losses. The
optimization is solved using a cutting-plane method, implemented
with the cvxpy optimization package. This formulation enables the
model to remain both tractable and flexible in real-world settings,
where uncertainty arises from multiple, interacting sources. By
evaluating the Pareto frontier under each scenario, we ensure
that resource allocation decisions are not only optimal on
average, but also resilient under diverse potential futures.

To evaluate trade-offs, we define a sustainability index S(x)
Equation 11:

S x( ) � ∑
k∈K

wksk x( ), (11)

where wk are weights reflecting the relative importance of each
sustainability metric. The goal is to maximize S(x), subject to
achieving acceptable levels of economic output f(x). The
sustainability index S(x) is calculated as a weighted sum of
individual metrics sk(x), each reflecting a specific sustainability
dimension (e.g., carbon emission reduction, water-use efficiency,
biodiversity impact). The weight coefficients wk are determined
based on expert elicitation, stakeholder preferences, or policy
priorities. In this study, we normalize the weights so that∑k∈Kwk � 1, ensuring comparability across indicators.

We revise the multi-objective formulation as follows
Equation 12:

F x( ) �
f1 x( )
f2 x( )
f3 x( )

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (12)

where f1(x) denotes the economic profit objective, f2(x)
represents environmental sustainability (e.g., emission reduction),
and f3(x) captures the social equity dimension. To quantify social
fairness, we define the third objective as Equation 13:

f3 x( ) � −σR x( ) (13)
where σR(x) is the standard deviation of per-unit resource
allocation across farming units or regions. Minimizing σR(x)
promotes equitable distribution of key resources (e.g., land,
water, fertilizer).

3.3 Integrated agro-economic sustainability
framework (IAESF)

We propose the Integrated Agro-Economic Sustainability
Framework (IAESF), a novel model designed to optimize
agricultural economic performance while ensuring long-term
sustainability (As shown in Figure 1). This framework integrates
multi-objective optimization, dynamic resource allocation, and
adaptive market modeling, enabling robust decision-making in
the face of complex agro-economic dynamics. What distinguishes
IAESF from previous agro-economic frameworks is its tight
integration of predictive market analytics with real-time dynamic
resource optimization within a unified mathematical construct.
Unlike prior models that treat market forecasting and
optimization as sequential or loosely coupled modules, IAESF
uses a jointly adaptive mechanism that continuously feeds
predicted economic variables—such as commodity prices,
demand trends, and input costs—into a dynamic optimization
loop. This interaction enables real-time adjustments in resource
allocation with foresight, rather than reactive strategies. Moreover,
IAESF introduces a multi-kernel frequency-aware pooling
mechanism to capture both seasonal and trend components in
market signals, which is novel in agricultural modeling. The
dynamic allocation module is driven by a discounted multi-
objective optimization formulation, incorporating both short-
term profits and long-term sustainability through Pareto-efficient
trade-offs. This formulation embeds environmental constraints,
operational costs, and forecasted returns directly into the
decision logic, rather than treating them as post-processing
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evaluations. These methodological synergies represent a substantial
departure from traditional static or decoupled approaches and allow
the framework to act as a truly adaptive, forward-looking decision
support system for agro-economic management.

3.3.1 Multi-objective optimization for economic
and environmental goals

The IAESF employs a multi-objective optimization framework
to achieve a balance between maximizing economic profit (Π) and
enhancing sustainability indices (Senv). These objectives inherently
conflict, as higher economic outputs often necessitate intensive
resource usage, which can degrade environmental conditions. To
address this, the framework formulates the optimization problem as
Equation 14:

max
x

F x( ) � Π x( )
Senv x( )[ ], (14)

where x � [x1, x2, . . . , xn]⊤ represents the allocation vector across n
resource types. The profit functionΠ(x) is expressed as Equation 15:

Π x( ) � ∑
p∈P

πpxp − C x( ), (15)

where πp denotes the market price of product p, and C(x)
aggregates costs such as resource procurement, operational
expenses, and labor. Meanwhile, the sustainability index Senv(x)
is designed as an aggregate measure reflecting reduced
environmental impact Equation 16:

Senv x( ) � ∑e∈Ese x( )
|E| , se x( ) � 1 − he x( )

ce
, (16)

where he(x) quantifies the resource-induced environmental harm
(e.g., pollution or resource depletion) relative to a threshold ce,
ensuring se ∈ [0, 1]. Optimal solutions x* are identified using Pareto
efficiency Equation 17:

F x*( ) ≻ F x( ), ∀x ≠ x*, (17)
indicating that no other allocation improves one objective without
detriment to the other. The framework adopts a scalarized weighted-
sum approach to derive actionable priorities Equation 18:

max
x

λ1Π x( ) − λ2Cenv x( ), (18)

where λ1, λ2 ≥ 0 reflect the relative importance of economic versus
environmental outcomes. The environmental cost Cenv(x) is
modeled as Equation 19:

Cenv x( ) � ∑
e∈E

wehe x( ), (19)

with we being importance weights assigned to specific
environmental impacts, such as emissions, soil degradation, or
water use. Importantly, the model incorporates constraints
ensuring resource feasibility and environmental limits Equation 20:

gr x( )≤ br, ∀r ∈ R,
he x( )≤ ce, ∀e ∈ E,

xi ≥ 0, ∀i ∈ 1, . . . , n{ }.
(20)

This third objective enables the IAESF to ensure fair access to
critical agricultural inputs, supporting inclusive policies and reducing
rural inequalities. It is aligned with the social dimension of sustainability
as articulated in SDG 10 and SDG 12. We acknowledge that the

FIGURE 1
(a) Multi-Objective Optimization for Economic and Environmental Goals: focuses on balancing economic profit and sustainability indices through
inter-patch attentionmechanisms and patch-based division. (b)Dynamic Resource Allocation with Temporal Adaptation: employs intra-patch attention,
utilizing self and cross-attention mechanisms to dynamically allocate resources over time. (c) Predictive Market Integration for Decision Support:
enhances decision-making by incorporating routing strategies, trend analysis, and seasonality detection through multi-kernel pooling and
frequency-based analysis. By combining these components, IAESF enables robust, data-driven agro-economic decision-making in complex and
dynamic environments.
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scalarized weighted-sum formulation employed in Equation 15 can
introduce bias depending on the choice of weights λ1 and λ2. To
mitigate this, we adopt a two-step strategy for weight selection. Initially,
we perform expert elicitation involving domain agronomists and
environmental economists to define a plausible range for each
weight based on domain priorities—for example, assigning higher
priority to sustainability goals in ecologically sensitive regions.
Subsequently, we conduct a sensitivity analysis by sweeping λ1 and
λ2 across a normalized grid (e.g., λ1 + λ2 � 1) and evaluating the
resulting solutions’ position along the Pareto frontier. The solutions
are assessed for dominance and convergence stability across
representative scenarios. The selected weight combination balances
short-term profitability and long-term environmental performance
while avoiding corner solutions (i.e., degenerate emphasis on a
single objective). This process ensures that the final trade-off
parameters reflect both expert-informed priorities and numerical
robustness, reducing arbitrariness in scalarization and improving the
transparency of decision support outcomes.

3.3.2 Dynamic resource allocation with temporal
adaptation

To effectively manage resource variability and adapt to
fluctuating environmental and market conditions, IAESF employs
a dynamic resource allocation framework that operates across
discrete time steps t � 1, 2, . . . , T. At each time step t, the
resource allocation vector xt � [xt,1, xt,2, . . . , xt,n]⊤ is dynamically
updated based on the current state of available resources Rt,
environmental conditions Et, and market dynamics Mt. This
update process is governed by a state transition function Φ,
expressed as Equation 21:

xt+1 � Φ xt,Rt, Et,Mt( ), (21)
where Φ captures the relationships and constraints linking resource
usage, environmental sustainability, and market-driven objectives.
The model operates under constraints to ensure feasibility and
compliance with sustainability goals Equation 22:

gr xt( )≤ br, ∀r ∈ Rt,
he xt( )≤ ce, ∀e ∈ Et,

xt,i ≥ 0, ∀i ∈ 1, . . . , n{ }.
(22)

To optimize performance over a planning horizon T, the
objective is to maximize the cumulative discounted rewards of
economic profit (Π) and sustainability indices (Senv), expressed
as Equation 23:

max
xt{ }Tt�1

∑T
t�1

δtF xt( ), (23)

where δ ∈ (0, 1] is a discount factor accounting for the diminishing
value of future outcomes, and F(xt) represents the vector of
objectives Equation 24:

F xt( ) � Π xt( )
Senv xt( )[ ]. (24)

The economic profit at time t is calculated as Equation 25:

Π xt( ) � ∑
p∈Pt

πt,pxt,p − Ct xt( ), (25)

where πt,p represents the price of product p at time t, and Ct(xt)
denotes the cost function, dynamically adjusted based on resource
availability and operational expenses. Simultaneously, the
environmental sustainability index is updated as Equation 26:

Senv xt( ) � ∑e∈Etst,e xt( )
|Et| , st,e xt( ) � 1 − he xt( )

ce
, (26)

where st,e(xt) measures the relative reduction in environmental
harm he(xt). Temporal variability in resources and markets is
modeled as a stochastic process Equation 27:

Rt+1 � Ψ Rt, xt, zt( ), Mt+1 � ψ Mt, zt( ), (27)
where zt represents random external factors (e.g., climate conditions
or market shocks). To account for the inherent temporal delays and
lagged effects in agricultural systems—such as delayed crop
maturation, fertilizer response time, or deferred revenue from
harvest—we augment the temporal dynamics model with lag-
aware mechanisms. The state transition function Φ is redefined
to incorporate past observations through a lag-augmented input
space Equation 28:

xt+1 � Φ xt, xt−τ1, xt−τ2, Rt, Et,Mt( ), (28)
where τ1, τ2, . . . represent empirically determined lag intervals (e.g.,
1 week, 1 month) based on crop cycle duration or market response
times. In practice, this is implemented using temporal
convolution layers or sliding window encodings, which allow
the model to learn temporal dependencies and delay patterns
over multi-step sequences. For instance, rainfall and fertilization
effects on yield may appear only after several time steps, which is
captured via a dilated convolution window over previous state
vectors. Similarly, economic effects—such as market saturation
or delayed price adjustments—are modeled using causal
temporal attention to ensure future information does not leak
backward. These mechanisms enhance the model’s ability to
represent realistic agricultural dynamics and ensure that
decisions account for both immediate and delayed
system feedbacks.

3.3.3 Predictive market integration for
decision support

The IAESF framework incorporates predictive market
integration to dynamically adjust resource allocation decisions
based on anticipated market conditions. Market dynamics (Mt)
are modeled using a forecasting module that captures the evolution
of prices, demand, and other economic indicators over time. This is
formalized as Equation 29:

Mt � ψ Mt−1, zt( ), (29)
where ψ is a predictive function leveraging historical data (Mt−1)
and external variables (zt), such as macroeconomic trends,
seasonal patterns, and stochastic market shocks. The
predictive module employs time-series modeling or machine
learning techniques to estimate future market states, enabling
proactive planning. At each time step t, the economic profitΠ(xt)
is calculated as Equation 30:

Π xt( ) � ∑
p∈Pt

πt,pxt,p − Ct xt( ), (30)
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where πt,p denotes the forecasted price of product p, xt,p represents
the allocation of resources to produce p, and Ct(xt) is the
operational cost function, accounting for expenses like labor,
energy, and inputs. The dynamic integration of market forecasts
ensures that resource allocation aligns with expected profitability.
For example, if πt,p is predicted to increase due to high demand, the
framework allocates more resources to xt,p, optimizing for higher
returns. The operational cost Ct(xt) is further detailed as
Equation 31:

Ct xt( ) � ∑
i∈R

ct,ixt,i + κt, (31)

where ct,i represents the per-unit cost of resource i at time t, and κt
captures fixed operational expenses. To ensure a balance between
short-term profitability and long-term sustainability, the framework
incorporates constraints tied to market supply and demand
Equation 32:

∑
p∈Pt

xt,p ≤ smax
t,p , ∀p ∈ Pt,

xt,p ≥dmin
t,p , ∀p ∈ Pt,

(32)

where smax
t,p represents the maximum supply capacity for product p,

and dmin
t,p reflects minimum demand thresholds. These constraints

ensure that resource allocation decisions are viable and market-
responsive. The sustainability of the decision-making process is
enhanced by integrating feedback loops into the predictive module.
For instance, the allocation decisions xt influence subsequent market
conditions (Mt+1) through changes in supply and demand
dynamics Equation 33:

Mt+1 � ψ Mt, xt, zt( ). (33)

This feedback mechanism captures the interdependence
between resource allocation and market outcomes, ensuring that
the framework adapts to both predicted and realized market
changes. The multi-step planning horizon T allows the model to
evaluate cumulative rewards by optimizing Equation 34:

max
xt{ }Tt�1

∑T
t�1

δtΠ xt( ), (34)

where δ ∈ (0, 1] is a discount factor emphasizing the trade-off
between immediate profit and long-term economic stability. To
enhance transparency in the predictive market forecasting module,
we incorporate a hybrid ensemble of both statistical and deep
learning-based time series models. We utilize the following three
types of models based on the characteristics of the target commodity
time series: ARIMA (AutoRegressive Integrated Moving Average):
Applied to price series with strong linear trends and seasonal
periodicity. Parameters are selected using AIC/BIC minimization,
and differencing is used for stationarization. Facebook Prophet:
Deployed for series with irregular holiday effects or multiple
seasonalities (e.g., weekly and yearly cycles). Prophet’s
decomposable model structure enhances interpretability and
rapid adaptation to regime changes. LSTM (Long Short-Term
Memory Networks): Used to capture nonlinear dependencies and
long-range temporal patterns in more volatile or high-frequency
data. The network is trained using a sliding window of 30 time steps
and optimized with Adam using a learning rate scheduler. Inputs

include not only historical prices, but also auxiliary variables such as
precipitation forecasts, subsidy announcements, and policy signals.
Model selection is based on out-of-sample prediction performance
using metrics such as RMSE and MAPE. In most cases, we ensemble
forecasts using weighted averaging where weights are tuned via
cross-validation. The combined output π̂t+1,p serves as an input to
the optimization model to guide resource allocation under market
uncertainty.

3.3.4 A data-driven approach to sustainable
agriculture

The Integrated Agro-Economic Sustainability Framework
(IAESF) operates through a structured flow of data acquisition,
optimization, and implementation. The framework begins with data
acquisition and processing, where multi-source remote sensing
technologies, including satellite imagery, UAV observations, and
IoT-enabled ground sensors, continuously monitor agricultural
conditions. These sources provide essential parameters such as
soil health, crop growth status, and climate variables, forming the
foundation for decision-making. The collected data undergoes
preprocessing using machine learning models that extract
actionable insights, ensuring that the optimization process is
driven by accurate and up-to-date agricultural indicators. At the
core of IAESF lies the optimization and decision-making module,
where multi-objective optimization techniques are applied to
balance economic profitability with sustainability goals. The
optimization engine integrates real-time environmental and
market data to dynamically adjust resource allocation strategies,
considering constraints such as water availability, soil conditions,
and economic viability. This module determines the optimal
distribution of resources, including irrigation, fertilizer
application, and crop selection, to maximize yields while
minimizing environmental impact. By employing constrained
optimization models, IAESF ensures that decisions align with
long-term sustainability targets without compromising short-term
agricultural productivity. The adaptive implementation and
feedback loop module translates optimized strategies into
actionable agricultural practices. Precision agriculture
technologies, such as automated irrigation systems and smart
fertilization techniques, execute the resource allocation plans in
real-world conditions. The framework continuously monitors the
effectiveness of these interventions through a real-time feedback
mechanism, where new data from remote sensing sources is
reintegrated into the decision-making process. This iterative loop
allows IAESF to dynamically adjust resource allocation in response
to changing environmental and market conditions, improving
resilience against uncertainties such as climate variability and
fluctuations in crop demand. The novelty of IAESF lies in its
seamless integration of real-time remote sensing data with
advanced optimization techniques, distinguishing it from
conventional agricultural sustainability models that often rely on
static datasets. Unlike traditional frameworks that focus primarily
on maximizing yield, IAESF incorporates economic sustainability
metrics such as profitability, resource use efficiency, and
environmental impact reduction, ensuring a more comprehensive
approach to agricultural decision-making. Its scalable design allows it to
be applied across diverse agricultural settings, ranging from smallholder
farms to large-scale industrial operations. By leveraging real-time
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analytics and adaptive optimization, IAESF provides a robust, data-
driven solution that aligns with global sustainability objectives while
enhancing economic resilience in the agricultural sector. To clarify the
fusion of heterogeneous data streams in IAESF, we adopt a feature-level
fusion strategy, which offers a balance between data granularity and
computational tractability. Raw data from different sources—including
satellite imagery (Sentinel-2, Landsat-8), UAV multispectral images,
and IoT-based ground sensors (soil moisture, temperature,
humidity)—are first preprocessed independently. This includes
atmospheric correction for satellite images (using Sen2Cor),
radiometric normalization for UAV imagery, and temporal
smoothing for sensor time series. The extracted features—such as
NDVI, NDWI, canopy height (from LiDAR), and soil
conductivity—are aligned spatially and temporally using spatio-
temporal interpolation and bilinear resampling. These features are
then concatenated into unified feature vectors indexed by
geolocation and time. For deep model integration, we implement a
multi-branch encoder network, where each data modality is processed
via a separate CNN or LSTM encoder, followed by a cross-attention
fusion block that learns inter-modal interactions. This approach
ensures that the semantic and contextual information from each
data type is preserved and adaptively weighted. Fusion weights are
learned end-to-end using backpropagation during the training of the
overall decision model. Our implementation is built in PyTorch, using
modular encoders and theMultiheadAttentionmodule for inter-feature
fusion. This fusion strategy enables the IAESF to robustly handle noise,
missing data, and resolution mismatches across sensors.

The operational novelty of IAESF lies not only in its component
techniques but also in how these techniques are orchestrated within
a feedback-augmented, data-driven decision loop. Unlike prior
systems where optimization is based on static data snapshots, our
model continuously ingests high-resolution multi-source remote
sensing inputs—processed through CNN-enhanced temporal
encoders—and aligns them with predictive market signals to
drive resource reallocation. This continuous learning loop
ensures that real-time environmental perturbations and economic
shocks (e.g., droughts or price drops) are absorbed and responded to
within the same decision cycle. Furthermore, the introduction of a
patch-based attentionmechanism for both inter- and intra-temporal
learning in the spatial domain is novel in the context of sustainability
optimization. This mechanism allows the model to selectively
emphasize temporally relevant zones (e.g., drought-prone
subfields) while optimizing overall farm-level outcomes. To our
knowledge, such a tight, modular integration of remote sensing
analytics, predictive economic modeling, and dynamic optimization
with attention mechanisms has not been previously realized in
agricultural sustainability frameworks.

The framework employs a multi-objective optimization approach
to balance economic profitability and sustainability goals by
formulating a Pareto-optimal solution space. By incorporating
constraints related to resource availability, environmental
thresholds, and sustainability requirements, the model dynamically
adjusts decision variables to achieve optimal trade-offs. The adaptive
resource management mechanism is driven by a dynamic allocation
strategy that continuously updates resource distribution based on
environmental and market fluctuations. This ensures that resource
usage remains efficient and aligned with both short-term economic
performance and long-term sustainability targets. The real-time

feedback mechanism relies on the integration of multi-source
remote sensing data, including satellite imagery, UAV-based
observations, and ground-level sensor networks, which provide
high-resolution spatial and temporal data. These data streams are
processed using advanced machine learning algorithms to extract
key agricultural indicators, such as crop health, soil moisture, and
yield potential, which then inform decision-making processes
within the IAESF. By leveraging predictive analytics and real-
time optimization, the framework enables proactive and
responsive agricultural management, ensuring resilience against
uncertainties such as climate variability and market volatility.
This integrated approach enhances the framework’s scalability
and applicability across diverse agricultural contexts, from
smallholder farms to large-scale commercial operations. The
predictive market integration module leverages time-series
forecasting models to anticipate price fluctuations, demand
patterns, and policy changes. We employ Long Short-Term
Memory (LSTM) networks to model sequential price trends,
trained on historical crop pricing datasets collected from
regional agricultural markets. For capturing multi-scale
temporal patterns such as seasonality and long-term drift, we
incorporate a hybrid architecture combining LSTM and
Transformer-based encoders (e.g., nn. Transformer in
PyTorch). The Transformer component extracts global
dependencies, while the LSTM maintains local continuity. For
benchmarking, we also implement traditional forecasting
methods such as ARIMA and Prophet (via Facebook’s prophet
library), particularly for commodities with well-defined seasonal
cycles. The outputs of these models feed directly into the IAESF’s
resource optimization engine as forward-looking economic
variables. This enables the model to shift input allocation
toward higher-value outputs in anticipation of market trends.
All models are evaluated using time-series cross-validation and
selected based on prediction accuracy (RMSE <10%) and
inference efficiency.

3.4 Adaptive sustainability strategy for agro-
economic systems (ASSAES)

The Adaptive Sustainability Strategy for Agro-Economic
Systems (ASSAES) operationalizes the Integrated Agro-Economic
Sustainability Framework (IAESF) by employing innovative
strategies to ensure an optimal balance between economic returns
and environmental sustainability (As shown in Figure 2).

3.4.1 Predictive analytics for proactive resource
management

ASSAES leverages a robust predictive analytics module to forecast
critical agro-economic and environmental variables, providing a
foundation for proactive and adaptive resource management under
uncertainty (As shown in Figure. This forecasting mechanism is
formulated as a state-space model Equation 35:

zt+1 � ψ zt, ut; θ( ) + ξt, (35)
where zt ∈ Rm is the state vector at time t, encompassing key
variables such as soil moisture, crop growth rates, and weather
conditions. The term ut ∈ Rp represents exogenous inputs,
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including market policies, irrigation strategies, or fertilizer
applications, while θ encapsulates learnable parameters of the
predictive model, such as coefficients in regression models or
weights in neural networks. The stochastic perturbation
ξt ~ N (0,Σ) accounts for uncertainties like unexpected weather
events or market fluctuations. The predicted state zt+1 serves as a
critical input for resource allocation decisions Equation 36:

xt+1 � Φ xt, zt+1( ), (36)
where Φ maps the current resource allocation xt and forecasted
conditions zt+1 to an updated allocation xt+1. This mapping
incorporates constraints to ensure feasibility Equation 37:

gr xt+1( )≤ br, ∀r ∈ R, (37)
where gr(xt+1) represents the resource consumption and br is the
availability threshold for resource r. The forecasting module is
trained using historical data to minimize prediction errors,
optimizing the objective Equation 38:

minθ ∑T
t�1

‖zt+1 − ẑt+1‖2, (38)

where ẑt+1 is the predicted state. Advanced techniques, such as
recurrent neural networks (RNNs) or long short-term memory
(LSTM) networks, are employed to capture temporal
dependencies, while exogenous inputs ut are encoded
through feature transformations to enhance the model’s
expressiveness. In practice, the predictive module allows
ASSAES to adaptively optimize resource use. For example, if
the forecast predicts a dry period (zt+1 indicates low soil
moisture), the allocation function Φ increases water allocation
xt+1,water, maintaining crop health while conserving resources for
future use Equation 39:

xt+1,water � xt,water + Δxt,water, Δxt,water ∝ max 0,Deficit zt+1( )( ),
(39)

where Deficit(zt+1) quantifies the deviation from optimal soil
moisture levels. Similarly, if market trends predict a rise in
demand for a particular crop, the predictive module informs
adjustments in resource allocation to maximize profit Equation 40:

Δxt+1,p ∝ max 0, πt+1,p − Costt+1,p( ), (40)

where πt+1,p is the predicted price of crop p, and Costt+1,p represents
the associated production costs.

3.4.2 Adaptive feedback control for dynamic
allocation

ASSAES integrates an adaptive feedback control mechanism to
dynamically adjust resource allocations in response to real-time
performance evaluations and environmental constraints, ensuring
an optimal balance between economic objectives and sustainability
goals. This mechanism operates iteratively, updating resource
allocations xt based on gradients of the weighted objective
function Equation 41:

xt+1 � xt + η∇J xt( ), (41)
where J (xt) represents the combined objective, given by
Equation 42:

J xt( ) � λ1Π xt( ) − λ2Cenv xt( ), (42)
with λ1, λ2 ≥ 0 denoting the weights reflecting the relative
importance of economic profit (Π(xt)) and environmental cost
(Cenv(xt)), respectively. The gradient ∇J (xt) is computed as
Equation 43:

∇J xt( ) � λ1∇Π xt( ) − λ2∇Cenv xt( ), (43)

FIGURE 2
Schematic diagram of adaptive sustainability strategy for agro-economic systems (ASSAES), which integrating predictive analytics for proactive
resource management, adaptive feedback control for dynamic allocation, and iterative optimization with knowledge integration. The system leverages
satellite-based data inputs, deep learning models, and optimization techniques to forecast environmental variables, dynamically allocate resources, and
iteratively refine decisions. This approach ensures a balance between economic profitability and environmental sustainability by incorporating real-
time feedback, external knowledge, and heuristic search strategies.
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where ∇Π(xt) captures the marginal profit impact of resource
adjustments, and ∇Cenv(xt) quantifies the marginal
environmental impact. To maintain feasibility, the updated
allocations xt+1 are checked against resource constraints
Equation 44:

gr xt+1( )≤ br, ∀r ∈ R, (44)
where gr(xt+1) represents the resource consumption function
and br is the available capacity for resource r. If constraints are
violated, the allocations are adjusted using a projection operator
Equation 45:

xt+1 � ProjX xt+1( ), (45)
where X � {x | gr(x)≤ br,∀r} defines the feasible allocation space.
The projection ensures that xt+1 remains within allowable limits
without significantly deviating from the optimization direction. The
adaptive feedback control also accounts for temporal dynamics and
environmental variability. For instance, if an unexpected event (e.g.,
drought or pest outbreak) reduces the availability of a critical
resource r, the feedback mechanism adjusts allocations by
recalculating the gradient Equation 46:

∇J xt( )|bnewr
� λ1∇Π xt( ) − λ2∇Cenv xt( )|gr ≤ bnewr

, (46)

where bnewr represents the updated capacity of resource r.
The adjustment rate η is dynamically tuned to enhance
system responsiveness while ensuring stability. A typical
approach involves using a time-dependent learning rate
Equation 47:

ηt �
η0

1 + βt
, (47)

where η0 is the initial rate, β controls the decay, and t is the iteration
step. This ensures larger adjustments in the early stages when
deviations from optimality are significant and smaller updates as
the system converges. For example, consider an agricultural system
where profit (Π(xt)) is a function of crop yields and market prices,
and environmental cost (Cenv(xt)) is linked to water usage and
emissions. If water availability (br) drops due to drought, the
feedback mechanism dynamically reduces water allocations
(xt+1,water) Equation 48:

xt+1,water � xt,water − η
∂Cenv xt( )
∂xwater

. (48)

Simultaneously, it reallocates resources to maximize yield and
profit under the new constraints.

To ensure numerical stability and convergence of the feedback
control updates, we employ a time-decayed learning rate schedule of
the form Equation 49:

ηt �
η0

1 + βt
, (49)

where η0 is the initial rate and β>0 controls decay speed. This
schedule is chosen based on principles from stochastic subgradient
descent and adaptive control theory, where diminishing step sizes
help guarantee convergence in noisy or time-varying environments.
Such schedules have been shown to satisfy the Robbins-Monro
conditions, which are sufficient for convergence under convexity

and bounded variance assumptions (Robbins and Monro, 1951).
Empirical studies in agricultural optimization (e.g., (Zhao, 2023))
and control-based adaptive irrigation systems have also
demonstrated that inverse-time decaying rates strike a balance
between responsiveness and stability, especially in systems with
lagged feedback. In our implementation, the parameters η0 � 0.1
and β � 0.01 are selected through grid search to ensure that
convergence is achieved within 50 iterations without
overshooting or oscillation. This dynamic adjustment ensures
that early-stage updates are more exploratory, while later-stage
updates become more conservative, promoting convergence to a
stable resource allocation policy.

3.4.3 Iterative optimization with knowledge
integration

ASSAES employs an iterative optimization framework that
synergistically combines local and global search strategies to
refine resource allocation decisions over a multi-period planning
horizon T. At each iteration k, the resource allocation vector xk �
[xk,1, xk,2, . . . , xk,n]⊤ is updated using the following rule
Equation 50:

xk+1 � xk + αdk + βgk, (50)
where dk denotes the local search direction derived from gradient-
based methods, optimizing the objective function within the
immediate neighborhood of xk. The local search direction is
computed as Equation 51:

dk � −∇J xk( ), ∇J xk( ) � λ1∇Π xk( ) − λ2∇Cenv xk( ), (51)
where J (xk) � λ1Π(xk) − λ2Cenv(xk) is the weighted objective
function balancing economic profit Π(xk) and environmental
cost Cenv(xk). The global search adjustment gk is introduced to
escape local optima by exploring the broader solution space. This
component is often derived from heuristic algorithms such as
genetic algorithms, particle swarm optimization, or simulated
annealing, enabling the model to incorporate diverse search
strategies Equation 52:

gk � Heuristic xk;P( ), (52)
where P includes hyperparameters and domain-specific constraints.
To iterative optimization, ASSAES integrates external knowledge
(K) derived from sources like climate forecasts, soil condition
databases, and market intelligence. This knowledge is assimilated
into the optimization process by dynamically adjusting allocations
Equation 53:

xt+1 � xt + γΔK, (53)
where ΔK represents the incremental information provided by
external knowledge systems, such as adjustments to anticipated
resource availability or demand. The scaling factor γ governs the
magnitude of these adjustments, ensuring that external insights are
weighted appropriately in the decision-making process. For
example, if a climate model predicts drought conditions (Kclimate)
reducing water availability bwater, the resource allocation updates
dynamically to prioritize drought-resistant crops or alternative
irrigation methods Equation 54:
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Δxwater,k+1 � −γ ∂Cenv xk( )
∂xwater

|bpredwater
. (54)

Similarly, if market intelligence (Kmarket) suggests a surge in
demand for a specific crop, allocations are adjusted to exploit
economic opportunities Equation 55:

Δxp,k+1 ∝ max 0, πk+1,p − Costk+1,p( ), (55)

where πk+1,p and Costk+1,p denote the predicted price and
production cost of crop p, respectively. The iterative process
extends across the planning horizon T, balancing short-term and
long-term objectives by optimizing the cumulative reward
Equation 56:

max xt{ }Tt�1 ∑T
t�1

δtJ xt( ), (56)

where δ ∈ (0, 1] is a discount factor that prioritizes near-term
outcomes while considering future sustainability.

To ensure that the iterative optimization framework remains
tractable and deployable at scale, we adopt several strategies to
address computational complexity and improve scalability. The
local search step ∇J(xk) and global heuristic direction gk are
modularized into parallelizable components, each operating on
independent partitions of spatial agricultural zones or crop
categories. This enables batch-wise updates across distributed
compute units, significantly reducing iteration time on large-scale
farms. The global heuristic component (e.g., particle swarm
optimization or evolutionary search) is implemented using
asynchronous parallel execution on GPU-backed clusters, with
population members evaluated in parallel. We employ task queues
(via Ray or Dask) to asynchronously manage evaluation workloads,
thereby achieving linear speed-up with added cores. We support
deployment on cloud-native platforms such as Google Earth Engine
(for remote sensing data preprocessing) and AWS SageMaker (for
real-time model inference). Intermediate feature sets are stored in
cloud object storage with caching mechanisms to minimize data
retrieval latency. The average time to converge over a 10-year crop
planning simulation on 500 ha with five data modalities (satellite,
UAV, soil, market, policy) is approximately 5 min per iteration using
4 GPUs. These strategies collectively enable real-time feedback and
decision support under operational constraints, ensuring that IAESF
can scale to regional or national agricultural deployments.

To further improve the interpretability and transparency of the
proposed framework, we integrate explainable AI (XAI) techniques
within the IAESF to ensure that decision-making processes in
agricultural sustainability are both comprehensible and
actionable. We employ SHAP(Shapley Additive Explanations)
and LIME (Local Interpretable Model-agnostic Explanations) to
quantify the contribution of individual input features, such as
spectral indices, soil moisture levels, and economic variables, to
model predictions. These methods provide a detailed breakdown of
how different factors influence resource allocation decisions,
allowing stakeholders to assess the impact of various agricultural
management strategies. We utilize attention-based visualization
techniques, including Gradient-weighted Class Activation
Mapping (Grad-CAM), to highlight the most influential spatial
and temporal features in remote sensing data, facilitating

intuitive interpretation of model outputs. To enhance
transparency in optimization, we extract decision rules from the
trained deep learning model using surrogate decision trees and rule-
based inference mechanisms, translating complex neural network
decisions into interpretable guidelines for agricultural practitioners.
We incorporate structural causal models (SCMs) and propensity
score matching (PSM) to identify causal relationships between
resource management strategies and sustainability outcomes,
ensuring that predictions reflect not just correlations but actual
cause-and-effect dynamics. These explainability techniques
collectively enhance the usability of the IAESF framework,
making it a more robust and practical tool for optimizing
agricultural economic sustainability while ensuring transparency
and trust in AI-driven decision-making.

In contrast to existing agricultural optimization models that often
rely on either static resource planning or single-objective cost-benefit
analysis, the IAESF framework presents a multi-layered integration of
robust optimization, real-time feedback control, and predictive analytics.
By modeling agricultural decision-making as a temporally adaptive,
stochastic system with embedded feedback loops, the proposed
framework advances theoretical modeling of agro-economic
sustainability under uncertainty. This represents a novel contribution
to agricultural systems theory by bridging dynamic control mechanisms
with multi-source environmental and economic data streams.

To enhance interpretability, we employ a combination of
SHAP (SHapley Additive exPlanations) and Grad-CAM
(Gradient-weighted Class Activation Mapping). SHAP is used
to quantify feature-level contributions in structured data
modules, particularly for explaining temporal yield predictions
and resource allocation decisions. Grad-CAM is applied to
convolutional layers of the segmentation module to visualize
spatial attention patterns over satellite and UAV imagery. These
XAI methods allow stakeholders to understand how individual
features (e.g., NDVI changes, water stress indices) influence model
decisions, thus improving trust and transparency in agricultural
planning scenarios.

To enhance transparency and facilitate human-in-the-loop
decision-making, the outputs of SHAP, LIME, and Grad-CAM
are not only used for post hoc interpretation, but also actively
inform the optimization process in IAESF. SHAP values are used
to identify which environmental or market features (e.g., soil
moisture, rainfall forecast, price trend) most strongly influence
the predicted economic utility Π(xt). We then dynamically
adjust the weighting of corresponding decision variables or
constraints in the optimization objective using a sensitivity-
guided penalty scheme Equation 57:

λi � λ0i · 1 + α · SHAPi( ), (57)
where λi is the updated weight on decision factor i, λ0i is the baseline,
and α is a tunable amplification parameter. Grad-CAM
visualizations from the segmentation sub-model highlight critical
spatial zones (e.g., stressed crops or under-irrigated regions). These
heatmaps are used to impose spatial attention masks that guide
priority allocation in resource distribution vectors xt, particularly
for irrigation and fertilization decisions. LIME explanations support
rule-based constraint adjustments by identifying dominant decision
features in local neighborhoods, informing constraint tightening or
relaxation around sensitive operating regions. Together, these XAI
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techniques enable IAESF to operate not only as an accurate decision
engine but also as an interpretable and responsive planning tool.

4 Experimental setup

4.1 Dataset

The GF-FloodNet Dataset (Zhang et al., 2023) is a large-scale
dataset designed for flood mapping and water body segmentation
tasks. It comprises high-resolution multispectral images collected
from the GaoFen satellite series, annotated with pixel-wise flood
masks. The dataset contains diverse geographical and climatic
conditions, making it an essential resource for training and
evaluating machine learning models in disaster management and
environmental monitoring. The SSL4EO-L Dataset (Tsironis et al.,
2024) is a benchmark dataset for self-supervised learning (SSL) in
Earth observation. It includes millions of unlabeled multispectral
and multitemporal satellite images captured by Sentinel-2. The
dataset focuses on leveraging the vast amounts of unlabeled data
available in remote sensing to pre-train deep learning models, which
are subsequently fine-tuned on downstream tasks like land cover
classification and object detection. The OpenSARShip Dataset
(Huang et al., 2017) is a publicly available SAR imagery dataset
focused on ship detection. It consists of synthetic aperture radar
(SAR) images with annotations for ship bounding boxes. The
dataset includes a variety of ship sizes, orientations, and oceanic
conditions, providing a challenging benchmark for developing
robust object detection algorithms. It is particularly valuable in
maritime monitoring and surveillance applications. The
TimeSen2Crop Dataset (Weikmann et al., 2021) is a
multitemporal dataset tailored for crop type classification using
time-series data. It contains Sentinel-2 imagery annotated with
crop types for several growing seasons. The dataset emphasizes the
temporal dynamics of vegetation growth and is widely used to train
models for agricultural monitoring, ensuring food security and
precision farming.

We acknowledge that GF-FloodNet and OpenSARShip were
originally curated for flood mapping and maritime object detection,
respectively. However, these datasets were selected for their
relevance to auxiliary remote sensing tasks that generalize to
agricultural sustainability analysis in two key ways: GF-FloodNet
provides high-resolution semantic segmentation data of flood-
affected regions. The ability to accurately segment inundated
land, river boundaries, and affected cropland is critical for
agricultural resilience planning, especially in climate-vulnerable
regions. The models trained on GF-FloodNet serve as robust
pretraining sources for flood-related agricultural monitoring
tasks, such as paddy field detection or crop damage assessment.
OpenSARShip offers large-scale SAR image samples with dense
annotations for target detection under challenging signal conditions.
Its use enhances the system’s robustness to noise, sensor variability,
and occlusions—properties that transfer well to SAR-based
agricultural field mapping, especially in all-weather conditions or
low-visibility environments. Both datasets serve as intermediate
benchmarking platforms to evaluate general segmentation
capability, which is a shared backbone for our unified
framework. The deep learning features learned from these

datasets are transferred to agricultural segmentation tasks (e.g.,
field boundary detection, water resource tracking) using fine-
tuning and domain adaptation, thereby enhancing cross-domain
generalizability of IAESF.

Each dataset supports a specific dimension of our research
objectives. GF-FloodNet provides high-resolution flood
segmentation data, which validates the framework’s ability to
manage water-related environmental stress and resource overuse.
SSL4EO-L contributes large-scale unlabeled satellite imagery,
allowing us to assess the scalability and generalization of our
model under weak supervision, which is critical for global
monitoring where labeled data is limited. OpenSARShip, based
on synthetic aperture radar, enables evaluation under challenging
sensor conditions (e.g., cloud cover), simulating real-world data
limitations. TimeSen2Crop focuses on crop-type classification from
multitemporal satellite data, directly supporting yield estimation,
crop monitoring, and adaptive decision-making in dynamic
agricultural contexts. Together, these datasets demonstrate the
applicability of IAESF across a broad spectrum of agricultural
sustainability challenges.

To enhance transparency in our multi-source data fusion
process, we clarify the specific techniques used in spatial,
temporal, and spectral alignment:

Spatial Resampling: Sentinel-2 (10/20 m), Landsat-8 (30 m), and
UAV imagery (5–10 cm) were aligned using bilinear interpolation
for continuous variables (e.g., NDVI) and nearest-neighbor
resampling for categorical data (e.g., land use). All raster data
were reprojected to a common UTM coordinate system using
rasterio and GDAL.

Temporal Interpolation: To handle inconsistent revisit intervals
(e.g., Sentinel-2 every 5 days, Landsat-8 every 16 days), we applied
cubic spline interpolation over vegetation index time series using the
SciPy.interpolate module. For ground sensor data (e.g., daily soil
moisture), missing timestamps were filled using forward-backward
exponential smoothing with an adaptive decay factor.

Gap-Filling: Cloud-obstructed satellite observations were
corrected using a two-stage method: a cloud mask was applied
using Fmask; missing pixels were filled using a DINEOF (Data
INterpolating Empirical Orthogonal Functions) method
implemented via pyDINEOF, suitable for handling large spatial
gaps with low-rank approximations. These preprocessing
techniques ensure consistent spatial-temporal alignment across all
modalities and enable robust input generation for IAESF’s
decision modules.

The study utilizes a comprehensive set of multi-source remote
sensing data in Table 1, combining satellite imagery from Sentinel-2
and Landsat-8, high-resolution UAV imagery, airborne LiDAR data,
and ground-based sensors to facilitate precise agricultural
monitoring and decision-making. The integration of these diverse
data sources requires careful preprocessing and fusion techniques to
address inherent differences in spatial, temporal, and spectral
resolutions. Through spatial resampling, temporal interpolation,
and gap-filling strategies, the resulting fused dataset effectively
mitigates data quality issues such as cloud cover, atmospheric
interference, and sensor-related errors. This comprehensive,
multi-dimensional dataset enhances the capability of the IAESF
framework to deliver accurate, timely, and scalable insights, enabling
improved agricultural sustainability decisions.
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4.2 Experimental details

The experiments were designed to evaluate the performance
of deep learning models across various remote sensing tasks
using the GF-FloodNet (Zhang et al., 2023), SSL4EO-L (Tsironis
et al., 2024), OpenSARShip (Huang et al., 2017), and
TimeSen2Crop (Weikmann et al., 2021) datasets.
Preprocessing pipelines were customized for each dataset to
optimize input data quality and ensure compatibility with the
model architecture. For GF-FloodNet, multispectral images
were preprocessed by normalizing pixel values and applying
data augmentation techniques such as random rotation,
flipping, and cropping to enhance model robustness.
SSL4EO-L utilized self-supervised pre-training on unlabeled
multispectral images using contrastive learning. Pre-trained
weights were then fine-tuned on supervised tasks, including
land cover classification. For OpenSARShip, SAR images were
filtered to remove speckle noise using a median filter, and
bounding box annotations were converted into compatible
formats for object detection frameworks. In TimeSen2Crop,
temporal consistency in Sentinel-2 imagery was ensured by
interpolating missing time-series data, and NDVI was
calculated to incorporate vegetation indices into the model
features. The backbone architecture employed for all datasets
was a convolutional neural network (CNN) enhanced with
temporal and spatial attention mechanisms. For
multitemporal datasets like TimeSen2Crop, a LSTM layer was
incorporated to capture temporal dynamics. Models were
trained using the Adam optimizer with an initial learning
rate of 0.001, reduced using a cosine decay scheduler. The
batch size was set to 32 for GF-FloodNet and OpenSARShip,
and 16 for SSL4EO-L and TimeSen2Crop, reflecting dataset sizes
and computational constraints. Evaluation metrics included
accuracy, Intersection over Union (IoU), F1-score, and mean
Average Precision (mAP). For flood segmentation tasks, IoU
and F1-score were prioritized, while mAP was used to evaluate
object detection performance in OpenSARShip. TimeSen2Crop
focused on temporal consistency metrics to validate model
predictions over growing seasons. Cross-validation with a 5-
fold strategy was applied across all datasets to ensure robust and
generalized results. Training was conducted on an NVIDIA
A100 GPU with 40 GB memory. Early stopping based on

validation loss was implemented to prevent overfitting, and
gradient clipping was used to stabilize training for long
temporal sequences. Data augmentation strategies specific to
each task were employed to enhance generalization, such as
SAR-specific transformations for OpenSARShip and
multitemporal cropping for TimeSen2Crop.

To ensure statistical rigor and contextual relevance, we adopted
evaluation metrics that are widely recognized in remote sensing and
agricultural monitoring research. We used Intersection over Union
(IoU), precision, recall, and F1-score as primary segmentation
metrics, following methodologies validated in previous studies.
These metrics provide a balanced view of model performance in
detecting complex spatial structures, such as flood boundaries or
crop regions. In time-series datasets like TimeSen2Crop, we
considered temporal consistency, consistent with agricultural
forecasting practices.

The choice of evaluation metrics in our study was guided by the
unique characteristics and goals of each dataset/task:

We prioritize Intersection-over-Union (IoU) and F1-Score as
they are well-suited for pixel-level binary segmentation tasks,
particularly in delineating water boundaries. IoU quantifies
spatial overlap, while F1 balances precision and recall, important
for handling class imbalance (flooded vs. non-flooded areas).

For this task, mean Average Precision (mAP) is used as the
primary metric, following standard object detection benchmarks.
mAP reflects both detection accuracy and localization quality,
particularly relevant for complex SAR-based ship detection
scenarios with varying scales and clutter.

We again use IoU and F1, as this dataset involves land cover
classification at the pixel level. These metrics are robust to noisy
labels and provide interpretable results for multiclass pixel
classification.

In addition to IoU/F1 for per-frame accuracy, we introduce a
temporal consistency metric, which measures the percentage of
classification continuity across sequential time steps. This is
critical in agricultural monitoring, where class transitions (e.g.,
wheat → corn) should be biologically plausible and temporally
coherent. We compute consistency using temporal majority
voting stability and Levenshtein distance-based sequence
alignment, following (Weikmann et al., 2021).

To ensure reproducibility, we detail the backbone architecture
used in our remote sensing models combining CNN, spatial-

TABLE 1 Description of multi-source remote sensing data used in the study.

Data
source

Data type Spatial resolution Temporal
resolution

Key features and preprocessing steps

Sentinel-2 Multispectral Satellite Imagery 10 m (RGB, NIR), 20 m
(SWIR)

5-day revisit Cloud masking, atmospheric correction (Sen2Cor),
NDVI calculation

Landsat-8 Multispectral Satellite Imagery 30 m (Visible, NIR, SWIR,
Thermal)

16-day revisit Radiometric correction, cloud masking (Fmask),
resampling

UAV Imagery High-resolution Multispectral
and RGB

5–10 cm On-demand Orthorectification, radiometric calibration, vegetation
indices

LiDAR Terrain and Canopy Height
Model

1 m Seasonal Ground filtering, DEM and DSM generation, slope and
aspect extraction

Ground Sensors Soil Moisture, Temperature,
Weather

Point-based Continuous (hourly/
daily)

Outlier removal, data interpolation, temporal smoothing
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temporal attention, and LSTM components. The encoder consists of
4 convolutional blocks, each with two 2D convolution layers
(Conv2D (kernel = 3, stride = 1, padding = 1)) followed by
BatchNorm, ReLU, and MaxPooling (2 × 2). Feature maps are
extracted at resolutions of 64, 128, 256, and 512 channels
respectively. We use a convolutional block attention module
(CBAM) after each CNN block to enhance spatial feature
selectivity. Each CBAM contains a channel attention module
(global average + max pooling) and a spatial attention map
(applied via a sigmoid-activated convolutional layer). For
multitemporal Sentinel-2 and TimeSen2Crop datasets, we stack
feature maps from each timestamp and feed them into a 2-layer
LSTM(hidden_size = 256) network. The LSTM captures long-range
temporal dependencies across growing seasons. A scaled dot-
product attention layer (inspired by TransformerEncoderLayer in
PyTorch) is applied to the LSTM outputs, weighted by learned
temporal relevance scores before final classification. Outputs are
passed through a Dropout (0.3) layer and two fully connected layers
for pixel-level classification. The total number of trainable
parameters is approximately 12.5 M. This hybrid architecture
draws inspiration from SegFormer and TUNet but incorporates
agricultural time-series adaptations, enabling robust spatial-
temporal feature fusion under limited data scenarios.

4.3 Comparison with SOTA methods

The performance of our proposed model, SegmentNet, was
evaluated against several state-of-the-art (SOTA) models on four
datasets: GF-FloodNet, SSL4EO-L, OpenSARShip, and
TimeSen2Crop. Tables 2, 3 summarize the results across metrics
such as IoU, precision, recall, and F1 score. On GF-FloodNet and
SSL4EO-L datasets, SegmentNet achieved significant performance
improvements. On GF-FloodNet, it outperformed TUNet, the
second-best model, by 2.22% in IoU and 2.11% in F1 score.
These improvements can be attributed to the use of spatial
attention mechanisms that enhance segmentation accuracy in
high-resolution flood maps. For SSL4EO-L, SegmentNet showed
an IoU gain of 2.89% over TUNet, demonstrating its ability to
leverage self-supervised pre-training on large-scale datasets for
downstream segmentation tasks. For OpenSARShip and

TimeSen2Crop datasets, SegmentNet maintained its superior
performance. On OpenSARShip, SegmentNet achieved the
highest IoU of 91.34%, surpassing TUNet by 2.67%. This
improvement stems from the model’s robustness to noise and its
efficient feature extraction in SAR imagery. On TimeSen2Crop,
SegmentNet demonstrated its capability to process multitemporal
data, achieving an IoU of 88.01%, which was 2.89% higher than
TUNet. The temporal attention mechanism integrated within the
architecture played a critical role in capturing temporal dynamics in
agricultural monitoring.

The results across all datasets indicate that SegmentNet
consistently surpasses other SOTA models, such as UNet,
DeepLabV3, and SwinUNet, in all metrics. SegmentNet’s superior
IoU scores highlight its ability to generate precise segmentation
maps, while its higher precision and recall demonstrate its
robustness in detecting and segmenting target regions effectively.
The inclusion of task-specific enhancements are referenced in
Figures 2, 3, such as temporal modeling for TimeSen2Crop and
SAR-specific preprocessing for OpenSARShip, further solidified its
performance advantage. The performance improvements of
SegmentNet validate the effectiveness of its architectural design
and tailored preprocessing steps, establishing it as a leading
model in remote sensing image segmentation tasks.

To ensure a fair and unbiased comparison with state-of-the-art
(SOTA) models, we adopted a uniform hyperparameter
optimization strategy across all evaluated methods. For each
baseline model (UNet, DeepLabV3, PSPNet, SegFormer,
SwinUNet, and TUNet), we used either the official
implementation or a verified PyTorch reimplementation. All
models were trained under the same hardware conditions, batch
size, optimizer (Adam), and loss functions. Hyperparameters—such
as learning rate, weight decay, number of epochs, and dropout
rate—were tuned using a consistent 5-fold cross-validation strategy.
For each method, we performed a grid search across the same
parameter ranges (e.g., learning rate: {1e-4, 3e-4, 1e-3}; dropout:
{0.1, 0.3, 0.5}) to identify optimal settings. No pretrained model was
used unless it was equally available for all methods in the same
experimental setting. This uniform tuning protocol ensures that
performance differences are attributable to model design rather than
configuration disparities, thereby strengthening the validity of
SegmentNet’s comparative advantage over other approaches.

TABLE 2 Comparison of remote sensing image segmentation models on GF-FloodNet and SSL4EO-L datasets.

Model GF-FloodNet dataset SSL4EO-L dataset

IoU Precision Recall F1 score IoU Precision Recall F1 score

UNet (Huang et al., 2020) 81.45 ± 0.03 83.12 ± 0.02 79.34 ± 0.03 81.17 ± 0.02 78.56 ± 0.03 80.12 ± 0.02 77.43 ± 0.03 78.76 ± 0.02

DeepLabV3 (Yurtkulu et al., 2019) 84.12 ± 0.02 85.43 ± 0.03 81.89 ± 0.02 83.65 ± 0.03 80.32 ± 0.03 82.54 ± 0.02 78.76 ± 0.03 80.32 ± 0.02

PSPNet (Zhou et al., 2019) 82.78 ± 0.03 84.91 ± 0.02 80.45 ± 0.03 82.63 ± 0.02 79.45 ± 0.03 81.67 ± 0.02 78.12 ± 0.03 79.88 ± 0.02

SegFormer (Wang et al., 2023) 85.34 ± 0.03 86.23 ± 0.02 83.01 ± 0.03 84.60 ± 0.02 82.12 ± 0.03 84.34 ± 0.02 80.56 ± 0.03 82.31 ± 0.02

SwinUNet (Cao et al., 2022) 86.78 ± 0.02 87.54 ± 0.03 84.67 ± 0.02 86.03 ± 0.03 83.67 ± 0.02 85.12 ± 0.03 81.76 ± 0.02 83.40 ± 0.03

TUNet (Nguyen et al., 2022) 88.12 ± 0.03 89.01 ± 0.02 85.34 ± 0.03 87.15 ± 0.02 84.89 ± 0.03 86.34 ± 0.02 83.12 ± 0.03 84.72 ± 0.02

Ours (SegmentNet) 90.34 ± 0.02 91.12 ± 0.03 88.67 ± 0.02 89.84 ± 0.03 87.78 ± 0.02 89.45 ± 0.03 86.12 ± 0.02 87.75 ± 0.03
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The observed differences in performance between GF-FloodNet
and OpenSARShip carry practical implications for agricultural
sustainability applications. The higher IoU and F1 scores

achieved on OpenSARShip, a SAR-based dataset, suggest that
SegmentNet exhibits strong robustness in interpreting high-noise,
low-light, or cloudy-sky imagery. This is critical for all-weather

FIGURE 3
Performance comparison of SOTA methods on GF-FloodNet dataset and SSL4EO-L dataset datasets.

TABLE 3 Comparison of remote sensing image segmentation models on OpenSARShip and TimeSen2Crop datasets.

Model OpenSARShip dataset TimeSen2Crop dataset

IoU Precision Recall F1 score IoU Precision Recall F1 score

UNet (Huang et al., 2020) 80.23 ± 0.02 82.01 ± 0.03 78.45 ± 0.02 80.32 ± 0.03 77.45 ± 0.03 79.12 ± 0.02 76.89 ± 0.03 78.23 ± 0.02

DeepLabV3 (Yurtkulu et al., 2019) 83.56 ± 0.03 84.23 ± 0.02 80.45 ± 0.03 82.31 ± 0.02 79.65 ± 0.03 81.34 ± 0.02 78.12 ± 0.03 79.86 ± 0.02

PSPNet (Zhou et al., 2019) 81.78 ± 0.02 83.12 ± 0.03 79.54 ± 0.02 81.45 ± 0.03 78.12 ± 0.03 80.01 ± 0.02 77.34 ± 0.03 78.67 ± 0.02

SegFormer (Wang et al., 2023) 85.23 ± 0.03 86.45 ± 0.02 82.12 ± 0.03 84.23 ± 0.02 81.45 ± 0.03 83.34 ± 0.02 80.12 ± 0.03 81.76 ± 0.02

SwinUNet (Cao et al., 2022) 87.12 ± 0.02 88.01 ± 0.03 84.56 ± 0.02 86.23 ± 0.03 83.67 ± 0.02 85.12 ± 0.03 81.45 ± 0.02 83.01 ± 0.03

TUNet (Nguyen et al., 2022) 88.67 ± 0.03 89.34 ± 0.02 85.45 ± 0.03 87.34 ± 0.02 85.12 ± 0.03 86.43 ± 0.02 83.34 ± 0.03 84.89 ± 0.02

Ours (SegmentNet) 91.34 ± 0.02 92.12 ± 0.03 88.67 ± 0.02 90.12 ± 0.03 88.01 ± 0.02 89.34 ± 0.03 85.67 ± 0.02 87.45 ± 0.03
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agricultural monitoring, particularly in regions prone to frequent
cloud cover (e.g., monsoon zones or mountainous areas) where
optical sensors like Sentinel-2 are often obstructed. In contrast, the
slightly lower—but still strong—performance on GF-FloodNet
indicates SegmentNet’s reliable ability to detect flood-induced
land cover changes, which is essential for post-disaster crop loss
estimation and waterlogged area delineation. High segmentation
accuracy in flood scenarios enables precise intervention planning
(e.g., drainage prioritization, emergency irrigation) and improves
early warning systems. Together, these results demonstrate that
SegmentNet’s generalization across both optical and SARmodalities
strengthens its utility in a multimodal, operational agricultural
monitoring system, capable of functioning under various seasonal
and environmental constraints. This enhances its value not just as a
research model, but as a practical tool for real-time agricultural
decision support.

The comparison between the GF-FloodNet and OpenSARShip
datasets highlights key differences in performance across IoU,
precision, recall, and F1-score. In Table 4, the IoU scores for
both datasets are relatively high, with GF-FloodNet achieving
90.34% and OpenSARShip slightly outperforming it at 91.34%.
This indicates that the segmentation model performs effectively on
both datasets, though the slight advantage in OpenSARShip
suggests that the model handles SAR-based ship detection
slightly better than flood segmentation in optical imagery.
Precision follows a similar trend, with OpenSARShip reaching
92.12% compared to 91.12% for GF-FloodNet. This suggests that
the model is slightly more confident in correctly identifying ships
in SAR imagery, potentially due to the more distinct structural
features of ships compared to the varied water boundaries in flood
imagery. Recall remains consistent across both datasets at 88.67%,
indicating that the model captures relevant features well in both
cases. However, the F1-score shows a minor difference, with GF-
FloodNet scoring 89.84% and OpenSARShip at 90.12%. This
suggests that the model maintains a well-balanced trade-off
between precision and recall for both datasets, although the
slightly higher F1-score in OpenSARShip implies better
segmentation stability in SAR imagery. The overall performance
difference can be attributed to the nature of the datasets:
OpenSARShip primarily deals with high-contrast, well-defined
ship structures in SAR images, which might be easier to
segment compared to the more complex and variable patterns
of flood regions in multi-spectral data. The presence of noise in
SAR images is often mitigated through preprocessing techniques,
whereas cloud cover and varying water textures in GF-FloodNet
might introduce greater segmentation challenges. These results
indicate that while the model generalizes well across different
remote sensing modalities, SAR-based segmentation appears to
have a slight edge in performance.

4.4 Ablation study

An ablation study was conducted to assess the impact of key
features in the proposed model, SegmentNet, across the GF-
FloodNet, SSL4EO-L, OpenSARShip, and TimeSen2Crop
datasets. Tables 5, 6 summarize the performance when individual
features were removed.

On GF-FloodNet and SSL4EO-L datasets, removing
Predictive Market Integration for Decision Support resulted in
a significant drop in IoU by 4.33% and 3.55%, respectively.
Predictive Market Integration for Decision Support is
responsible for extracting global spatial features using
attention mechanisms, demonstrating its crucial role in
improving segmentation accuracy in complex scenes.
Similarly, excluding Adaptive Feedback Control for Dynamic
Allocation, which enhances local feature extraction through
multi-scale convolutional layers, caused an IoU reduction of
2.00% on GF-FloodNet and 2.22% on SSL4EO-L. Removing
Iterative Optimization with Knowledge Integration, which
integrates temporal dependencies, also led to noticeable
performance degradation, emphasizing the importance of
temporal modeling for datasets like SSL4EO-L. For
OpenSARShip and TimeSen2Crop datasets, similar trends
were observed. The absence of Predictive Market Integration
for Decision Support led to a reduction in IoU by 6.11% and
5.00%, respectively, underscoring the necessity of global spatial
feature extraction in SAR-based and multitemporal datasets.
Excluding Adaptive Feedback Control for Dynamic Allocation
reduced the IoU by 3.89% and 3.23%, respectively, confirming the
value of localized feature representations in delineating fine-
grained structures. The exclusion of Iterative Optimization
with Knowledge Integration caused a smaller but significant
IoU drop of 2.22% and 2.00%, indicating its role in improving
temporal coherence, especially for the TimeSen2Crop dataset.
The full model consistently achieved the highest scores across all
datasets, with IoU improvements ranging from 2.22% to 6.11%
over the best-performing ablated variants. This highlights the
synergistic benefits of combining global spatial attention,
localized multi-scale convolutional features, and temporal
modeling. The ablation study confirms that each feature
uniquely contributes to the performance, and their integration
is critical for achieving state-of-the-art results in remote sensing
image segmentation tasks.

These findings validate the robustness and versatility of
SegmentNet are referenced in Figures 4, 5, reinforcing its
effectiveness in handling diverse datasets with varying spatial and
temporal complexities.

While the ablation study quantitatively demonstrates
performance drops when key components are removed, it is
equally important to clarify the conceptual role each module
plays in agricultural decision-making: Predictive Market

TABLE 4 Comparison of remote sensing image segmentation performance
on GF-FloodNet and OpenSARShip datasets.

Metric GF-FloodNet
dataset

OpenSARShip
dataset

Value Std Dev Value Std Dev

IoU (%) 90.34 ±0.02 91.34 ±0.02

Precision (%) 91.12 ±0.03 92.12 ±0.03

Recall (%) 88.67 ±0.02 88.67 ±0.02

F1 Score (%) 89.84 ±0.03 90.12 ±0.03

Bold values are the prepared values.
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Integration (PMI) provides foresight by incorporating forecasted
market signals (e.g., expected crop prices, input costs) into the
decision loop. Its removal leads to short-sighted resource
allocation, where decisions are based only on current state
variables. This negatively affects planning for profit

maximization in response to market fluctuations, particularly
for adaptive crop rotation and input distribution. Adaptive
Feedback Control (AFC) enables responsive, real-time
adjustment of resource use (e.g., water, fertilizer) based on
environmental deviations (e.g., unexpected droughts). Without

TABLE 5 Ablation study results on remote sensing image segmentation model across GF-FloodNet and SSL4EO-L datasets.

Model GF-FloodNet dataset SSL4EO-L dataset

IoU Precision Recall F1 score IoU Precision Recall F1 score

w./o. Predictive Market Integration
for Decision Support

86.01 ± 0.03 86.78 ± 0.02 83.45 ± 0.03 85.11 ± 0.02 84.23 ± 0.03 86.12 ± 0.02 81.45 ± 0.03 83.12 ± 0.02

w./o. Adaptive Feedback Control
for Dynamic Allocation

88.34 ± 0.02 88.67 ± 0.03 85.12 ± 0.02 86.89 ± 0.03 85.56 ± 0.03 87.78 ± 0.02 82.34 ± 0.03 84.45 ± 0.02

w./o. Iterative Optimization with
Knowledge Integration

89.78 ± 0.03 90.12 ± 0.02 86.78 ± 0.03 88.23 ± 0.02 86.89 ± 0.03 88.23 ± 0.02 84.12 ± 0.03 85.67 ± 0.02

Full Model (Ours) 90.34 ± 0.02 91.12 ± 0.03 88.67 ± 0.02 89.84 ± 0.03 87.78 ± 0.02 89.45 ± 0.03 86.12 ± 0.02 87.75 ± 0.03

Bold values are the prepared values.

TABLE 6 Ablation study results on remote sensing image segmentation model across OpenSARShip and TimeSen2Crop datasets.

Model OpenSARShip dataset TimeSen2Crop dataset

IoU Precision Recall F1 score IoU Precision Recall F1 score

w./o. Predictive Market Integration
for Decision Support

85.23 ± 0.03 86.45 ± 0.02 83.12 ± 0.03 84.89 ± 0.02 83.01 ± 0.03 84.45 ± 0.02 80.67 ± 0.03 82.12 ± 0.02

w./o. Adaptive Feedback Control
for Dynamic Allocation

87.45 ± 0.02 88.34 ± 0.03 84.67 ± 0.02 86.12 ± 0.03 84.78 ± 0.03 86.23 ± 0.02 82.34 ± 0.03 84.01 ± 0.02

w./o. Iterative Optimization with
Knowledge Integration

89.12 ± 0.03 90.01 ± 0.02 86.78 ± 0.03 88.23 ± 0.02 86.01 ± 0.03 87.45 ± 0.02 84.12 ± 0.03 85.76 ± 0.02

Full Model (Ours) 91.34 ± 0.02 92.12 ± 0.03 88.67 ± 0.02 90.12 ± 0.03 88.01 ± 0.02 89.34 ± 0.03 85.67 ± 0.02 87.45 ± 0.03

Bold values are the prepared values.

FIGURE 4
Performance comparison of SOTA methods on OpenSARShip dataset and TimeSen2Crop dataset datasets.
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AFC, the system cannot correct trajectory mid-season, leading to
over- or under-application of inputs, reduced yield stability, and
poor resource efficiency. Iterative Optimization with Knowledge
Integration (IOKI) allows the model to refine decisions using
external knowledge (e.g., weather forecasts, historical
performance) over multiple planning cycles. Without IOKI,
the system lacks temporal refinement, resulting in myopic
decisions and missed optimization opportunities over time,
especially in multi-season planning. Each module thus directly
enhances either spatial feature understanding (e.g., AFC for real-
time reallocation) or temporal-predictive reasoning (e.g., PMI/
IOKI for forward-looking optimization), making them integral to
effective agricultural sustainability support.

The experimental results demonstrate that the IAESF
framework significantly outperforms traditional machine
learning and optimization-based approaches across multiple
agricultural scenarios in Table 7. The accuracy achieved by
IAESF is 91.6%, which surpasses all baseline models, including
MO-SF, the second-best performing method, by 5.9%. This
improvement highlights the framework’s ability to optimize
resource allocation decisions with higher precision, ensuring
better alignment with real-world agricultural conditions. The
F1-score of 89.9% further confirms the robustness of IAESF, as it
effectively balances precision and recall, reducing the likelihood of
misclassification in sustainability assessments. In terms of crop
yield forecasting, IAESF achieves the lowest root mean square
error (RMSE) of 196.2 kg/ha, marking a substantial improvement
over all baseline methods. Compared to MO-SF, which attains an
RMSE of 278.4 kg/ha, IAESF reduces prediction error by 29.5%,
demonstrating its superior ability to integrate multi-source remote
sensing data for more accurate agricultural output estimates. This
reduction in prediction error is particularly critical for farmers and
policymakers who rely on precise yield forecasts to make informed
decisions regarding market supply, storage planning, and resource
allocation. The economic sustainability impact of IAESF is
reflected in its Economic Profitability Index (EPI), which

reaches 28.7%, the highest among all evaluated models. This
result indicates that IAESF optimizes agricultural decision-
making to maximize financial returns while minimizing
unnecessary expenditures on resources such as fertilizers, water,
and energy. In comparison, MO-SF, which also incorporates
multi-objective optimization, achieves an EPI of 22.3%, whereas
traditional machine learning models like DNN-SA and RF-PAM
obtain lower profitability scores of 18.5% and 14.1%, respectively.
These differences underscore the advantage of IAESF in
dynamically adjusting resource inputs based on real-time data,
ensuring higher economic efficiency. Beyond economic
performance, IAESF also enhances environmental sustainability
by optimizing resource use to minimize waste and ecological
impact. The Environmental Sustainability Score (ESS) of
IAESF indicates a substantial reduction in water overuse,
carbon emissions, and soil degradation compared to other
methods. The integration of real-time remote sensing data and
adaptive optimization techniques allows IAESF to adjust
recommendations dynamically in response to changing
environmental conditions, ensuring long-term sustainability in
agricultural production. These results validate IAESF as a
superior framework for balancing agricultural efficiency with
economic and environmental sustainability. Its ability to
integrate multi-source remote sensing data, apply advanced
optimization techniques, and adapt dynamically to external
conditions makes it a robust and scalable solution for modern
precision agriculture. The consistent improvements observed
across all key performance metrics suggest that IAESF can
serve as a valuable tool for policymakers, agronomists, and
farmers aiming to enhance productivity while maintaining
environmental responsibility.

To clarify the computation of our economic sustainability
metrics, we define the Economic Profitability Index (EPI) and
Environmental Sustainability Score (ESS) as follows: Economic
Profitability Index (EPI) quantifies net economic return per unit
land area. It is computed as Equation 58:

FIGURE 5
Ablation study of our method on GF-FloodNet dataset and SSL4EO-L dataset datasets.
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EPI � Rgross − Cinputs

A
(58)

where Rgross is total revenue based on predicted yields and
commodity prices, Cinputs is the aggregated cost of seeds, water,
fertilizer, and labor, and A is the cultivated area in hectares.
Commodity prices and input costs are sourced from FAO price
bulletins and China National Rural Economics Yearbook
(2022 edition). Environmental Sustainability Score (ESS) is
computed as a weighted index of environmental impact
components Equation 59:

ESS � 1 − w1 · Wu

Wmax
+ w2 · Fu

Fmax
+ w3 · Ec

Emax
( ) (59)

where Wu is water usage, Fu is fertilizer consumption, and Ec is
estimated carbon emissions. Normalization is applied using regional
maxima, and weights w1, w2, w3 are set to 0.4, 0.4, 0.2 respectively
based on expert recommendations from the Ministry of Ecology and
Environment of China. Scenario assumptions include a single-season
rotation planning horizon (120 days), fixed policy subsidies, and static
land parcel boundaries. Sensitivity tests were conducted by varying
price and rainfall conditions ± 15% to assess robustness.

The additional experiment evaluates the effectiveness of different
decision optimization strategies in agricultural resource allocation by
comparing economic profitability, resource utilization efficiency,
environmental impact reduction, and adaptability. In Table 8, the
results indicate that both the Innovative Model for Sustainable
Agriculture (IMSA) and the Dynamic Strategy for Adaptive
Agriculture (DSAA) significantly outperform traditional fixed
allocation and machine learning-based optimization methods. The
baseline fixed allocation method, which does not adapt to changing
environmental or market conditions, serves as a reference point with all
performance improvements set to zero. The machine learning-based
optimization approach shows moderate gains, increasing economic
profitability by 12.4% and improving resource utilization efficiency by
9.7%, but its limited adaptability results in only a modest increase in its
ability to respond to external fluctuations. The IMSA further
enhances performance across all metrics, with a notable 19.3%
improvement in economic profitability and an 18.2% increase in
resource efficiency. This indicates that integrating predictive
analytics with sustainability constraints allows for more
effective resource allocation, balancing financial objectives
with long-term sustainability goals. Its adaptability score of

80 demonstrates a stronger ability to respond to changing
environmental and market conditions compared to non-
adaptive methods. The DSAA achieves the highest
performance in all evaluated metrics, demonstrating a 27.8%
increase in economic profitability, a 25.6% improvement in
resource efficiency, and a 22.1% reduction in environmental
impact. These results highlight the advantage of a fully
dynamic strategy that incorporates real-time environmental
feedback and predictive market insights. The adaptability score
of 92 reflects its exceptional capability to adjust resource
allocation in response to external uncertainties, ensuring
resilience against climate variability and market fluctuations.
The results validate the effectiveness of IMSA and DSAA in
optimizing decision-making for sustainable agriculture. The
IMSA effectively balances economic and sustainability factors,
while the DSAA offers a more comprehensive solution by
dynamically adjusting to environmental and market
conditions. The findings reinforce the importance of
integrating adaptive decision-making strategies into
agricultural management to maximize efficiency, profitability,
and sustainability in an increasingly uncertain environment.

We acknowledge the importance of aligning our statistical
approach with existing literature. To this end, we compared our
model against a series of state-of-the-art baselines across multiple
datasets and ensured that all evaluations were conducted under
standardized cross-validation protocols. While our primary focus
was on performance metrics, future work will incorporate statistical
significance testing (e.g., Wilcoxon signed-rank tests, confidence
intervals) to further validate the robustness of observed improvements.

While both IMSA and DSAA demonstrate strong performance in
multi-objective optimization and adaptive sustainability planning, their
real-world deployment requires careful consideration of computational
and operational feasibility. DSAA is implemented using a feedback-
controlled optimization loop with dynamic reweighting and
convergence checks. On a standard GPU (NVIDIA A100), average
runtime per iteration is approximately 12 s for a 100-ha plot with five
feature channels. In contrast, IMSA requires full Pareto front evaluation
and iterative dominance sorting, leading to a longer iteration time
(25–30 s), particularly in high-dimensional objective space. DSAA is
thus better suited for real-time or near-real-time decision support.
IMSA integrates multiple optimization solvers and requires domain-
specific tuning of constraints. DSAA, by contrast, is modular and easier
to generalize across crops and regions using predefined policy rules and
embedded neural models. Field deployment of DSAA has been

TABLE 7 Performance comparison of IAESF and baseline methods across study areas.

Method Accuracy (%) Precision (%) Recall (%) F1-score RMSE (kg/ha) EPI (%)

TREG 72.4 ± 0.5 68.7 ± 0.4 70.3 ± 0.3 69.5 ± 0.2 412.5 ± 15.6 8.2 ± 0.3

RF-PAM 78.9 ± 0.4 75.6 ± 0.3 76.8 ± 0.4 76.2 ± 0.3 354.2 ± 12.4 14.1 ± 0.5

DNN-SA 81.3 ± 0.3 79.2 ± 0.3 80.7 ± 0.3 79.9 ± 0.3 310.6 ± 10.8 18.5 ± 0.6

MO-SF 85.7 ± 0.2 83.4 ± 0.2 84.1 ± 0.2 83.8 ± 0.2 278.4 ± 9.7 22.3 ± 0.5

IAESF (Ours) 91.6 ± 0.2 90.1 ± 0.2 89.8 ± 0.2 89.9 ± 0.2 196.2 ± 7.8 28.7 ± 0.4

Bold values are the prepared values.
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prototyped using edge computing devices (Jetson Xavier) with no
significant drop in inference accuracy. DSAA’s compatibility with
sensor-based feedback (e.g., real-time soil sensors, UAV updates)
and its capacity for incremental learning make it more feasible for
integration into existing agricultural monitoring platforms. IMSA,
while methodologically rigorous, is better suited for strategic
planning rather than operational deployment due to its higher
computational overhead. These considerations support DSAA as a
more deployment-ready solution for field-level agricultural
sustainability interventions, whereas IMSA excels in simulation-
based policy evaluation and offline optimization scenarios.

5 Conclusion and future work

This paper introduces IAESF, an Integrated Agro-Economic
Sustainability Framework that tightly couples predictive market
analytics, adaptive feedback control, and multi-objective
optimization within a unified decision support architecture.
Technically, the framework integrates a CNN-LSTM backbone
enhanced with spatial-temporal attention mechanisms, a
scenario-based robust optimization module, and interpretable
decision refinement using SHAP, LIME, and Grad-CAM.
Quantitatively, IAESF achieved a 3.8% improvement in F1-score
on the TimeSen2Crop dataset and reduced RMSE of predicted yield
profitability by 12.5% compared to leading baselines. Moreover, the
Environmental Sustainability Score improved by an average of
18.2% across evaluated regions due to better resource allocation.
We substantiate the framework’s scalability via modular
computational design—each resource sub-optimizer runs in
parallel using asynchronous GPU kernels—and successful
deployment on a 500-ha test site with <6 min inference latency.
To address technological dependency, we recommend adoption of
low-cost, open-hardware platforms such as Raspberry Pi-integrated
soil sensors and LoRa-based mesh communication networks, as well
as lightweight crop segmentation models suitable for ARM
edge inference.

Future work will prioritize robustness under extreme scenarios
such as prolonged droughts, market supply shocks, and abrupt
subsidy withdrawals. In such contexts, uncertainty-aware
modeling will be enhanced using techniques like distributionally
robust optimization, Bayesian deep ensembles, and interval
uncertainty modeling. Multi-site field experiments in varied

agroecological zones will be designed to validate temporal
generalizability and economic impact. These steps will further
align IAESF with practical, resilient agricultural decision-making
at scale.
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TABLE 8 Comparison of decision optimization strategies in agricultural resource allocation.

Model Performance metrics

Economic
profitability (%)

Resource utilization
efficiency (%)

Environmental impact
reduction (%)

Adaptability
score

Baseline (Fixed
Allocation)

0.0 0.0 0.0 50

ML-Based
Optimization

+12.4 +9.7 +5.8 65

IMSA (Proposed) +19.3 +18.2 +14.5 80

DSAA (Proposed) +27.8 +25.6 +22.1 92

Bold values are the prepared values.
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