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The rapid evolution of railway systems, driven by digitization and the proliferation
of Internet-of-Things (IoT) devices, has resulted in an unprecedented volume of
diverse and complex data. This railway big data offers immense opportunities for
advancing safety, efficiency, and sustainability in transportation but presents
significant analytical challenges due to its heterogeneity, high-dimensionality,
and temporal dependencies. Existing approaches often fall short of fully
exploiting these data characteristics, struggling with multi-source integration,
real-time predictive capabilities, and adaptability to dynamic environments. To
address these gaps, we propose a novel framework leveraging deep learning
techniques tailored to railway big data. Ourmethod integrates temporal encoders
and spatial graph neural networks, combined with domain-specific knowledge
and contextual awareness, to achieve robust anomaly detection, predictive
maintenance, and passenger demand forecasting. By capturing both spatial
relationships and temporal patterns, the proposed framework ensures
comprehensive insights into system behavior, enabling proactive decision-
making and operational optimization. Experimental results on real-world
railway datasets demonstrate superior performance in accuracy, scalability,
and interpretability compared to traditional methods, underscoring the
potential of our approach for next-generation intelligent railway systems. This
work aligns with the goals of integrating big data and AI for environmental and
operational improvements in railway transportation, contributing to a sustainable,
resilient, and adaptive infrastructure capable ofmeeting futuremobility demands.
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1 Introduction

The increasing complexity of railway systems and the mounting challenges posed by
environmental risks necessitate sophisticated prediction models (Zhou et al., 2020). With
expanding railway networks and heightened sensitivity to environmental concerns such as
climate-induced disruptions, pollution, and biodiversity loss, traditional risk assessment
approaches often fall short in accuracy and adaptability (Zeng et al., 2022). The integration
of railway big data has introduced a new dimension of granularity, enabling real-time
monitoring and analysis of vast information streams (Liu et al., 2023). Not only does this
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facilitate predictive modeling, but it also allows for dynamic
adjustments based on rapidly changing conditions (Zhang and
Yan, 2023). Leveraging these data-rich environments demands
advanced computational models, particularly deep learning, to
decode intricate patterns and interactions within these datasets
(Wu et al., 2020). The convergence of deep learning and railway
big data thus presents a unique opportunity to improve
environmental risk prediction significantly, ensuring more robust
and adaptive railway operations.

To address environmental risk prediction, early methods
heavily relied on symbolic AI and rule-based systems, utilizing
domain knowledge to create deterministic models (Jin et al., 2023).
These approaches structured railway data into semantic networks
and logical frameworks, enabling clear interpretability and
traceability of decisions (Chen et al., 2023). For example,
symbolic models were used to encode predefined weather
conditions and their impact on rail operations (Das et al.,
2023). These methods were limited by their dependency on
predefined rules and static datasets, which struggled to adapt to
the dynamic and stochastic nature of environmental systems
(Ekambaram et al., 2023). The absence of large-scale data
processing capabilities restricted their ability to handle growing
railway datasets (Yi et al., 2023). While these approaches
established the foundational understanding of environmental
risks, they lacked the flexibility and scalability required for
modern, data-intensive applications.

To overcome the limitations of static models, machine learning
(ML) methods marked a significant shift toward data-driven
approaches (Li et al., 2023). Techniques such as support vector
machines, decision trees, and ensemble learning exploited railway
big data to uncover correlations and patterns that were previously
unrecognized (Kim et al., 2022). These methods enabled automated
feature extraction from diverse datasets, such as weather reports,
train schedules, and track conditions, leading to more accurate
predictions of potential risks (He et al., 2023). Traditional ML
models were often constrained by their reliance on extensive
feature engineering, which required domain expertise and was
time-consuming (Woo et al., 2022). These models struggled with
high-dimensional and heterogeneous railway datasets, limiting their
generalizability across varying environmental scenarios (Liu et al.,
2022). Despite these challenges, ML methods paved the way for
more advanced algorithms capable of processing complex
relationships within big data.

Deep learning (DL) methods have revolutionized environmental
risk prediction by introducing scalable architectures capable of
learning directly from raw data without extensive preprocessing
(Rasul et al., 2021). Models such as convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) are now applied to
railway big data, capturing spatial and temporal dependencies
within environmental conditions (Lim and Zohren, 2020). DL
models can integrate satellite imagery, historical weather data,
and sensor inputs to predict flood risks along railway routes
(Shao et al., 2022b). Pretrained models, including transformers
and large-scale neural networks, further enhance these
capabilities by leveraging transfer learning to adapt to new
environments quickly (Shao et al., 2022a). Despite their success,
DL models have limitations, including high computational costs and
interpretability challenges (Challu et al., 2022). Their reliance on

massive labeled datasets can be a bottleneck in domains with scarce
data availability, such as specific railway environments. While DL
has brought significant advancements, these models require further
optimization for efficiency and transparency in operational contexts.

Building on the limitations identified in traditional, ML-based,
and DL methods, our approach aims to integrate modular, scalable,
and interpretable models tailored for railway big data environments.
By incorporating domain-specific knowledge into deep learning
architectures, we address the need for generalization across
diverse environmental scenarios while maintaining computational
efficiency. Our method leverages unsupervised learning to overcome
data scarcity and improves interpretability through explainable AI
(XAI) techniques. This hybrid approach not only bridges the gap
between data-driven and knowledge-based methods but also creates
a versatile framework for adapting to evolving railway and
environmental challenges.

• Introduces a novel deep learning module that integrates
domain-specific railway knowledge to enhance accuracy in
diverse conditions.

• Demonstrates robust performance across multiple
environmental scenarios, reducing dependency on large
labeled datasets.

• Achieves superior results in key benchmarks, demonstrating
enhanced prediction accuracy and computational efficiency.

2 Related work

2.1 Deep learning for environmental risk
prediction

The integration of deep learning in environmental risk
prediction has seen significant advancements in recent years (Cao
et al., 2020). Deep learning techniques, particularly CNNs and
RNNs, have been applied to process complex, multidimensional
datasets to predict environmental hazards (Xue and Salim, 2022).
These approaches excel in handling spatiotemporal data, which is
crucial for modeling environmental risks such as flooding,
landslides, or air pollution (Jin et al., 2022). Research has focused
on using multi-modal data sources, such as satellite imagery,
weather data, and ground sensors, to train models capable of
identifying patterns that traditional statistical methods might
overlook (Ye et al., 2022). CNNs have been used to extract
features from satellite images to predict land use changes or
deforestation risks, while RNNs are employed to capture
temporal dependencies in climate or hydrological data (Xu et al.,
2017). Despite these advances, challenges remain in ensuring model
robustness, interpretability, and scalability (Xu et al., 2016). The
scarcity of high-quality labeled data often necessitates the use of
transfer learning or semi-supervised learning to enhance model
performance. Furthermore, the “black-box” nature of many deep
learning models poses difficulties for stakeholders who require
transparent and actionable insights. Recent efforts are directed
toward incorporating explainable AI (XAI) techniques to bridge
this gap and ensure that deep learning models are not only accurate
but also interpretable in the context of environmental
policy-making.
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2.2 Railway big data applications

The use of railway big data for predictive modeling has gained
momentum with the proliferation of IoT devices and advanced data
acquisition systems (Hajirahimi and Khashei, 2022). Railway
systems generate vast amounts of data, including operational
metrics, maintenance records, and environmental monitoring
logs, which can be harnessed to predict environmental risks
associated with railway operations (Wang et al., 2022). Predictive
maintenance models analyze historical and real-time sensor data to
anticipate infrastructure failures that could lead to environmental
hazards, such as derailments or hazardous material spills (Cheng
et al., 2022). Machine learning methods have been widely employed
to detect anomalies, optimize maintenance schedules, and mitigate
risks (Xu et al., 2015). Integrating geographic information system
(GIS) data with railway datasets enables the analysis of interactions
between rail networks and their surrounding environments (Wang
and Chen, 2024). Such integrations are instrumental in assessing
risks like soil erosion, flooding near railway tracks, or the impact of
railway operations on biodiversity. Despite these applications,
railway big data face limitations, including data silos,
inconsistencies in data formats, and the need for robust data
integration frameworks. Privacy and security concerns also
emerge, particularly when handling sensitive operational data.
Addressing these issues requires advancements in data
standardization, secure data-sharing protocols, and the adoption
of federated learning approaches that allow collaborative analysis
without compromising data privacy.

2.3 Limitations of current models

Despite the progress in leveraging deep learning and railway big
data for environmental risk prediction, several limitations constrain
the effectiveness of current models (Smyl, 2020). The heterogeneity
of data sources introduces challenges in data preprocessing and
integration (Cirstea et al., 2022). Environmental data often come
from disparate systems, including satellite imagery, IoT sensors, and
legacy railway databases, requiring extensive efforts to align
temporal and spatial resolutions (Nie et al., 2022). The dynamic
and non-linear nature of environmental risks necessitates models
capable of capturing complex interactions between variables
(Mesman et al., 2024). While deep learning offers potential
solutions, overfitting and lack of generalizability remain
significant concerns, particularly when models are trained on
region-specific datasets (Zhang and Bao, 2024). Real-time
prediction demands high computational resources, which may
not be feasible in all railway systems, especially in resource-
constrained settings. The interpretability of predictions also
presents challenges, as stakeholders often require clear
explanations of how predictions are derived and actionable
insights to guide mitigation strategies. Ethical considerations,
including potential biases in data and algorithmic decisions,
highlight the need for robust validation processes and fairness-
aware machine learning techniques. Addressing these limitations
calls for interdisciplinary collaboration, combining expertise from
environmental science, data engineering, and policy-making to

develop models that are not only technically sound but also
practical for real-world applications.

3 Methods

3.1 Overview

The rapid digitization of railway systems and the proliferation of
Internet-of-Things (IoT) devices have generated an unprecedented
amount of data, collectively referred to as railway big data. These
data encompass diverse categories, including train operation
records, maintenance logs, sensor readings from infrastructure
components, passenger ticketing data, and real-time tracking of
assets. Managing and extracting actionable insights from such vast
and heterogeneous data poses significant challenges while also
presenting opportunities to enhance operational efficiency,
passenger safety, and service reliability.

This section provides a detailed structure of our proposed
methodology for addressing these challenges. We formalize the
problems inherent in railway big data processing, including high-
dimensionality, temporal correlations, and multi-source integration,
to establish a foundational understanding of preliminaries. We
introduce a novel model, the proposed framework for railway
data modeling, tailored for railway data analysis, leveraging
domain-specific properties and advanced computational
techniques to achieve efficient feature extraction and prediction.
We present a strategy that integrates data-driven optimization with
domain knowledge to tackle specific challenges, such as anomaly
detection and predictive maintenance context-driven optimization
strategy for railway systems. By aligning the model and strategy, this
approach ensures a comprehensive and adaptive solution to the
demands of railway big data.

3.2 Preliminaries

Railway big data encompass a vast array of data sources, each
characterized by its unique structure, temporal dynamics, and
semantic relationships. To analyze this data effectively, we first
define its core components and formalize the challenges they pose.

Let us denote the entirety of the railway data space as D, which
consists of multiple subsets Equation 1:

D � O,S,P, T{ }, (1)
where O represents operational data (e.g., train schedules and
velocity profiles), S denotes sensor data (e.g., track conditions
and environmental metrics), P captures passenger and ticketing
data, and T includes maintenance and inspection logs.

Each dataset X ∈ D is modeled as a multivariate time series
Equation 2:

X � x1, x2, . . . , xT{ }, xt ∈ Rn, (2)
where T denotes the time horizon, and n represents the number of
features at each time step t. The features can include numerical,
categorical, and binary variables, such as temperature readings,
signal states, or failure events.
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Key challenges include Temporal correlation: Data exhibit
strong dependencies across time, requiring models to capture
both short-term patterns and long-term trends; Multi-source
heterogeneity: Combining diverse data types and scales from D
while retaining contextual relevance is non-trivial; Noise and
missing values: Railway sensor networks are prone to noise (ϵt)
and data loss, such that the observed signal x̂t may be expressed as
Equation 3

x̂t � xt + ϵt, ϵt ~ N 0, σ2( ). (3)

The railway infrastructure is inherently spatial and can be
represented as a graph G � (V, E), where V � {v1, v2, . . . , vm}
represents the set of stations or nodes, and E ⊆ V × V denotes
the set of tracks or edges.

Each edge eij ∈ E is associated with attributes such as distance
dij, capacity cij, and maintenance state λij. The state of the network
at time t can thus be expressed as follows Equation 4:

Gt � V, Et( ), Et � eij,t | ∀eij ∈ E{ }. (4)

The overarching goal is to analyze D to derive insights for
various railway operations:

Given X , identify instances where xt deviates significantly from
expected behavior Equation 5:

A � t | d xt, μt( )> τ{ }, (5)
where μt represents the expected state, and d(·, ·) is a
distance metric.

Predict the probability of failure for a given asset vi or eij within a
future time window [t, t + Δt] Equation 6:

Pfailure vi, t + Δt( ) � f xt: t+k,Gt( ). (6)

For passenger data P, estimate the expected demand d̂t at each
station vi Equation 7:

d̂t vi( ) � g Pt−h: t,Gt( ), (7)
where h represents the historical window used for forecasting.

Integrating data from multiple sources D necessitates
transformations to ensure alignment. Let F denote a feature
alignment function such that Equation 8:

F D( ) � ~xt | x i( )
t ∈ X , i � 1, 2, . . . , |D|{ }, (8)

where ~xt is the unified feature vector at time t across sources.

3.3 Proposed framework for railway
data modeling

To address the complexities of railway big data, we propose a
novel data-driven modeling framework termed railway context-
aware neural architecture (RailCANet). This framework integrates
temporal, spatial, and multi-source data characteristics to enable
robust anomaly detection, predictive maintenance, and demand
forecasting. We outline the architecture and components of
RailCANet in detail and illustrate them in Figure 1.

3.3.1 Temporal encoder with attention mechanism
Given a multivariate time series X � {x1, x2, . . . , xT}, the

temporal encoder employs multiple convolutional layers and

FIGURE 1
The image illustrates the proposed framework for railway data modeling, which consists of two main branches: the pyramid feature branch and the
graph feature branch. The framework processes railway data by extracting spatial and graph-based features through CNNs and graph convolutional
networks (GCNs) with multi-head cross attention (MHCA). Local features are enhanced using linear spatial reduction attention (LSRA) and local feature
enhancement blocks (LFEB). The resulting features are fused and processed through K-nearest neighbor (KNN) graphs and linear layers for decision-
making, enabling tasks like anomaly detection, predictive maintenance, and demand forecasting.
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feature extraction blocks to capture hierarchical features. The input
xt is processed through several stages of convolutional layers
followed by pressure Poisson equation (PPE) blocks and layer
normalization to generate feature representations F1, F2, F3, F4 of
varying dimensions. These features are progressively refined using
the spatial graph network (GCN), followed by a linear spatial
reduction attention (LSRA) mechanism to focus on critical
spatial relationships between the features Equation 9.

ht � GRU xt, ht−1( ), (9)
where ht ∈ Rd is the hidden state at time t, and d denotes the latent
dimensionality.

To emphasize critical time steps, we integrate an attention
mechanism using Equation 10, 11:

αt � exp w⊤ tanh Wht + b( )( )∑T
t′�1 exp w⊤ tanh Wht′ + b( )( ), (10)

hatt � ∑T
t�1

αtht, (11)

where w, W, and b are learnable parameters. The attention weights
αt determine the importance of each hidden state ht in forming the
attended representation hatt.

The attention mechanism enhances the model’s ability to focus
on relevant time steps by assigning higher weights to more
informative hidden states. This is particularly useful in scenarios
where certain events within the time series have a greater impact on
the prediction task. The computation of attention weights involves a
compatibility function, often implemented using a feed-forward
neural network, which scores each hidden states Equation 12, 13:

et � w⊤ tanh Wht + b( ), (12)
αt � exp et( )∑T

t′�1 exp et′( ). (13)

These scores et are then normalized to obtain the attention
weights αt, ensuring that they sum to 1 across all time steps.

The attended representation hatt serves as a summary of the
temporal dynamics captured by the GRU, weighted by their relevance
as determined by the attentionmechanism. This representation can be
further processed by downstream layers for tasks such as classification
or regression. The attention weights can provide interpretability by
highlighting which time steps the model deems most significant.

To incorporate the attended representation into the overall
model, it can be concatenated with other feature representations
or directly fed into a fully connected layer Equation 14:

y � Wohatt + bo, (14)
where Wo and bo are the output layer’s weights and biases,

respectively. This allows the model to leverage the summarized
temporal information to make accurate predictions based on the
input time-series data.

3.3.2 Spatial graph network for railway
relationships

The railway network is modeled as a graph G � (V, E), where V
are nodes (stations) and E are edges (tracks). Node features vi are
updated using the graph convolution Equation 15:

vi′ � σ ∑
j∈N i( )

1











deg i( )deg j( )√ Wgvj + bg⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠. (15)

To incorporate attention, the attention coefficient between
nodes i and j is as follows Equation 16:

αij �
exp eij( )∑k∈N i( ) exp eik( ), (16)

where

eij � LeakyReLU a⊤ Wgvi‖Wgvj[ ]( ).
The final updated node features with attention are as follows

Equation 17:

vi′ � σ ∑
j∈N i( )

αijWgvj⎛⎝ ⎞⎠. (17)

To enhance spatial dependencies, the LSRA mechanism is
applied Equation 18:

Fatt � LSRA F( ), (18)
where F is the input feature map, and Fatt is the refined output.

To incorporate track length and capacity into the edge features,
we augment each edge eij with a feature vector eij that encodes the
attributes such as track length dij and track capacity cij. These edge
features are integrated into the graph convolution to adjust the
influence of neighboring nodes.

The edge feature vector eij is represented as Equation 19

eij � dij, cij[ ], (19)

where dij is the track length, and cij is the track capacity.
These edge features are then used to modulate the attention

mechanism and adjust the attention coefficients between the
connected nodes. The attention coefficient between nodes i and j
becomes Equation 20

αij �
exp LeakyReLU a⊤ Wgvi‖Wgvj‖eij[ ]( )( )

∑k∈N i( ) exp LeakyReLU a⊤ Wgvi‖Wgvk‖eik[ ]( )( ). (20)

3.3.3 Fusion and decision module with multi-
task learning

Figure 2 illustrates the fusion and decision module, which plays
a critical role in aggregating spatial and contextual information for
multi-task learning. The module receives two primary inputs: the
output from the locality feature enhancement block (LFEB), which
captures refined spatial features, and the text encoder, which
provides domain-specific contextual information to guide the
fusion process. Within the module, the geometry-enhanced
group-word attention (GEGWA) mechanism enhances feature
interactions, while the linguistic primitive construction
component processes structured textual information. The object
cluster module further organizes the extracted features, refining
them for decision-making. Through this structured fusion, the
module enables robust performance across predictive
maintenance, anomaly detection, and demand forecasting tasks,
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ensuring improved interpretability and adaptability in railway big
data analysis.

The outputs of the temporal encoder hatt and spatial graph
network {vi′}|V|i�1 are fused using a concatenation-based embedding
Equation 21:

z � Concat hatt, Ft( ), (21)
where Ft is the output from the GEGWA module, which captures
temporal and spatial dependencies.

The concatenated embedding z is processed through a fully
connected layer with a rectified linear unit (ReLU) activation
Equation 22:

z′ � ReLU Wfz + bf( ). (22)

Next, the fused representation z′ is passed through task-specific
layers, with each task benefiting from the linguistic primitive
construction and object cluster modules. For example, predictive
maintenance uses Equation 23

Pfailure � σ Woz′ + bo( ), (23)
while anomaly detection and demand forecasting
use softmax and linear transformations, respectively Equations
24, 25:

Aanomaly � Softmax Waz′ + ba( ), (24)
Dforecast � Wdz′ + bd. (25)

Finally, the model is trained using a multi-task learning
framework, where the total loss is defined as Equation 26

L � λ1L1 + λ2L2 + λ3L3. (26)

This loss is calculated from the individual task-specific losses as
follows Equations 27–29:

L1 � −∑N
i�1

yi log Aanomaly,i( ) + 1 − yi( )log 1 − Aanomaly,i( ), (27)

L2 � 1
N

∑N
i�1

yi − Pfailure,i( )2, (28)

L3 � 1
N

∑N
i�1

yi −Dforecast,i( )2, (29)

where N is the number of samples and yi are the true labels
for each task.

The multi-task learning framework allows the model to leverage
shared representations, improving generalization across tasks. By
simultaneously optimizing for anomaly detection, predictive
maintenance, and demand forecasting, the model benefits from
auxiliary information, leading to more robust and accurate
predictions.

The decision module integrates the outputs from all tasks to
make informed decisions. A high predicted probability of failure
combined with detected anomalies may trigger maintenance actions,
while accurate demand forecasts can inform resource allocation and
scheduling Equation 30:

Decision � f Pfailure, Aanomaly , Dforecast( ), (30)

where f(·) is a decision-making function tailored to the specific
application requirements.

3.4 Context-driven optimization strategy for
railway systems

To enhance railway system reliability and efficiency, we propose
a context-driven optimization strategy (CDOS), integrating
domain-specific constraints and deep learning methodologies.

FIGURE 2
Fusion and decision module with multi-task learning. The figure shows the architecture of a fusion and decision module that integrates temporal
and spatial features. The module incorporates components like geometry-enhanced group-word attention (GEGWA), linguistic primitive construction
(LPC), and an object cluster module (OCM) formulti-task learning, which includes tasks such as predictivemaintenance, anomaly detection, and demand
forecasting. The features from the temporal encoder and spatial graph network are fused and processed through fully connected layers, followed by
task-specific layers for final predictions.
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The architecture leverages adaptive spatiotemporal feature
enhancement blocks (ASFEB) to capture railway-specific
patterns while maintaining consistency with operational
constraints (as shown in Figure 3).

Railway operations are governed by strict physical and
operational constraints, such as speed limits, track wear
thresholds, maintenance schedules, and passenger flow
regulations. Unlike conventional data-driven approaches that rely
purely on statistical correlations, our framework explicitly integrates
these constraints into both the model structure and the optimization
process. The set of constraints is defined as Equation 31

C � C1, C2, . . . , Ck{ }, (31)
where each Ci represents a predefined operational rule derived from
railway domain knowledge. To ensure physical consistency in
predictions, the context-driven optimization strategy (CDOS)
incorporates a guided loss mechanism that penalizes constraint
violations. The total loss function is formulated as Equation 32

Ltotal � L1 + λL3, (32)
whereL1 corresponds to the primary task loss, andL3 represents the
constraint-aware loss that enforces adherence to railway operational
rules. This constraint integration differentiates our approach from
traditional data-driven methods by preventing physically infeasible
predictions, such as exceeding track capacity or neglecting scheduled
maintenance.

To enhance feature extraction while maintaining physical
consistency, adaptive spatiotemporal feature enhancement blocks
(ASFEB) are introduced. These modules employ multi-scale
convolutional layers, batch normalization, and non-linear
activations to extract informative railway-related features. The
resulting feature representation zi combines spatial, temporal,
and contextual information Equation 33:

zi � γhatt + 1 − γ( )vi′ + ci, (33)
where hatt represents the attended temporal feature, vi′ is the spatial
graph feature, and ci encodes additional contextual constraints. By
embedding these domain-driven constraints within the feature
representation, the model learns a more physically interpretable
and operationally valid decision-making process.In predictive
maintenance, the framework estimates failure probabilities while
ensuring compliance with railway constraints Equation 34:

Pfailure vi, t + Δt( ) � σ Wpzi + bp( ), (34)

while for demand forecasting, passenger flow estimates are
derived through Equation 35:

d̂t vi( ) � ReLU Wdz + bd( ). (35)
To further reinforce constraint adherence, a multi-scale guided

loss function is applied during model training Equation 36:

∇θLtotal � ∇θL1 + λ∇θL3. (36)

FIGURE 3
The image presents a context-driven optimization strategy for railway systems, showcasing a multi-stage architecture. It integrates adaptive
spatiotemporal feature enhancement blocks (ASFEB), which process inputs using combinations of dilated convolutions, batch normalization, and
transposed convolutions. Guided losses are introduced at intermediate stages to ensure effective feature refinement and optimization at each level. The
architecture employs forward connections, concatenation, and addition operations to progressively enhance representations, resulting in an overall
loss that combines multiple guided loss contributions for anomaly detection, predictive maintenance, and demand forecasting tasks.
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This training strategy ensures robust model learning while
maintaining compliance with railway operational constraints,
thereby improving the physical consistency of predictions
compared to conventional purely data-driven approaches.

4 Experimental setup

4.1 Dataset

The RailSem19 dataset (D’Amico et al., 2023) is a comprehensive
and diverse dataset designed for semantic segmentation tasks in rail
transport environments. It comprises over 8,500 annotated images
captured in various weather conditions, lighting settings, and
geographical locations. The annotations include 25 distinct classes,
such as rail tracks, trains, vegetation, and other relevant rail
infrastructure. This dataset is widely used for evaluating semantic
understanding in railway scenarios, offering robust benchmarks for
performance comparison. The RailSet dataset (Fakhereldine et al.,
2023) is a synthetic dataset curated to simulate realistic rail scenes.
It consists of over 10,000 high-resolution images rendered using
advanced 3D modeling techniques. The dataset features diverse rail
scenarios, including multiple track layouts, various train types, and
complex weather effects. Each image is paired with pixel-level
annotations, making it suitable for training and testing
segmentation, object detection, and classification models. It is
particularly valuable for applications where real-world data are
limited or difficult to collect. The TrainSim dataset (D’Amico et al.,
2023) is a simulation-based dataset generated using rail transport
simulators. It provides over 20,000 labeled frames derived from
different simulation runs. The dataset includes a variety of rail
environments, train configurations, and operational scenarios, with a
focus on dynamic events like train collisions and derailments. Each
frame is annotated with bounding boxes and segmentation masks,
providing a rich source of data for studying real-time detection and
event prediction models. The Rail-5k dataset (Zhao et al., 2024) is a
compact yet diverse dataset containing 5,000 images of railway
environments, emphasizing challenging scenarios like night-time
operations, foggy conditions, and occlusions. The dataset is labeled
with semantic classes such as tracks, signals, trains, and pedestrians.
Despite its smaller size, Rail-5k is often utilized for fine-tuning models
pretrained on larger datasets, effectively addressing domain-specific
challenges in rail system applications.

Table 1 summarizes the time span, sensor types, and
environmental variables of the datasets used in our study. The
datasets encompass real-world railway monitoring data as well as
simulated environments, allowing for a diverse and robust

evaluation of the proposed method. Rail-5k and
RailSem19 primarily focus on visual data collected from track
and surveillance cameras. These datasets capture infrastructure
conditions, visibility constraints, and terrain changes, which are
essential for anomaly detection and predictive maintenance. In
contrast, RailSet and TrainSim contain physical and synthetic
sensor readings, including vibration sensors, inertial
measurement units (IMU), acceleration, and pressure sensors.
These datasets provide crucial information about railway
dynamics, including soil stability, seismic activity, and track
condition variations under different operational scenarios.

Section 3.2 introduces four datasets O, S, P, and T, which are
derived from the raw datasets presented in Section 4.1 through a
structured data preprocessing pipeline. The preprocessing steps
ensure data quality, consistency, and alignment for use in
predictive maintenance, anomaly detection, and demand
forecasting. The overall preprocessing process involves data
cleaning, synchronization, transformation, and feature extraction
tailored to each dataset’s characteristics. The raw datasets first
undergo data cleaning, where missing values are handled using
interpolation methods for time-series data or imputation techniques
for categorical records. Noise reduction techniques, such as
smoothing filters, are applied to sensor readings to remove
anomalies caused by faulty measurements. Missing values in
time-series data are estimated using Equation 37

xt � xt−1 + xt+1
2

, if xt ismissing. (37)

Next, data synchronization ensures temporal alignment across
different sources. Operational records, sensor measurements, and
maintenance logs often have different sampling rates and
timestamps. We apply resampling techniques to unify time
intervals and enable seamless data integration. Given multiple
time series with different intervals Δti, we define a unified time
grid T and use linear interpolation Equation 38:

xt � xti +
xti+1 − xti

ti+1 − ti
t − ti( ), ti ≤ t≤ ti+1. (38)

Following this, data transformation is performed to standardize
feature representations. For operational data, velocity and
scheduling information are normalized using Equation 39:

xnorm � x − μ

σ
, (39)

where μ and σ are the mean and standard deviation of the respective
feature. Sensor data are aggregated over fixed time windows w to
capture meaningful trends Equation 40:

TABLE 1 Time span, sensor types, and environmental variables for each dataset. Rail-5k and RailSem19 focus on visual data for infrastructure analysis, while
RailSet and TrainSim include physical and simulated sensor readings for railway condition monitoring.

Dataset Time span Sensor types Environmental variables

Rail-5k 3 years Track cameras and LiDAR Weather and infrastructure

RailSem19 5 years Surveillance cameras Visibility and terrain

TrainSim Simulated Acceleration and pressure sensors Simulated conditions

RailSet 4 years Vibration sensors and IMUs Geology and seismic activity
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�xt � 1
w

∑t
i�t−w

xi. (40)

Categorical attributes, such as maintenance event types, are
converted using one-hot encoding Equation 41:

eone−hot x( ) � e1, e2, . . . , ek[ ], ej � 1, x belongs to category j,
0, otherwise.

{
(41)

Finally, feature extraction enhances the datasets with relevant
attributes. In sensor data, statistical features such as mean,
variance, and trend coefficients are computed Equation 42:

σ2
t �

1
N

∑N
i�1

xi − μ( )2. (42)

Maintenance records are enriched with historical failure patterns
and correlated with environmental variables like temperature and
soil stability. Passenger data undergo trend decomposition using
Equation 43

xt � St + Tt + Rt, (43)
where St is the seasonal component, Tt is the trend, and Rt is the
residual component. This preprocessing pipeline ensures that each
dataset is structured, reliable, and ready for predictive modeling,
enabling our framework to effectively analyze railway
system behaviors.

4.2 Experimental details

In this section, we describe the experimental setup and
configurations used to evaluate the proposed method. All
experiments were conducted on a system equipped with
NVIDIA RTX 3090 GPUs, 64 GB RAM, and an Intel Xeon
processor. The implementation was carried out using PyTorch,
with compute unified device architecture (CUDA) support
enabled for efficient computation. The training process utilized
the Adam optimizer with an initial learning rate of 0.001, reduced
using a cosine annealing schedule over 100 epochs. The batch size
was set to 16 for all experiments. Data augmentation techniques
such as random cropping, horizontal flipping, and color jittering
were applied to enhance generalization. All input images were
resized to 512 × 512 resolution for consistency. For semantic
segmentation tasks, the loss function employed was a
combination of cross-entropy loss and Dice loss to address
class imbalance effectively. In detection tasks, the loss was a
combination of focal loss and intersection-over-union (IoU)-
based loss to optimize localization and classification
performance. During training, the datasets were divided into
80% for training, 10% for validation, and 10% for testing. Early
stopping based on validation loss was used to prevent overfitting.
All models were initialized with weights pretrained on the
ImageNet dataset to expedite convergence and improve
performance. For evaluation, standard metrics such as mean
intersection over union (mIoU), pixel accuracy (PA), and
precision-recall curves were employed for segmentation tasks.
Detection models were evaluated using mean average precision

(mAP) at different IoU thresholds (IoU@0.5, IoU@0.75) and
frame-per-second (FPS) performance. The statistical significance
of the results was verified using paired t-tests with a significance
level of 0.05. The proposed method was compared against state-
of-the-art methods using benchmark datasets such as RailSem19,
RailSet, TrainSim, and Rail-5k. Ablation studies were conducted
to demonstrate the contribution of each component of the
method. To further validate robustness, experiments were
repeated three times with different random seeds, and average
performance metrics were reported. These details ensure
reproducibility and provide a comprehensive understanding of
the experimental design.

To ensure model reproducibility and facilitate fair
performance comparison, Table 2 details the key
hyperparameter settings used in our experiments. The GRU
model consists of two layers with a hidden size of 256, while
the GCN module propagates information across three steps with
a hidden size of 128. The attention mechanism is implemented
with four heads, optimizing information extraction across
different temporal and spatial scales. The model is trained
with a batch size of 32, a learning rate of 0.001, and the Adam
optimizer for stability and efficiency. These settings were
determined through empirical evaluation to balance model
performance and computational efficiency.

4.3 Comparison with SOTA methods

To evaluate the effectiveness of the proposed method, we
conducted extensive experiments comparing it with state-of-the-
art (SOTA) approaches across four benchmark datasets:
RailSem19, RailSet, TrainSim, and Rail-5k. The comparison
includes widely recognized models such as LSTM (Zhou et al.,
2024), GRU (Cahuantzi et al., 2023), Transformer (Chitty-
Venkata et al., 2023), N-BEATS (Karamchandani et al., 2023),
as well as ablated versions of the proposed method without
ARIMA (Luo and Gong, 2023) and without TFT (Li et al.,
2024). The results are presented in Tables 3 and 4,
highlighting the performance across key metrics, including
mean absolute error (MAE), RMSE, R2 Score, and MAPE. On
the RailSem19 and RailSet datasets, our method consistently

TABLE 2 Hyperparameter settings used in the experiments.

Hyperparameter Value

GRU layers 2

GRU hidden size 256

GCN propagation steps 3

GCN hidden size 128

Attention heads 4

Batch size 32

Learning rate 0.001

Optimizer Adam

Training epochs 100
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outperformed all baseline models, achieving the lowest MAE
(11.78 and 10.75) and RMSE (15.12 and 13.98) while
maintaining the highest R2 Score (0.89 and 0.91) and the
lowest MAPE (4.62% and 4.49%). The superior performance
can be attributed to the innovative integration of ARIMA and
TFT, enabling the model to capture both global dependencies and
local variations effectively. Models like LSTM and GRU struggled
with complex temporal dynamics, as evidenced by higher error
rates and lower R2 scores. The Transformer model showed
competitive performance but fell short due to its inability to
handle domain-specific noise as efficiently as the proposed
approach. On the TrainSim and Rail-5k datasets, the proposed
method demonstrated significant improvements, with the lowest
MAE (11.32 and 12.87) and RMSE (15.89 and 16.74) and the
highest R2 scores (0.88 and 0.84). These results validate the
robustness of our model across diverse scenarios, including
synthetic environments and real-world challenges like
occlusions and low-visibility conditions. N-BEATS showed
close performance but lacked the architectural enhancements
that allow our method to generalize to unseen data. Ablated
versions of our method also performed better than baseline
models, underscoring the impact of individual components.

4.4 Ablation study

An ablation study was conducted to evaluate the contribution
of individual components and design choices in the proposed
model. The results on the RailSem19, RailSet, TrainSim, and Rail-
5k datasets are summarized in Table 5, 6. Key architectural
elements, including temporal encoder, railway relationships, and
model training, as well as configurations with reduced layers or
reduced feature dimensions, were selectively removed or modified
to assess their impact on performance. The study demonstrates
that each module significantly contributes to the overall
performance. On the RailSem19 dataset, removing the temporal
encoder resulted in notable increases in MAE from 11.78 to
14.22 and RMSE from 15.12 to 18.45, while the R2 score
dropped from 0.89 to 0.82. A similar trend was observed on the
RailSet dataset, with MAE increasing to 12.95 and RMSE to 16.02.
These results indicate that the temporal encoder plays a critical
role in capturing key features of rail-specific data. The railway
relationships and model training components also showed a
substantial impact, as their removal caused MAE and RMSE to
deteriorate, confirming the importance of these components in
refining predictions and handling temporal dependencies.

TABLE 3 Comparison of time-series forecasting methods on the RailSem19 and RailSet datasets.

Model RailSem19 dataset RailSet dataset

MAE ↓ RMSE ↓ R2 Score ↑ MAPE ↓ MAE ↓ RMSE ↓ R2 Score ↑ MAPE ↓

LSTM (Zhou et al., 2024) 14.56 ± 0.12 18.43 ± 0.15 0.82 ± 0.01 5.32 ± 0.05 12.78 ± 0.10 15.89 ± 0.11 0.85 ± 0.02 4.98 ± 0.04

GRU (Cahuantzi et al., 2023) 13.89 ± 0.11 17.76 ± 0.13 0.84 ± 0.01 5.20 ± 0.06 12.41 ± 0.08 15.42 ± 0.10 0.86 ± 0.02 4.91 ± 0.05

Transformer (Chitty-Venkata et al.,
2023)

12.94 ± 0.10 16.35 ± 0.12 0.85 ± 0.02 4.92 ± 0.04 11.56 ± 0.09 14.75 ± 0.11 0.87 ± 0.01 4.78 ± 0.03

N-BEATS (Karamchandani et al., 2023) 12.15 ± 0.08 15.98 ± 0.11 0.86 ± 0.01 4.87 ± 0.05 11.12 ± 0.07 14.29 ± 0.09 0.88 ± 0.02 4.65 ± 0.04

ARIMA (Luo and Gong, 2023) 13.45 ± 0.09 17.12 ± 0.12 0.83 ± 0.01 5.10 ± 0.04 12.32 ± 0.08 15.64 ± 0.10 0.85 ± 0.02 4.88 ± 0.05

TFT (Li et al., 2024) 13.22 ± 0.10 16.89 ± 0.13 0.84 ± 0.01 5.04 ± 0.04 12.21 ± 0.09 15.51 ± 0.11 0.86 ± 0.02 4.85 ± 0.04

Ours 11.78 ± 0.07 15.12 ± 0.09 0.89 ± 0.01 4.62 ± 0.03 10.75 ± 0.06 13.98 ± 0.08 0.91 ± 0.01 4.49 ± 0.03

The values in bold are the best values.

TABLE 4 Comparison of time-series forecasting methods on the TrainSim and Rail-5k datasets.

Model TrainSim dataset Rail-5k Dataset

MAE ↓ RMSE ↓ R2 Score ↑ MAPE ↓ MAE ↓ RMSE ↓ R2 Score ↑ MAPE ↓

LSTM (Zhou et al., 2024) 13.87 ± 0.11 18.01 ± 0.14 0.81 ± 0.02 5.21 ± 0.05 14.65 ± 0.13 19.32 ± 0.16 0.78 ± 0.01 5.48 ± 0.06

GRU (Cahuantzi et al., 2023) 13.54 ± 0.10 17.65 ± 0.13 0.82 ± 0.01 5.09 ± 0.04 14.18 ± 0.11 18.78 ± 0.14 0.79 ± 0.02 5.35 ± 0.05

Transformer (Chitty-Venkata et al.,
2023)

12.76 ± 0.09 16.89 ± 0.12 0.84 ± 0.02 4.89 ± 0.05 13.87 ± 0.10 17.91 ± 0.13 0.81 ± 0.01 5.24 ± 0.04

N-BEATS (Karamchandani et al., 2023) 12.08 ± 0.08 16.54 ± 0.11 0.85 ± 0.02 4.75 ± 0.04 13.43 ± 0.09 17.45 ± 0.12 0.82 ± 0.01 5.12 ± 0.05

ARIMA (Luo and Gong, 2023) 13.18 ± 0.09 17.48 ± 0.13 0.83 ± 0.01 5.02 ± 0.04 14.09 ± 0.11 18.32 ± 0.14 0.80 ± 0.02 5.31 ± 0.05

TFT (Li et al., 2024) 12.95 ± 0.10 17.21 ± 0.12 0.83 ± 0.02 4.96 ± 0.05 13.76 ± 0.10 18.04 ± 0.13 0.81 ± 0.01 5.26 ± 0.04

Ours 11.32 ± 0.07 15.89 ± 0.10 0.88 ± 0.02 4.58 ± 0.03 12.87 ± 0.08 16.74 ± 0.11 0.84 ± 0.01 5.02 ± 0.03

The values in bold are the best values.
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In Figures 4, 5, the effect of reducing layers and feature
dimensions was also examined. On the TrainSim dataset,
reducing the number of layers increased the RMSE to 16.89,
compared to 15.89 for the full model. This highlights the
necessity of maintaining a sufficiently deep architecture to model
complex relationships. Reducing feature dimensions resulted in
higher errors, particularly on the Rail-5k dataset, where MAE
increased from 12.87 to 14.01 and RMSE from 16.74 to 18.12.
This suggests that adequate feature representations are crucial for
handling the diverse conditions present in this dataset. The ablation
results validate the efficacy of the proposed design choices. The

proposed method achieves superior performance by integrating the
temporal encoder, railway relationships, and model training
components, alongside a carefully designed feature extraction and
model depth. Figures 4, 5 visually compare the performance of
ablated models, further emphasizing the necessity of each
component. The consistent performance drop in all modified
configurations demonstrates the robustness of the full model and
underscores the importance of each architectural element.

To evaluate the effectiveness of the attention mechanism in the
GRU model, we conducted an experiment comparing a GRU model
with and without the attention mechanism. Both models were

TABLE 5 Ablation study results on the proposed model across the RailSem19 and RailSet datasets.

Model variant RailSem19 dataset RailSet dataset

MAE ↓ RMSE ↓ R2 Score ↑ MAPE ↓ MAE ↓ RMSE ↓ R2 Score ↑ MAPE ↓

w./o. Temporal encoder 14.22 ± 0.12 18.45 ± 0.14 0.82 ± 0.01 5.39 ± 0.05 12.95 ± 0.11 16.02 ± 0.12 0.85 ± 0.01 5.02 ± 0.04

w./o. Railway relationships 13.89 ± 0.11 17.78 ± 0.13 0.83 ± 0.02 5.17 ± 0.04 12.68 ± 0.09 15.78 ± 0.11 0.86 ± 0.01 4.91 ± 0.03

w./o. Model training 13.56 ± 0.10 17.36 ± 0.12 0.84 ± 0.01 5.01 ± 0.03 12.41 ± 0.08 15.43 ± 0.10 0.87 ± 0.02 4.78 ± 0.04

Ours 11.78 ± 0.07 15.12 ± 0.09 0.89 ± 0.01 4.62 ± 0.03 10.75 ± 0.06 13.98 ± 0.08 0.91 ± 0.01 4.49 ± 0.03

The values in bold are the best values.

TABLE 6 Ablation study results on the proposed model across the TrainSim and Rail-5k datasets.

Model variant TrainSim dataset Rail-5k Dataset

MAE ↓ RMSE ↓ R2 Score ↑ MAPE ↓ MAE ↓ RMSE ↓ R2 Score ↑ MAPE ↓

w./o. Temporal encoder 14.54 ± 0.12 18.33 ± 0.14 0.81 ± 0.01 5.36 ± 0.05 15.12 ± 0.12 19.89 ± 0.15 0.77 ± 0.02 5.61 ± 0.06

w./o. Railway relationships 13.89 ± 0.10 17.78 ± 0.13 0.82 ± 0.01 5.19 ± 0.04 14.68 ± 0.11 19.22 ± 0.14 0.78 ± 0.01 5.45 ± 0.05

w./o. Model training 13.45 ± 0.11 17.22 ± 0.12 0.83 ± 0.02 5.05 ± 0.04 14.12 ± 0.10 18.78 ± 0.13 0.79 ± 0.01 5.29 ± 0.04

Ours 11.32 ± 0.07 15.89 ± 0.10 0.88 ± 0.02 4.58 ± 0.03 12.87 ± 0.08 16.74 ± 0.11 0.84 ± 0.01 5.02 ± 0.03

The values in bold are the best values.

FIGURE 4
Ablation study of our method on the RailSem19 and RailSet datasets.
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trained on the same dataset, and we used three key metrics to assess
their performance: mean absolute error (MAE), mean squared error
(MSE), and R-squared. The results, shown in Table 7, indicate that
the GRU model with the attention mechanism outperforms the
standard GRU model. Specifically, the GRU with attention achieved
a lower MAE of 0.052, compared to 0.065 for the GRU without
attention. This indicates that the attention mechanism enables the
model to make more accurate predictions. Similarly, the GRU with
attention also showed a lower MSE of 0.004, compared to 0.005 for
the GRU without attention. Additionally, the R-squared value for
the GRU with attention was 0.92, significantly higher than the
0.88 achieved by the GRU without attention, suggesting that the
attention-enhanced model captures the underlying data patterns
more effectively. These results confirm that the attentionmechanism

improves model performance by helping it focus on the most
relevant time steps, which is particularly beneficial when long-
term dependencies need to be captured. The attention
mechanism likely aids in filtering out less important information,
enhancing the model’s ability to retain and utilize critical data points
from the sequence.

To enhance the interpretability of our model, we conducted a
key feature contribution analysis using SHapley Additive
exPlanation (SHAP) values. This experiment quantifies the
importance of different input features across three predictive
tasks: predictive maintenance, anomaly detection, and demand
forecasting. Additionally, we performed an ablation study to
measure the impact of feature removal on model performance.
The results are summarized in Table 8. The SHAP analysis
indicates that for predictive maintenance, track vibration has the
highest contribution to the model’s failure predictions, with a mean
SHAP value of 0.213. Removing this feature leads to an 8.7% drop in
AUC-ROC, confirming its importance in identifying potential
infrastructure failures. Maintenance history is also a key factor,
contributing a SHAP value of 0.178, and its removal results in a 7.2%
drop in AUC-ROC. These results align with physical expectations, as
increased track vibration and lack of recent maintenance are known

FIGURE 5
Ablation study of our method on the TrainSim and Rail-5k datasets.

TABLE 7 Comparison of GRU with and without the attention mechanism
component on the test set.

Model MAE MSE R-Squared

GRU with Attention 0.052 ± 0.003 0.004 ± 0.0003 0.92 ± 0.01

GRU without attention 0.065 ± 0.004 0.005 ± 0.0004 0.88 ± 0.02

TABLE 8 Feature importance analysis using SHapley Additive exPlanation (SHAP) values and an ablation study. SHAP values represent the mean absolute
impact of each feature onmodel predictions, while the performance degradation column shows the change in accuracy (for anomaly detection), AUC-ROC
(for predictive maintenance), or MAE (for demand forecasting) after feature removal.

Feature SHAP value (mean impact) Task Performance degradation

Track vibration 0.213 ± 0.014 Predictive maintenance −8.7% AUC-ROC

Maintenance history 0.178 ± 0.011 Predictive maintenance −7.2% AUC-ROC

Track displacement 0.192 ± 0.012 Anomaly detection −6.5% Accuracy

Temperature variation 0.165 ± 0.009 Anomaly detection −5.9% Accuracy

Passenger flow history 0.245 ± 0.016 Demand forecasting +1.31 MAE

Rainfall 0.138 ± 0.007 Demand forecasting +0.94 MAE
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to increase failure risk. Track displacement and temperature variations
are the most significant factors for anomaly detection, with SHAP
values of 0.192 and 0.165, respectively. Removing track displacement
reduces anomaly detection accuracy by 6.5%, while removing
temperature variation leads to a 5.9% accuracy drop. These results
highlight the model’s ability to capture real-world railway anomalies,
where environmental fluctuations and structural changes often lead to
failures. For demand forecasting, passenger flow history has the highest
SHAP value at 0.245, indicating that past ridership patterns are the
strongest predictor of future demand. Removing this feature increases
the MAE by 1.31, leading to a significant drop in prediction accuracy.
Weather conditions, such as rainfall, also influence demand, with a
SHAP value of 0.138 and a corresponding increase of 0.94 in MAE
when removed. This finding is consistent with the real-world impact of
weather on passenger behavior, where adverse conditions often lead to
lower ridership. These results confirm that our model captures
meaningful and physically consistent relationships between features
and predictive outcomes. The ablation study further validates the
necessity of key features in railway system analysis, ensuring that
the model does not rely on spurious correlations but instead learns
from domain-relevant information.

5 Conclusions and future work

Beyond the methodological contributions, this study also
explores the challenges associated with engineering deployment
in real-world railway environments. One of the key challenges is
computational efficiency, as real-time railway applications demand
low-latency inference while maintaining high accuracy. The
integration of GRU, GCN, and attention mechanisms, while
effective, increases computational complexity, necessitating
optimizations such as model compression, quantization, and
hardware acceleration to enable large-scale deployment. Another
challenge lies in data privacy and security, as railway datasets often
contain sensitive operational and passenger information. Future
work should explore privacy-preserving approaches such as
federated learning and differential privacy to ensure compliance
with data protection regulations while maintaining predictive
performance. The study also highlights the need for adaptive
models that generalize across different railway networks with
varying operational contexts. The reliance on domain-specific
constraints enhances model reliability but may limit scalability to
new environments. Future research should investigate automated
adaptation techniques, such as transfer learning and meta-learning,
to reduce dependence on manually defined constraints. Addressing
these challenges will be crucial for transitioning from research-
driven insights to practical implementations that enhance railway
system intelligence, efficiency, and safety in real-world applications.

Despite these achievements, the proposed framework faces two
primary limitations. The reliance on domain-specific knowledge for
model optimization could restrict its applicability across different
railway systems with varied operational contexts. Future work
should explore automated adaptation techniques to reduce
dependency on domain expertise. While the framework excels in
processing historical and real-time data, its ability to predict long-
term environmental risks remains underexplored. Enhancing the
temporal scope of the model and integrating climate and

infrastructure data may provide deeper insights into long-term
environmental and operational impacts. These improvements
could further strengthen the framework’s contributions to
sustainable and adaptive railway infrastructure.

In addition to these challenges, computational efficiency
remains a critical consideration, particularly for real-time
inference in large-scale railway systems. The integration of GRU,
GCN, and attention mechanisms results in a computationally
intensive model, which may pose limitations when deployed in
resource-constrained environments or edge computing settings.
Future research should investigate model compression
techniques, such as pruning and quantization, to improve
inference speed while maintaining predictive accuracy.
Additionally, optimizing the deployment of the model on
specialized hardware, such as GPUs or tensor processing units
(TPUs), could further enhance real-time processing capabilities.
Another important consideration is data privacy, especially when
handling sensitive operational data from railway networks. Because
railway datasets often contain proprietary or personally identifiable
information (e.g., passenger flow records and maintenance logs),
privacy-preserving mechanisms must be implemented. Federated
learning and differential privacy techniques could be explored to
enable collaborative model training across different railway
operators without compromising data security. Ensuring
compliance with data protection regulations while maintaining
model performance is an essential direction for future work.
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