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Introduction: Karst regions are integral to the global carbon cycle. However, land
use changes of karst regions driven by urbanization and desertification contribute
to the instability of carbon storage, leading to uncertainties in the future.
Understanding these instabilities and uncertainties is crucial for formulating
carbon sequestration and land management strategies.

Methods: This study employed Patch-generating LandUse Simulation (PLUS) and
Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) to estimate
carbon storage, and introduced the Coefficient of Variation (CV) to assess the
instability and uncertainty. Multiscale Geographically Weighted Regression
(MGWR) was applied to explore the mechanisms, while Polynomial Regression
(PR) identified the stable intervals of factors, informing land-use policies.

Results and Discussion: (1) From 2000 to 2020, Guiyang’s carbon storage rose
from 136.62 Tg to 142.13 Tg. By 2035, projections under natural development,
urban expansion, and ecological protection scenarios estimate increases to
147.50 Tg, 147.40 Tg, and 147.82 Tg, respectively. (2) Carbon storage
instability increased from 2000 to 2020, while uncertainty is expected to
decrease by 2035. Instability was primarily due to transitions of Cropland-
Forest, Forest-Cropland, Cropland-Grassland, and Cropland-Impervious, while
uncertainties mainly arise from Cropland-Forest, Cropland-Impervious, and
Grassland-Impervious transitions. (3) DEM, AI, Distance from national
highways, SHDI, and Mean annual precipitation affected instability significantly.
(4) Encouraging Shrub-Forest, Shrub-Cropland and Cropland-Forest
conversions, and controlling Forest-Cropland, Forest-Shrub, and Cropland-
Impervious conversions within the stable intervals of factors, can enhance
carbon storage and reduce uncertainty. This study establishes a methodology
for evaluating carbon storage instability and uncertainty in karst regions, which is
an extension of carbon storage research.
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1 Introduction

As global carbon emissions continue to rise and climate threats
intensify, carbon neutrality strategies have become imperative, with
enhancing carbon storage as a crucial element in achieving this goal.
Terrestrial ecosystems, one of the three major carbon pools on Earth,
significantly influence the global carbon cycle and carbon balance
(Wang K. et al., 2022). However, these ecosystems are inherently
unpredictable, complex, and subject to uncertainty, leading to
instability in their carbon storage capacity (Hou et al., 2013).
Instability refers to variations in current and historical carbon
storage capacity, while uncertainty pertains to fluctuations in
future carbon storage capacity. Greater instability indicates more
pronounced differentiation in current carbon storage; higher
uncertainty suggests an increased risk of future carbon storage.
These factors can profoundly impact policy-making. Land use
change have been identified as key components of human
interference in the global carbon cycle (Wang et al., 2023) and
major contributors to the instability and uncertainty of carbon
storage in terrestrial ecosystems (Chang et al., 2022). Assessing
carbon storage capacity instability and uncertainty in the context of
land use change and analyzing the underlying mechanisms are
critical for understanding ecosystem services. This understanding
is essential for formulating land-use policies and advancing carbon
neutrality (Grêt-Regamey et al., 2013; Hamel and Benjamin, 2017).

In recent years, scholars have conducted extensive research on
the instability and uncertainty and carbon storage. Regarding the
research content, studies on instability/uncertainty are mostly
conducted from the perspective of ecosystem services (Grêt-
Regamey et al., 2013; Yang Y. et al., 2024; Hou et al., 2013;
Hamel and Benjamin, 2017). These include assessments of
ecosystem service uncertainty (Ma et al., 2024), methods for
reducing uncertainty in ecosystem service valuation (Xing et al.,
2020; Ma and Wen, 2021; Wang B. et al., 2022; Gao et al., 2021),
analyses of the impacts of this uncertainty (Wang B. et al., 2022; Ma
and Wen, 2021), and investigations into its sources (Hou et al.,
2013). Research on carbon storage has predominantly focused on
the spatial and temporal evolution of carbon storage, modeling
predictions (Wang et al., 2023; Xu C. et al., 2023; Fan et al., 2023; Li
X. et al., 2022), and impact mechanisms (Li and Geng, 2023).
However, there has been limited research on carbon storage from
the perspective of instability and uncertainty. Among the few studies
that address carbon storage uncertainty, most have examined it from
the perspectives of geological formations (Nordbotten et al., 2024;
Sun et al., 2023; Xiao et al., 2024; Mahjour and Faroughi, 2023), risk
management (Watson et al., 2014; Zhang et al., 2019), and ecological
economics (Narita and Klepper, 2016; Chen et al., 2016). A
significant gap exists in the literature regarding the assessment of
carbon storage instability and uncertainty in the context of land use
change and the analysis of their underlying mechanisms.

As for methodology, carbon storage estimation is primarily
conducted using several approaches, including the sample land
inventory method (Zhu et al., 2021), the IPCC inventory method
(Sun and Shi, 2020), model simulation (Huang et al., 2022), and the
InVEST model (Lahiji et al., 2020; Shao et al., 2023). Among these,
the InVEST model is favored for its simplicity, flexible parameters,
and high precision, making it widely used in recent carbon storage
studies (Zhu et al., 2022; Islam et al., 2022). Methods for assessing

instability and uncertainty include comparative analysis,
optimization of parameters, global sensitivity analysis, mapping
comparative statistics (MCS), scenario analysis, and Bayesian
networks (Ma et al., 2024; Grêt-Regamey et al., 2013;
Harmáčková and Vačkář, 2018; Alshehri et al., 2024; Refsgaard
et al., 2007). However, these methods face challenges when applied
to multi-scenario or multi-temporal studies of ecosystem services,
particularly in addressing differences in data units and spatial
visualization capabilities. The methods used to detect the
influence mechanism include Geographical Detector, GWR and
other models (Liu et al., 2019; Niu and Pan, 2021; Li et al.,
2023a), but the exploration scale is difficult to penetrate into the
patch scale. The MGWR model, which incorporates all spatial
patterns by constructing the bandwidth of drivers (Oshan et al.,
2019), enhances the scientific rigor of research outcomes.

Additionally, the majority of studies focus on countries (Chang
et al., 2022; Li et al., 2023a; Li et al., 2004), provinces (Yang Y. et al.,
2024; Wang X. et al., 2022; Xing et al., 2020; Zhu et al., 2024), major
river basins (Xu W. et al., 2023; Liu et al., 2019; Xu C. et al., 2023),
and first-tier cities (Wang et al., 2023; Yao et al., 2023; Xu D. et al.,
2022; Wang X. et al., 2022; Zou et al., 2023). In contrast, karst
geological units remain underexplored (Du et al., 2023; Li et al.,
2024; Li and Geng, 2023).

Karst regions comprise approximately 15% of the Earth’s land
area and play a critical role in influencing global terrestrial carbon
stocks (Fleury et al., 2013). Firstly, these regions are key areas
contributing to the decline in global carbon storage. Due to their
thin soil layers, fragmented distribution, susceptibility to erosion,
and pronounced rocky desertification, karst regions experience
reduced vegetation cover, leading to a significant decrease in
carbon storage (Luo et al., 2024). Secondly, karst regions also
serve as important carbon sinks. Much of the land in these areas
consists of bare rocky gravel and forested land, with vegetation
largely composed of shrubs and broad-leaved forests. This presents
opportunities for afforestation and the conversion of shrubland to
forest (Liu et al., 2016).

Moreover, compared to other ecosystems, the karst region is
particularly sensitive to the instability and uncertainty of carbon
storage. First, the prevalence of rocky desertification in karst areas
contributes to more frequent fluctuations in carbon storage. The
widespread occurrence of rocky desertification leads to frequent
changes in vegetation cover, which in turn drives frequent variations
in carbon storage (Li and Zhang, 2024). Second, the per-unit-area
carbon storage capacity in karst regions is significantly lower. The
ecosystem organic carbon storage for shrub grasslands, thorn
shrubbery, forest-shrub transitions, and secondary forests in karst
regions is 3.81, 4.72, 5.68, and 15.1 kg/m2, substantially lower than
that of other ecosystems in non-karst regions (Bertilsson et al.,
2013). Consequently, carbon storage in these areas exhibits more
pronounced fluctuations. Third, vegetation in karst regions is
particularly vulnerable to external factors. Due to shallow soils
and limitations in ecological water availability, vegetation in these
regions is highly susceptible to environmental changes, resulting in
greater carbon storage instability (Ao et al., 2025). Fourth, land use
changes in karst areas are unusually frequent. Natural and
anthropogenic factors, such as rocky desertification, urbanization,
and afforestation, have significantly intensified the frequency of land
use changes in karst regions. This has led to marked spatial
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differentiation and volatility in carbon storage, resulting in
pronounced instability and uncertainty in the region’s carbon
storage capacity (Kinsey-Henderson and Wilkinson, 2013).
Therefore, understanding the dynamics of this instability and
uncertainty is essential for devising land management strategies
aimed at enhancing global terrestrial carbon storage.

As shown in Figure 1, Southwest China is situated at the heart of
one of the world’s three largest contiguous karst regions (Sun et al.,
2020), where deforestation and desertification have contributed to a
decline in carbon storage (Wang et al., 2019). Since 2000, the
Chinese government has implemented projects aimed at
converting farmland to forest and comprehensively addressing
rocky desertification in the southwestern karst region. These
efforts have enhanced the diversity and complexity of forest
ecosystems (Shao et al., 2023). Newly established forests account
for approximately 32% of the region’s forest carbon sinks (Tong
et al., 2020). Carbon storage in the region has been subject to both
natural degradation and artificial enhancement, resulting in
significant instability and uncertainty. This study focuses on
Guiyang, a representative karst city in Southwest China. Using
land use change data from 2000 to 2020, the Patch-Generating
Land Use Simulation model (PLUS) was employed to project land
use patterns for 2035 under multiple scenarios. The InVEST model
was utilized to estimate carbon storage, while the coefficient of
variation (CV) was introduced to assess the instability and
uncertainty of carbon storage and to reveal its spatio-temporal
evolution characteristics. The Vector Land-parcel-based
Landscape Index (VecLI) and the MGWR models were used to
investigate the factors influencing carbon storage instability and
uncertainty. Polynomial regression (PR) was applied to identify the
stable interval of influencing factors. Finally, policy
recommendations are proposed for land use planning in Guiyang
to enhance the stability and sustainability of carbon storage and
contribute to achieving carbon neutrality.

This paper integrates the PLUS, InVEST, and CV models, and
introduces the ACV and SCV indices, establishing a methodology
for evaluating carbon storage instability and uncertainty, which is an
important extension of existing carbon storage research.
Simultaneously, this study tackles the underexplored topic of
carbon storage dynamics in karst regions, which are ecologically
critical yet highly susceptible to human-induced changes.
Furthermore, the findings of this study offer a practical and
actionable land management strategy to enhance carbon
sequestration and mitigate uncertainties in karst regions, thereby
contributing to global carbon cycling and balance.

2 Materials and methods

2.1 Study area

Guiyang (26°11′N–27°22′N, 106°07′E−107°17′E) is situated in
the heart of the karst region in southwest China (Figure 2). It
covers a total area of 8,034 km2, with karst landforms comprising
85.03% of this area. These distinctive karst features contribute to
a unique mountainous urban landscape but also result in a barren
and fragile ecological environment (Lin and Wang, 2023).
Guiyang has a subtropical plateau monsoon humid climate,
characterized by an annual average temperature of 15.3°C and
total annual precipitation of 1,129.5 mm. The dominant
vegetation is subtropical humid evergreen broad-leaved forest,
with representative plant species including Lauraceae, Fagaceae,
and Theaceae, while the primary soil type is acidic yellow soil.
Guiyang serves as the political, cultural, and economic center of
Guizhou Province. The city is administratively divided into six
districts (Yunyan, Nanming, Guanshanhu, Huaxi, Baiyun, and
Wugang), three counties (Xiuwen, Xifeng, and Kaiyang), and one
county-level city (Qingzhen). In 2023, the GDP reached

FIGURE 1
Distribution of karst regions and rock desertification phenomenon.
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515.475 billion Yuan, and the permanent population was
6.4029 million.

2.2 Data sources and processing

The data sources and processing methods used in this study
are summarized in Table 1. The land use data were obtained from
the CLCD land use dataset (https://zenodo.org/record/8176941),
which offers a higher temporal resolution compared to datasets
such as GLC_FCS30, Global30, AGLC 2000_2015, FROM-
GLC10, ESA10, and ESRI10 (Yang and Huang, 2021). The
land was classified into nine categories: Cropland, Forest,
Shrub, Grassland, Water, Snow/Ice, Barren, Impervious, and
Wetland. The selection of influencing factors was informed by
existing studies (Xu C. et al., 2023; Zhang et al., 2022; Gao L. et al.,
2022) and encompasses three domains: natural environment,
socio-economic conditions, and spatial distance. First, natural
conditions such as climate, topography, and hydrology
fundamentally determine variations in land use and,
consequently, the spatial distribution of carbon storage (Zhou
et al., 2024; Yang Y. et al., 2024). Second, the level of economic
development and the intensity of human activities significantly
influence land-use transitions, thereby contributing to carbon
storage instability and uncertainty (Yang Y. et al., 2024, Yang, Lu,
et al., 2024). Third, spatial distance plays a critical role in facility
siting, as spatial accessibility exerts a considerable impact on

land-use changes (Li et al., 2024; Zou et al., 2023). Finally, based
on principles of data accessibility, relevance, quantifiability,
spatial variability, and consistency, a total of 19 influencing
factors were selected for analysis. The data for these factors
were sourced from the Resource and Environment Science
Data Center of the Chinese Academy of Sciences (https://
www.resdc.cn/).

2.3 Methodology

2.3.1 Research framework
The research framework consists of four integrated components

that combine the PLUS, InVEST, CV, VecLI, MGWR, and PR
models (Figure 3). (1) The spatial and temporal evolution of land
use from 2000 to 2020 was analyzed, and land use in multiple
scenarios for 2035 was simulated by using the PLUS. (2) The spatial
and temporal evolution of carbon storage from 2000 to 2035, based
on eight periods of land use data, was examined by using the
InVEST. (3) Carbon storage instability and uncertainty were
assessed by introducing the CV metric, and the MWGR and
VecLI were employed to explore the underlying mechanisms.
The stable interval of each factor was identified by using PR. The
types of high-risk land conversion that cause carbon storage
instability and uncertainty were identified by the Average of
CV(ACV). (4) Finally, policy recommendations for land use
planning were proposed.

FIGURE 2
Location of study area.
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2.3.2 Land use transfer matrix
The land use transfer matrix is used to reveal the mutual

transformation of different land use types. The calculation
formula is shown in Equation 1.

Aij �
A11 A12 / A1n

A21 A22 / A2n

/ / /
An1 An2 / Anm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

whereAij represents the area transferred from land use type i to land
use type j.

2.3.3 PLUS
Existing multi-scenario land use simulation models primarily

include CA, CLUE-S, FLUS, and PLUS models. The CA model,
however, struggles to simulate patch-level changes across multiple
land use types, resulting in limited predictive accuracy (Wu et al.,
2022). The CLUE-S model (Li et al., 2023b; Ning et al., 2018) and the
FLUS model (Lv et al., 2021; Wen et al., 2023; Zhang et al., 2023)
enable high-precision land use change simulations but are
constrained to utilizing land use data from a single time point.
Consequently, they lack a temporal dimension, resulting in
predictions with low coupling to actual changes, and they fail to
uncover the driving mechanisms of land use change. In contrast, the
PLUS model excels in extracting probabilities of land use change
over a given time period, enabling multi-scenario, multi-scale, and

high-precision simulations. Furthermore, it has the capability to
reveal the driving mechanisms behind land use changes. Its flexible
handling of diverse land use patch dynamics also provides robust
support for subsequent carbon storage predictions (Liang et al.,
2021). The PLUS model was selected to simulate land use change
which consists of the following four parts.

2.3.3.1 Land expansion analysis strategy (LEAS)
The Random Forest Classification (RFC) is used to explore the

probability of various land use expansion. The calculation formula is
shown in Equation 2.

Pd
i,k x( ) � ∑M

n�1I hn x( ) � d[ ]
M

(2)

wherePd
i,k(x) represents the probability of the occurrence of land type

k within cell i; when d = 1, it indicates the conversion of other land
types to land type k; while when d = 0, it denotes the conversion of
other land types into land types that are not k; x is a vector composed
of driving factors; I is the indicator function of the decision tree
ensemble; hn(x) refers to the prediction result of the n-th decision tree
based on the vector x; M represents the total number of decision trees.

2.3.3.2 Demand projection (DP)
The Markov model is used to estimate the demand of various

land types. The calculation formula is shown in Equation 3.

TABLE 1 Study data information.

Data type Data name Time frame Spatial resolution Data unit Data sources

Land use CLCD 2000–2020 30 m —— https://zenodo.org/record/8176941

Natural environment Elevation 2020 30 m m https://www.resdc.cn/

Soil type 2020 30 m ——

Average annual temperature 2020 1,000 m °C

Mean annual Precipitation 2020 mm

Slope 2020 30 m °

Slope direction 2020 30 m

Space distance Distance from county road 2020 30 m m

Distance from the national highway 2020 30 m

Distance from township 2020 30 m

Distance from urban primary roads 2020 30 m

Distance from urban secondary roads 2020 30 m

Distance from urban tertiary roads 2020 30 m

Distance from water 2020 30 m

Distance to high speed 2020 30 m

Distance to provincial roads 2020 30 m

Distance to railway 2020 30 m

Socio-economic Per capita GDP 2020 1,000 m million/km2

Night Lighting 2020 0.004° nW/cm2/sr

Population density 2020 1,000 m Person/km2

Frontiers in Environmental Science frontiersin.org05

Zhou et al. 10.3389/fenvs.2025.1551050

https://zenodo.org/record/8176941
https://www.resdc.cn/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1551050


FIGURE 3
Research framework.
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St+1 � St × pij (3)

where pij represents the transition probability from land type i to
land type j; St denote the areas of land types at time t.

2.3.3.3 CA based on multiple random seeds (CARS)
CARS integrates land type demand, the land use transition cost

matrix, and neighborhood weights to obtain the spatial distribution
results of land use. The calculation formula is shown in Equation 4.

MPd�1,t
i,k � Pd�1

i,k × Ωt
i,k × Dt

k (4)

where the term MPd�1,t
i,k represents the overall probability; Pd�1

i,k

denotes the growth probability of land use class k in cell i; Ωt
i,k

represents the neighborhood effect, indicating the coverage
proportion of land use class k within the neighborhood of cell i.
Dt

k reflects the impact of the demand for target land use class k,
which depends on the discrepancy between the current land
quantity and the target demand for land use class k at iteration t.

2.3.3.4 Confusion matrix and FoM (CFM)
The PLUS model employs three coefficientsto validate

simulation accuracy, including Kappa, Figure of Merit (FoM),
and Overall Accuracy (OA). Among them, the Kappa coefficient
assesses the overall accuracy of simulated maps by measuring the
consistency between mapping precision and user accuracy. The
algorithm is shown in Equation 5.

Kappa � Pa − Pb

1 − Pb
(5)

where Pa represents the proportion of correctly simulated grid cells;
Pb denotes the proportion of grid cells correctly simulated by
chance. The Kappa value ranges between 0 and 1, with higher
values indicating greater simulation accuracy. When Kappa >0.75,
the simulation is considered to perform well.

The FoM coefficient is a statistical measure used to evaluate the
alignment between simulation results and actual conditions. It is
calculated based on the actual and simulated land use areas for each
category. The algorithm is shown in Equation 6.

FoM � B
A + B +M + N

(6)

where A represents the error area where actual changes were
predicted as no change; B denotes the correct area where both
actual and predicted changes align; M refers to the error area where
actual changes differ from predicted changes; and N indicates the
error area where actual no-change regions were predicted as
changes. The FoM value ranges from 0 to 1, with higher values
reflecting greater simulation accuracy. However, there is no
universally fixed threshold for this metric, and in many cases, the
FoM value does not exceed 0.5 (Liang et al., 2021; Liang et al., 2021).

The OAmeasures the percentage of correctly predicted samples.
The algorithm is shown in Equation 7.

OA � TP + TN
TP + TN + FP + FN

(7)

where TP represents the number of positive samples correctly
identified; TN denotes the number of negative samples correctly
identified; FP refers to the number of negative samples incorrectly

identified as positive; FN indicates the number of positive samples
incorrectly identified as negative.

2.3.4 InVEST
In this study, the InVESTmodel’s carbon module was utilized to

estimate carbon storage across different land classes by assessing
four fundamental carbon pools: above-ground biomass, below-
ground biomass, soil, and dead organic matter. The algorithm is
shown in Equations 8, 9.

Ci � Ci above + Ci below + Ci soil + Ci dead (8)
Ctotal � ∑n

i
Ci × Si (9)

where Ci is the carbon density of land use type i; i stands for land use
type; Ci above represents the above-ground carbon density of i;
Ci below is the underground carbon density of i; Ci soil is the soil
carbon density of i. Ci dead is the dead carbon density of i. Ctotal

stands for total carbon storage; Si is the area of i; n is the number of
land use types.

The carbon density data used in this study were based on the
results of previous research (Stocker, 2014; Li et al., 2004) and were
further revised according to additional studies (Giardina and Ryan,
2000; Alamet al., 2013). Additionally, temperature and precipitation
are significant factors influencing regional carbon density levels
(Raich and Nadelhoffer, 1989). This study employed the carbon
density correction approach and coefficients used in the research on
carbon storage in the Nanming River Basin of Guiyang (Li and
Geng, 2023). Building upon this foundation, regional temperature
(mean annual temperature of 16°C) and precipitation (mean annual
precipitation of 1449.7 mm) were incorporated to supplement the
estimation of carbon densities for Shrub and Barren. The resulting
carbon density indices for each land class are in close agreement with
Nanming River Basin (Li and Geng, 2023) and Guizhou Province
(Lin et al., 2022), thus providing reliable support for future
calculations of carbon storage instability/uncertainty (Table 2).
The relevant data were obtained from the China Meteorological
Network (www.cma.gov.cn) and the Water Resources Bulletin. The
algorithm is presented in Equations 10–14.

CSP � 3.3968 × MAP + 3996.1 R2 � 0.11( ) (10)
CBP � 6.798 × e0.0054×MAP R2 � 0.70( ) (11)

CBT � 28 × MAT + 398 R2 � 0.477,P < 0.01( ) (12)

KB � KBP × KBT � C1
BP

C2
BP

×
C1

BT

C2
BT

(13)

K s � Cl
SP

C2
SP

(14)

where CSP is soil carbon density obtained according to annual
precipitation; CBP is the biomass carbon density based on annual
precipitation;CBT is the biomass carbon density obtained according to
the average annual temperature; MAP represents mean annual
precipitation; MAT denotes mean annual temperature; KBP is the
adjustment coefficient for the precipitation factor in biomass carbon
density;KBT is the adjustment coefficient for the temperature factor in
biomass carbon density. Cl

SP is the carbon density data of the study
area;C2

SP is the primary carbon density data of the study area;KB is the
correction coefficient of biomass carbon density; Ks is soil carbon
density correction factor.
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2.3.5 CV
The standard deviation of ecosystem service values can indicate

system stability (Grêt-Regamey et al., 2013). To eliminate the
influence of varying data units, the CV was employed to assess
the instability (or uncertainty) of ecosystem carbon storage,
calculated as the ratio of the standard deviation to the mean
value (Huang et al., 2014). Following existing studies (Yang Y.
et al., 2024), instability (or uncertainty) was categorized into four
levels: weak (I, 0%–15%), moderate (II, 15%–36%), strong (III, 36%–
100%), and very strong (IV, >100%). The algorithm is shown in
Equation 15.

CV � σ

μ
× 100% (15)

where σ and μ are the standard deviation and mean of the value,
respectively.

To further investigate the impact of land use changes on the
instability and uncertainty of carbon storage, two indicators were
introduced (Yang Y. et al., 2024): the average carbon storage
instability/uncertainty caused by a specific type of land use
change across different periods (ACV), and the total carbon
storage instability/uncertainty caused by all types of land use
change within the same period (SCV). First, regional statistics on

carbon storage fluctuations were derived using superimposed land
use data for each period. Then, the mean and standard deviation of
carbon storage fluctuations resulting from land use changes were
calculated for each period, and the coefficient of variation (CV) for
each period under the same type of land use change was determined.
Finally, ACV and SCV were calculated. The algorithm is shown in
Equations 16, 17.

ACV � 1
k
× ∑n

n�1
Snij *CVnij

ST
(16)

SCV � ∑m

m�1
Sij *CVij

ST
(17)

where ACV is the average of CV changes of carbon storage caused
by changes of land type i-j in each period; SCV is the sum of carbon
storage CV of all land types after i-j changes in a certain period; k is
the number of i-j changes in different periods; CVnij is the value of
CV change of carbon storage caused by the change of land type i-j in
the n period. CVij is the value of CV change of carbon storage
caused by the change of land type i-j in a certain period. Snij is the
area of land use change type i-j in the n period. Sij is the area of land
use change type i-j in a certain period.m is the total number of land
use change types in a certain period; ST is the total area of the
ground class.

TABLE 2 Carbon density of each land use type in the study area [unit: Mg/hm2; Project 1: Nanming River valley (Li and Geng, 2023); Project 2: Guiyang city
(this research); Project 3: Guizhou Province (Lin et al., 2022)].

Land use type Project C_above C_below C_soil C_dead

Cropland 1 25.02 4.07 86.5 0

2 25.02 4.07 86.5 0

3 13.05 7.3 103.48 2.32

Forest 1 16.96 56.22 168.3 6.5

2 16.96 56.22 168.3 6.5

3 20.36 67.5 170 7.8

Shrub 1 —— —— —— ——

2 7 3 25 0

3 —— —— —— ——

Grassland 1 0.68 0.72 88.31 0.83

2 0.68 0.72 88.31 0.83

3 0.82 0.87 199.84 1.28

Water 1 0 0 0 0

2 0 0 0 0

3 1.02 1.34 0.63 0.48

Barren 1 —— —— —— ——

2 0.74 0.13 69.92 0

3 0.74 0.93 90.9 0.36

Impervious 1 0 0 107.37 0

2 0 0 107.37 0

3 0.07 1.63 205.07 0.35
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2.3.6 Spatial autocorrelation
The shorter the distance, the more significant the correlation

(Tobler, 1970). Spatial autocorrelation measures the potential
similarity and heterogeneity between spatial variables with similar
locations. In this study, both Global Moran’s I and Local Moran’s I
were employed to assess the clustering patterns of carbon storage
instability and uncertainty (Anselin, 1995). The algorithm is shown
in Equations 18, 19.

GlobalMoran′s I � n∑n
i�1 ∑n

j�1 wij xi − �x( ) xj − �x( )
∑n

i�1 ∑n
j�1 wij∑n

i�1
xi − �x( )2

(18)

LocalMoran′s I � xi − �x
σ2

∑n

j�1,j ≠ i
wij xj − �x( )[ ] (19)

where n is the total number of features; xi and xj are the attribute
values of the i-th and j-th features, respectively; x� is the mean
attribute value; and wij denotes the spatial weight between features i
and j. The GlobalMoran′s I index ranges from [-1,1], where a
positive index indicates spatial correlation, a negative index
indicates spatial heterogeneity, and a value of 0 represents
random distribution; LocalMoran′s I generates local indicators of
spatial association, where H-H and L-L indicate spatial correlation,
while H-L and L-H indicate spatial heterogeneity.

2.3.7 Landscape pattern index
The accuracy of landscape pattern indices calculated from raster

data (e.g., Fragstats) is often limited. Consequently, this study
employed the VecLi model to compute landscape pattern indices
using vector data (Yao et al., 2022). Notably, this research introduces
an innovative approach by applying the concept of downgrading,
which enables landscape-level indices to be adapted for land class-
level patches. This was achieved by individually extracting patches
with fluctuating carbon storage resulting from land class changes
and performing calculations for each type. Ultimately, four
landscape pattern indices were selected for analysis, including
SHDI, IJI, LSI, and AI (Supplementary Table S1).

2.3.8 MGWR
Multiscale geographically weighted regression (MGWR) is an

advanced variant of geographically weighted regression (GWR) that
addresses the limitation of assuming uniform spatial scales for all
modeled processes (Oshan et al., 2019). MGWR permits the use of
varying bandwidths for each study variable, allowing it to capture
the differing scales of influence that variables exert on the dependent
variable. This results in enhanced explanatory power and
robustness. The algorithm is shown in Equation 20.

yi � ∑m

k�1 βbwk ui, vi( )xik + εi (20)

where yi is the dependent variable at node I; (ui, vi) is the
coordinates of node i; xik is the kth independent variable at node
i; βbwk is the bandwidth used for the regression coefficient of the kth
variable; βbwk(ui, vi) is the regression coefficient for the kth variable
at location (ui, vi); εi represents the error term for node i; and m
indicates the number of variables; all spatial weights are estimated
using a quadratic kernel function under adaptive bandwidth and the
corrected Akaike Information Criterion (Hurvich and Tsai, 1989) is
used to determine the optimal bandwidth.

2.3.9 PR
The Polynomial Regression model can approximate data points

by incorporating higher-order terms of x (Kragten, 1990). Through
iterative processes, the model’s optimal fit can be identified based on
goodness-of-fit metrics, such as the r-square value and mean square
error (Motulsky and Ransnas, 1987). The algorithm is shown in
Equation 21.

y � β0 + β1x + β2x
2 + . . . + βmx

m (21)
where y is the dependent variable; x is the independent variable; β0
is the constant term; β1,. . ., βm are the regression coefficient,
determined by data fitting.

3 Results

3.1 Spatio-temporal evolution of land use
and multi-scenario simulation

This section analyzed the structural evolution and land use
conversion characteristics of Guiyang City from 2000 to 2020,
based on land use data. The LEAS module in the PLUS model
was then employed to identify the development probabilities of
various land categories. Subsequently, the DPmodule was utilized to
predict land use demands for three scenarios in 2035, including
natural development, planned guidance, and ecological protection.
Finally, the CARS module simulates the spatial distribution of land
use under these three scenarios, providing the foundational raster
layers for the calculation of carbon storage in 2035.

3.1.1 Spatial-temporal evolution of land
use (2000–2020)

Through the analysis of land use data for Guiyang (Figure 4), the
areas of different land use types were ranked as follows: Cropland >
Forest > Impervious > Shrub > Grassland > Water > Barren.
Cropland, covering 47%–53% of the land area, showed a
decreasing trend and was primarily concentrated in the central,
southern, and western parts. Forests accounted for 43.24%–46.69%
and exhibited an increasing trend, mainly located in the
northeastern and Guanshanhu areas. Impervious were
concentrated in the central and southern regions, showing a
year-by-year increase. Shrub initially increased and then
decreased, ranging from 2.91% to 0.74%. Grassland, primarily
situated in the northwest and central, accounted for 0.63%–1.53%
and showed an upward trend. Water bodies were concentrated in
the northwest and remained stable in area. Barren land, the smallest
category, accounted for approximately 0.01% of the total area.

From the perspective of land transfer (Table 3), Cropland,
Forest, and Impervious were the three primary land categories
undergoing significant changes in Guiyang from 2000 to 2020.
Cropland experienced an outflow of 90777.42 ha and an inflow
of 44237.43 ha, resulting in a decrease in land area. The primary
source of outflow and inflow was Forest, with the least amount
transferred to Barren and the most to Forest. Forest showed an
inflow of 72889.29 ha and an outflow of 37293.03 ha, indicating an
expansion, with Cropland as the main source and destination.
Impervious surfaces exhibited an outflow of 46.71 ha and an
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inflow of 17175.15 ha, showing a trend of expansion, with Cropland
contributing the largest inflow.

From the perspective of flow history (Figure 4C), the
transformation between Cropland and Forest persisted
throughout the study period. The largest conversion of Cropland

to Forest occurred between 2000 and 2005, while the smallest took
place between 2005 and 2010. Conversely, the smallest conversion of
Forest to Cropland was observed from 2000 to 2005, with the largest
occurring between 2005 and 2010. Overall, the total area of Forest
converted to Cropland was smaller than that of Cropland to Forest.

FIGURE 4
Spatial and temporal evolution of land use from 2000 to 2020. (A) Land use spatial evolution; (B) Land use structure evolution; (C) Land use transfer.
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The area of Shrub consistently decreased, primarily transitioning to
Forest. Initially, Grassland occupied a very small area and
maintained a low proportion over time. However, due to the
annual inflow from Cropland, Barren, and Water, its area
gradually expanded. Impervious and Barren followed similar
trends to Grassland. The area of Water remained relatively stable
with minimal fluctuations.

3.1.2 Multi-scenario simulation of land use
change (2020–2035)

To ensure the accuracy of the simulation, a validation
experiment was conducted prior to the formal simulation. Land
use change data from five different time spans were selected, and the
PLUS model was employed to simulate the 2020 land use data.
Simulation accuracy was then assessed, and the optimal time span
and parameters were determined. Ultimately, the period from
2010 to 2015 proved to be the most effective, outperforming the
other four time intervals, with a Kappa coefficient of 0.870742, an
overall accuracy of 0.91853, and a FoM coefficient of 0.208221,

exceeding the simulation accuracy reported in relevant studies
(Table 4). Therefore, the period from 2010 to 2015 was selected
as the reference period for land category development probabilities.
Based on the 2020 land use data, the spatial pattern of land use for
2035 was then simulated.

Land use change is influenced by numerous factors and presents
various possible trajectories. Therefore, building on previous studies
(Gao L. et al., 2022; Liang et al., 2021), future land use changes in
Guiyang were modeled under three scenarios: natural development,
urban expansion, and ecological protection. In the natural
development scenario, land use changes from 2020 to 2035 were
assumed to follow the patterns observed in previous years. In the
urban expansion scenario, the Gui’an New Area and other urban
regions were designated as development zones according to the
“Guiyang Territorial Space Master Plan (2021–2035).” In the
ecological protection scenario, Forest, Grassland, and Water were
strictly protected. Using the DPmodule within the PLUSmodel, this
multi-scenario simulation first projected land use demand under
various scenarios (Supplementary Table S2). Next, development

TABLE 3 Transfer matrix of land use types from 2000 to 2020 (unit: hm2). The Class 1–7: Cropland, Forest, Shrub, Grassland, Water, Barren, Impervious.

Class 2020

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Total

2000 Class 1 338752.08 61422.21 1603.44 10338.03 866.25 85.23 16462.26 429529.50

Class 2 34922.97 304865.91 1224.18 865.80 44.82 0.27 234.99 342158.94

Class 3 6598.44 10266.57 3046.50 259.11 5.67 0.00 2.52 20178.81

Class 4 2150.55 1037.79 149.94 941.49 30.60 2.34 358.11 4670.82

Class 5 558.00 162.63 0.00 62.91 7621.47 0.00 114.66 8519.67

Class 6 0.81 0.00 0.00 0.81 0.36 0.81 2.61 5.40

Class 7 6.66 0.09 0.00 0.27 39.69 0.00 9241.65 9288.36

Total 382989.51 377755.20 6024.06 12468.42 8608.86 88.65 26416.80 814351.50

TABLE 4 Comparison of prediction accuracy.

Object Target Kappa Overall FoM

Comparison of experiments 2000–2005 0.634374 0.793938 0.236925

2005–2010 0.713257 0.838922 0.268812

2010–2015 0.870742 0.91853 0.208221

2000–2010 0.752668 0.861453 0.378362

2005–2015 0.816312 0.895681 0.542457

Comparison of literature This Research 0.870742 0.91853 0.208221

Fan et al. (2023) 0.8412 0.8956 0.2478

Chen and Yao (2023) 0.8343 0.8735 0.3326

Zhou et al. (2020) 0.8277 0.8643 0.4318

Xu et al. (2022a) 0.8438 0.8894 0.3426

Li et al., (2022b) 0.8422 0.8955 0.2452

Nie et al. (2023) 0.8240 0.8603 0.4237
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probabilities for each land type were determined based on LEAS.
Finally, land use spatial distribution in the three scenarios was
simulated using CARS.

From the spatial pattern perspective (Figure 5), the land use
structure in 2035 will remain stable across the three scenarios,
dominated by Cropland, Impervious, and Forest, while Water

FIGURE 5
Multi-scenario land use simulations in 2035 and land use transfer from 2020 to 2035.
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will maintain a relatively consistent spatial distribution. In the
natural development scenario, Impervious will expand further,
particularly in Baiyun District, Guanshanhu District, and
southern Huaxi. This expansion will compress Cropland and
Grassland. Forest will expand in the eastern and northern parts
of the city, and Shrub will transition from a scattered to an
aggregated form. In the urban expansion scenario, urbanization
will be more pronounced, especially in central and southwestern
urban areas, leading to further compression of other land types.
Grassland and Cropland will be particularly affected in Nanming
District, Huaxi District, Qingzhen City, and Guanshanhu District,
while Barren will be impacted in the central area. Shrub and Forest
will be less affected by urbanization. In the ecological protection
scenario, while Impervious will expand from 2020 levels, their
growth will be controlled. Notably, the expansion in Baiyun
District and Guanshanhu District, which will be most significant
in the natural scenario, will show a decrease. Forest will continue to
expand in the east and north, while the declines in Cropland and
Grassland will also be mitigated. Shrub will transition from scattered
to aggregated. Barren will see slight expansion in the central and
southern parts of the city compared to the natural
development scenario.

Regarding land flows, the natural development scenario will
primarily involve changes in Cropland, Forest, and Impervious,
with minor changes in Shrub and Grassland, and minimal
alterations in Water and Barren. Cropland will predominantly
flow into Forest and Impervious, while Forest and Impervious will
experience inflows from Cropland. Although Shrub and Grassland
will be minor in extent, they will have more outflows than inflows.
Water will remain stable, and Barren will experience some
outflows with negligible overall change. Compared to the
natural development scenario, the urban expansion scenario
will exhibit similar flow patterns, but with increased outflows
and decreased inflows for Cropland, increased inflows for
Forest, and no outflows but increased inflows for Impervious,
primarily from Cropland. Shrub and Grassland will continue to see
more outflows than inflows, though both inflows and outflows will
be higher. Water will remain stable, while Barren will experience
only outflows with no inflows. Under the ecological protection
scenario, Cropland outflows will slightly increase, while inflows
will decrease. Forest will see a significant rise in inflows.
Impervious will experience a reduction in both inflows and
outflows, but overall inflows will remain higher than outflows.
Shrub and Grassland will continue to have more outflows than
inflows, but the total volume of flows will decrease. Barren will
experience both inflows and outflows.

In summary, the natural development scenario will perpetuate
the current trend of rapid urbanization, characterized by accelerated
growth of construction land and the encroachment on agricultural
and some ecological lands. In the urban expansion scenario, urban
growth will be concentrated in specific areas, leading to more
pronounced encroachment on Grassland and Cropland,
particularly in the city’s central regions. Conversely, under the
ecological protection scenario, the expansion of impervious
surfaces will be significantly curtailed, effectively safeguarding
ecological lands such as Forest, Shrub, and Grassland, thereby
mitigating the large-scale encroachment of construction land into
these areas.

3.2 Spatio-temporal evolution of
carbon storage

This section utilized the existing land use raster data from
2000 to 2020, as well as the multi-scenario land use raster data
for 2035 simulated in the previous section. The InVEST model’s
carbon module was employed to estimate carbon storage within
various land categories by considering the carbon densities of four
components: aboveground biomass, underground biomass, soil, and
dead organic matter. This approach enabled the analysis of the
spatiotemporal changes in carbon storage between the periods of
2000–2020 and 2020–2035.

3.2.1 Carbon storage changes (2000–2020)
Based on spatial distribution (Figure 6), the areas with high

carbon storage were primarily located in the northeastern, western,
and southern mountainous regions. Conversely, low carbon storage
areas were concentrated in the south-central part of the city, with a
noticeable expansion trend, particularly in Baiyun District,
Guanshanhu District, Yunyan District, Nanming District, and
Huaxi District. Additionally, both the central urban areas and the
lower urban areas experienced a significant decline in carbon storage.

Over the past 20 years, Guiyang’s carbon storage increased by
5.51 Tg (Figure 7A). From 2000 to 2005, carbon storage increased by
3.13 Tg, with the growth concentrated in the central part of the city,
while decreases were observed in Xiuwen County, Qingzhen City,
Guanshanhu District, and Baiyun District. Between 2005 and 2010,
carbon storage decreased by 1.52 Tg, primarily in the northeastern
and central parts of the city. From 2010 to 2015, carbon storage
increased by 1.12 Tg, with gains in Xifeng County and Kaiyang
County, and losses in the central urban area and Xiuwen County.
Finally, from 2015 to 2020, carbon storage further increased by
2.77 Tg, with declines in Xifeng County, Huaxi District, and
Nanming District, and increases in Xiuwen County and the
central area of the city.

From the perspective of land contributions (Table 5), carbon
storage was predominantly concentrated in Forest (approximately
63%) and Cropland (around 36.34%), with minimal contributions
from other land types. Additionally, the carbon storage per unit area
from 2000 to 2020 was 0.0001678 Tg/hm2, 0.0001716 Tg/hm2,
0.0001697 Tg/hm2, 0.0001711 Tg/hm2, and 0.0001745 Tg/hm2,
respectively. Both total carbon storage and carbon density
exhibited a trend of initially increasing, followed by a decrease,
and then a subsequent increase (Figures 7B, C).

3.2.2 Carbon storage changes (2020–2035)
Regarding spatial distribution (Figure 8A), Guiyang’s future

land use will continue to exhibit a pattern of “high carbon
storage in the northeast and low in the central and southern
regions.” High carbon reserves will be predominantly found in
the northeastern, western, and southern mountainous areas,
while low carbon reserves will be concentrated mainly in the
Baiyun, Guanshanhu, Yunyan, Nanming, and Huaxi districts.

In 2035, the total carbon storage under the three
scenarios—natural development, urban expansion, and ecological
protection will be 147.50 Tg, 147.40 Tg, and 147.82 Tg, respectively.
Carbon storage will increase by 5.37 Tg, 5.27 Tg, and 5.70 Tg,
respectively (Table 6). Most regions with increasing carbon storage
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across all scenarios will be located in the northern parts of Guiyang
City, including Kaiyang County, Xifeng County, and Xiuwen
County, as well as the central Wudang District. Smaller increases

will be observed in the southern part of Huaxi District and the
northeastern part of Qingzhen City. Areas with decreasing carbon
storage will be concentrated in the central city, particularly in

FIGURE 6
Spatial evolution of carbon storage from 2000 to 2020.
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Nanming District, Yunyan District, Guanshanhu District, and
Baiyun District. Compared to the natural development scenario,
the urban expansion scenario will show a more pronounced
reduction in carbon storage across various parts of the city, while
the ecological protection scenario will exhibit a smaller and more

moderate reduction (Figure 8C). The primary land types
contributing to carbon storage will remain Forest (about 70%)
and Cropland (about 26%). The carbon storage per unit land
area under the three scenarios will be 0.0001811 Tg/hm2,
0.0001810 Tg/hm2, and 0.0001815 Tg/hm2, respectively.

FIGURE 7
Carbon storage changes from 2000 to 2020. (A) Spatial distribution of carbon storage changes; (B) Changes in carbon storage of various land; (C)
Changes of carbon density.
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Across all three scenarios, carbon storage in Guiyang will show
an upward trend. The pattern of carbon storage changes across
different land categories will remain consistent among the scenarios,
with only Forest and Impervious increasing in carbon storage, while
all other land categories will exhibit a decrease. Compared to the
natural development scenario, the total increase in carbon storage
under the urban expansion scenario will be reduced by 0.09 Tg, with
the exception of Impervious, where carbon storage will be lower in
all other land categories. The ecological protection scenario will
demonstrate the highest overall increase in carbon storage, totaling
5.70 Tg. In this scenario, all land categories, except Shrub, will
experience greater increases in carbon storage compared to the other
two scenarios, with less reduction in carbon storage.

3.3 Instability and uncertainty of
carbon storage

Building upon the carbon storage distribution data outlined
above, this section employed CV to assess the instability
(uncertainty) of carbon storage in Guiyang City. It identified four
categories of instability (uncertainty) regions and subsequently
analyzed their structural changes, spatiotemporal evolution
characteristics, and spatial autocorrelation.

3.3.1 Spatio-temporal evolution characteristics of
carbon storage instability (2000–2020)

According to Equation 17, the SCV (Figure 9A) was calculated
for each period. Overall, carbon storage instability exhibited a
general upward trend from 2000 to 2020, characterized by an
initial decrease, followed by an increase, and then another
decrease. Carbon storage instability was highest during the
2010–2015 period and lowest during the 2005–2010 period.

Regarding the compositional structure of instability (Figure 9B),
the period from 2000 to 2020 exhibited the highest proportion of
Type I areas, ranging from 90.94% to 92.11%. This data indicated a
generally stable trend with a gradual downward slope. The
proportions of Type II and Type III areas were relatively low,
ranging from 0% to 0.07%, and showed minimal fluctuation. The
proportion of Type IV areas ranged from 7.82% to 9.02%, reflecting
an overall increasing trend. Carbon storage instability was greatest
during the 2010–2015 period and lowest during the
2005–2010 period.

From the global autocorrelation analysis perspective
(Figure 9C), the instability of carbon storage exhibited positive
spatial autocorrelation with clustered distribution patterns during
2000–2005. However, during the intervals of 2015–2020, the Z value
was below 1.65, suggesting an absence of significant spatial
autocorrelation in carbon storage instability. Additionally, during
the periods of 2005–2010 and 2010–2015, P values exceeded 0.05,
further indicating the lack of spatial autocorrelation in carbon
storage instability.

Based on the spatial pattern (Figure 9D), high instability was
consistently observed in the south-central part of the city across all
four time periods, while relatively low instability was noted in the
northeastern and western regions. During 2000–2005, the global
spatial characteristics of instability exhibited clustering, with local
spatial patterns displaying Low-High Outliers, where high instabilityT
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areas were predominantly located in the northwestern part of the
city. The 2005–2010 period showed random global spatial
distribution, with local patterns also indicating Low-High
Outliers, but high instability areas were more concentrated in the
central part of the city. The 2010–2015 period continued to display
random global spatial distribution, with local patterns showing Low-
High Outliers and high instability areas remaining concentrated in
the central part. In the 2015–2020 period, the global spatial
characteristics exhibited random distribution, local spatial

features displayed Low-High Outliers, and highly unstable areas
spread towards the southwest of Guanshanhu and the southeast
of Nanming.

Through an overlay analysis of high carbon storage areas and
regions with high carbon storage instability (Figure 10), it was found
that only 10% of the areas overlap, indicating a considerable
inconsistency between the two. The instability in carbon storage
is primarily attributable to land use changes, suggesting that the
majority of high carbon storage areas have not undergone land

FIGURE 8
Carbon storage in 2035 under different scenarios. (A) Spatial distribution of carbon storage; (B) Carbon storage changes from 2020 to 2035.
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category transformations. The few overlapping pixels mainly
correspond to areas where low-carbon storage land categories
have been converted to those with higher carbon storage
potential. These transitions are closely associated with policies
related to reforestation and the management of stony desertification.

3.3.2 Spatio-temporal evolution characteristics of
carbon storage uncertainty (2020–2035)

Overall (Figures 11A, B), the carbon storage uncertainty in
Guiyang City will significantly decrease compared to previous
levels. The urban expansion scenario will have the highest carbon
storage uncertainty, whereas the ecological protection scenario will
exhibit the lowest. In the natural development scenario, Type IV
uncertainty will account for 6.69%, Type II and III uncertainties for
0.06%, and Type I uncertainty for 93.25%. Under the urban
expansion scenario, Type IV uncertainty will rise to 7.02%, with
Type I at 92.98%, and Types II and III will be nearly negligible. In
contrast, the ecological protection scenario will show a reduced Type
IV uncertainty of 6.66%, with Type I reaching its highest proportion
across the scenarios at 93.27%, while Types II and III will
remain at 0.06%.

As for spatial patterns (Figures 11C, D), although the global
spatial autocorrelation parameters will vary across the three
scenarios, all scenarios will exhibit random global autocorrelation
with no significant local autocorrelation characteristics. Regarding
the spatial distribution of carbon storage uncertainty, areas of high
uncertainty will be primarily concentrated at the junction of Baiyun
and Guanshanhu districts, along the connecting axes between
Huaxi, Yunyan, and Nanming districts, and in specific localized
areas within Qingzhen, Xifeng, and Kaiyang.

3.4 Influencing mechanism of carbon
storage instability/uncertainty

Based on the above data on the spatial distribution of carbon
storage instability (uncertainty), this section analyzed its influence
mechanism. First, stepwise regression, variance inflation factor
(VIF) analysis, and P-value testing were employed to exclude

collinear influencing factors. Next, MGWR model was utilized to
examine the magnitude and trends of each influencing factor’s
impact on carbon storage instability. Finally, PR model was
applied to construct a regression fit between the CV and the
regional values of the influencing factors, identifying the “stable”
and “unstable” intervals of factors.

3.4.1 Correlation test of influence factors
In the era of big data, technological advancements have facilitated

data collection across various fields, increasing the likelihood of
multicollinearity among variables (Chan et al., 2022). The
correlation between independent variables can significantly impact
the effectiveness of regression models (Pal et al., 2019). Therefore, it is
crucial to performmulticollinearity tests before executing a regression
model. However, existing studies typically rely on a single test or
method for assessing collinearity (Yang Y. et al., 2024; Wang L. et al.,
2022). In this study, we employed a combination of stepwise
regression (Supplementary Table S3), variance inflation factor
(VIF) analysis (Supplementary Table S4), and P-value testing
(Supplementary Table S5). A preliminary assessment was
conducted to evaluate both collinearity and statistical significance,
ultimately retaining nine influential factors to optimize the MGWR
model, including SHDI, AI, IJI, DEM, Mean annual Precipitation,
Slope, Distance from the national highway, Distance from township,
and Population density.

3.4.2 Effect of influencing factors
According to the MGWR analysis, the global regression

coefficient (Figure 12) and the average regression coefficient
(Table 7) indicated that DEM had the most significant effect on
carbon storage instability, followed by AI, Distance from the
national highway, SHDI, Mean annual Precipitation, IJI,
Population density, Slope, and Distance from township. Among
these, only DEM and Distance from the national highway negatively
impacted carbon storage instability.

As illustrated in Figure 13, SHDI positively influenced carbon
storage instability, with its influence coefficient showing an
increasing trend. Greater patch diversity and fragmentation
corresponded to higher instability. AI also had a positive impact

TABLE 6 Carbon storage by category under different scenarios in 2035 and carbon storage changes.

Class Natural development Urban expansion Ecological protection

Storage (Tg) Area (hm2) Storage (Tg) Area (hm2) Storage (Tg) Area (hm2)

Cropland 38.76 335312.82 38.61 334068.57 38.73 335032.56

Forest 103.50 417354.03 103.29 416538.54 104.08 419702.04

Shrub 0.14 3876.03 0.14 3864.60 0.13 3822.39

Grassland 0.94 10400.22 0.79 8739.45 0.95 10507.77

Water 0.00 8608.86 0.00 8608.86 0.00 8608.86

Barren 0.00 43.38 0.00 26.73 0.01 74.97

Impervious 4.16 38756.16 4.56 42504.75 3.93 36602.91

Total 147.50 814351.50 147.40 814351.50 147.82 814351.50

Carbon storage change (Tg) 5.37 5.27 5.7
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on carbon storage instability, with its influence coefficient first
increasing, peaking around AI = 70, and then decreasing. IJI
similarly affected carbon storage instability positively, with its
influence coefficient demonstrating a pattern of decreasing, then
increasing, followed by another decrease and increase.

DEM had a negative impact on carbon storage instability. The
influence coefficient initially increased, peaked near 1250 m, and then
decreased. Slope positively affected carbon storage instability, with the
influence coefficient displaying a pattern of decreasing, then increasing,
followed by another decrease. Mean annual precipitation also positively

FIGURE 9
Characteristics of carbon storage instability. (A) Characteristics of SCV; (B) Characteristics of structure; (C)Global spatial autocorrelation results; (D)
Spatial distribution and local spatial autocorrelation characteristics.

Frontiers in Environmental Science frontiersin.org19

Zhou et al. 10.3389/fenvs.2025.1551050

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1551050


influenced carbon storage instability, with its influence coefficient
showing an increasing-decreasing-increasing trend.

Population density positively influenced carbon storage instability,
with the influence coefficient exhibiting a pattern of increasing, then
decreasing, and increasing again. Within the range of 2,300 to
13,000 people per square kilometer, higher population density was
associated with greater impacts on carbon storage instability.

Distance from township road positively influenced carbon
storage instability, with the influence coefficient displaying a
pattern of decreasing, then increasing, and decreasing again.

When the distance from township road ranged from 2,000 to
7,000 m, greater distances corresponded to a lower impact on
carbon storage instability. In the range of 7,000 to 14,600 m, the
impact increased with distance from the township road. Beyond
14,600 m, the influence on carbon storage instability decreased
sharply with increasing distance from the township road.
Conversely, the Distance from the national highway negatively
influenced carbon storage instability, with the influence
coefficient initially increasing and then decreasing. Specifically,
within the range of 0–30,000 m, greater distances from the

FIGURE 10
Superposition analysis of regions with high carbon storage and high instability.
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national highway were associated with a higher impact on carbon
storage instability. However, for distances between 30,000 and
50,000 m, the influence on carbon storage instability diminished
as the distance from the national highway increased.

3.4.3 Stable intervals of influence factors
The PR model was employed to construct regression fits of CV

with nine impact factors (Arlinghaus, 2023; Caceci and Cacheris,

1984). This analysis aimed to identify “stable intervals” (CV ≤ 0.36,
covering CV I and CV II) and “unstable intervals” (CV > 0.36,
covering CV III and CV IV) for the influence factors.

Figure 14 illustrated that carbon storage instability due to
land use change exceeded 0.36 when the SHDI values were
within the intervals (0.706, 1.875) and (2.365, 10.893).
Conversely, when SHDI fell within the intervals (0.054, 0.706)
and (1.875, 2.365), carbon storage instability was below 0.36,

FIGURE 11
Characteristics of carbon storage uncertainty under multiple scenarios. (A) Characteristics of SCV; (B) Characteristics of structure; (C)Global spatial
autocorrelation results; (D) Spatial distribution and local spatial autocorrelation characteristics.
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indicating a stable interval for carbon storage. Similarly, the
stable intervals for other factors were identified as follows: AI ∈
(0, 14.127), IJI ∈ (15.137, 29.124), DEM ∈ (832.214, 982.718) ∪
(1277.432, 1331.047), Slope ∈ (832.214, 982.718) ∪ (1277.432,
1331.047), Mean annual precipitation ∈ (1377.789, 1392.014),
Population density ∈ (0, 198.674) ∪ (2886.419, 3245.853),
Distance from township ∈ (3472.358, 3925.024) ∪ (15136.454,
16520.382), and Distance from the national highway ∈ (231.046,
3442.611) ∪ (35248.669, 42346.013).

Thus, a distinct relationship exists between each influencing
factor and carbon storage instability/uncertainty (Supplementary
Table S6). During the unstable intervals for each influencing factor,
land use changes lead to high carbon storage instability, indicating
that such changes are unsuitable. Conversely, within the “stable
intervals,” land use changes do not cause significant fluctuations in
carbon storage stability, suggesting that modifications in land use
can be conducted reasonably in these areas. However, it is
important to note that the “stable intervals” depicted in the
figure represent theoretical results due to the sample size
limitations (Peng and Deng, 2021).

4 Discussion

4.1 Effect of land class conversions on
carbon storage

Over the past 20 years, Guiyang’s total carbon storage has increased
by 5.51 Tg. Analyzing the carbon storage structure (Table 5), Forest and
Cropland have been the primary carbon storage sectors in Guiyang,
accounting for approximately 64% and 33% of annual carbon reserves,
respectively. The remaining five land types contributed only a small
fraction of carbon reserves (Li et al., 2024). As shown in Figure 15, land
use changes from 2000 to 2020 that contributed to increased carbon
storage included transitions of Cropland-Forest, Shrub-Forest, and
Shrub-Cropland. Conversely, transitions of Forest-Cropland and
Forest-Shrub led to a decrease in carbon storage. Thus, the expansion
of Forest has been the primary driver of increased carbon storage in
Guiyang. Despite recent intensification of urbanization and
desertification in Guiyang, Forest area has exhibited an “increase
rather than decrease” phenomenon. This can be attributed to two
main factors. First, the topography of Guiyang, a typical karst region

FIGURE 12
Global regression coefficient.

TABLE 7 Summary statistics for MGWR parameter estimates.

Variable Mean STD Min Median Max

SHDI 0.740 0.000 0.740 0.740 0.740

AI 0.830 0.147 0.755 0.782 1.335

DEM −1.165 0.000 −1.166 −1.165 −1.165

Distance from the national highway −0.818 0.000 −0.819 −0.818 −0.818

Mean annual Precipitation 0.523 0.001 0.521 0.523 0.524

Distance from township 0.147 0.002 0.143 0.148 0.149

Population density 0.155 0.001 0.153 0.155 0.156

Slope 0.152 0.000 0.151 0.152 0.153

IJI 0.141 0.001 0.138 0.141 0.142
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in China, features gentle valleys due to the constraints of mountains and
water bodies, which has contributed to the preservation of Forest (Peng
and Deng, 2021). Second, recent policy initiatives, including the “Five
Forests” program, “Returning Farmland to Forest,” and the promotion of
“Ecological City,” have led to the creation of more new forests within
the urban area.

By 2035, simulation results from the three scenarios indicate that
Guiyang’s total carbon storage will continue to increase. The land use
changes contributing to this increase include the transitions of Cropland-
Forest and Shrub-Forest, while Cropland-Impervious are associated with
a decrease in carbon storage. The primary source of Forest expansionwill
be the conversion of Cropland. This Forest-Cropland conversion is
largely a result of policies balancing farmland requisition with
compensation. Conversely, the Cropland-Impervious transformation
is mainly driven by urbanization. Forest plays a crucial role in
achieving “carbon neutrality” (Yao et al., 2023), while Cropland is
essential for ensuring food security, and Impervious contribute
significantly to economic development (Zhou et al., 2024). To
achieve carbon neutrality, it is imperative to not only sustain Forest
growth but also manage the conversion between Forest-Cropland and
Cropland-Impervious. Such management will impact food security and
economic development. Thus, it is crucial to integrate regional
environmental conditions and socio-economic functions, plan land
use strategically, implement policies that promote high-quality
development, and balance carbon neutrality with food security and
economic growth (Li et al., 2023).

4.2 Effect of land use change on carbon
storage instability/uncertainty

Land use changes are closely related to the instability of carbon
storage (Yang Y. et al., 2024). From a spatial distribution perspective

(Figure 16), changes in Cropland, Forest, and Impervious were
significantly associated with carbon storage instability and
uncertainty type IV. Analyzing land use changes under each
instability type (Figure 15) revealed that from 2000 to 2020, Type I,
which exhibited the lowest instability, was predominantly composed of
seven stable land classes. In contrast, Type IV, characterized by higher
instability, showed significant proportions of Cropland-Forest and
Forest-Cropland transitions, which persisted across all four periods.
By 2035, Type I will continue to comprise the seven stable land classes,
while Type IV will experience the highest turnover between Cropland
and Forest. Notably, in all three future scenarios, Cropland-Forest and
Cropland-Impervious transitions will gain prominence in Type IV, with
Forest-Cropland no longer being the predominant transition.
Additionally, the proportion of Cropland-Forest transitions will vary
among the three scenarios, being highest under the ecological protection
scenario and lowest under the urban expansion scenario.

To further explore the relationship between land use change and the
instability/uncertainty of carbon storage, Equation 16 was used to
calculate the average carbon storage instability/uncertainty (ACV)
for different types of land use change, based on the characteristics of
carbon storage change. The high-risk land use conversion types were
then identified and analyzed (Tables 8, 9). Over the past 20 years,
carbon storage in Guiyang has generally remained stable, although local
instability has been evident. Notably, the conversion between Forest and
Cropland has significantly increased carbon storage instability. The
instability was primarily driven by Cropland-Forest, Forest-Cropland,
Cropland-Grassland, and Cropland-Impervious changes. Forest-
Cropland conversion resulted in the most substantial reduction in
carbon storage and the greatest instability. Although Cropland-Forest
conversion increased carbon storage, its proportion in Type IV was the
highest, and the instability caused by Cropland-Forest was comparable
to that caused by Forest-Cropland. Cropland-Grassland conversion
reduced carbon storage, leading to an instability of 29.26%. Cropland-

FIGURE 13
Influence of each factor on carbon storage instability.
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Impervious conversion also decreased carbon storage, resulting in an
instability of 14.07%. Additionally, instability was observed in Shrub-
Forest, Shrub-Cropland, Grassland-Cropland, and Cropland-Shrub
conversions, although these factors contributed to a relatively minor
extent. Consequently, Forest-Cropland, Cropland-Grassland, and
Cropland-Impervious conversions have been identified as significant
contributors to carbon storage reduction and high instability,
warranting attention in land management strategies.

In 2035, an integration of three development scenarios was
performed, and the average carbon storage uncertainty (ACV)
for various types of land use changes was calculated using
Equation 16; Table 9. The primary sources of uncertainty were
identified as Cropland-Forest, Cropland-Impervious, Grassland-
Impervious, and Shrub-Forest transitions. Compared to the past
20 years, the land use change with the highest uncertainty will
shift from Forest-Cropland to Cropland-Forest. Notably, despite
a general trend of reduced uncertainty in future carbon storage in
Guiyang, Cropland-Impervious transitions will lead to a
reduction in carbon storage and an increase in uncertainty
and risk. Although future carbon storage projections will
indicate an upward trend, Cropland-Forest transitions, which

are crucial for supporting future carbon storage, will exhibit a
high level of uncertainty (96.65%), signifying a significant risk.
Shrub-Forest transitions represent rocky desertification control
and afforestation, but will bring uncertainty. Therefore, it is
essential to prioritize the management of land use changes
involving Cropland-Impervious, Cropland-Forest and Shrub-
Forest in future planning.

In summary, Guiyang’s ongoing urbanization and intensified
human activities have led to significant changes in land use over
the past 20 years (Gao L. et al., 2022). Consequently, the
instability of carbon storage has increased (Jiao et al., 2022).
Moving forward, greater attention must be given to land use
transitions that pose high risks of carbon storage instability and
uncertainty, including Cropland-Impervious, Cropland-Forest,
Shrub-Forest.

4.3 Policies and recommendations

Based on the results of the above discussion, two major
challenges lie ahead in the future. The first challenge is that the

FIGURE 14
Relationship between each factor and CV.

Frontiers in Environmental Science frontiersin.org24

Zhou et al. 10.3389/fenvs.2025.1551050

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1551050


most effective pathway to enhancing carbon storage is through
stringent control over the conversion between Forest-Cropland
and Cropland-Impervious, but this could potentially affect food
security and economic development. The second challenge is that
the most effective approach to reducing future carbon storage
uncertainty lies in strictly regulating the conversion of Cropland-
Impervious, Cropland-Forest, and Shrub-Forest, yet this may have
implications for economic development and overall carbon storage
capacity. Therefore, under the goal of carbon neutrality, two
critical questions must be addressed: How can carbon storage
be effectively enhanced? How can carbon storage uncertainty be
prudently mitigated? To this end, two policy recommendations
are proposed.

First, enhance carbon storage scientifically while balancing carbon
neutrality, food security, and economic development. (1) Implement
differentiated strategies to guide and regulate land-use conversions. Forest
and Cropland serve as the primary carbon storage land types in Guiyang.
It is imperative to continue advancing ecological conservation initiatives
and rocky desertification control strategies. The transformation of Shrub-
Forest and Shrub-Cropland should be strongly encouraged, while the
conversion of Cropland-Forest should be moderately promoted.
Simultaneously, strict control should be exercised over the conversions
of Forest-Cropland, Forest-Shrub, and Cropland-Impervious (Peng and
Deng, 2021). (2) To mitigate the significant reduction in carbon storage
caused by urban development and the conversion of cropland and
forestland to impervious surfaces (e.g., Cropland-Impervious, Forest-
Cropland), it is advisable to implement a carbon storage compensation
policy. During land use transitions, changes in carbon storage should be
carefully quantified. In cases where carbon storage decreases, equivalent
compensation should be achieved through land-use transformations in
other areas or by purchasing carbon storage credits from external sources.
This approach ensures that the total carbon storage capacity remains
stable and uncompromised (Zhou et al., 2023; Liu et al., 2015). (3)
Moderately encouraging the conversion of Cropland-Forest can enhance
carbon storage but may lead to a reduction in grain production. To
address this issue, strategies should focus on improving agricultural land
productivity. Specifically, efforts should be made to promote large-scale,
mechanized, and digitized agricultural practices, thereby increasing grain
yields per unit area. This approach could offset the potential grain
production deficit caused by the conversion of Cropland-Forest (Zhou
et al., 2023). (4) Urban development inevitably leads to the conversion of
Cropland-Impervious, resulting in a decline in carbon storage. To
mitigate this impact, efforts should focus on actively promoting the
reuse of underutilized and inefficiently used construction land, thereby
reducing the demand for new construction (Zhou et al., 2023). (5) Given
the finite nature of land resources, relying on a “robbing Peter to pay
Paul” approach is often unsustainable. Once the projected areas of high-
carbon-density land types such as forests and croplands reach their peak,
attention should shift to the efficient utilization of vertical space. This
could involve promoting land-use integration, such as expanding
afforestation and agricultural planting in unconventional spaces like
rooftops and above water bodies, thereby enhancing overall carbon
storage capacity (Gao S. et al., 2022; Zeng et al., 2023).

Second, to mitigate the uncertainty associated with carbon
storage, it is advisable to encourage land-use transitions within the
stable ranges of various influencing factors. Between 2000 and 2020,
transitions such as Forest-Cropland, Cropland-Grassland, and
Cropland-Impervious were associated with reduced carbon storage
and high uncertainty. From 2020 to 2035, Cropland-Impervious is
expected to further decrease carbon storage while increasing
uncertainty and risk, whereas Cropland-Forest is anticipated to
enhance carbon storage but with very high uncertainty (Yang Y.
et al., 2024). Thus, controlling these land use conversions is crucial.
Analysis of the factors affecting carbon storage instability and
uncertainty indicates that, in descending order of influence, the
most significant factors are DEM, AI, Distance from the national
highway, SHDI, Mean annual Precipitation, IJI, Population density,
Slope, and Distance from township. To minimize carbon storage
uncertainty in Guiyang by 2035, it is recommended to prioritize land
class transitions within the stable intervals: SHDI ∈ (0.054–0.706) ∪
(1.875–2.365), AI ∈ (0, 14.127), IJI ∈ (15.137, 29.124), DEM ∈

FIGURE 15
Impacts of land class conversions on carbon storage from
2000 to 2035.
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(832.214–982.718) ∪ (1277.432–1331.047), Slope ∈ (0, 0.231) ∪
(70.014–96.782) ∪ (161.653–172.724), Mean annual precipitation ∈
(1377.789–1392.014), Population density ∈ (0, 198.674) ∪

(2886.419–3245.853), Distance from township ∈
(3472.358–3925.024) ∪ (15136.454–16520.382), and Distance from
the national highway ∈ (231.046–3442.611) ∪ (35248.669–42346.013).

FIGURE 16
Response of carbon storage instability and uncertainty to land use change. (A)Natural Development; (B)Urban expansion; (C) Ecological Protection.
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TABLE 8 Risk decomposition of carbon sequestration instability (ACV, Average CV; ACSC, Average carbon storage changes).

Type of CV Rate Land use transformation Rate ACV ACSC/Tg

I 81.59% Cropland-Cropland 41.5978% 0.00% 0.00

Forest-Forest 37.4366% 0.00% 0.00

Impervious-Impervious 1.1348% 0.00% 0.00

Water-Water 0.9359% 0.00% 0.00

Shrub-Shrub 0.3741% 0.00% 0.00

Grassland-Grassland 0.1156% 0.00% 0.00

Barren-Barren 0.0001% 0.00% 0.00

Barren-Water 0.0000% 0.00% 0.00

Impervious-Forest 0.0000% 0.00% 0.00

II 0.00% Forest-Barren 0.0000% 0.00% 0.00

Impervious-Grassland 0.0000% 0.00% 0.00

III 0.01% Grassland-Water 0.0038% 0.09% 0.00

Impervious-Cropland 0.0008% 0.00% 0.00

Barren-Impervious 0.0003% 0.00% 0.00

Grassland-Barren 0.0003% 0.05% 0.00

Shrub-Impervious 0.0003% 0.00% 0.00

Barren-Cropland 0.0001% 0.00% 0.00

Barren-Grassland 0.0001% 0.00% 0.00

IV 18.40% Cropland-Forest 7.5425% 70.71% 8.13

Forest-Cropland 4.2884% 71.77% −4.62

Cropland-Impervious 2.0215% 14.07% −0.14

Cropland-Grassland 1.2695% 29.26% −0.26

Shrub-Forest 1.2607% 7.76% 2.19

Shrub-Cropland 0.8103% 7.67% 0.53

Grassland-Cropland 0.2641% 5.93% 0.05

Cropland-Shrub 0.1969% 5.70% −0.13

Forest-Shrub 0.1503% 2.01% −0.26

Grassland-Forest 0.1274% 0.35% 0.16

Cropland-Water 0.1064% 0.86% −0.10

Forest-Grassland 0.1063% 0.03% −0.14

Water-Cropland 0.0685% 0.71% 0.06

Grassland-Impervious 0.0440% 1.58% 0.01

Shrub-Grassland 0.0318% 0.22% 0.01

Forest-Impervious 0.0289% 0.09% −0.03

Water-Forest 0.0200% 0.06% 0.04

Grassland-Shrub 0.0184% 0.26% −0.01

Water-Impervious 0.0141% 0.12% 0.01

Cropland-Barren 0.0105% 0.00% 0.00

(Continued on following page)
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TABLE 8 (Continued) Risk decomposition of carbon sequestration instability (ACV, Average CV; ACSC, Average carbon storage changes).

Type of CV Rate Land use transformation Rate ACV ACSC/Tg

Water-Grassland 0.0077% 0.18% 0.01

Forest-Water 0.0055% 0.00% −0.01

Impervious-Water 0.0049% 0.04% 0.00

Shrub-Water 0.0007% 0.00% 0.00

TABLE 9 Risk decomposition of carbon sequestration uncertainty (ACV, Average CV; ACSC, Average carbon storage changes).

Type of CV Rate Land use transformation Rate ACV ACSC/Tg

I 93.25% Barren-Barren 0.00% 0.00% 0.00

Cropland-Cropland 41.01% 0.00% 0.00

Forest-Forest 46.38% 0.00% 0.00

Forest-Grassland 0.00% 0.00% 0.00

Forest-Impervious 0.00% 0.00% 0.00

Forest-Shrub 0.00% 0.00% 0.00

Grassland-Grassland 1.14% 0.00% 0.00

Impervious-Barren 0.00% 0.00% 0.00

Impervious-Forest 0.00% 0.00% 0.00

Impervious-Impervious 3.19% 0.00% 0.00

Impervious-Shrub 0.00% 0.00% 0.00

Shrub-Shrub 0.47% 0.00% 0.00

Water-Water 1.06% 0.00% 0.00

II 0.01% Forest-Cropland 0.01% 0.03% −0.01

Grassland-Shrub 0.00% 0.00% 0.00

III 0.05% Barren-Cropland 0.00% 0.00% 0.00

Cropland-Barren 0.00% 0.00% 0.00

Cropland-Shrub 0.00% 0.03% 0.00

Grassland-Barren 0.00% 0.03% 0.00

Grassland-Forest 0.05% 0.19% 0.06

Shrub-Impervious 0.00% 0.00% 0.00

IV 6.69% Barren-Grassland 0.00% 0.09% 0.00

Barren-Impervious 0.00% 0.06% 0.00

Cropland-Forest 4.59% 96.65% 4.95

Cropland-Grassland 0.12% 2.94% −0.02

Cropland-Impervious 1.31% 61.07% −0.09

Grassland-Cropland 0.08% 1.43% 0.02

Grassland-Impervious 0.26% 11.60% 0.04

Impervious-Cropland 0.04% 0.39% 0.00

Impervious-Grassland 0.01% 0.07% 0.00

Shrub-Cropland 0.04% 0.68% 0.02

Shrub-Forest 0.23% 4.35% 0.40

Shrub-Grassland 0.00% 0.06% 0.00
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4.4 Limitations

This study has several limitations. First, while the study aims to
explore the influence mechanisms, the factors considered may not
encompass all relevant variables. Second, the parameter settings for the
simulation scenarios are inherently subjective (YangY. et al., 2024). Third,
although the carbon pool values are adjusted using relevant parameters,
some degree of bias may still persist (Wang K. et al., 2022). Finally, the
limited sample sizemay introduce bias in the conclusions (Ma et al., 2024).
To address these limitations, future research will aim to incorporate a
broader range of influencing factors, utilize deep learning techniques for
model parameter determination, expand the study’s scope, and enhance
the systematic and scientific rigor of the analysis.

5 Conclusion

Land use change significantly impacts carbon storage in terrestrial
ecosystems (Chang et al., 2022). This study examines the instability
and uncertainty of carbon storage resulting from land use changes in
karst regions of China. The main findings are as follows:

(1) During 2000–2020, total carbon storage in Guiyang increased
from 136.62 Tg to 142.13 Tg. By 2035, total carbon storage is
projected to reach 147.50 Tg under the natural development
scenario, 147.40 Tg under the urban expansion scenario, and
147.82 Tg under the ecological protection scenario. Increases in
carbon storage primarily resulted from Cropland-Forest,
Shrub-Forest, and Shrub-Cropland transitions, while
decreases were mainly attributed to Forest-Cropland, Forest-
Shrub, and Cropland-Impervious transitions. In karst regions,
the mutual conversion between Shrub and Forest exerts a
significant influence on carbon storage capacity.

(2) From 2000 to 2020, carbon storage instability exhibited an
overall upward trend. The projected uncertainty of carbon
storage from 2020 to 2035 is expected to decrease
significantly compared to the previous period. Among the
scenarios, urban expansion is anticipated to have the highest
carbon storage uncertainty, while ecological protection is
projected to have the lowest. The primary sources of
instability are transitions of Cropland-Forest, Forest-
Cropland, Cropland-Grassland, and Cropland-Impervious,
while uncertainties mainly arise from Cropland-Forest,
Cropland-Impervious, and Grassland-Impervious transitions.

(3) DEM, AI, Distance from national highways, SHDI, and Mean
annual precipitation affected instability significantly. Of these,
only DEM and Distance from the national highway had a
negative effect on carbon storage instability.

(4) To effectively enhance carbon storage, it is imperative to
strongly promote transitions of Shrub-Forest and Shrub-
Cropland. Moderate encouragement should be given to
conversions of Cropland-Forest, while transitions of
Forest-Cropland, Forest-Shrub, and Cropland-Impervious
should be appropriately constrained.

(5) To mitigate future uncertainties in carbon storage, land-use
transitions should be prioritized within the stability ranges of
key influencing factors, with particular emphasis on the
conversions of Cropland-Forest and Cropland-Impervious.
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