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Soil erosion has been significantly exacerbated by climate change and
urbanization, posing serious threats to environmental protection and
sustainable development. In this study, soil erosion in the Daqing River Basin
from 2000 to 2022 was assessed using the revised universal soil loss equation
(RUSLE) model, which incorporates data from digital elevation model (DEM),
normalized vegetation index (NDVI), and land-use sources, and the
spatiotemporal evolution of soil erosion was subsequently analyzed. The
impacts of natural and anthropogenic factors on erosion and their interactions
with soil erosion were analyzed via random forest and partial least squares-
structural equation modeling (PLS-SEM). The results revealed that soil erosion in
the Daqing River Basin averaged 159 t/(km2·a) from 2000 to 2022, with averages
of 386 t/(km2·a) in the mountains and 1.1 t/(km2·a) in the plains. The erosion
intensity increased from southeast to northwest, with higher levels in mountains
than in plains. The soil erosion level initially improved but then deteriorated
sharply after a significant turning point in 2015. Natural factors, particularly
precipitation, were the largest drivers of soil erosion throughout the Daqing
River Basin, whereas anthropogenic factors had the greater impact on erosion in
plains than in mountains. There was strong synergy among various
anthropogenic factors throughout the basin. In the mountains, anthropogenic
factors were antagonistic to vegetation coverage, whereas in the plains, they
were synergistic with vegetation coverage and meteorological factors.
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1 Introduction

Soil erosion is a global environmental challenge that poses a serious threat to natural
resources, agriculture, and ecosystems (Owens and Collins, 2007; Pimentel, 2006). Its
occurrence and development are not only directly influenced by natural factors such as
precipitation and vegetation coverage but also significantly influenced by anthropogenic
factors such as population growth and economic development. Moreover, the frequent
occurrence of extreme weather events contributes to uncertainty in the soil erosion process
(Borrelli et al., 2017). Additionally, notable differences in soil erosion exist under various
topographic conditions, particularly between mountains and plains (Farhan and Nawaiseh,
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2015; Feng et al., 2014). A 2015 report on the Global Status of Soil
Resources published by the United Nations (UN) stated that “the
quality of the majority of the world’s soil resources is merely
moderate, poor or very poor” and emphasized that soil erosion
continues to be a major global environmental and agricultural threat
(Montanarella et al., 2015). To address this issue effectively, the
utilization of modeling and statistical approaches to analyze the soil
erosion process and its key influencing factors has emerged as a
research focus. Nevertheless, further comparative analysis of soil
erosion characteristics under diverse terrain conditions can not only
facilitate an improved understanding of erosion mechanisms but
also provide a systematic basis for formulating precise prevention
and control measures, which holds considerable research value and
should be investigated in depth.

Currently, the issue of soil erosion is attracting increasing
attention in several major countries in Asia and Latin America
(such as China and Brazil, respectively) (Wuepper et al., 2020). The
relatively high rate of soil erosion in these regions has emerged as an
urgent environmental problem. China is among the countries with
the most severe soil erosion problems worldwide. Its extensive
erosion area and substantial erosion volume top the list of the
10 countries with the highest average annual soil erosion worldwide
(Xiong and Leng, 2024; Zheng et al., 2008). On the basis of data from
the second national remote sensing survey of soil erosion in China,
the total area affected by water and wind erosion is 3,569,000 km2,
accounting for 37.6% of the country’s total area (Xu et al., 2002). Soil
erosion is a particularly acute problem in the northern part of China
and poses a serious challenge to the regional ecosystem. Notably, soil
erosion in the North China Plain, which is an important agricultural
production area in China, not only poses a threat to agricultural
production but also directly impacts the regional ecological balance.
Furthermore, the multiyear average soil erosion modulus in this area
is 2674.26 t/(km2·a), and the erosion modulus in some areas can
reach as high as 8302.11 t/(km2·a) (Xu et al., 2012; Yang et al., 2017).
In comparison, the soil erosion issue is more severe in the Taihang
Mountain area, where the average erosion modulus reaches 3,000 t/
(km2.a), and locally, the erosion modulus can reach as high as
9,000 t/(km2·a) (Wang et al., 2022). In addition, studies conducted in
the Beijing‒Tianjin–Hebei region have demonstrated that there are
considerable differences in the degree of soil erosion among different
regions and that the erosion severity in some regions exhibits an
increasing trend (Li et al., 2024). This phenomenon has been
substantiated via in-depth exploration in northern China, where
the considerable spatial variability in topographic features has been
identified as a crucial factor influencing the distribution and
intensity of soil erosion (Wang et al., 2021). The results of these
studies have not only revealed the urgency of soil erosion control but
also emphasized the importance of fully accounting for
topographical conditions and adopting targeted measures in the
prevention and control process. These measure are also important
for maintaining the regional ecological balance, improving
environmental quality, and promoting sustainable development.

Soil erosion prediction models are essential tools for evaluating
and forecasting soil erosion. They play crucial roles in soil and water
conservation as well as in environmental protection (Boardman
et al., 2023). Since the mid-20th century, a range of soil erosion
models have been developed by researchers worldwide. Notable
examples include the universal soil loss equation (USLE), the revised

universal soil loss equation (RUSLE), the water erosion prediction
project (WEPP), the European soil erosion model (EUROSEM), and
the Limburg soil erosion model (LISEM) (De Roo et al., 1996; Liu
and Shi, 1992; Morgan et al., 1998). The USLE model was first
proposed by Wischmeier and Smith in 1965, followed by the more
accurate RUSLE model introduced by the United States Department
of Agriculture in 1993. These models have become the theoretical
cornerstone of soil erosion studies and are widely employed
worldwide (Renard et al., 1997; Renard et al., 1991; Wischmeier
and Smith, 1965). In China, researchers have developed soil erosion
models tailored to the local environment on the basis of the USLE
model, such as the soil erosion prediction model by Jiang, Z.S. and
the Chinese soil loss equation (CSLE) model. These models have
been optimized for complex and diverse geographical and
environmental conditions in China and have significantly
enhanced the applicability and accuracy of soil erosion
predictions (Jiang, 1996; Zheng et al., 2001). In recent years, the
drivers of soil erosion and risk analysis based on the RUSLE model
have become popular research topics, providing a sound basis for
soil erosion management (Liao et al., 2024; Mu et al., 2022). The
RUSLE model has been adopted worldwide because of its
adaptability to different topographic and climatic conditions. For
example, in the Cantao region of Brazil, researchers have applied the
RUSLE model to assess the impacts of land-use change and
agricultural activities on soil erosion, revealing the important role
of human activities in the soil erosion process (Lu et al., 2004). In
Bangladesh, soil erosion in the tertiary hilly regions was evaluated
from 2017 to 2021 using the RUSLE model integrated with GIS and
remote sensing techniques. The results indicated that erosion
predominantly occurred in steeper areas and was significantly
influenced by land-use changes (Shoumik et al., 2023). Similarly,
in the Mellegue Basin spanning Tunisia and Algeria, researchers
utilized the RUSLE model combined with GIS technology to
demonstrate that the average erosion risk increased from 1.58 t/
(km2·a) in 2002 to 1.78 t/(km2·a) in 2018, reflecting a substantial rise
in total soil loss (Jien et al., 2023). In the Esfandari Basin of Iran, the
RUSLE model was coupled with the DPSIR framework, Landsat
data, and Markov chain predictions to assess the soil erosion trend
from 2011 to 2031. The analysis revealed an increase in erosion rates
from 4.49 t/(km2·a) in 2011 to a projected 11.44 t/(km2·a) in 2031,
primarily driven by agricultural expansion (Talebi and Karimi,
2024). In Asia, especially China, the application of the RUSLE
model has also achieved remarkable results. For example, in the
Sanjiangyuan region, the implementation of ecological projects
significantly altered the soil erosion trend, where precipitation
and vegetation restoration were identified as the key drivers
affecting soil erosion (Cao et al., 2018). Furthermore, in North
China, a study based on the RUSLE model provided an in-depth
analysis of the effects of precipitation, land-use, and land
management on the risk of soil erosion in the Hai River Basin,
which provided systematic support for regional soil erosion control
(Li et al., 2011).

However, most existing studies have concentrated on large-scale
areas, frequently disregarding key erosion-contributing areas, and
the low resolution of the employed data, typically 1 km, has
constrained the capacity to analyze soil erosion variability on a
fine scale. In addition, current research on the variability in soil
erosion under diverse topographic conditions remains insufficient,
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particularly in identifying and comparatively analyzing the main
drivers of soil erosion, where obvious research gaps exist. The
Daqing River Basin traverses the Taihang Mountains and North
China Plain and flows through Beijing, Tianjin, parts of Hebei
Province, and parts of Shanxi Province. The basin encompasses
ecologically sensitive and key economic development areas, such as
the Xiong’anNewArea, and constitutes amajor source of soil erosion in
North China. However, the risk of soil erosion has increased in recent
years as a result of the high frequency of soil erosion events in the region
and an increase in the occurrence of extreme weather events. Notably,
the catchment experienced more than 30 extreme precipitation events
between 2004 and 2020 and three exceptionally heavy precipitation
events between 2012 and 2023, including the heavy precipitation event
in July 2023 that caused severe flooding (Xu et al., 2024). To
comprehensively understand the differences in soil erosion across
different terrain regions, the Daqing River Basin was divided into
two subregions, namely, mountains and plains, and the data
resolution was increased to 250 m. The RUSLE model was applied
to analyze the spatial and temporal evolution characteristics of soil
erosion and its influencing factors in the basin from 2000 to 2022.
Additionally, a combination of a random forest model and partial least
squares-structural equation modeling (PLS-SEM) was employed to
explore the impacts of natural and anthropogenic factors and their
interactions on soil erosion throughout the basin, as well as within the
mountains and plains. By integrating these models, this study aimed to
compare the differences in soil erosion and its dominant influencing
factors between mountains and plains. Consequently, preventive and
remedial measures tailored to each subregion were formulated with the
objective of effectively mitigating soil erosion in the Daqing River Basin.

2 Data and methods

2.1 Study area

The Daqing River Basin constitutes an indispensable part of theHai
River Basin in North China (Figure 1). Originating from the Taihang
Mountains, the river flows from west to east and eventually discharges
into Bohai Bay. It encompasses two main sources, namely, the Baigou
River and the Zhaowang River. The river traverses the provinces of
Shanxi and Hebei, as well as the municipalities of Beijing and Tianjin,
covering a total drainage area of 45,131 km2. This area accounts for
approximately 15% of the entire Hai River Basin. In terms of
topography, the Daqing River Basin is characterized by high
elevations in the northwest and low elevations in the southeast. The
upper reaches are mainly mountainous, whereas the lower reaches
encompass lakes and wetlands, among which the renowned Baiyang
Lake is included. The region is subject to a temperate monsoon climate,
distinguished by four distinct seasons. It receives an annual average
precipitation of 583 mm, with both intense and seasonal precipitation,
characterized by a short duration and high intensity, especially during
the flood season (Tong et al., 2021). With respect to soil and vegetation,
the upper mountains are occupied primarily by woodlands and
grasslands, whereas the lower reaches are dominated by cultivated
and construction land. In this paper, we categorize the Daqing River
Basin with a slope exceeding 2° as mountainous areas and those with a
slope of 2° or less as plains. The boundary between these two types of
terrain is clearly delineated in the figure of the study area.

The Daqing River Basin, located in the southern part of Beijing,
plays a crucial role in supplying water resources to the
Beijing–Tianjin–Hebei urban agglomeration, contributing
significantly to water conservation and production capacity for the
development of the Xiong’anNewArea. Its strategic importance cannot
be overemphasized. However, the basin faces a serious environmental
challenge, namely, soil erosion. An assessment of the soil erosion risk in
the Hai River Basin indicated that the mountainous area of the Daqing
River presented the highest risk level in the entire basin, accounting for
21.45% of the total risk (Li et al., 2011). Consequently, addressing and
controlling soil erosion in the Daqing River Basin is extremely urgent.

2.2 Basic data

This study utilized a variety of data from 2000 to 2022. It
includes topographic data (NASA global 30-m Shuttle Radar
Topography Mission (SRTM) DEM data), precipitation data
(China monthly rainfall dataset with a 1-km resolution), soil data
(Chinese soil dataset based on the World Soil Database (HWSD)),
vegetation data (Moderate Resolution Imaging Spectroradiometer
(MODIS) NDVI data), land-use data (GlobeLand30 dataset),
temperature data (China monthly mean temperature dataset with
a 1-km resolution), population density data (Bureau of Statistics of
Hebei Province), and GDP data (China National Bureau of Statistics
(NBS)). To ensure high-precision analysis and maintain data
consistency and accuracy, all datasets were uniformly resampled
to a spatial resolution of 250-m using ArcGIS raster resampling
tools. These data were processed by resampling, slope analysis,
splicing and projection, digitization, and other processing
methods to calculate the relevant factors. Table 1 provides
detailed information on the specific data types and sources.

2.3 Soil erosion model

In soil erosion research, the RUSLE model comprehensively
accounts for factors such as the rainfall erosivity factor (R), the soil
erodibility factor (K), the slope length and steepness factor (LS), the
cropping and management factor (C), and the conservation practices
factor (P). This model is an effective method for studying soil erosion
and is also the most extensively employed model for quantifying soil
erosion. The RUSLE model can be expressed as Equation 1:

A � R × K × LS × C × P (1)
whereA is the soil erosionmodulus [t/(km2·a)];R is the rainfall erosivity
factor [(MJ mm)/(km2·ha)]; K is the soil erodibility factor [(t km2·h)/
(km2·MJ mm)]; LS is the slope length and steepness factor,
dimensionless; C is the cropping and management factor,
dimensionless; and P is the conservation practices factor, dimensionless.

2.4 RUSLE factor calculation

2.4.1 Rainfall erosivity factor (R)
Rainfall is the main driver of soil erosion. The rainfall erosivity

factor (R) is a dynamic indicator that reflects rainfall-induced soil
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FIGURE 1
Study area (the mountain front is where mountains meet plains).

TABLE 1 Data sources.

Data type Content Data sources Processing
methods

Purpose

Topographic Data DEM NASA global 30-m Shuttle Radar
Topography Mission (SRTM) DEM data

Slope analysis Extract the elevation and
slope and calculate LS factor

values

Precipitation Monthly rainfall data, 2000–2022 China (2000–2022) monthly rainfall
dataset with a 1-km resolution

Resampling Calculate R factor values

Soil Sand, silt, clay and organic matter data Chinese soil dataset based on the World
Soil Database (HWSD)

Resampling Calculate K factor values

Vegetation Annual NDVI data for the study area, 2000–2022 Moderate Resolution Imaging
Spectroradiometer (MODIS) NDVI data

Splice and projection Calculate C factor values

Land-Use Seven categories of cultivated land, woodland,
shrubland, grassland, water areas, bare ground,
construction land in the study area, 2000–2022

GlobeLand30 dataset Resampling Calculate P factor values

Temperature Monthly temperature data, 2000–2022 China (2000–2022) monthly mean
temperature dataset with a 1-km

resolution

Resampling Calculate temperature factor
values

Population Density Population density of counties in the Daqing River
Basin, 2000–2022

Bureau of Statistics of Hebei Province Digitization Calculate population density
factor values

Gross Domestic
Product (GDP)

Total GDP of counties in the Daqing River Basin,
2000–2022

(China) National Bureau of
Statistics (NBS)

Digitization Calculate GDP factor values
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segregation and transport and reflects the potential capacity of
rainfall to contribute to soil erosion (Wang and Jiao, 1996). In
this work, the rainfall erosivity was calculated for each year from
2000 to 2022 using a simple algorithm proposed by Wischmeier to
derive the R value via the multiyear average monthly rainfall
(Wischmeier and Smith, 1978) Equation 2:

R � ∑12
i�1
1.735 × 10 1.5×lg

P2
i
P −0.818( ) (2)

where Pi is the monthly rainfall (mm), P is the annual rainfall (mm),
and the unit of rainfall erosivity is [(MJ mm)/(km2·ha)].

2.4.2 Soil erodibility factor (K)
The soil erodibility factor (K) serves as an indicator of the

sensitivity of soil properties to erosion. The magnitude of K
reflects the degree to which the soil can be detached, eroded, and
transported under the influence of the erosive forces of rainfall.
Generally, the higher the soil K value is, the lower the capacity of
the soil to resist water erosion and the greater its susceptibility
to erosion (Lu and Shen, 1992). Numerous methods exist for
estimating the soil erodibility factor, among which the widely
adopted methods are the nomogram method proposed by
Wischmeier et al. and the erosion productivity impact
calculation (EPIC) model proposed by Williams et al. In this
paper, the K value was calculated on the basis of the EPIC
model, and the results were corrected in accordance with the
study of Zhang et al. (2008). The soil erodibility factor is
determined by the presence of chalk, sand, clay, and organic
matter in the soil and can be obtained as Equation 3-5:

KEPIC � 0.2 + 0.3 exp −0.0256SAN 1 − SIL

100
( )[ ]{ }

×
SIL

CLA + SIL
( )0.3

× 1 − 0.25OM
OM + exp 3.72 − 2.95OM( )[ ]

× 1 − 0.7SAN1
SAN1 + exp −5.51 + 22.9SAN1( )[ ]

(3)
SAN1 � 1 − SAN1

100
(4)

K � −0.01383 + 0.51575KEPIC (5)
where K is the soil erodibility factor, SAN is the sand content, SIL is
the silt content, CLA is the clay content, SAN1 is the non-sand
content and OM is the organic matter content. The unit of the latter
four variables is %.

2.4.3 Slope length and steepness factor (LS)
Soil erosion is influenced by topography, specifically slope

length and steepness. Slope length refers to the distance along
the slope from where surface runoff starts to where it converges
into a gully. Longer slopes increase runoff velocity, flow volume, and
erosive force (Zhang et al., 2008). Steepness, or the degree of
inclination, affects water flow speed, influencing infiltration rates
and runoff volumes (Zhang et al., 2018). In this study, the slope
length and slope were extracted from the DEM of the Daqing River
Basin. The method proposed by Wischmeier et al. was utilized to
calculate the slope length factor (L), and the steepness factor (S) was

considered in segments. For gentle slopes, McCool’s slope model
was employed (Mccool et al., 1987), and for steep slopes, Liu’s slope
model was adopted (Liu et al., 2000), which can be expressed as
Equation 6-8:

L � λ/22.13( )m (6)

m �
0.2
0.3
0.4
0.5

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ ≤ 1%
1%< θ ≤ 3%
3%< θ ≤ 5%
θ > 5%

(7)

S �
10.8 · sin θ + 0.03
16.8 · sin θ − 0.50
21.9 · sin θ − 0.96

⎧⎪⎨⎪⎩
θ < 5+

5+ ≤ θ < 10+

θ ≥ 10+
(8)

where L is the slope length factor, λ is the projected length of the
raster cell, m is the slope length effect index, θ is the slope (%)
extracted from the DEM, and S is the steepness factor.

2.4.4 Cropping and management factor (C)
In the RUSLE model, the C factor represents the ratio of the soil

loss from vegetated or managed land to that from bare cropland
under identical conditions. This factor reflects the impact of
vegetation coverage and management on soil erosion, with values
ranging from 0 to 1. The normalized difference vegetation index
(NDVI) is the most commonly employed index for calculating the C
factor (Asis and Omasa, 2007), and in this paper, MODIS NDVI
data were used to calculate the C factor. The C factor can be obtained
as Equation 9, 10 (Cai and Ding, 2000):

C �
1
0.6508 − 0.3436 lgf
0

⎧⎪⎨⎪⎩
f � 0
0<f≤ 78.3%
f> 78.3%

(9)

f � NDVI −NDVImin

NDVImax −NDVImin
(10)

where f is the vegetation coverage (%); C is the cropping and
management factor; NDVI is the normalized difference vegetation
index, for which the multiyear monthly average was adopted in this
study; and NDVImax and NDVImin are the maximum and minimum
NDVI values, respectively.

2.4.5 Conservation practices factor (P)
The conservation practices factor P is the ratio of soil loss after

applying water conservation measures to soil loss with downhill
planting. Its value ranges from 0 to 1, where 0 indicates no soil
erosion and 1 indicates no conservation measures applied. In this
study, ArcGIS 10.2 was used to reclassify land-use data and assign P
values based on relevant studies and local agricultural activities (Ma
et al., 2023; Table 2).

2.5 Evaluation of soil erosion classes

According to the soil erosion classification and grading criteria
SL190-2007 issued by the State Ministry of Water Resources
(Ministry of Water Resources of the People’s Republic of China
and National Bureau of Statistics of the People’s Republic of China,
2013), soil erosion in the Daqing River Basin can be classified into six
erosion classes (Table 3).
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2.6 Random forest

To compare and analyze the causes of the differences in soil
erosion between the mountains and plains, random forest was
employed to quantify the significance of each influencing factor
across different terrain conditions. The random forest algorithm is a
machine learning algorithm based on statistics that avoids the
problem of multivariate covariance and has been applied in soil
erosion driver analysis in recent years. Rigatti provided a
comprehensive account of the random forest principle and its
application methodology (Rigatti, 2017). This approach allows for
the precise identification of the key factors influencing soil erosion
and increases the understanding of the contributions of
these factors.

2.7 PLS‒SEM analysis

In this work, the PLS‒SEM technique was adopted to determine
the strength of each driver in different areas. The PLS‒SEM
technique is a statistical analysis method in which partial least
squares regression and SEM are combined, which is particularly
suitable for analyzing small samples and non-normally distributed
data. Structural equations encompass measurement equations and
structural equations. Measurement equations refer to the
relationships between the observed and latent variables, whereas
structural equations refer to the relationships between the latent
variables. The measurement equations can be expressed as follows
Equation 11, 12:

X � ΛXξ + δ (11)
Y � ΛYη + ε (12)

where X and Y are vectors of the observed variables, ξ and η are
vectors of the latent variables, ΛX andΛY are factor loading matrices,
and δ and ε are disturbance terms. The structural equation can be
expressed as Equation 13:

η � Bη + Γξ + ζ (13)

where B is the relationship between the endogenous latent variables,
Γ is the effect of the exogenous latent variables on the endogenous
latent variables, and ζ is the error term.

3 Results and analysis

3.1 Spatiotemporal evolution of soil erosion
in the Daqing river basin

3.1.1 Spatial distribution of the soil erosion intensity
The results of overlapping multiplication of each influencing

factor of soil erosion indicated that the average total soil erosion area
in the Daqing River Basin from 2000 to 2022 was stable at
40219.5 km2, with no significant change. However, the soil
erosion level increased annually. The statistics of the average
annual soil erosion modulus in the Daqing River Basin
(including the entire basin, mountains and plains) between
2000 and 2022 are shown in Figure 2. The average annual soil
erosion modulus in the Daqing River Basin (including the entire
basin, its mountains and its plains) has increased over the past
23 years, suggesting that the soil erosion issue in this basin has
intensified. The average annual soil erosion modulus was 159 t/
(km2·a) throughout the basin, 386 t/(km2·a) in the mountains, and
1.1 t/(km2·a) in the plains. The soil erosionmodulus in the mountain
areas was significantly greater than that in the plain areas,
accounting for most of the average annual soil erosion modulus
across the entire basin. Furthermore, the soil erosion modulus in the
entire Daqing River Basin and its mountains exhibited significant
fluctuations from 2015 to 2020, a phenomenon largely attributed to
the frequent occurrence of extreme weather events and accelerated
urbanization. Extreme weather events, particularly successive
periods of exceptionally high rainfall, have considerably increased
the extent of soil erosion. Simultaneously, urbanization processes,
such as the rapid expansion of the Xiong’an NewArea, have initiated
long-term changes in land-use patterns and vegetation coverage.
There was a time lag in the impact of these changes on soil erosion,
and the cumulative effect increased over time.

To better understand the spatial and temporal evolution features
of soil erosion, five key years, i.e., 2000, 2005, 2010, 2015, and 2022,
were selected to classify the soil erosion intensity according to
Table 3, and the area and proportion occupied by the different
classes of soil erosion in the study area were calculated (Table 4). The
results revealed that in terms of the soil erosion intensity across the
entire Daqing River Basin, slight erosion accounted for the highest
proportion, which mostly remained above 90% and reached as high
as 96% in 2015. However, it dropped sharply to 84.6% in 2022, and
the proportion of slight erosion in 2022 decreased by approximately
11.5% compared with that in 2015. Overall, slight erosion in the
basin gradually increased, followed by stabilization and then a sharp
decline. In contrast, mild erosion showed the opposite trend, initially

TABLE 2 P values of the different land-uses.

Land-use
types

Cultivated
land

Wood-
land

Shrub-
land

Grass-
land

Water
areas

Bare
ground

Construction
land

P-value 0.35 0.80 1.00 1.00 0.00 1.00 0.00

TABLE 3 Soil erosion intensity classification criteria.

Soil erosion classification Erosion criteria (t/(km2.a))

Slight <500

Mild 500–2,500

Moderate 2,500–5,000

Intense 5,000–8,000

Extremely intense 8,000–15,000

Severe >15,000
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decreasing, stabilizing, and finally increasing. Moreover, soil erosion
in some areas was moderate or intense, whereas moderate soil
erosion increased by 8 times from 2000 to 2022. Although the
area of intense erosion was relatively small, its increase in recent
years has been significant, with the area of intense erosion in
2022 expanding by 100 times compared with that in 2000. The
areas and proportions of extremely intense erosion and severe
erosion were the smallest. In 2000, 2005, 2010, and 2015, the
area of extremely intense and severe erosion was 0 km2. By 2022,
the area of extremely intense erosion had increased to 32.1 km2,
accounting for approximately 0.08%, whereas the area of severe
erosion had increased to 0.4 km2, representing
approximately 0.001%.

Furthermore, a hierarchical map of the soil erosion modulus
(Figure 3) and a distribution map of the changes in each influencing
factor (Figure 5) were created to visualize the spatial and temporal

evolution characteristics of soil erosion in the Daqing River Basin. A
comparison of the data from 2000, 2005, 2010, 2015, and
2022 revealed that the distribution of the soil erosion intensity in
the study area was low in the southeast and high in the northwest
and that there was a notable difference in the erosion intensity
between the plains andmountains. In 2000, plains experienced slight
erosion, while the mountains predominantly experienced mild
erosion. By 2005, slight erosion continued to prevail in the
plains; however, the extent of slight erosion diminished as mild
erosion expanded. This trend continued until 2010, when the
erosion patterns in the mountains began to diverge: mild erosion
lessened in the northeast but intensified in the southwest,
maintaining a relatively stable overall erosion level. A significant
shift occurred in 2015, marking a pivotal turning point. During this
year, there was a marked reduction in mild erosion within the
mountains, resulting in a notable decline in overall erosion across

FIGURE 2
Soil erosion modulus curves for the Daqing River watershed, 2000–2022 (where the dotted line is the trend line).

TABLE 4 Areas of soil erosion in the Daqing River Basin in 2000, 2011 and 2022.

Year Slight erosion Mild erosion Moderate
erosion

Intense erosion Extremely
intense erosion

Severe erosion

Area/
km2

Ratio
%

Area/
km2

Ratio
%

Area/
km2

Ratio
%

Area/
km2

Ratio
%

Area/
km2

Ratio
%

Area/
km2

Ratio
%

2000 36823.3 91.6 3,291.4 8.2 103.2 0.26 1.6 0.0004 0 0 0 0

2005 37562.3 93.4 2,606.1 6.5 50.6 0.126 0.6 0.0014 0 0 0 0

2010 37567.3 93.4 2,614.9 6.5 37 0.092 0.31 0.0008 0 0 0 0

2015 38613.3 96 1,603.1 3.99 3.1 0.008 0 0 0 0 0 0

2022 34044.3 84.6 5,178 12.9 803.4 2 161.2 0.4 32.1 0.08 0.4 0.001
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the entire basin. This change indicated a temporary improvement in
soil erosion conditions. Nevertheless, by 2022, soil erosion in
mountains had sharply worsened, with the area affected by mild
erosion increasing substantially, surpassing previous levels.

3.1.2 Dynamic changes in soil erosion classes
To better understand the dynamic changes in soil erosion in the

Daqing River Basin, soil erosion was classified into six distinct
intensity classes, and special attention was paid to the evolution
of soil erosion intensity from 2000 to 2005, 2005 to 2010, 2010 to
2015, and 2015 to 2022.

The results presented in Figure 4 and Table 5 indicate the
following trends. Between 2000 and 2005, slight erosion
predominantly shifted to mild and moderate levels, whereas
intense, extremely intense, and severe erosion transformed into
lower levels. However, the extent of mild and moderate erosion
increased significantly during this period. From 2005 to 2010, there
was a degree of mutual transformation between different erosion
classes, but the overall soil erosion situation remained relatively
stable without drastic changes. During the period from 2010 to 2015,
the overall erosion situation improved, with slight, mild, and
moderate erosion becoming predominant. Different classes of
erosion were more frequently transformed into mild erosion,
with an increase of 2,962 km2 in mild erosion. Unfortunately,
during the period from 2015 to 2022, the degree of erosion
worsened significantly. Slight and mild erosion decreased
markedly, whereas moderate, intense, extremely intense, and
severe erosion increased substantially. Specifically, moderate
erosion increased by 50 km2 and intense erosion increased by
10 km2; although extremely intense and severe erosion did not

account for a large percentage of the area, their increase during this
period was noteworthy.

In summary, the soil erosion trends in the Daqing River Basin
from 2000 to 2022 were complex and characterized by initial
improvements and subsequent deterioration. In the initial phase,
there was an increase in the area of mild and moderate erosion and a
decrease in the area of high erosion. The middle phase experienced a
stabilization of erosion levels, followed by an improvement from
2010 to 2015. However, the period from 2015 to 2022 was
characterized by a significant increase in high-level erosion,
indicating a marked deterioration in soil conditions. This trend is
closely linked to regional climate changes and shifts in land-use
patterns, highlighting the urgent need to improve soil erosion
control measures in the basin.

3.2 Attribution analysis of the differences in
soil erosion between the mountain and
plain areas

3.2.1 Spatiotemporal characteristics of the factors
influencing soil erosion based on the RUSLE

Focusing on the period from 2000 to 2022, the change trends of
the main influencing factors, namely, the rainfall erosivity factor (R),
conservation practices factor (P), and cropping and management
factor (C), were analyzed using the RUSLE model. However,
considering that the soil erodibility factor (K) and the slope
length and steepness factor (LS) typically exhibit a long period of
change and that they remained relatively stable during the study
period, their changes were not examined in this study.

FIGURE 3
Classification map of soil erosion in the Daqing River Basin in 2000, 2005, 2010, 2015, and 2022.
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As shown in Figure 5 spatially, the rainfall erosivity factor (R)
was significantly greater in plains than in mountains. The greater
rainfall intensity and flat topography of the plains facilitated the
formation of surface runoff, thereby exacerbating soil erosion. In
contrast, the cropping and management factor (C) was relatively
high in the mountains because of the abundant natural vegetation,
which provided a degree of protection for the soil and mitigated the
erosion process. However, in recent years, the C factor in mountains
has shown a decreasing trend, thus exacerbating the erosion
problem. Furthermore, the P factor was significantly greater in
the mountains than in the plains, indicating that there were
deficiencies in the soil and water conservation measures in the
mountains, thereby increasing the risk of soil erosion.

Figure 6 shows the changes in the soil erosion impact factors in
the Daqing River Basin from 2000 to 2022. Over time, the P factor in
the Daqing River Basin decreased from 2000 to 2022. The P value
was related to land-use change. In this paper, we calculated the areas
of cultivated land and woodland in the Daqing River Basin from
2000 to 2022. As shown in Figure 7, the cultivated land in the Daqing
River Basin decreased annually, whereas the woodland area
continuously increased. Specifically, the area of cultivated land
decreased from 21,215 km2 in 2000 to 19,201 km2 in 2022, a
decrease of 2014 km2, whereas the area of forested land
continued to increase, from 7,299 km2 in 2000 to 8,282 km2 in
2022, an increase of approximately 13.5%. This shift shows that the
soil and water conservation measures implemented in the region in
recent years have achieved positive results. A reduction in cultivated

land and increase in woodlands can help effectively control soil
erosion by increasing vegetation coverage, improving soil structure,
and reducing surface runoff. In contrast, the C factor in the
mountainous region showed a decreasing trend, resulting in
more severe soil erosion in the mountains, whereas the
vegetation coverage in the plains increased. In addition, the
maximum value of the R factor constantly exceeded the previous
value, reflecting the frequent occurrence of extreme weather events.
Moreover, extremely high temperatures and extreme precipitation
events under global climate change significantly exacerbated soil
erosion in the Daqing River Basin, especially in plains where the R
factor was relatively high.

3.2.2 Analysis of soil erosion divergence drivers via
random forest

Soil erosion is a complex process that is influenced by a
multitude of factors, including natural elements such as
precipitation, temperature, and vegetation coverage, as well as
anthropogenic factors such as urbanized areas, population
density, and GDP. This study offers a comprehensive analysis of
soil erosion within the Daqing River Basin from 2000 to 2022 and a
summary of the significance of the influence of natural and
anthropogenic factors on soil erosion via random forest
(Figure 8). This study collected GDP and population density data
from counties in the Daqing River Basin’s mountainous and plain
areas. The data provide a detailed picture of each region’s population
and economic conditions.

FIGURE 4
Soil erosion transfer at different levels in the Daqing River Basin from (a) 2000 to 2005, (b) 2005–2010, (c) 2010–2015, and (d) 2015–2022.
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As illustrated in Figure 8, precipitation was the largest driver of
soil erosion throughout the Daqing River Basin, accounting for
53.7% of the total erosion. In contrast, the impacts of GDP and
vegetation coverage on soil erosion stood at 15% and 9.9%,
respectively. This finding suggests that both economic activities
and vegetation conditions play significant roles in soil erosion
processes. In mountain areas, vegetation coverage (22.8%) played

a crucial role, ranking second only to precipitation (44%) in its
impact on soil erosion. The influence of temperature (9.8%) was also
notable, suggesting that soil erosion on plains was driven primarily
by climatic and vegetation factors. In contrast, on plains,
precipitation had a more pronounced effect, accounting for 63%
of soil erosion, while GDP (14.5%) surpassed both vegetation cover
(7.4%) and temperature (5.2%). This result indicates that soil

TABLE 5 Soil erosion intensity transfer matrix for the Daqing River Basin, 2000–2022 (km2).

2000 2005

Slight Mild Moderate Intense Extremely intense Severe

Slight 36605.875 2,419.5 48.063 0.563 0 0

Mild 916.313 42.875 0 0 0 0

Moderate 39.063 100.813 0.125 0 0 0

Intense 0.875 36.313 1.063 0 0 0

Extremely intense 0.125 6.563 1.188 0.063 0 0

Severe 0 0 125 0 0 0

2005 2010

Slight Mild Moderate Intense Extremely intense Severe

Slight 36,929.5 632.563 0.188 0 0 0

Mild 635.375 1,942.5 28.188 0 0 0

Moderate 2.438 39.813 8 0.313 0 0

Intense 0 0 0.625 0 0 0

Extremely intense 0 0 0 0 0 0

Severe 0 0 0 0 0 0

2010 2015

Slight Mild Moderate Intense Extremely intense Severe

Slight 37416.313 151 0 0 0 0

Mild 1196.875 1,418 0 0 0 0

Moderate 0.125 34.063 2.813 0 0 0

Intense 0 0.063 0.25 0 0 0

Extremely intense 0 0 0 0 0 0

Severe 0 0 0 0 0 0

2015 2022

Slight Mild Moderate Intense Extremely intense Severe

Slight 33845.188 4728.125 38.25 1.688 0.063 0

Mild 199.063 449.875 765.188 159.5 29.5 0

Moderate 0.063 0 0 0 2.563 0.438

Intense 0 0 0 0 0 0

Extremely intense 0 0 0 0 0 0

Severe 0 0 0 0 0 0
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erosion on plains was closely linked to economic activities and
changes in land-use.

In summary, precipitation was the largest driver of soil erosion
across the entire Daqing River Basin. In mountains, vegetation
coverage and temperature were secondary to precipitation in
terms of their impact on soil erosion, whereas anthropogenic
factors played a relatively minor role. In contrast, in plains, in
addition to precipitation, GDP had a prominent effect on soil

erosion, surpassing the effects of natural factors such as
vegetation coverage and temperature.

3.2.3 Analysis of the intensity and direction of each
driver via PLS‒SEM

PLS‒SEM analysis further revealed the effects of natural and
anthropogenic factors on soil erosion in the mountains and plains of
the Daqing River Basin. This method not only quantified the

FIGURE 5
Distribution of the influencing factors in the Daqing River Basin in 2000, 2005, 2010, 2015, and 2022.

FIGURE 6
Changes in the influencing factors(a-d) in the Daqing River Basin, 2000-2022 (where the dotted line is the trend line).
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influence intensity of each factor but also clarified whether these
factors had a positive or negative effect on soil erosion. In PLS-SEM,
natural and anthropogenic factors were considered potential
variables, whereas precipitation, vegetation coverage, temperature,
urbanized areas, population density, and GDP were observed
variables. The coefficients of the observed variables reflected the
degree of their contributions to the potential variables and could not
be directly equated with the importance of each factor to soil erosion
(Sarstedt et al., 2021).

As shown in Figure 9, the contribution of the erosionmodulus in
the mountains (0.996) to the overall average erosion modulus for the
entire basin was substantially greater than that in the plains (0.05).
This indicates that mountainous areas dominated the soil erosion
throughout the basin. In the mountains, natural factors significantly
influenced soil erosion (0.677), far exceeding the impact of
anthropogenic factors (0.005). Specifically, meteorological factors,
including precipitation and temperature, played positive roles in
promoting soil erosion and were closely associated with extreme
weather events due to global climate change. Extreme weather
events, such as heavy precipitation and drought, distinctly

exacerbated soil erosion. Furthermore, the influence coefficient of
vegetation coverage on soil erosion in mountains was −0.835,
indicating that increased vegetation coverage led to a reduction
in the degree of soil erosion. However, in combination with
Figure 6D, it is evident that from 2000 to 2022, the cropping and
management factor (C) in the mountains exhibited a declining
trend. The loss of vegetation coverage weakened its ability to
protect the soil, increasing its vulnerability to precipitation, thus
increasing soil erosion in mountains. The decline in vegetation
coverage was related mainly to climate change but was also
indirectly affected by local human activities. Despite the relatively
low level of human activity in mountains, occasional overgrazing or
local deforestation can still adversely impact vegetation coverage,
thereby increasing soil erosion.

In plains, the intensity of the influence of natural factors on soil
erosion (0.566) was greater than that of anthropogenic factors
(0.177). However, the impact of anthropogenic factors on plains
(0.177) was significantly greater than that on mountains (0.005).
Meteorological factors, such as precipitation and temperature,
played relatively strong roles in plains. The flat terrain and low
vegetation buffer in plains make it easy for precipitation to form
runoff, whereas temperature changes directly affect soil properties,
weakening soil erosion resistance and thereby exacerbating soil
erosion. In contrast to mountains, the influence of vegetation
coverage on soil erosion on plains had a coefficient of 0.614,
indicating that greater vegetation coverage was associated with
increased soil erosion. This phenomenon occurs because soil
erosion in plains areas is generally low, and agricultural activities
are predominant. The vegetation in plains primarily consists of
crops, so an increase in vegetation coverage does not represent an
increase in soil protection. In contrast, as crop coverage increases,
both the intensity of agricultural soil development and use also tend
to increase. As illustrated in Figure 6C, the cropping and
management factor (C) in plains showed an increasing trend
from 2000 to 2022. This increase in vegetation coverage was
attributed primarily to the expansion of agricultural production
rather than the restoration of natural vegetation. The persistent
practice of monoculture and excessive cultivation resulted in the
degradation of the soil structure and a decline in soil fertility. As a
consequence, the inherent resistance of the soil to erosion

FIGURE 7
Changes in cultivated land and woodland areas in the Daqing
River Basin, 2000–2022.

FIGURE 8
Random forest calculation results for the relative importance of the influencing factors. (a) The entire basin (b) The Plains (c) The mountains.
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significantly weakened, thereby exacerbating the problem of soil
erosion (Abaci and Papanicolaou, 2009). Moreover, the
urbanization process in plains led to the destruction of natural
vegetation and the hardening of the soil surface. These changes led
to increased surface runoff, reduced rainwater infiltration,
compromised soil structure, diminished erosion resistance, and
ultimately intensified soil erosion.

3.2.4 Analysis of interactions among various drivers
via PLS‒SEM

Considering that natural and anthropogenic factors do not affect
soil erosion in isolation but may interact with each other, this paper
used PLS‒SEM analysis to explore the interactions between various
influencing factors in mountains and plains. This approach helps to
more comprehensively reveal how different factors work together in
the soil erosion process.

As shown in Figure 10, there are strong synergistic effects between
GDP and population density (0.953), GDP and urbanized area (0.998),
and population density and urbanized area (0.934) in mountainous
areas. However, vegetation coverage has antagonistic effects on
urbanized areas (−0.720), population density (−0.626), and GDP
(−0.732). This suggests that economic development, urbanization,
and population growth are closely interlinked and may collectively
exacerbate soil erosion. Economic growth in mountainous areas may
rely on resource development, such as mining. These activities disrupt
the natural surface and, combined with urbanization, destroy vegetation
coverage, thereby exacerbating soil erosion. Additionally, there is an
antagonistic effect between precipitation and vegetation coverage
(−0.357), likely due to the impact of extreme climate events causing
frequent heavy rainfall, which damages vegetation coverage and thus
intensifies soil erosion.

In plains, there are also significant synergistic effects between
GDP and population density (0.850), urbanized area and population
density (0.820), and GDP and urbanized area (0.880). However,
unlike mountains, anthropogenic factors such as GDP, population
density, and urbanized areas exhibit a degree of synergistic action
with vegetation coverage (0.450) in plains. This finding indicates
that urbanization in plains may have advanced beyond the initial
phase of vegetation destruction and has entered a stage of recovery.
The observed enhancement in vegetation coverage can likely be
attributed to the implementation of effective ecological protection
measures, which have optimized land-use patterns and supported
the restoration of vegetation. Additionally, meteorological factors
(precipitation and temperature) and anthropogenic factors interact
synergistically on plains, which demonstrates that urbanization on
plains alters land-use (Chen et al., 2021), increases the frequency and
intensity of extreme weather events, and ultimately accelerates
soil erosion.

4 Discussion

4.1 Verification of the accuracy of the
RUSLE model

This study systematically investigated the spatiotemporal
characteristics of soil erosion in the Daqing River Basin from
2000 to 2022 via the RUSLE model. The research highlighted the
different soil erosion patterns observed in mountains and plains. To
validate the RUSLE model’s accuracy and reliability of the findings,
the results of the current study were compared with research
conducted in the Hai River Basin, North China Plain, and

FIGURE 9
PLS-SEM results for the intensity and direction of each influencing factors.
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Taihang Mountain area. The comparison focused on three key
aspects: spatial distribution characteristics, driving factors, and
modulus comparisons. The details are presented below.

4.1.1 Spatial distribution characteristics
The distinct spatial distribution characteristics of soil erosion intensity

in the Daqing River Basin were revealed in this study. Specifically, erosion
intensity was lower in the southeast and higher in the northwest. A clear
dividing line separated mountains from plains, with erosion intensity
generally more distinct in mountains than in plains. This pattern closely
alignedwith the conclusions drawnbyLiX.S. et al. in their research on the
Hai River Basin, which also identified a similar boundary between
mountains and plains, indicating a significantly greater risk of soil
erosion in mountainous areas (Li et al., 2011). As a significant
tributary of the Hai River Basin, the erosion characteristics observed
in the Daqing River Basin further corroborate the overarching trends
identified in the Hai River Basin, thereby reinforcing the validity and
reliability of the results presented in this paper.

4.1.2 Driving factors
In this work, an analysis of the factors contributing to soil erosion in

the Daqing River Basin from 2000 to 2022 revealed that precipitation
was the largest driver of soil erosion intensity and its spatiotemporal
distribution. This finding aligns closely with the research conducted by
Wang H.Q. et al., who identified rainfall erosivity (R) as the primary
factor influencing soil erosion in the North China Plain (Wang et al.,
2021). Furthermore, a study by Li et al. (2020) confirmed that rainfall
erosivity (R) was crucial to understanding the spatiotemporal variations
in soil erosion across China. The consistency of these findings further
reinforced the reliability of the conclusions presented in this paper and

underscored the essential role of precipitation in the soil
erosion process.

4.1.3 Modulus comparison
On the basis of the RUSLE model, the average annual soil

erosion modulus in the mountains of the Daqing River Basin
from 2000 to 2022 was calculated to be 386 t/(km2·a) in this
paper. As a critical component of the Taihang Mountain area,
the Daqing River Basin covers approximately one-tenth of the
total area of the Taihang Mountain area. Drawing on the
research by Wang F. et al., we scaled down the equivalent
soil erosion modulus of the Taihang Mountain area to the
Daqing River Basin. The results indicated that the soil
erosion modulus for 2000, 2005, 2010, and 2015 were 443,
298, 176, and 183 t/(km2·a), respectively (Wang et al., 2022).
These values exhibited high consistency in magnitude with the
calculation results of this study, confirming the high level of
reasonableness of our estimation. Furthermore, studies in the
Taihang Mountain area have demonstrated that soil erosion in
the area showed a significant improvement trend between
2000 and 2015. In this study, we found that 2015 emerged as
a pivotal turning point in the spatiotemporal evolution of soil
erosion in the Daqing River Basin, where the degree of soil
erosion was markedly reduced. This finding aligns well with
previous trends, further validating the reliability of the results
presented in this study.

In conclusion, the soil erosion analysis results for the Daqing
River Basin in this study demonstrated high reliability and could
serve as scientific support for forthcoming related research and
regional soil and water conservation efforts.

FIGURE 10
Interaction of natural and anthropogenic factors in mountains and plains. (where X1 represents precipitation, X2 represents temperature,
X3 represents vegetation coverage, X4 represents urbanized areas, X5 represents population density, and X6 represents GDP.)
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4.2 Management measures

In this study, random forest analysis (Figure 8) revealed the main
drivers of soil erosion in the Daqing River Basin. The results revealed
that precipitation was the largest driver of soil erosion throughout the
basin. In the mountains, vegetation coverage and temperature were
second only to precipitation in terms of the impact of soil erosion,
whereas anthropogenic factors were relatively minor. In contrast, in
plains, in addition to precipitation, the influence of GDP on soil erosion
was prominent, exceeding the impacts of vegetation coverage and
temperature on plain soil erosion. The PLS‒SEM analysis (Figure 9)
indicated that natural factors generally exerted a greater influence on
soil erosion than did anthropogenic factors throughout the basin.
However, the impact of anthropogenic factors on soil erosion was
more pronounced in plains than in mountains. Furthermore, the PLS‒
SEM interaction analysis (Figure 10) demonstrated that there was
strong synergy among various anthropogenic factors (urbanized
areas, population density, and GDP) in the enclosed basin. In the
mountains, anthropogenic factors were antagonistic to vegetation
coverage, whereas in the plains, they were synergistic with vegetation
coverage and meteorological factors.

To address the issue of soil erosion effectively in the Daqing
River Basin, specific measures were proposed for mountains and
plains in this study, focusing on three key aspects: ecological
protection, land management, and sustainable development.

For ecological protection, mountains should prioritize
enhancing vegetation coverage through initiatives such as
afforestation and grassland restoration. These efforts will help
mitigate soil erosion and preserve ecosystem integrity.
Conversely, plains should aim to optimize land-use, manage
urbanization rates, and plan land development to alleviate direct
pressure on the soil and diminish the risk of soil erosion.

Regarding land management, it is crucial to address
overexploitation and mitigate irresponsible human activities,
such as overgrazing and deforestation, particularly in
mountains. This strategy is essential for protecting natural
vegetation and maintaining soil integrity. In contrast, on plains,
promoting sustainable agricultural practices such as crop rotation,
intercropping, and conservation tillage is essential to prevent
overcultivation and reduce soil degradation and erosion.

To promote sustainable development, implementing ecological
restoration initiatives in mountains, such as converting farmland back
into forests, is vital. These efforts will enhance vegetation coverage in
basins and improve the ecological environment. Furthermore, in
plains, the construction of green infrastructure—including
permeable paving, rain gardens, and green roofs—should be
adopted to minimize surface runoff, reduce the risk of soil erosion,
and increase the region’s capacity for sustainable development.

4.3 Limitations and future work

In this study, the R factor was calculated using only monthly
precipitation data. Future research could incorporate climate models
such as the Coupled Model Intercomparison Project Phase 6
(CMIP6) to include future precipitation projections and more
comprehensively assess the impacts of climate change. The P
factor was derived using traditional land-use classification

methods without accounting for specific conservation practices
like contour farming and terracing. High-resolution remote
sensing could be employed in future studies to identify these
practices and enhance accuracy. Due to data limitations, average
county-level GDP and population density data were used for the
Daqing River Basin. Future research could leverage more precise
remote sensing data. Validation relied on literature from regions
such as the Taihang Mountain area and North China Plain due to
the absence of specific soil erosion studies for the Daqing River
Basin, which constrains validation accuracy. Future work should
prioritize collecting field data within the Daqing River Basin.

5 Conclusion

On the basis of the RUSLE model, this study focused on
exploring the spatial and temporal evolution characteristics of
soil erosion and its influencing factors in the Daqing River Basin
from 2000 to 2022. To examine the impacts of both natural and
anthropogenic factors and their interactions on soil erosion, the
random forest and PLS-SEM methods were used. Furthermore, a
comparative analysis of soil erosion between the mountains and
plains was conducted, and the dominant influencing factors were
identified. The conclusions are as follows:

(1) From 2000 to 2022, the total soil erosion area in the Daqing
River Basin remained stable at 40219.5 km2, but the erosion
intensity increased annually. The average annual erosion
modulus was 159 t/(km2·a) for the entire basin, 386 t/
(km2·a) in the mountains, and 1.1 t/(km2·a) in the plains,
with the mountains contributing the majority of the total
erosion. Erosion intensity increased from southeast to
northwest, with mild to intense erosion in the mountains
and slight erosion in the plains. Erosion first decreased and
then sharply increased from 2000 to 2022, reaching its lowest
level in 2015, which was a critical turning point.

(2) The spatial and temporal distributions of the soil erosion
drivers varied markedly. Spatially, the value of the R factor
was significantly greater in the plains than in the mountains.
However, the values of the C factor and the P factor in the
plains were lower than those in the mountains. Temporally,
the entire basin exhibited a decreasing trend in the P factor
from 2000 to 2022. Natural factors, especially precipitation,
were the largest drivers of soil erosion in the Daqing River
Basin. Anthropogenic factors had a stronger impact on soil
erosion in the plains than in the mountains. There was strong
synergy among various anthropogenic factors throughout the
basin. In the mountains, anthropogenic factors were
antagonistic to vegetation coverage, whereas in the plains,
they were synergistic with vegetation coverage and
meteorological factors.

(3) The RUSLE model results obtained in this paper are highly
reliable. The management of the Daqing River Basin should
prioritize ecological restoration and sustainable development.
In the mountains, afforestation and reforestation should be
prioritized to increase vegetation coverage. In the plains, land-
use should be optimized and sustainable agriculture should
be promoted.
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