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Climate change has significantly impacted vulnerable communities globally, with
rising temperatures caused by greenhouse gas emissions accelerating global Sea
Level Rise (SLR), threatening coastal infrastructure and ecosystems. This study
evaluates statistical and deep learning models, including the Autoregressive
Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM)
networks, for predicting SLR and visualizing potentially inundated areas in the
United Arab Emirates (UAE) via an interactive web interface. Historical mean sea
level (MSL) data from the National Oceanic and Atmospheric Administration
(NOAA), spanning 1992 to 2024, were used for training and model evaluation.
An interactive web platform was developed to visualize forecasted inundation
areas and support decision-making. The enhanced LSTM model, integrated with
a Squeeze-and-Excitation (SE) block, achieved the highest accuracy, with a Root
Mean Square Error (RMSE) of 2.27, representing an improvement of 8.81% over
the standalone LSTM (RMSE 2.47) and 13.66% over ARIMA (RMSE 2.58). Themodel
forecasts sea level changes up to 2100, highlighting critical risks for low-lying
coastal regions such as Umm Al Quwain, Abu Dhabi, and Dubai. The findings
underscore the value of advanced AI-driven forecasting in enhancing climate
resilience, assisting policymakers and urban planners in risk assessment,
optimizing emergency response strategies, and implementing coastal
adaptation measures. Future work should integrate additional environmental
factors influencing MSL.
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1 Introduction

The rapid increase in global temperatures has triggered significant changes and
phenomena that have adversely impacted the climate and human lives. This rise, driven
primarily by greenhouse gas emissions (Mohajan, 2011), poses a serious threat to
ecosystems and the environment. Among these changes, Sea Level Rise (SLR) emerges
as a critical global challenge (Meehl et al., 2005; Vermeer and Rahmstorf, 2009),
endangering cities and communities located in coastal areas, particularly low-lying
lands. This creates considerable vulnerability among human societies. The inevitable
future increase in SLR underscores the need for studies that address this issue by
capturing the regional dynamics of SLR (Elneel et al., 2024b). SLR is primarily caused
by two factors: the thermal expansion of seawater as it warms, and the melting of polar
glaciers. Both of these processes are driven by rising global temperatures, which are closely
linked to the widespread use of fossil fuels (Church and White, 2011). In addition to global
drivers, regional factors also influence sea level trends. These lead to significant variations in
Mean Sea Level (MSL) across different locations. Local variations include climatic factors
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such as the effects of wave action during natural disasters, rainfall,
and changes in the water budget between different water bodies
caused by water mass movement due to differences in water
warming. Human activities, such as groundwater extraction and
alterations to shorelines, also contribute to these variations (Elneel
et al., 2024b). Global MSL has risen at an accelerating rate in recent
years (Nerem et al., 2018). The Intergovernmental Panel on Climate
Change (IPCC) projects that, under extreme emission scenarios,
MSL could rise by up to 1 m by 2100 (IPCC, 2019). Therefore,
understanding SLR and predicting future rates are essential for
mitigating the catastrophic consequences of inaction.

Several studies have examined SLR and its implications,
emphasizing the urgent need for accurate forecasting due to
climate change. (Rahmstorf, 2007). investigated the relationship
between global temperature and SLR, suggesting that previous
estimates might underestimate actual SLR if current warming
trends persist. (Rignot et al., 2011). investigated contributions
from the Antarctic and Greenland ice sheets using satellite
imagery and ice sheet models, revealing an accelerating rate of
ice melt. Similarly (Hansen et al., 2016), projected that rapid ice
melting could result in SLR exceeding 1 m this century, highlighting
the necessity of robust predictive models.

Given these uncertainties, various predictive approaches have
been employed to model SLR. Traditional statistical models such as
the Autoregressive Integrated Moving Average (ARIMA) method
have been widely used for time-series forecasting. ARIMA combines
moving averages with differences between measurements to identify
trends (Box et al., 2015). Its simplicity and interpretability make it a
popular choice, but its assumption of linearity limits its effectiveness
in capturing complex climate dynamics (Makridakis et al., 2018).
Despite this limitation, ARIMA serves as a useful benchmark for
evaluating more advanced models.

Autoregressive models have been applied to SLR forecasting in
various regions. For example (Tabassum et al., 2019), used
autoregressive models to predict seasonal SLR in the Bay of
Bengal based on historical observations. Univariate and
multivariate autoregressive models have been utilized to forecast
MSL in Malaysia, demonstrating effectiveness even in areas with
significant tidal influences (Balogun and Adebisi, 2021).
Additionally (Elneel et al., 2023), applied autoregressive models
to forecast global MSL under the influence of additional water mass
from Antarctic ice melts. Recent studies have also integrated
autoregressive models with alternative approaches, such as
Facebook’s Prophet model, to improve forecasting accuracy over
extended periods (Elneel et al., 2024a). Furthermore, autoregressive
models combined with unified structural equation modeling have
been employed to assess the global warming potential of greenhouse
gases on SLR trends (Song et al., 2023).

While traditional models provide a foundation for SLR
prediction, their limitations in handling non-linear dependencies
and long-term temporal relationships have led to the adoption of
machine learning approaches. Long Short-Term Memory (LSTM)
networks, a type of recurrent neural network, address these
challenges by effectively modeling non-linear data (Qin et al.,
2017). LSTM employs gating mechanisms to retain relevant
information over time, making it particularly suitable for climate
forecasting (Hochreiter and Schmidhuber, 1997). The integration of
LSTM with attention mechanisms has further improved predictive

performance by dynamically assigning weights to temporal features
(Liu et al., 2022).

Deep learning methods have shown significant promise in SLR
prediction by leveraging large datasets and capturing both spatial
and temporal dependencies. (Liu et al., 2020) demonstrated the
effectiveness of combining LSTM with attention mechanisms for
MSL prediction in the South China Sea, achieving high accuracy
with a correlation coefficient of 0.999. Similarly, (Nieves et al., 2021),
applied machine learning to model coastal MSL variability,
successfully accounting for internal climate variations. Other
studies have evaluated hybrid approaches, such as combining
linear regression with adaptive neuro-fuzzy inference systems, to
improve short-term SLR predictions (Tur et al., 2021). Moreover,
(Adebisi and Balogun, 2022), assessed various LSTM configurations
for MSL prediction along Malaysia’s coastline, showing that
multivariate models incorporating ocean-atmospheric variables
yielded superior results.

In summary, SLR forecasting has evolved from statistical time-
series models to more sophisticated deep learning approaches,
addressing the increasing complexity of climate dynamics.
Traditional models like ARIMA and autoregressive methods
remain useful for benchmarking, but the superior performance of
LSTM and hybrid models highlights the importance of advanced
techniques in improving predictive accuracy.

Several interactive platforms have been developed globally to
visualize and communicate the risks associated with sea level rise.
For instance, NOAA’s Sea Level Rise Viewer provides community-
level impact visualizations for the U.S. coastlines NOAA, (2024a).
NASA’s Sea Level Projection Tool offers global projections based on
IPCC scenarios NASA Sea Level Change Team (2024). Climate
Central’s Coastal Risk Screening Tool enables global assessments of
coastal flood risks Climate Central (2024). Additionally, the
University of Washington has developed interactive visualizations
for Washington State’s coastline University of Washington Climate
Impacts Group (2023).

Despite global advancements, deep learning-based long-term
SLR forecasting in the Arabian Gulf region remains limited,
particularly the application of deep learning models tailored to
this region’s unique coastal dynamics. This study introduces a
novel methodological enhancement by integrating a Squeeze-and-
Excitation (SE) attention mechanism with LSTM. This integration
improves forecasting accuracy over standard models (LSTM,
ARIMA) by effectively capturing non-linear temporal
dependencies critical for accurate SLR predictions. Further,
Unlike many previous studies, this framework translates model
predictions into actionable insights through an interactive, web-
based visualization platform that highlights potentially inundated
areas in the UAE. In this paper, variations in sea level whether
increasing or decreasing will be referred to as MSL, while rising sea
level will be referred to as SLR.

Given the UAE’s vision for a sustainable, knowledge-based
economy, (Melville-Rea et al., 2021), proposed a roadmap to
guide SLR research and establish a national climate change
research network. The UAE’s coastal infrastructure, economic
hubs, and marine ecosystems are vulnerable to SLR. Key sectors
at risk include tourism, as major resorts and developments are
located along the Arabian Gulf coastline, trade could be affected as
well, since critical ports such as the Jebel Ali port are vital in the
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global supply chain. Moreover, marine ecosystems like mangroves
and coral reefs could be greatly affected, which in return will affect
the fish population since these provide natural habitat and
protection for some fish species. Building upon this framework,
this study focuses on advancing SLR prediction techniques to
support mitigation strategies and informed decision-making.

2 Methodology

To effectively analyze and predict SLR, this study follows a
structured methodological approach, as illustrated in Figure 1. The
process begins with data collection and pre-processing, leveraging
historical MSL data from reputable sources, including satellite
altimetry records. The dataset is then subjected to resampling
and normalization to ensure consistency and eliminate noise.
Following data preparation, statistical and deep learning models
are developed and trained using both univariate and multivariate
approaches. The primary models include ARIMA and LSTM
networks, with further enhancements introduced through SE
blocks to improve the performance of LSTM. The evaluation
phase involves rigorous testing of the models and validation
against historical data. The best-performing model is
subsequently used to forecast future SLR scenarios, and the
results are visualized through an interactive web platform,
offering dynamic representations of potentially inundated areas.
This comprehensive methodology ensures robust, data-driven
predictions that contribute to enhanced climate resilience planning.

2.1 Models development

2.1.1 LSTM model
LSTM is an advance type of Recurrent Neural Network (RNN)

incorporating special gating mechanisms within their architecture:
the forget gate, the input gate, and the output gate. These gates
enable the model to selectively retain, update, or discard information
over the next time intervals, making LSTM models effective in
sequential data tasks, including language modeling and time-series
prediction (Sherstinsky, 2020).

In this study, an LSTM model was developed consisting of two
LSTM layers, each containing four hidden units. The output layer
employs a linear activation function to generate continuous-valued
predictions. Adam optimizer was used with a learning rate of
0.001 to ensure efficient weight updates, and the He uniform
initialization was applied to the kernel weights while using

constant bias initialization for improved training stability. To
prevent overfitting, an early stopage strategy was implemented,
halting training when validation loss ceased to improve over
multiple epochs.

2.1.1.1 Squeeze and excitation block
The Squeeze-and-Excitation (SE) block is an architectural

component designed to enhance the representational power of a
neural network by modeling and recalibrating the interdependencies
between its feature channels. It consists of two main steps: squeeze
and excitation. In the squeeze step, global spatial information is
condensed into a channel descriptor using global average pooling,
capturing dependencies across all feature channels. In the excitation
step, this descriptor passes through a simple gating mechanism with
sigmoid activation, enabling the network to dynamically recalibrate
the channel-wise feature responses. The SE block helps the network
prioritize significant features while minimizing computational cost,
thereby improving overall performance (Hu et al., 2018).

Mathematical Formulation. Let x ∈ R1×1×C be the input feature
map, where C represents the number of output features from the
LSTM block. Because the data are one-dimensional, the standard
global average pooling operation used in conventional SE blocks is
omitted in this configuration.

In the excitation operation, x is passed through two fully
connected layers with a reduction ratio r (we set r � 3 in our
experiments) and a sigmoid gating as shown in Equation 1:

s � σ W2 ReLU W1 x( )( ), (1)
where W1 ∈ R(C/r)×C and W2 ∈ RC×(C/r) are trainable parameters,
and σ(·) is the sigmoid function. Finally, the output of the SE block is
obtained by channel-wise multiplication of the original feature map
x with the scale vector s as shown in Equation 2:

xc′ � sc xc, c � 1, . . . , C. (2)

The effect of using an SE block with LSTM was examined by
developing two models: LSTM and LSTM-SE. This was done to
demonstrate the potential of the SE block in improving the model’s
ability to learn temporal patterns effectively. The training process
began with scaling the data to ensure numerical stability and
creating structured sequences of length 3, where each sequence
served as input to predict the next step. The LSTM architecture
consisted of two LSTM layers with four hidden units each, utilizing
the He uniform kernel initializer and constant bias initialization for
efficient parameter initialization. In the second model, a custom SE
block was integrated between the LSTM layers. The squeeze step
involved computing a channel descriptor by applying a fully

FIGURE 1
Methodology for MSL prediction and visualization framework.
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connected layer that reduces the dimensionality, followed by the
excitation step, which restores the channel dimension and applies a
sigmoid activation to generate scaling factors for each channel. Thus,
the SE block enhances learning by helping the model focus more on
important features and suppress less relevant ones. This improves
the model’s ability to adapt to changes in the data, especially when
sea-level patterns fluctuate over time. The final output layer used a

linear activation function to produce continuous-valued predictions.
Bothmodels were trained using Adam optimizer with a learning rate
of 0.001, ensuring efficient weight updates. Training and validation
loss was monitored throughout the 100 training epochs, with
performance visualized through loss plots. An early stopping
mechanism was implemented to halt training based on validation
loss values, preventing overfitting. After training, predictions were
generated iteratively using a sliding window approach, and the
results were scaled back to the original range for validation.
Figure 2 illustrates the structure of LSTM with SE integration.
The primary distinction between the LSTM and LSTM-SE
models lies in the incorporation of the attention mechanism.
Table 1 provides a detailed overview of the LSTM-SE model’s
configuration.

2.1.2 ARIMA model
ARIMA is a popular time-series forecasting model that

integrates autoregressive (AR) and moving average (MA)
components with differencing to address non-stationary data. It
effectively identifies and forecasts patterns in univariate time-series
data. The AR component models the linear relationship between an
observation and its previous values, while the MA component
captures the impact of past forecast errors. The “integrated”
aspect refers to the differencing process used to achieve
stationarity, allowing the model to be applied to a wider variety
of time-series. The ARIMAmodel is defined by three parameters: ‘p’
(AutoRegressive), ‘d’ (Integrated), and ‘q’ (Moving Average), which
specify the respective component values for model fitting (Hyndman
and Athanasopoulos, 2018). For the given dataset, the optimal (p, d,
q) values were found to be 2, 1, 1, respectively.

2.2 Evaluation

The Mean Squared Error (MSE) loss function was used with
LSTMmodels to measure the training loss and identify fitting issues
for parameter tuning. For the ARIMA model, the Akaike
Information Criterion (AIC) was used to identify the optimal
combination of parameters. AIC is a statistical metric used to
balance model fit and complexity. The ‘auto_arima’ function
from the Python library ‘pmdarima’ was used to automatically
test different combinations of p, d, and q values. The
combination with the lowest AIC was selected as the model’s
optimal parameters.

To compare and evaluate the prediction results of all the
developed models, Root Mean Square Error (RMSE), a common
metric in machine learning, was used to measure prediction
accuracy. RMSE was chosen for its sensitivity to large errors,
making it suitable for time-series forecasting where minimizing
deviations is critical. Unlike Mean Absolute Error (MAE), which
treats all errors equally, RMSE penalizes larger errors more,
emphasizing major discrepancies. Furthermore, RMSE maintains
the same unit as the predicted variable (SLR), enhancing
interpretability. While MAE could offer additional insights, such
as robustness to outliers and more stable measure of typical errors,
RMSE was prioritized for capturing overall predictive accuracy.
Additionally, the confidence score for each model’s predictions
was computed, and statistical analysis, particularly paired t-tests,

FIGURE 2
LSTM-SE model architecture.

TABLE 1 Summary of configuration setup of the LSTM-SE model.

Component LSTM-SE model

Input Shape (3,1)

LSTM Layer 4 units, ReLU activation, return sequences and state

Attention Mechanism Dense (ReLU) → Sigmoid → Dot Product

Concatenation Context Vector + LSTM Hidden State

Output Layer Dense (1), Linear activation

Kernel Initializer He Uniform

Bias Initializer Constant (0.01)

Optimizer Adam (LR = 0.001, β1 = 0.9, β2 = 0.999)

Loss Function MSE

Batch Size 1

Epochs 100

Early Stopping Enabled (patience = 10, monitor = ‘val_loss’)
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was conducted to compare the performance of the model. The
t-statistic measures the difference between paired predictions by
analyzing the mean prediction error, while the p-value determines
whether this difference is statistically significant.

2.3 Forecasting

To help visualize the potentially inundated areas over the years, a
forecasting analysis was conducted using the trained model to
predict MSL for the upcoming years, particularly until the end of
the current century (the year 2100). Since this study only focuses on
univariate time-series, the forecasted MSL represents dependencies
on its previous values, independent of other factors that can
influence the forecasting results, such as greenhouse gas
emissions and seasonal extreme events. Instead, MSL values from
the IPCC and other literature were used to model the MSL forcasted
in such scenarios.

2.4 Visualization

The best forecast result was selected after a comparison of the
models to serve as input for visualization of the actual inundated
areas for each year. The visualization platform was developed using
OpenLayers, an open-source JavaScript-based tool designed to
create dynamic and interactive web maps. Functionalities
provided by OpenLayers were utilized to enable effective
visualization and interaction with spatial data. The platform was
built with HTML, CSS, and JavaScript, leveraging npm and Node. js
for local deployment. Key visualization features include sliders for
adjusting SLR level and year selections and show the inundated areas
accordingly, as well as predefined locations of interest, including the
seven emirates, to allow quick navigation.

OpenLayers and MapTiler maps were used as the base maps to
provide both OpenStreetMap and satellite imagery for a
comparative view of the affected regions. The inundation
mapping process was performed using RGB-encoded elevation
data from MapTiler maps (Sloup, 2019), which provided detailed
topographic information. Elevation values were extracted and
processed to identify areas at risk of flooding. The mapping
algorithm recolored regions based on their elevation and
projected MSL values, selecting all points below the estimated
MSL threshold for visualization. To account for extreme
conditions, a 2-m high wave estimate from (Al Kabban, 2019)
was added to MSL values to refine the inundation predictions.
Estimated MSL values associated with IPCC RCP (Representative
Concentration Pathway) scenarios, particularly RCP 2.6 (lowest
emissions) and RCP 8.5 (extreme emissions), were also displayed.
The values of these RCP scenarios were obtained from (Horton et al.,
2020), offering a comprehensive understanding of potential SLR
impacts under different climate change scenarios.

Although the developed platform provides effective visualization
of inundated areas under different SLR scenarios, it has certain
limitations related to data accuracy. The precision of the elevation
data depends on MapTiler’s dataset, which has an approximate
resolution of 30 m and may not capture fine-scale topographical
variations. Furthermore, data on dynamic oceanic factors, such as

tides, storm surges, and coastal defenses, were not publicly available
for the selected study area, which may cause discrepancies between
the mapped flood areas and real-world scenarios.

Nevertheless, the tool serves as a useful means for estimating and
visualizing potentially inundated areas, providing insight into the
impacts under different SLR scenarios. Future improvements could
include integrating real-time tide data and hydrodynamic models, as
well as incorporating higher-resolution elevation datasets and in-
situ measurements to enhance accuracy.

3 Results and discussion

3.1 Dataset

This study focuses on the Arabian Gulf, with particular
emphasis on the Emirate of Dubai, a major economic and
tourism hub characterized by densely populated coastal regions.
The study area is depicted in Figure 3. Data utilized in the analysis
were sourced from the National Oceanic and Atmospheric
Administration (NOAA), comprising seasonal MSL
measurements spanning 1992 to 2024. These measurements were
obtained using radar satellite altimeters, including TOPEX/
Poseidon (T/P), Jason-1, Jason-2, Jason-3, and Sentinel-6MF
where the MSL time-series has been adjusted using an inverted
barometer correction by the dataset provider (NOAA, 2024b). The
data pre-processing began by converting timestamps to datetime
format. The data were resampled to compute yearly average MSL
values. While monthly or seasonal MSL data could capture finer
short-term fluctuations, such as tidal or monsoonal effects, these
records were incomplete or inconsistent for the UAE region.

FIGURE 3
Study area: coastal regions of the United Arab Emirates (UAE).
Map Credit: Esri, TomTOM, FAO, NOAA, USGS, Earthstar Gepgraphics.
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Therefore, annual aggregation was selected to ensure continuity and
support robust long-term trend analysis aligned with the study’s
strategic planning focus. The product time-series, as shown in
Figure 4, indicates an increasing trend over the years.

3.2 Working environment

The development of deep learning and linear regression models
was conducted using Python v3.10.12, TensorFlow v2.12.1, and Kera
v3.5.0 running on the Google Colab environment. Google Colab
provides a cloud-based platform with GPU support, enabling the
efficient computation capabilities needed to train the models.
Various Python libraries were utilized in training the models,
including Keras, which provided numerous tools to develop,
train, and evaluate the performance of the LSTM deep learning
model. Additionally, the Statsmodels library was used to develop the
linear regression model, specifically the ARIMA model. Other
libraries, such as scikit-learn for pre-processing and Matplotlib
for visualizing the results, were also utilized in this research.

3.3 Models results

Figure 5 illustrates a comparative analysis between the actual
MSL data and the predictions generated by the three models. The
plot reveals that all models closely follow the actual data trend, with
varying degrees of accuracy. The ARIMA model exhibits a steady
upward trajectory but occasionally overshoots actual values,
indicating its reliance on linear assumptions. Conversely, the
LSTM model aligns closely with the observed data but
experiences minor deviations during periods of sharp MSL
increase. The LSTM-SE model provides the most accurate fit,
particularly in the post-2010 period when the MSL rise
accelerated. This suggests that the SE block’s recalibration

mechanism effectively enhances the model’s adaptability to
fluctuations, contributing to superior performance. Specifically,
the squeeze step aggregates temporal features across each
channel, which captures meaningful interdependencies among
temporal features. In the subsequent excitation step, these
aggregated representations pass through fully connected dense
layers, applying a sigmoid activation function to produce
channel-wise weights. This process assigns higher weights to
features critical for predicting significant sea-level variations.
Consequently, the SE mechanism enables the LSTM-SE model to
better handle irregular patterns and abrupt changes, stabilizing the
long-term predictions and thereby reducing overall
forecasting errors.

Table 2 presents quantitative evaluation of the used models:
ARIMA, LSTM, and LSTM-SE. An ablation study was conducted to
isolate and quantify the specific contribution of the SE attention
mechanism within the LSTM-SE model. The ARIMA model
recorded an RMSE of 2.58, while the LSTM model achieved a
lower RMSE of 2.47, reflecting its ability in better capturing non-
linear dependencies. The LSTM-SE model further improved
performance by approximately 8.81%, reducing RMSE to 2.27.
Figure 6 illustrates a comparison of models’ performance using
RMSE with 95% confidence intervals. LSTM-SE is the most accurate
and stable, followed by LSTM, which still outperforms ARIMA.
ARIMA’s higher RMSE and wider confidence interval, resulting in
slightly increased variability and reduced reliability in predictions.
Table 3 shows the statistical significant t-test results. To evaluate the
proposed framework, paired t-tests were conducted based on
absolute prediction errors. The LSTM-SE model significantly
outperformed the ARIMA model (t � −4.565, p< 0.001),
indicating that the integration of SE blocks effectively captures
nonlinear temporal dynamics and provides substantial
improvements over traditional statistical methods. Compared to
LSTM, LSTM-SE showed a marginal improvement
(t � −1.896, p � 0.072), suggesting SE blocks enhance

FIGURE 4
Annual MSL anomalies from 1992 to 2024. The y-axis represents MSL deviations inmillimeters relative to the 1992 baseline, and the x-axis represents
the year.
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predictive accuracy, though further validation may be needed. These
findings confirm the strength and potential of the proposed LSTM-
SE architecture to forcast MSL.

The errors observed across models are the result of their
functional characteristics. ARIMA models effectively capture
long-term linear trends during stable periods but fail to account

for complex temporal patterns, making them less reliable during
rapid fluctuations. In contrast, LSTM models excel at capturing
gradual changes but struggle with sharp variations, particularly
between 1995–1997 and 2008–2010, due to the vanishing
gradient problem and saturation effects, which limit their ability
to retain long-term dependencies. LSTM-SE mitigates these issues
by incorporating attention mechanisms, improving alignment
between predicted and actual values and enhancing the capture
of long-term dependencies. These results highlight the superiority of
deep learning models, particularly LSTM with attention, over
traditional statistical methods like ARIMA in short-term
forecasting.

Figures 7–9 illustrate the long-term forecasting capabilities of
each model. In Figure 7, LSTM accurately forecasts MSL until
approximately 2025, after which the predictions plateau,
reflecting the model’s limitation in extrapolating trends over
extended periods without external inputs. Figure 8 presents
predictions from the LSTM-SE model, which maintain accurate
forecasts slightly longer, highlighting the effectiveness of attention
mechanisms in capturing temporal dependencies. However, both
LSTM-based models exhibit saturation, primarily due to their
inherent limitations in capturing long-range dependencies,
resulting in stabilized forecasts instead of an expected upward
trend. A potential solution to this issue could involve using
hybrid architectures, such as LSTM-transformer models or CNN-
LSTM hybrids, which are better equipped to handle complex
temporal patterns and mitigate memory constraints. In contrast,
Figure 9 shows that the ARIMA model projects a consistent linear
increase in MSL through 2100. While this aligns with historical
trends, ARIMA’s assumption of linearity may underestimate
potential accelerations in SLR driven by non-linear climatic factors.

The results reveal that the LSTM-SE model offers the highest
accuracy, making it well-suited for short-term forecasts. On the
other hand, ARIMA, despite its lower accuracy in the short term,

FIGURE 5
Comparison of actual and predicted results using LSTM, LSTM-SE, and ARIMA Models.

TABLE 2 Quantitative evaluation of the used models.

Model RMSE MAE R2

ARIMA 2.58 2.48 0.982

LSTM 2.47 1.93 0.985

LSTM-SE 2.27 1.80 0.987

FIGURE 6
Comparison of models’ performance with 95%
confidence intervals.
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TABLE 3 Statistical comparison of model performance using paired t-tests.

Model comparison t-statistic p-value Significance (α � 0.05)
LSTM vs. ARIMA −4.824 9.09 × 10−5 Highly significant

LSTM-SE vs. LSTM −1.896 0.072 Marginally significant

LSTM-SE vs. ARIMA −4.565 1.68 × 10−4 Highly significant

FIGURE 7
MSL forecasting results using LSTM model.

FIGURE 8
MSL forecasting results using LSTM-SE model.
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demonstrates stable long-term projections, making it valuable for
scenario planning and infrastructure resilience assessments
extending toward the end of the century. The findings of this
study align with previous research, confirming that LSTM and
deep learning models generally outperform traditional statistical
methods like ARIMA in short-term forecasting. Studies such as
(Balogun and Adebisi, 2021) (Malaysia) (Alenezi et al., 2023), (the
Arabian Gulf), and (Nieves et al., 2021; Hassan et al., 2021) (Global)
have shown that LSTM-based models consistently provide more
accurate predictions for short-term MSL forecasting compared to
ARIMA, which tends to struggle with capturing non-linear
relationships in the data. The integration of attention
mechanisms in this study has further enhanced model accuracy,
reinforcing the advantages of advanced deep learning architectures.
Additionally, some studies have employed multivariate LSTM
models (Adebisi and Balogun, 2022) (Malaysia) and multimodel
LSTM (Accarino et al., 2021) (the Mediterranean Sea), as well as
hybrid LSTM models combined with other machine learning or
deep learning approaches (Sorkhabi et al., 2023) (Gothenburg).
These studies integrate oceanic and atmospheric variables
(Balogun and Adebisi, 2021; Accarino et al., 2021; Sorkhabi et al.,
2023), such as sea surface temperature, wind speed, and atmospheric
pressure. These enhancements have been shown to improve
prediction performance, offering a more comprehensive
understanding of the factors influencing sea-level variability.

Despite its advantages, LSTM’s limitation in long-term
forecasting has been persistent across all previous studies. The
saturation observed in LSTM-based models highlights the
inherent difficulty of making extended projections, particularly
without integrating additional environmental factors such as
greenhouse gas emissions, ice-sheet melting rates, or
oceanographic influences. Furthermore, unlike studies that utilize
daily or monthlyMSL data, this study is based on annual data, which
effectively captures long-term trends but may overlook finer
seasonal variations. Higher-frequency seasonal data in other
studies have improved prediction accuracy by providing insights

into seasonal effects on SLR, particularly in regions affected by
monsoons, tidal variations, and extreme weather events.
Additionally, some studies have used spatially distributed sea-
level measurements across multiple locations, allowing for a more
regionally comprehensive analysis. However, this study was
constrained by the lack of publicly available spatially distributed
sea-level data, limiting its ability to model regional variations in SLR.
Improving data accessibility could enhance future research by
enabling more detailed, region-specific predictions.

Future work will address the limitations of LSTM in long-term
forecasting by incorporating additional environmental variables and
hybrid modeling approaches. Expanding future models to include
spatially distributed oceanic and atmospheric data could further
improve the accuracy of long-term sea-level forecasts. Future
research should also evaluate multivariate LSTM models with
higher-frequency and spatially distributed datasets to enhance
prediction accuracy and applicability for extended periods.

3.4 Visualization results

Figure 10 illustrates the potentially inundated areas in the UAE
across different years, based on ARIMA forecasting results. The
analysis indicates that the majority of coastal areas will face
inundation by the year 2100, with the MSL rise estimated to
reach approximately 2.6 m. Figures 11, 12 shows the potentially
inundated areas in Palm Jumeriah and Khor Dubai regions. A closer
inspection of the map highlights that low-lying coastal areas such as
Umm Al Quwain, Abu Dhabi, and the Khor Dubai regions are
particularly vulnerable to MSL rise. This could have significant
impacts on the existing ecosystems and may trigger population
shifts in affected regions. Additionally, artificial lands along the
UAE’s coastline are also at risk of SLR. However, protective
measures such as constructing these lands at higher elevations
and building breakwaters to safeguard the shoreline against SLR
and high-intensity waves may mitigate some of the risks.

FIGURE 9
Long-term MSL forecasting results using ARIMA model.
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It is important to note that the analysis does not account for
other factors influencing SLR, such as storm surges, tidal effects, and
seasonal winds, which could exacerbate the impacts of SLR and
should be considered in future studies. However, the current
visualization platform serves as an effective tool for
understanding these impacts, identifying vulnerable areas, and
raising awareness about the urgency and criticality of this issue.
Further, although the platform is qualitative, the results were verified
by manually cross-checking elevation-based flood extents with
known coastal topography. This can be extended to include
usability studies and expert feedback to formally validate its
functionality and impact.

3.5 Mitigation and adaptation measures

Policymakers should prioritize enhancing urban planning
policies to build resilience against climate change impacts. This
includes regular maintenance of vulnerable areas, investment in
climate-resilient infrastructure, and the integration of smart
technologies to improve adaptive capacity. Strengthening
collaboration between academia, industry, and government
agencies is essential to drive innovation, improve urban
sustainability, and ensure that climate adaptation strategies are
science-driven and effective. Additionally, expanding national

initiatives that promote green infrastructure, such as urban
reforestation and nature-based solutions, can help mitigate the
effects of extreme weather events, reduce urban heat, and
enhance flood resilience. In the UAE, national campaigns aimed
at increasing vegetation in urban areas, such as large-scale mangrove
planting initiatives, help mitigate climate change impacts, including
extreme heat waves and SLR. Expanding both ecosystem-based and
structural protection measures provides additional natural defenses
(42, 2019). For example, in Umm Al Quwain, shipwrecks along the
coast have been strategically used to reduce coastal erosion (Subraelu
et al., 2022). Similarly, ongoing mangrove plantation projects across
the UAE contribute to coastal protection and carbon sequestration
(Lincoln et al., 2021). Infrastructure improvements, particularly in
drainage systems, are also a priority. Following the April 2024 floods,
which saw unprecedented rainfall rates causing severe damage to
transportation and infrastructure, Dubai has launched major
drainage upgrades to enhance flood resilience against both SLR
and heavy rainfall (Leggate, 2024). Additionally, advancing research
and data-sharing capabilities is crucial for climate adaptation.
Establishing a centralized data hub will enable the integration of
real-time climate data, facilitating the development of early warning
systems for extreme weather events. By leveraging technology,
improving natural defenses, and fostering collaboration across
sectors, the UAE is taking proactive steps to enhance urban
climate resilience and infrastructure sustainability.

FIGURE 10
Illustration of the inundated areas in UAE by the year 2100.
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FIGURE 11
A close-up visualization of the areas inundated by 2100 in Palm Jumeirah.

FIGURE 12
A close-up visualization of the areas inundated by 2100 in Khor Dubai.
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4 Conclusion and future work

This study introduced and evaluated multiple forecasting
models for MSL in the Arabian Gulf region, comparing
traditional statistical methods (ARIMA) to deep learning
approaches (LSTM and LSTM-SE). The key contributions include
demonstrating that SE block enhances LSTM’s capacity to capture
temporal dependencies in short-term forecasts while offering a clear
benchmark against ARIMA’s stable but less flexible predictions. In
addition, we developed an interactive visualization platform that
highlights potentially inundated coastal areas, providing a practical
resource for policymakers and stakeholders.

Despite these advancements, the study faces limitations primarily
due to data constraints: various environmental factors such as tides,
storm surges, and comprehensive greenhouse gas emission scenarios
could not be incorporated because of limited publicly available
datasets for the region. Moreover, LSTM-based models exhibited
signs of saturation in extended forecasting horizons, pointing to
the need for more sophisticated architectures or supplementary
input variables to capture long-range dependencies.

Future research would benefit from integrating multivariate data
sources, including atmospheric and anthropogenic indicators, and
from adopting advanced or hybrid architectures (e.g., CNN-LSTM
or transformer-based) to address memory bottlenecks. Extending
the visualization platform to support real-time data streams, higher-
resolution elevation models, and multi-scenario simulations can
further enhance its applicability for adaptive management and
climate resilience planning.
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