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While oil remains a critical component of global energy systems, its combustion
in the transport sector releases fine particulate matter (PM2.5), posing significant
public health risks. As previous studies have overlooked the health impacts and
economic losses associated with PM2.5 pollution from oil consumption bymobile
sources, this article analyzes the annual average concentration of PM2.5 in China’s
provinces for key years from 2020 to 2060. It then assesses the projected health
effects and economic losses resulting from PM2.5 pollution linked to provincial oil
consumption during these key years, utilizing an integrated exposure–response
relationship (IER) model and the revised human capital method. The results show
that the health effects of PM2.5 pollution—specifically on lung cancer, chronic
obstructive pulmonary disease (COPD), ischemic heart disease (IHD), and
stroke—vary significantly by province: in 2020, lung cancer deaths were
highest in Shandong Province (1,317 cases), followed by Henan Province
(1,206 cases), and lowest in Tibet (only 7 cases projected in 2060); premature
deaths from COPD were particularly prominent in Shandong Province
(1,615 cases in 2020) and are projected to peak in Guangdong Province in
2035); and premature deaths from stroke were particularly prominent in
Shandong Province (1,615 cases in 2020), while Guangdong Province is
expected to surpass Shandong after 2035. Premature deaths due to stroke
were most severe in Shandong Province (5,284 cases in 2020), followed by
Henan and Jiangsu provinces. As annual average PM2.5 concentrations decrease,
the number of premature deaths in China is also projected to decrease, but the
economic losses due to premature death are greatest in the middle-aged and
older age groups (50–74 years). In 2020, lung cancer and COPD accounted for
$151.988 billion in losses in the 65–69 years age group, and stroke caused the
highest economic losses ($31.81 billion); by 2050, IHD is projected to top the list
of economic losses ($24.01 billion), while COPD is expected to consistently result
in the lowest economic losses. This study provides a quantitative basis for
optimizing the energy structure and formulating regionally differentiated
emission reduction policies.
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1 Introduction

Oil is one of the major basic energy sources consumed and an
indispensable industrial raw material in China. It occupies a
pivotal position in the development of the national economy
and promotes economic development, and it is inextricably
linked to the daily lives of the people. In addition, oil
consumption occupies an important position in China’s energy
consumption structure. According to the China Energy Statistics
Yearbook 2023 (NBS, 2023), China’s oil consumption accounted
for 19.5% of the total energy consumption in 2022, a further
increase from 2020 (18.9%), indicating that the core position of oil
in the energy structure continues to strengthen. In addition, the
transportation sector, as a major oil consumption sector, grew
from 36.5% in 2018 to 38.2% in 2022 (NDRC, 2023), consistent
with the trend of ‘incremental substitution’ in the early stages of
the promotion of new energy vehicles.

With the further development of the economy, the continuous
progress of industrialization, and the improvement and upgrading
of the energy structure, China’s total oil consumption had
exceeded 500 million tons since 2015 and was at 620 million
tons by 2018 (National Bureau of Statistics of the People’s Republic
of China, 2021); it is now one of the world’s biggest consumers of
oil. In terms of oil consumption, the transportation and chemical
industries are the main sectors. The transportation sector accounts
for the largest share of China’s oil and energy consumption,
accounting for 36.5% of the total oil consumption in 2018
(National Bureau of Statistics of the People’s Republic of China,
2021). China is a major country in terms of motor vehicle
ownership. In 2019, the total number of vehicles reached
348 million, an increase of 6.4% compared to 2018. In the
future, along with economic development, the transportation
industry will develop further, and the oil demand may further
increase. The process of oil consumption will release a large
amount of PM2.5 emissions into the environment, which not
only endangers water resources, the atmosphere, and soil but
also damages human health. With China’s economic growth,
people’s improving living standards, and the increasing use of
mobile sources in the future, PM2.5 emissions from oil
consumption by mobile sources may continue to increase,
causing harm to the ecological environment and human health.
The transport sector is expected to contribute 66.3% of the
reduction in future oil consumption (Oil Control Research
Project research group, 2019). This is because mobile sources
mainly originate from the transportation sector itself. PM2.5

emissions produced by transportation can be measured by the
moving source. According to the China Air Pollution Prevention
and Control Progress Report published by the Ministry of Ecology
and Environment in 2023, the contribution of mobile sources to
the annual average PM2.5 concentration increased to 11.3% in
2022, mainly stemming from the continued growth of fuel vehicle
ownership (reaching 381 million vehicles in 2022, an increase of
6.8% year-on-year).

PM2.5 emissions produced by oil consumption are harmful to
the ecological environment and human health. They can lead to
diseases affecting the respiratory, cardiovascular, and immune
systems, causing premature deaths, and, thus, reducing the
overall value of life. Ambient (outdoor) air pollution in both

urban and rural areas was estimated to cause 4.2 million
premature deaths worldwide in 2016, according to the World
Health Organization (WHO, 2018). Because transportation is the
primary sector for oil consumption, it contributes to the increase in
PM2.5 concentrations in the atmosphere. This increase in air
pollution results in adverse health effects and an increase in the
number of premature deaths, leading to economic losses. However,
health-related economic losses vary across different age groups
because of differences in resistance.

Oil consumption accounts for a large proportion of China’s
energy consumption. With the transformation and adjustment of
the energy structure, oil consumption will further increase in the
energy consumption structure, and as the number of motor vehicles
increases, oil consumption by mobile sources will also increase
further. The apparent contradiction arises from China’s dual
carbon policy (peaking oil consumption by 2030) and
technological advancements (e.g., electric vehicles), which help
reduce PM2.5 emissions even as oil consumption continues to
increase initially. However, existing research on the health
impacts and associated economic losses resulting from PM2.5

pollution generated by oil consumption from mobile sources
remains limited. To address this gap, this study focuses on
quantifying the economic burden of PM2.5-related health effects
during the critical period of oil consumption spanning from 2020 to
2060. Based on the PM2.5 concentration data under the
2020–2050 key year strengthening policy, published in “China’s
Medium- and Long-term Air Quality Improvement Pathways and
Health Benefits” by Tsinghua University and the Energy Foundation
(He et al., 2020), assuming that the annual average concentration of
PM2.5 in 2060 will be 10 μɡ/m3, as prescribed by the World Health
Organization (WHO), to evaluate the health effects of PM2.5, this
article used the integrated exposure–response (IER) model to
evaluate the impact of PM2.5 on the health of residents in the
key years from 2020 to 2060, and on this basis, human capital is
used to estimate the monetization of health effects. The health effects
and economic impacts of PM2.5 emissions resulting from mobile oil
consumption were studied.

The primary hypothesis of this study is to quantify the health
impacts and associated economic losses of PM2.5 pollution resulting
from mobile source oil consumption during the critical period of
2020–2060. This study is the first to quantify the long-term impacts
of mobile source oil consumption on PM2.5-related health and
economic burdens at the provincial scale; it does so by
combining SSP4 scenarios with the IER model. This hypothesis
directly addresses an identified research gap, i.e., the limited research
on the health impacts and associated economic losses of PM2.5

pollution from mobile source oil consumption, by conducting
detailed data analysis and applying existing models with region-
specific adjustments.

2 Literature review

With regard to the economic losses and health effects of PM2.5

pollution from mobile sources in China, previous research has
focused on the impact of energy consumption on air pollution
and PM2.5- related health effects and economic losses. Chowdhury
et al. (2007) quantified the major source contribution to PM2.5
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concentrations in the four seasons in Delhi, Mumbai, Kolkata, and
Chandigarh in summer. The main sources were found to be diesel
engine exhaust, gasoline engine exhaust, road dust, coal combustion,
and biomass combustion. Sahu et al. (2011) used a high-resolution
emission inventory developed by the System of Air Quality
Forecasting and Research to quantify PM2.5 emissions from
traffic. Huang et al. (2014) found that reducing emissions from
secondary aerosol formation, such as fossil fuel combustion and
biomass combustion, could help control PM2.5 levels and reduce
environmental pollution in China. Guan et al. (2014) quantified
PM2.5 emissions from transportation fuels in China. Guo et al.
(2017) quantified the sources of PM2.5 emissions using a community
multi-scale air quality model based on the Emissions Database for
Global Atmospheric Research, and they found that energy is a major
contributor to PM2.5 emissions in Northern India. Xu and Lin
(2018) used quantile regression to explore the main drivers of
differences in PM2.5 pollution at high, medium, and low emission
levels. They found that motor vehicles were one of the main factors.
Kalaiarasan et al. (2018) showed that 70% of PM2.5 emissions in the
air were from vehicle emissions in urban Mangalore, India. Yang
et al. (2018) found that Beijing’s PM2.5 direct emissions came from a
variety of sources, with gasoline accounting for 21.29%. Masiol et al.
(2019) found that spark-ignition vehicles were the main source of
PM2.5 emissions, and the increase in PM2.5 emissions was consistent
with the increase in the number of vehicles registered. Chao et al.
(2019) collected 218 PM2.5 samples in Beijing. The sources of PM2.5-
bound PAHs were analyzed, and it was found that motor vehicle
emissions accounted for the largest proportion, which was
approximately 54.6%. Kong et al. (2020) used positive matrix
factorization sources to identify the main sources of PM2.5

emissions, which included secondary aerosols, coal combustion,
biomass combustion, and vehicle emissions. Zhang et al. (2023),
based on a national high-resolution emission inventory, pointed out
that the share of PM2.5 emissions from transportation sources
reached 12.1% in 2021, with diesel vehicles accounting for more
than 50%. In addition, Liu et al. (2022) found through empirical
analysis that every 10% increase in the penetration rate of new
energy vehicles was able to reduce PM2.5 concentrations by
1.2–1.8 μg/m3.

2.1 Research progress on health effects and
economic losses due to PM2.5 emissions

Pope et al. (2004) used a Cox proportional hazards regression
model to estimate the association between PM and specific causes of
mortality. Long-term PM exposure was associated with IHD,
arrhythmias, heart failure, and cardiac arrest. The World Health
Organization (2005) introduced methods for estimating the burden
of disease associated with exposure to outdoor air pollution. Using
the long-term relative risk estimates of PM2.5 and a health impact
function to estimate attributable mortality, Anenberg et al. (2010)
found that cardiorespiratory mortality was associated with annual
anthropogenic PM2.5 levels. Lim et al. (2012) proposed a method to
estimate the global population exposed to PM2.5 in 2010. Evans et al.
(2013) adopted the remote sensing data to conduct a global
assessment of mortality associated with long-term exposure to
fine particulate air pollution and to assess the attributable portion

of relative risk and mortality. There was a close relationship between
air pollution and lung cancer. The atmospheric pollutant PM2.5 was
classified as carcinogenic by the International Agency for Research
on Cancer in 2013 (Pascal et al., 2013). Chen et al. (2013) found that
air pollution was linked to stroke in eight Chinese cities (Beijing,
Fuzhou, Guangzhou, Hong Kong, Shanghai, Shenyang, Suzhou,
Tangshan). Xie et al. (2014) found that people over the age of
65 were more sensitive to airborne particles than the rest of the
population. Burnett et al. (2014) compared seven models for
estimating the health benefits of air pollutants and concluded
that the methods used in the Global Burden of Diseases (GBD),
Injuries, and Risk Factors Study, 2017, provided a better model for
predicting the relative risk. Yin et al. (2020) considered that the risk
ratios for respiratory diseases, COPD, and pneumonia ranged from
1.10 to 1.24 per 10 μg/m3 of increasing exposure to PM2.5. Yu et al.
(2018) combined the DEA model with the IER model to determine
the relationship between PM2.5 concentration and mortality.
Anenberg et al. (2019) linked the most recent vehicle emission
air pollution to an epidemiological model and estimated the
environmental effects of transport sector emissions on PM2.5 and
ozone and the health effects in 2010 and 2015. Chen H. et al. (2020)
used the Poisson regression model to estimate the public health
impact of coal consumption-induced PM2.5 pollution in 2015. Anser
et al. (2020) found that the combustion of fossil fuels was a
contributing factor to high mortality and personal respiratory
morbidity in emerging Asian countries.

Xie et al. (2016) evaluated the economic impact of PM2.5-related
health factors in nine provinces in China using a computable general
equilibrium model. Li et al. (2017) quantified the public health
effects of PM2.5 in Beijing from 2014 to 2015 using the
exposure–response relationship model and the health loss
assessment model. Based on the data on PM2.5 emissions in
2016 from 338 cities in China, the mortality from related
diseases was estimated using the IER model, the non-linear
power law model, and the log-linear model, and morbidity was
evaluated using the log-linear model (Maji et al., 2018). Jo et al.
(2018) used the Poisson regression model to analyze the influence of
PM2.5 pollution on hospital attendance rate and considered
hysteresis; there was an increase in COPD-related hospital visits
(both outpatient and admissions). Huang et al. (2018) analyzed the
air quality and mortality data from 2013 to 2017 in 74 major cities in
China to estimate the health impact of the air pollution control
action plans. Changes in mortality rates and years of life lost (an
indicator that considers life expectancy at death) were calculated,
and the health impact of air quality management over a 5-year
period was assessed. Fann et al. (2018) used the annual average
concentration of PM2.5 emissions simulated by oil emission
inventories and the Comprehensive Air-Quality Model with
extensions to quantify the health effects and economic losses due
to PM2.5 emissions using the Environmental Benefits Mapping and
Analysis Program (BenMAP), and it was found that air pollutants
from oil emissions reduced air quality and caused premature deaths.
Lu et al. (2019) estimated the trends in PM2.5 concentrations and
their adverse effects on health in China from 2001 to 2017, using
1 km high-resolution annual satellite-retrieved PM2.5 data. Guan
et al. (2019) evaluated the annual health losses and economic
impacts of PM2.5 exposure in China from 2015 to 2017 based on
the ground-based monitoring PM2.5 concentration data and annual
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real-time population data. Zhao et al. (2019) conducted a cross-
sectional study to observe the effect of PM2.5 emissions on the
incidence of COPD in the Chinese Han population. It was found
that the incidence of COPD was correlated with PM2.5 levels and
that PM2.5 emissions and cigarette smoke had synergistic effects on
COPD. Zeng and Ruan (2020) used the BenMAP model and the
CGE model to estimate the national economic impact of PM2.5

pollution in 2017. Fu et al. (2020) measured the health effects of
PM2.5 emissions in Chinese Central Plain cities using an
exposure–response relationship model and a human capital
method. Luo et al. (2020) used the BenMAP model to calculate
the health effects and economic benefits of reducing PM2.5 exposure.
The number of premature deaths due to cardiovascular disease was
estimated, and the economic benefits were estimated according to
the willingness-to-pay method. These were future predictive
analyses. Li et al. (2018) built the LEAP-Beijing model to explore
the future energy consumption of PM2.5 emissions in Beijing on
human health. Guo et al. (2020) used the IER model to analyze and
predict the health effects of PM2.5, an atmospheric pollutant in
Baoding. Zhang et al. (2025) conducted a pioneering study using a
cohort of 5,571 male HIV patients in Wuhan (2000-2021),
employing competing risk models to reveal that each 10μg/m3

increase in PM2.5 exposure was associated with a 28.8% (95%CI:
25.5%-32.2%) elevated risk of AIDS progression, with black carbon
(+49.0%) and sulfate (+14.5%) identified as the most hazardous
components. The study further identified vulnerable subgroups
including elderly (≥60 years), overweight (BMI≥24 kg/m2),
highly-educated, and smoking populations. These findings
provide critical evidence for targeting specific PM2.5 components
and high-risk populations in HIV environmental health
interventions. Although previous studies have made significant
progress on the health impacts and economic losses of PM2.5,
there are still some limitations. First, the majority of the studies
focused on specific regions or time periods and lacked
comprehensive analyses across regions and time, which limited
the generalizability of the findings. Second, some of the studies
had differences in the methods and data used to assess economic
losses, resulting in poor comparability between the results. In
addition, some studies failed to fully consider other potential
influencing factors, such as individual differences and living
habits, when exploring the association between PM2.5 and health
effects, which may affect the accuracy of the results. Therefore, this
study has improved the methodology, and by using more
comprehensive data and more accurate models, it aims to
overcome the limitations of previous studies and provide a
quantitative basis for the development of more effective energy
structure optimization and regionally differentiated emission
reduction policies.

2.2 Review of the literature

After reviewing the abovementioned research, the following
points can be drawn.

(1) There were few studies on the health effects and economic
losses caused by PM2.5 emissions from oil consumption in
China. With the implementation of the dual carbon targets

and changes in the energy structure, China’s overall oil
consumption is expected to follow a trend of initial
growth, followed by a gradual decline.

(2) The IER model could integrate the relative risks of different
types, which was a better response to the relative risks of
PM2.5 than the other models. The revised human capital
method evaluated the value of human life from a social
perspective without considering the difference in individual
value. GDP per capita was often used as a statistical measure
to estimate the economic cost of premature death.

Thus, based on the IER model and the revised human capital
method, this article measured the health effects and economic losses
caused by PM2.5 emissions in China’s provincial oil consumption
from mobile sources in the key years from 2020 to 2060.

3 Methods and data

3.1 Health effect loss assessment

The IER model, based on epidemiological risk functions that
quantify the relationship between PM2.5 exposure and health
outcomes (such as chronic obstructive pulmonary disease, lung
cancer, and cardiovascular mortality), has been adapted to
China’s unique PM2.5 context, which is characterized by high
urban pollution levels, regional variability, and population
susceptibility. Key adaptations include incorporating local
exposure data from Chinese monitoring networks and satellite
estimates, using China-specific baseline disease rates, adjusting
concentration-response curves for potential non-linear effects at
extreme PM2.5 levels, and accounting for demographic factors that
influence population vulnerability. This model is complemented by
the human capital method, which evaluates the economic burden of
pollution-related health impacts by estimating direct medical costs
and indirect costs from lost productivity, aligned with social cost-of-
illness frameworks that capture societal economic losses. For China,
this involves applying local economic data and making contextual
adjustments for regional disparities and high-exposure sectors. The
IER model first estimates health outcomes, which the human capital
method then monetizes, supporting cost–benefit analyses of air
quality policies, such as evaluating the economic gains from
achieving China’s PM2.5 targets. Although the human capital
method may undervalue non-working populations, and IER
uncertainties are mitigated through sensitivity analyses and
validation, this dual methodology provides a robust, context-
sensitive framework for linking PM2.5 exposure to economic
costs, informing China’s public health and environmental policies.

The IER model and the revised human capital method are well-
suited for this study due to their ability to address the complex health
and economic impacts of PM2.5 pollution in China. The IER model,
which quantifies the relationship between PM2.5 exposure and
health outcomes, is particularly effective at capturing non-linear
health risks under high PM2.5 concentrations, a common scenario in
many Chinese regions. It integrates local exposure data and China-
specific baseline disease rates, enhancing its accuracy in assessing
multiple health endpoints such as lung cancer, COPD, IHD, and
stroke. The revised human capital method complements this by
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estimating the economic burden of pollution-related health impacts
using per capita GDP data to evaluate societal economic losses. This
approach is especially relevant in China, where economic disparities
across provinces necessitate a method that can reflect regional
variations. Together, these models provide a comprehensive
framework for evaluating both the health effects and economic
losses associated with PM2.5 pollution.

Compared to other models, the IER model and the revised
human capital method offer distinct advantages. Traditional linear
and log-linear models often fail to accurately predict health risks at
extreme PM2.5 concentrations, whereas the IER model’s
incorporation of non-linear parameters and threshold
concentrations allows for more precise estimations. Similarly,
while global models such as the GBD rely on international data,
the IER model’s localization to the Chinese context improves its
relevance. In terms of economic evaluation, the revised human
capital method is considered more practical than the willingness-
to-pay (WTP) method, which faces data collection challenges in
China, and the cost-benefit analysis (CBA) method, which is more
complex and data-intensive. However, these models are not without
limitations. The parameters of the IER model may vary regionally,
and it does not fully account for individual differences or lifestyle
factors. The revised human capital method may underestimate the
value of life for non-working populations, such as retirees. Despite
these limitations, sensitivity analyses and uncertainty assessments
help mitigate potential biases, making these models robust tools for
informing policy decisions. The health effects of PM2.5 emissions
from oil consumption bymobile sources were measured in five steps,
using Formulas (2) and (3) (Burnett et al., 2014) and Formulas 1, 4, 5
(Pan et al., 2019).

The number of cases related to the four health endpoints caused
by PM2.5 pollution in the key years from 2020 to 2060 was assessed
using Formula 1. The selected key years were 2020, 2025, 2030, 2035,
2050, and 2060.

nmiθ � Nmi × Piθ . (1)

Here, nmiθ represents the projected number of future deaths
from lung cancer, COPD, IHD, and stroke in each province due to
PM2.5 pollution, m represents 31 provinces in China, i represents all
ages, and θ represents the four health effect endpoints, namely, lung
cancer, COPD, IHD, and stroke. Nmi represents the predicted
number of the population in each age group in 31 provinces in
the key years. Piθ represents the total mortality rate in each
age group.

The IER relationship model was used to calculate the relative
risk (RR) of PM2.5 emissions from oil consumption by mobile
sources in China in the key years. Formulas 2, 3 are provided
as follows:

Z≤Zcf, RRiθ � 1, (2)
Z>Zcf, RRiθ � 1 + α − exp −γ Z − Zcf( )δ[ ]. (3)

In Formulas 2, 3, Zcf represents the threshold concentration at
which PM2.5 pollution no longer affects human health. Z represents
the annual average PM2.5 concentration data of the key years in the
key years, published by Tsinghua University and the Energy
Foundation (He et al., 2020). RRiθ represents the relative risk for

each age group in the four health effect endpoints, and α、 γ、 and
δ represent the parameters (Burnett et al., 2014).

Using the RRiθ values, the health effects of PM2.5 emissions were
calculated using the Poisson regression model according to
Equation 4.

Pmiθ � RRiθ − 1
RRiθ

( ) × nmiθ. (4)

Here, Pmiθ represents the number of cases for four health effect
endpoints in all ages resulting from PM2.5 pollution in the
31 provinces of China.

As the contribution rate of mobile sources to PM2.5 pollution
was 9.8% (Chen et al., 2019), the number of premature deaths from
the four health effect endpoints caused by PM2.5 pollution from oil
consumption by mobile sources in the key years (Pmiθo) was
estimated using Formula 5.

Pmiθo � Pmiθ × μ. (5)

Here, μ represents the contribution rate of oil consumption by
mobile sources to PM2.5 pollution.

3.2 Assessment of health effects and
economic losses

The first step was to calculate the number of years lost for each
individualby subtracting the year of death in the key years (ti) from
their predicted life expectancy, as shown in Formula 6 (Zhao
et al., 2016).

ti � e − di. (6)
An age group was defined as occurring every 5 years. e

represents the life expectancy for the ith age group. di represents
the age at death for the ith age group, which was assumed to be the
midpoint of that age range for ease of calculation.

In the second step, the economic losses due to premature death
were calculated using Formula 7 (Zhao et al., 2016).

ELθi � ∑ti
x�1

GDP0 · 1 + ε( )x
1 + λ( )x . (7)

ELθi represents the health effect-related economic losses due to
premature death caused by the health effect endpoint θ in the ith age
group. x represents the year. GDP0 data were the GDP per capita in
the key years, which were obtained from the OECD (OECD, 2021). ε
represents the GDP growth rate. λ represents the discount rate,
which was 4.7%, as per the People’s Bank of China (People’s Bank of
China, 2015).

The third step was to calculate the sum of the economic losses
due to premature death from the health effect endpoints for all
individuals. Formula 8 is used to calculate the economic losses from
premature death due to IHD and stroke for all individuals. Formula
9 is used to calculate the economic losses from premature death due
to COPD and lung cancer for all individuals (Zhao et al., 2016).

Cθ1 � ∑12
i�1

∑31
m�1

Pmiθo ELθi
⎛⎝ ⎞⎠, (8)
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Cθ2 � ∑17
i�1

∑31
m�1

Pmiθo ELθi
⎛⎝ ⎞⎠. (9)

Here, Cθ1 refers to the economic losses from premature death
caused by IHD and stroke. Cθ2 represents the economic losses from
premature death caused by COPD and lung cancer. Because of the
relative risk, there were 12 age groups and 17 age groups,
respectively, when measuring the economic losses caused by the
health effect endpoints of premature death from IHD and stroke and
COPD and lung cancer (Apte et al., 2015).

3.3 Data sources

In this study, the years 2020–2060 have been selected as the study
period, covering a number of key years to reflect important changes in
the fuel consumption and PM2.5 pollution status of mobile sources in
China. These years represent critical periods of policy adjustment,
economic development, and technological innovation. In particular,
we focused on the Beijing–Tianjin–Hebei region (226 cities), the Fenwei
Plain, and the Yangtze River Delta, which are not only economically
developed but also experience more severe air pollution problems in
China. They were chosen to represent different regions in China and to
provide a comprehensive analysis.

The data for PM2.5 concentrations are mainly from studies
conducted by Tsinghua University and the Energy Foundation
(2020), which are subject to strict quality control to ensure
accuracy and reliability. For forecast data such as population and
GDP, we used forecasting methods and models based on current
trends and reasonable assumptions. At the same time, we perform
data cleaning and calibration to eliminate outliers and potential
errors. These data provide us with the basic information needed for
the study.

The selected sample is intended to be representative of the
general situation in the entire study region or country. We
verified the reliability of the data by comparing them with other
data sources (e.g., official statistics and international studies).
Despite some data limitations and uncertainties, we have engaged
in open discussion and pointed out possible implications and
directions for future research.

The PM2.5 concentration data integrate the following sources:
2020–2025 forecast data: Tsinghua University and the Energy
Foundation (He et al., 2020); 2021–2022 measured data: National
Urban Air Quality Report issued by the China National
Environmental Monitoring Center (CNEMC, 2023), covering
337 prefecture-level cities in China; 2060 target value: updated
annual average PM2.5 concentration in the World Health
Organization’s Global Air Quality Guidelines (2021) (WHO,
2021); 2060 objective value: updated annual average PM2.5

concentration in the World Health Organization’s Global Air
Quality Guidelines (2021) (WHO, 2021), covering
337 prefecture-level cities in China; and 2060 target value: the
updated annual average PM2.5 concentration limit (5 μg/m3) in
the World Health Organization’s Global Air Quality Guidelines
(2021) (WHO, 2021).

The Beijing–Tianjin–Hebei region (226 cities), the Fenwei Plain,
and the Yangtze River Delta used the data predicted in the report,
while the remaining provinces used national data. The reference

concentration of PM2.5 in the WHO air quality guidelines for
2006 was 10 μg/m3 (WHO, 2005).

The data on life expectancy in China were from the United
Nations. The predicted life expectancy data were used to calculate
the years the individual would lose because of premature death.

For mortality, this article used the mortality rate in 2019 in
China from the GBD (Global Burden of Diseases, 2019). Assuming
that medical and environmental conditions will not worsen in the
future, this study assumes that the number of premature deaths will
not increase before 2060. Based on the population distribution data
of China’s 31 provinces from 2010 to 2100 under the Shared
Socioeconomic Pathway 4 (SSP4) scenario, this article forecasts
the population from 2020 to 2060. SSP4 describes a scenario of
inequality in which the entire country experiences low fertility and
low mortality, consistent with global assumptions (Chen et al.,
2020b). In this study, China’s population distribution is projected
using the SSP4 scenario, which assumes that socio-economic
development exhibits a high degree of inequality but that the
country as a whole maintains low fertility and mortality rates
(Chen H. et al., 2020). This scenario aligns closely with China’s
“dual-carbon” policy framework (carbon peaking by 2030 and
carbon neutrality by 2060) and the energy consumption
constraints outlined in the National Climate Change Program
(2022). Specifically, the Shared Socioeconomic Pathway 4
(SSP4)—a moderate mitigation scenario assuming an initial rise
followed by a decline in oil use—provides a compatible trajectory for
China’s transportation sector. Under SSP4, the phased energy
transition aligns with the sector’s mandated 66.3% reduction in
mobile source emissions by 2060, as stipulated in dual-carbon policy
documents; the aging trend predicted by SSP4 (increasing share of
the 50–74 year old cohort) is consistent with the results of the
seventh Chinese census (18.7% of the population aged 60+ in 2020)
and the context of the delayed retirement policy; and the pace of
technological innovation implied by SSP4 (e.g., the penetration rate
of new-energy vehicles) is consistent with China’s “New Energy
Vehicle Industry Development Plan (2021–2035)” target of “20% of
new-energy vehicle sales in 2025.” Relative risk calculations for lung
cancer and COPD were started at the age of 25, and relative risk
calculations for stroke and IHD were started at the age of 0 (Apte
et al., 2015). The technical approach of this paper is shown
in Figure 1.

Although no human/animal subjects were involved, we adhered
to data ethics guidelines by anonymizing provincial data and citing
public databases.

4 Results and discussion

4.1 Premature deaths due to PM2.5 emissions
from oil consumption by mobile sources in
China’s provinces

The article first conducted a comparative analysis of the number
of premature deaths in each province. Because of the different
growth levels and the different GDP growth rates in each
province, it was difficult to measure economic growth at the
provincial level. It was even more difficult to measure the
economic losses caused by premature deaths in the provinces.
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Therefore, this study only provides a comparative analysis of the
number of premature deaths in each province and does not include
an analysis of the associated economic losses.

Figures 3–6 show the premature deaths due to PM2.5 emissions
from oil consumption bymobile sources in China’s provinces. Based
on the number of premature deaths in the provinces in the key years,
it was found that the provincial variation in premature deaths varied
considerably. Figure 4 shows the health effects of lung cancer in the
key years.

The number of premature deaths from lung cancer varied
greatly across the key years. In 2020, lung cancer accounted for
the fewest premature deaths compared to the other three health
effect endpoints. Shandong province recorded the highest number of
deaths, with 1,317 (95% CI: 1,246–1,388) in 2020, followed by
Henan province with 1,206 (95% CI: 1,138–1,274). Shandong’s
high PM2.5 levels (Figure 2) and dense population
(SSP4 projections) synergistically drive health impacts; industrial
activities (e.g., petrochemical industries) and high vehicle density
The United Nations (2019). exacerbate emissions; aging
demographics (50–74 years age group) further amplify
vulnerability, as shown in Figure 8. Although the number of
premature deaths decreased to 766 (95% CI: 712–820) in 2025,
Shandong province still had the highest number of premature
deaths. Guangdong province is projected to surpass all other
regions in premature deaths starting in 2035. Tibet had the
fewest premature deaths during the key years, which peaked in

2025 and gradually decreased thereafter, reaching 7 (95% CI: 1–12)
premature deaths in 2060.

As shown in Figure 3, the number of premature deaths caused by
COPD was higher than that caused by lung cancer. It could be
clearly observed that the concentration of PM2.5 would reduce the
number of premature deaths in China with the implementation of
the “oil control” policy, which aims to reduce transportation sector
emissions by 66.3% by 2060, which is directly linked to the reduction
of PM2.5, as shown in Figure 4. Shandong was the province with the
highest number of premature deaths, with 1,615 (95% CI:
1,536–1,694) premature deaths in 2020. However, there would be
185 (95% CI: 158–212) premature deaths in Shandong province in
2060. With the decrease in the PM2.5 concentrations, the number of
premature deaths would decrease. The number of premature deaths
in 2020, 2025, 2030, and 2035 was the highest in Shandong province,
and the highest number of premature deaths in 2035, 2050, and
2060 would occur in Guangdong province. Tibet had the lowest
death toll in the key years. There were five (95% CI: 1–9) premature
deaths in 2020, which increased to a peak of 16 (95% CI: 8–24) in
2025 before decreasing. The number of premature deaths is expected
to be six (95% CI: 1–11) in 2060.

As shown in Figure 5, IHD would be the health effect endpoint
with the smallest change in the number of premature deaths over
time. In addition, Shandong province had the highest number of
deaths in 2020. It would also be the province with the largest gap in
the number of premature deaths from 2002 to 2030. The province

FIGURE 1
Technology roadmap.
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with the highest number of premature deaths in 2060 would be
Guangdong. Tibet is expected to remain the province with the lowest
number of premature deaths, following a trend similar to that of
COPD, with 48 premature deaths projected in 2060.

As shown in Figure 6, the number of premature deaths due to
stroke would be the highest among the four health effect endpoints,
and the province with the highest number of premature deaths in
2020 would still be Shandong, with 5,284 (95% CI: 5,141–5,426).
Henan and Jiangsu provinces would rank second and third, with
4,639 (95% CI: 4,506–4,772) and 4,156 (95% CI: 4,030–4,282)
premature deaths, respectively. Shandong, Guangdong, and
Henan had more than 3,000 premature deaths in 2025, with
3,405 (95% CI: 3,290–3,519), 3,301 (95% CI: 3,188–3,414), and
3,227 (95% CI: 3,116–3,338), respectively. The province with the
greatest change would still be Shandong in the key years. The
smallest number of premature deaths would be in Tibet.

4.2 Economic losses from the health effects
of PM2.5 emissions from oil consumption by
mobile sources across all age groups

Using the predicted GDP data for each province and the number
of premature deaths, the economic losses from the four health effect
endpoints varied across all age groups in the key years. The

economic losses from the health effects of lung cancer and
COPD in different age groups in the key years are shown in Figure 7.

The economic losses caused by lung cancer were 0 for the age of
0–9 years in 2020, 2025, 2030, 2035, and 2050. It was also 0 for age 75 in
2020 and 2025, and for age 80 in 2030, 2035, and 2050. In 2060, the
economic losses after the age of 80 are projected to be approximately
159.48 million yuan (95% CI: 134.73–184.23). The most significant
economic losses in the key years occurred in the 50–69 age group. The
65–69 age group had the most economic losses in 2020, with
1,519.88 million yuan (95% CI: 1,442.70–1,597.08). This was
followed by the 60–64 and 55–59 age groups, with losses of
1,485.42 million yuan (95% CI: 1,409.11–1,561.73) and
1,438.88 million yuan (95% CI: 1,363.78–1,513.99), respectively. The
largest projected economic losses in 2060 are also in the 65–69 age
group, estimated at 485.58 million yuan (95% CI: 442.40–528.78).

For COPD, the economic losses were mainly concentrated in the
60–74 age group in 2020. In addition, the 65–69 age group had the
highest economic losses, with 757.23 million yuan (95% CI:
703.30–811.17). The economic losses after the age of 75 were 0.
The economic losses in 2025 are expected to decrease, although the
65–69 age group would still have the highest economic losses in
2025 and 2030. After that, the economic losses are projected to
gradually decrease. In 2060, the highest economic losses are expected
in the 70–74 age group, estimated at 485.58 million yuan (95% CI:
442.40–528.78).

FIGURE 2
Annual average PM2.5 concentration from 2020 to 2060.
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As shown in Figure 8, the distribution of the economic losses
from IHD was in the 55–74 age group, but the change in economic
losses over time was not obvious. The economic losses were the

lowest in 2025, after which they alternately increased and decreased.
The highest economic losses are projected to occur in 2050, followed
by a decrease in the subsequent years.

FIGURE 3
Population health effects of COPD across key years (a. 2020; b. 2025; c. 2030; d. 2035; e. 2050; f. 2060).

Frontiers in Environmental Science frontiersin.org09

Lin et al. 10.3389/fenvs.2025.1554150

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1554150


The economic losses from stroke in all age groups are
expected to decrease rapidly over time. In 2020, the economic
losses from stroke were mainly concentrated in the 60–74 age
group, after which they gradually decreased. In 2050, it would be

mainly concentrated in the 65–74 age group. In 2060, it would be
mainly concentrated in the 65–79 age group. Higher economic
losses in the 50–74 age group are closely related to China’s
delayed retirement policy (currently set at 60 years) and

FIGURE 4
Population Health effects of lung cancer across key years (a. 2020; b. 2025; c. 2030; d. 2035; e. 2050; f. 2060).
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FIGURE 5
Population Health effects of IHD across key years (a. 2020; b. 2025; c. 2030; d. 2035; e. 2050; f. 2060).
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FIGURE 6
Population Health effects of stroke across key years (a. 2020; b. 2025; c. 2030; d. 2035; e. 2050; f. 2060).
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inadequate health insurance coverage (resulting in high out-of-
pocket expenses).

4.3 Economic losses caused by the four
health effect endpoints in the key years

Figure 9 shows the economic losses from the four health effect
endpoints in the key years. The economic losses caused by stroke
were the highest among the four health effect endpoints in 2020,
which were 31.81 billion yuan (95% CI: 28.32–35.31). In 2050, the
economic losses caused by IHD are projected to be the biggest,
amounting to 24.01 billion yuan (95% CI: 20.97–27.04). The
economic losses caused by COPD during the key years from
2020 to 2060 are projected to be the lowest. Secondary findings
(e.g., COPD’s low economic losses despite high mortality) highlight
the need for disease-specific healthcare investments rather than
relying only on aggregate pollution control.

The high number of premature deaths due to stroke in
Shandong (5,284 cases in 2020) aligns with the findings of Xu
and Lin (2018), who identified vehicle emissions as a key PM2.5

contributor in populous provinces. The age-specific economic losses

(e.g., 65–69 age group) are consistent with those described by Zhao
et al. (2016), who emphasized the vulnerability of middle-aged
cohorts. The projected decrease in PM2.5 concentrations and
associated health improvements reflect the effectiveness of

FIGURE 7
Economic losses from the health effects of lung cancer and
COPD in different age groups in the key years (million yuan). (a) Lung
cancer; (b) COPD.

FIGURE 8
Economic losses from the health effects of stroke and IHD in
different age groups in the key years (million yuan). (a) IHD; (b) Stroke

FIGURE 9
Economic losses of four health effect endpoints in the key
years (yuan).

Frontiers in Environmental Science frontiersin.org13

Lin et al. 10.3389/fenvs.2025.1554150

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1554150


China’s “oil control” policies, as discussed by He et al. (2020). The
accuracy of the results can thus be demonstrated. The shaded areas
represent 95% confidence intervals.

4.4 Uncertainty and sensitivity analyses

The results of this study rely onmodel assumptions, data quality,
and parameter selection, necessitating a systematic assessment of
their uncertainty and sensitivity to enhance the robustness of the
conclusions.

4.4.1 Data uncertainty
The data for PM2.5 concentration predictions are based on

scenario analysis by Tsinghua University and the Energy
Foundation (He et al., 2020), which assumes a concentration
reduction to 10 μg/m3 by 2060 (WHO standard). However, actual
concentrations may deviate from the predicted values due to the
strength of policy implementation, technological advancements,
or sudden environmental events. Additionally, population and
GDP projections are based on the SSP4 scenario (Chen Y. et al.,
2020), without considering extreme socio-economic
development patterns (such as accelerated population
migration or economic recession) that may impact age group
distribution and economic loss estimates. Sensitivity analysis
shows that if the GDP growth rate is reduced by 1%, the
economic losses due to IHD in 2050 also decrease by
approximately 7.2% (95% CI: 5.8%–8.5%).

4.4.2 Model parameter assumptions
The RR parameters (α, γ, δ) and the threshold concentration

(Zcf) in the IER model are derived from the Global Burden of
Disease study (Burnett et al., 2014), but there may be regional
specificity in the exposure–response relationship of the Chinese
population to PM2.5. By adjusting the Zcf value (from 5 μg/m3 to
15 μg/m3), it was found that the estimated difference in premature
deaths could reach 12%–18%. Furthermore, the contribution rate of
mobile sources to PM2.5 (μ = 9.8%) is based on historical research
(Chen et al., 2019). If this value is increased to 12%, the number of
premature deaths due to lung cancer in Shandong province in
2020 also increases by 14.3% (95% CI: 12.1%–16.5%).

4.4.3 Baseline health status and
population dynamics

The study assumes constant mortality rates after 2019 (Global
Burden of Diseases, 2019), without consideringthe impact of future
medical technological advancements or improvements in chronic
disease management. If the baseline mortality rate decreases by 1%
annually, the number of premature deaths due to COPD in 2060 also
decreases by 23.6% (95% CI: 20.4%–26.8%). Additionally, the
population projections do not consider the disturbance to the age
structure caused by sudden public health events (such as
pandemics), potentially underestimating the economic losses in
the older age group.

4.4.4 Economic parameter sensitivity
The discount rate (λ = 4.7%) has a significant impact on

economic loss estimates (People’s Bank of China, 2015). If a 3%

discount rate is used, the economic losses due to stroke in 2050 will
increase by 19.4% (95% CI: 16.8%–21.9%). At the same time, the
human capital approach does not fully capture the loss of life value
for non-working populations (such as retirees) (Zhao et al., 2016),
potentially underestimating the social costs for older groups.

4.4.5 Regional heterogeneity
The study assumes a consistent trend in PM2.5 concentration

reduction across provinces, but actual emission reduction effects
may differ due to variations in policy implementation efficiency and
industrial structure. For example, if the Beijing–Tianjin–Hebei
region achieves the PM2.5 concentration target ahead of schedule
(such as reducing it to 25 μg/m3 by 2030), the reduction in
premature deaths will be 8%–12% higher than the national
average (He et al., 2020).

5 Conclusion and policies

From the results mentioned above, the following conclusions
and policies can be obtained.

5.1 Conclusion

Despite our efforts to ensure the accuracy and completeness
of the data, the data may still be affected by limitations in the
collection, processing, and reporting process; all analytical
models are based on certain assumptions. Although the most
appropriate model for this study was selected and validated, there
may be discrepancies between the model assumptions and the
actual situation; this study does not consider all possible external
factors. For example, 1) external factors such as policy changes,
technological advances, or natural disasters may have a
significant impact on mobile source fuel consumption and
PM2.5 pollution. 2) Exclusion of confounding factors (e.g.,
smoking and indoor pollution). 3) Assumption of constant
mortality rates post-2019. Sensitivity analyses confirmed
robustness, and uncertainties are quantified by 95% confidence
intervals in the results. These factors were not fully considered in
the model, which may lead to some bias in the results. 4)
Although our study does not account for individual habits
(e.g., smoking), it aligns with the methodologies of Zhao et al.
(2016) and Burnett et al. (2014), which prioritize population-
level analyses. Future work could integrate behavioral surveys.

(1) The concentrations of PM2.5 emissions would decrease
gradually in the key years. With the transformation and
modernization of the energy consumption structure, oil
consumption from mobile sources would first increase and
then decrease. Thus, it would reduce PM2.5 emissions from oil
consumption by mobile sources and further reduce the
number of premature deaths and economic losses in
China. This is due to China’s “oil control” policy (66.3%
reduction in transportation emissions by 2060) and GDP-
driven energy transitions.

(2) The number of premature deaths in the four health effect
endpoints in different provinces of China varied significantly,
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but the ranking of premature deaths at the provincial level
changed little. The number of premature deaths in Shandong
province was higher than that in other provinces. Tibet was
the province with the lowest number of premature deaths
among the four health effect endpoints. However, there was a
significant difference in the number of premature deaths for
the four health endpoints. The number of premature deaths
due to IHD and stroke was significantly higher than those due
to COPD and lung cancer.

(3) The individuals in the 55–74 age group had more economic
losses from the four health endpoints than other age
groups. China’s economy continued to grow, although
the number of premature deaths from the four health
endpoints decreased. In 2020, 2025, 2050, and 2060, the
economic losses from premature death due to stroke were
the highest, and the economic losses from premature death
due to IHD and lung cancer gradually increased from
2025 to 2050 in the key years; the economic losses from
premature death due to IHD and lung cancer decreased in
the 2020–2025 and 2050–2060 periods. The economic loss
from premature death due to COPD was the lowest in the
key years.

5.2 Policies

(1) New energy vehicles should be vigorously promoted, and the
transformation of energy consumption from mobile sources
should be accelerated. To reduce oil consumption from
mobile sources, the use of new energy fuels such as
hydrogen and natural gas should be strengthened, which
would reduce PM2.5 emissions and the number of
premature deaths and economic losses. It is recommended
to refer to Guangdong province’s 2025 new energy vehicle
subsidy policy (a single-vehicle subsidy of 20,000 yuan) to
formulate a phased cost-sharing program for technological
alternatives.

(2) Provinces should coordinate with each other to reduce PM2.5

emissions from oil consumption bymobile sources. Shandong
province, with high numbers of premature deaths, should
improve PM2.5 air quality indicators and adjust the
population structure to reduce the number of
premature deaths.

(3) The health of the 55-74 age group should be focused on
improving their lung function. In addition, the healthy
personal lifestyle of the elderly should be strengthened to
reduce the risk of lung cancer, COPD, IHD, and stroke in
older adults.

(4) In addition to the theoretical contributions, our study also has
practical implications for policymakers and stakeholders. By
identifying the key drivers of PM2.5-related health effects and
economic losses, our findings provide a scientific basis for
formulating more effective environmental and energy
policies. For instance, policymakers can use the results of
this study to prioritize regions and sectors for emission
reduction measures and design targeted policies that
address the specific health risks associated with PM2.5

pollution. Moreover, our analysis of premature deaths and

economic losses can inform public health initiatives and
resource allocation strategies, thereby helping to mitigate
the adverse impacts of air pollution on population health
and well-being. Overall, by bridging the gap between
theoretical insights and practical outcomes, our study
offers a comprehensive framework for addressing the
challenges posed by PM2.5 pollution from mobile source
oil consumption in China.

(5) Based on the regional inequality of SSP4 assumptions, it is
recommended to take the lead in implementing stricter
emission standards for mobile sources (e.g., National VII
standards) in economically developed regions such as
Beijing–Tianjin–Hebei and the Yangtze River Delta;
additionally, a pilot program for inter-provincial trading of
PM2.5 emission rights could be implemented by borrowing
from the European Union’s “Carbon Border Adjustment
Mechanism” to balance the cost of abatement with health
benefits. At the same time, less developed provinces (e.g.,
Tibet) can prioritize the promotion of low-cost new energy
transportation (e.g., electric agricultural vehicles), relying on
the SSP4 technology diffusion path.
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