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Introduction: This study investigates the impact of the digital economy on the
carbon emission efficiency of 282 prefecture-level cities in China from 2008
to 2020.

Methods: This study used two-way fixed panel model, moderated effects model,
CCR-SBM model and spatial Durbin model.

Results: There is an obvious “U”-shaped relationship between the digital
economy and carbon emission efficiency, with a linear coefficient of −0.320.
In addition, the Dig data shows a substantial inflection point at 2.62, thus
confirming the obvious correlation between the digital economy and carbon
emission efficiency. After conducting a series of robustness tests (including
endogeneity tests and alternative model specifications), the model was found
to show consistent positive correlation. The results of the mechanism tests
suggest that human capital reinforces the positive impact of the digital
economy on carbon emission efficiency by accelerating the inflection point
of the U-curve. In addition, the digital economy has been shown to enhance
carbon emission efficiency through industrial structural transformation and
marketization. Heterogeneity analysis shows that regional location, city size
and characteristics influence this effect.

Discussion: The results of the study, provide insights into the green, low-carbon
and high-quality development of Chinese cities.
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1 Introduction

China’s rapid economic development, historically fueled by high carbon emissions, has
brought substantial growth but also significant environmental challenges, including
excessive energy consumption and high emissions. Industry, the cornerstone of China’s
economic expansion, remains a primary source of carbon emissions and plays a pivotal role
in addressing the country’s dual-carbon targets (carbon peak and carbon neutrality).
However, the current industrial model faces numerous constraints due to the evolving
international economic landscape, particularly with pressures from shifting global labor
divisions and China’s ambition to meet its environmental goals. Despite the strides made in
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economic development, China now faces a paradox: a tendency
toward premature de-industrialization. This trend, often referred to
as “Baumol’s Disease” (Baumol, 1967), arises from the increasing
proportion of the service sector, which contributes to a decline in
Total Factor Productivity (TFP), a reduction in economic efficiency,
and a slowdown in economic growth. The industrialization level in
China has yet to align with that of high-income countries, with
many manufacturing enterprises struggling to optimize resource
allocation efficiency and bolster the resilience of industrial supply
chains. In this context, the digital economy emerges as a powerful
tool for addressing these challenges. By harnessing technology and
data, the digital economy represents a shift from traditional growth
paradigms. The unique characteristics of digital technologies—such
as non-consumptive data elements and increasing marginal
benefits—have fundamentally transformed the production
function and the economic development model (McAfee and
Brynjolfsson, 2012). Specifically, the integration of digital
technologies into manufacturing has the potential to overcome
the “carbon lock-in” of traditional industrial structures, creating
space for carbon reductions while advancing the transition to more
sustainable industrial practices (Chen and Ding, 2022). While the
digital economy has the capacity to stimulate technological
innovation and enhance carbon emission efficiency, its
relationship with carbon reduction is not straightforward. Prior
studies, such as those by (Li and Cui, 2024), suggest that
digitalization can improve energy efficiency, yet it also carries
risks of increased energy consumption due to expanded
infrastructure and scaling of digital industries. Therefore,
understanding the mechanisms by which the digital economy
contributes to carbon emission efficiency—particularly in
industrial upgrading and marketization—is essential for China to
simultaneously achieve high-quality economic development and
meet its dual-carbon goals.

The marginal contributions of this paper are as follows: firstly,
the CCR-SBM model is constructed based on unintended outputs,
which can be solved by linear programming and can effectively
avoid the problem of mis-setting the functional form of traditional
parametric methods (e.g., SFA). The traditional CCR model is
predicated on the adjustment of inputs and outputs according to
predetermined ratios. In contrast, the SBM model permits the

optimisation of different indicators at different ratios, thereby
circumventing the restriction of radial assumption inherent to
the traditional CCR model. This is achieved by introducing the
slack variable mechanism of the SBM. This feature renders the
system particularly well-suited to scenarios involving the
measurement of carbon emission efficiency, where outcomes are
not anticipated. Secondly, the non-linear characteristics of the
impact of the digital economy on carbon emission efficiency
through the energy rebound effect are analysed. The aim of this
analysis is to dialectically view the systematic impact of the digital
economy on carbon emission efficiency from a multi-dimensional
perspective. Thirdly, human capital is examined as a moderating
effect of the digital economy on carbon emission efficiency, which
highlights the important impact of human capital on the digital
economy. Fourthly, both carbon emissions and the digital economy
exhibit pronounced spatial characteristics. Therefore, the research
strategy adopted in this study includes the replacement of the spatial
weight matrix with a geographic distance spatial weight matrix, an
economic distance spatial weight matrix, and a geographic-
economic nested spatial weight matrix. Figure 1 shows the
theoretical framework of the study.

The rest of this paper is arranged as follows: the second part is
the literature review; the third part explains the theoretical
mechanism and proposes the research hypothesis; the fourth part
is the research design, introduces the construction of data, model
andmain indicators; the fifth part is empirical analysis; the sixth part
is further analysis; and the seventh part is the conclusion and policy
suggestion.

2 Literature review

In recent decades, a substantial corpus of literature has
examined the manner in which diverse factors, including
technological progress, industrial structure and energy efficiency,
contribute to carbon emission efficiency. In recent years, the concept
of the digital economy has attracted mounting attention due to its
capacity to transform conventional economic structures, stimulate
innovation, and address pressing global challenges, such as climate
change (Kovacikova and Janoskova, 2021; Zhang and Lyu, 2022). As

FIGURE 1
Research design framework.
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technological advances continue to accelerate, there is an increasing
discourse surrounding the potential of the digital economy to
influence carbon efficiency and promote sustainable development
(Liu and Dong, 2024). A number of scholars have investigated the
capacity of the digital economy to catalyse industrial transformation
and promote green economic development. On the one hand,
technological innovation driven by digital platforms is regarded
as a pivotal factor in achieving green growth. Digitalisation has
precipitated a transition in industry, moving from labour- and
capital-intensive models to technology- and green-intensive
models (Brynjolfsson and Hitt, 2000). This transition holds the
potential to enhance the efficiency of resource allocation, thereby
contributing to the development of a low-carbon economy. This
enhancement can be achieved through the augmentation of
industrial productivity and the reduction of waste (Zhang, 2010;
Yang and Zhao, 2019). Conversely, technological advancements are
frequently identified as a pivotal catalyst for carbon mitigation
(Khurshid and Fiaz, 2022). Innovations in energy-efficient
technologies, renewable energy sources, and production processes
have the potential to substantially reduce the carbon intensity of
production (Napp and Gambhir, 2014; Jahanger et al., 2023). As
companies adopt digital tools, they can improve production
processes, optimise supply chains and reduce the carbon
footprint of manufacturing (Kamble and Gunasekaran, 2022;
Camel and Belhadi, 2024).

The role of green technological innovation in the construction of
low-carbon cities has been explored by some scholars, particularly
with regard to the increase in the number of green patents to
measure the level of technological innovation (Du and Antunes,
2022; Dilanchiev and Urinov, 2024). Research has indicated that the
transition from traditional carbon-intensive industries to
knowledge-based and service industries has the potential to
reduce the overall carbon footprint of an economy (Li and Chen,
2024; Zhao, 2024). It has been demonstrated by other studies that
the effects of carbon-reducing technology and industry transfers
may be subject to variation depending on geographic location and
level of economic development (Lee and Zhao, 2023; Tan and Wei,
2024). Industrialised regions may encounter greater challenges in
reducing emissions due to the higher carbon intensity of existing
infrastructure, whereas regions with higher levels of digital
integration may witness faster improvements in carbon efficiency
due to the adoption of low-carbon technologies (Ding and Li, 2017;
Jiang and Purohit, 2023). Nevertheless, concerns have been raised
that the rapid growth of the digital economy could inadvertently lead
to an increase in carbon emissions. A plethora of studies have
underscored the potential rebound effect of digitisation (Roussilhe
and Ligozat, 2023; Peng and Qin, 2024), whereby the augmentation
of digital infrastructure may precipitate an escalation in energy
consumption, consequent to the proliferation of digital business,
culminating in an escalation in carbon emissions in the short term
(Lange and Pohl, 2020). The development of large-scale digital
infrastructure and the subsequent increase in internet penetration
have the potential to result in elevated levels of energy consumption,
particularly in the initial phases of digital transformation (Kim and
Sovacool, 2024; Yang and Lin, 2023). As companies expand their
operations, the energy demand associated with digital technologies
may exceed the short-term carbon reductions achieved through
operational efficiencies (Lu and Li, 2024). The aforementioned

conflicting views underscore the necessity for a more nuanced
study of the timing and conditions under which the digital
economy delivers tangible carbon reductions (Ren and Hao, 2021).

A review of the extant literature suggests that the majority of
studies have employed one-way efficiency measures in the selection
of CO2 indicators. This a priori assumption of unidirectional
causality between ‘output’ and ‘carbon emissions’ may result in a
biased understanding of the relationship between the two. Secondly,
an analysis of existing studies reveals a lack of consensus in the
findings, which are dispersed and lack the regularity of analysing the
impact of the digital economy on carbon emission efficiency from a
dynamic perspective. In comparison with alternative economic
structures, the relationship between the digital economy and
human capital is more intricate, and the impact of human capital
on the digital economy and carbon emission efficiency merits
meticulous examination. It is evident that the extant literature on
this subject scarcely considers the spatial dynamic relationship
between the digital economy and carbon emissions.

3 Theoretical analysis and hypothesis

This section delineates the mechanisms through which the
digital economy impacts carbon emission efficiency. The
development of hypotheses is informed by pertinent theoretical
frameworks, with the objective of investigating the mediating
influence of industrial structure and marketisation, in
conjunction with the moderating effect of human capital. These
hypotheses are founded upon established theoretical frameworks,
including endogenous growth theory, diffusion of innovation
theory, and the environmental Kuznets curve (EKC). The
Environmental Kuznets Curve (EKC) posits that pollution and
carbon emissions tend to increase as an economy industrialises.
However, it is subsequently argued that after a certain level of
development, further industrial progress and technological
innovation leads to a reduction in emissions (Grossman and
Krueger, 1992). The theoretical framework posits the existence of
a non-linear U-shaped relationship between the development of the
digital economy and carbon emission efficiency. In its nascent
stages, the digital economy is characterised by an increase in
energy consumption, attributable to the expansion of digital
infrastructure and business activities. This phenomenon aligns
with the Jevons Paradox, a theoretical concept positing that
efficiency-enhancing technological advancements may result in
an overall escalation in energy consumption, thereby nullifying
the initial carbon emission reductions (Polimeni and Polimeni,
2006). However, as digital technologies mature and industries
integrate more efficient processes, there will be a concomitant
improvement in carbon efficiency. Therefore, we hypothesize that:

Hypothesis 1: There is a “U” shaped relationship between the
development of the digital economy and carbon emission efficiency,
i.e., early digital expansion increases emissions and reduces carbon
emission efficiency, but after a certain threshold is reached, digital
progress reduces emissions and increases carbon emission efficiency.

Human capital, defined as the skills, knowledge, and capabilities
of a population, plays a central role in economic development and
technological progress. Endogenous Growth Theory emphasizes the
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importance of human capital in fostering innovation and improving
productivity, which directly influences environmental outcomes. In
the context of the digital economy, human capital enables more
effective adoption and implementation of digital technologies,
fostering efficiency gains that enhance carbon emission efficiency.
The role of human capital in enhancing the positive effects of digital
economy development is crucial. Skilled workers contribute to
technological innovation, green technologies, and effective policy
implementation, thus accelerating the transition to more sustainable
industrial practices. Given this relationship, we propose the
following hypothesis:

Hypothesis 2: Human capital moderates the relationship between
digital economy development and carbon emission efficiency, such
that higher levels of human capital strengthen the positive impact of
the digital economy on carbon emission efficiency.

As the digital economy evolves, it influences the structure of
industries, shifting from traditional, resource-intensive industries to
more knowledge-based and technology-intensive sectors. According
to the Theory of Structural Change (Clark, 1940), economic
development often leads to shifts in industrial structure, which
can reduce carbon emissions by promoting less resource-heavy
industries. Industrial upgrading, driven by digital technologies,
can improve energy efficiency and reduce carbon intensity, thus
acting as a key mediator in the relationship between digital economy
and carbon emission efficiency. As digital technologies drive
innovation in the industrial sector, they enable the transition to
low-carbon production processes and products, optimizing energy
use and reducing emissions. Therefore, we hypothesize that:

Hypothesis 3: Industrial structure upgrading mediates the
relationship between the digital economy and carbon emission
efficiency, such that the digital economy enhances carbon
efficiency through the transformation of industrial structures.

Market-oriented reforms are crucial for achieving economic
efficiency and promoting environmental sustainability.
Marketization Theory (Dewatripont and Tirole, 2012) posits that
increased market integration leads to better resource allocation and
incentivizes businesses to adopt more efficient and environmentally
friendly technologies. In the digital economy, enhanced market
competition and transparency can foster the adoption of green
technologies and improve the carbon emission efficiency of firms.
As markets become more competitive, firms are incentivized to
adopt energy-efficient and low-carbon technologies to reduce
operational costs and meet consumer demand for sustainable
products. Thus, the extent of marketization can amplify the
benefits of digital economy development on carbon efficiency.
Based on this, we propose the following hypothesis:

Hypothesis 4: Marketization enhances the relationship between
digital economy development and carbon emission efficiency, such
that higher levels of marketization strengthen the positive effect of
the digital economy on carbon emission efficiency.

Spatial Econometrics and Regional Innovation Theory
(Feldman and Audretsch, 1999) suggest that economic
development in one region can have spillover effects on
neighboring regions, especially in terms of technological
innovation and environmental outcomes. The digital economy

has the potential to foster regional integration, creating a digital
innovation ecosystem that enables the diffusion of sustainable
technologies and practices across borders. Regions with advanced
digital infrastructure can act as innovation hubs, transferring
knowledge, technologies, and best practices to nearby areas, thus
enhancing their carbon emission efficiency. Given this, we
hypothesize:

Hypothesis 5: The impact of the digital economy on carbon
emission efficiency exhibits significant spatial spillover effects,
such that regions with more advanced digital economies
positively influence the carbon efficiency of neighboring regions.

4 Study design

Considering the completeness and availability of the data this
paper selects 282 prefecture-level cities and above in China from
2008 to 2020 as the research objects, and the data selected in this
paper, except for the digital financial inclusion index, mainly come
from China Statistical Yearbook, China Urban Statistical Yearbook,
China Demographic Statistical Yearbook, China Science and
Technology Statistical Yearbook, and some provincial and
municipal statistical yearbooks, and the small amount of missing
data is compensated by the moving average method and linear
interpolation method. data are compensated by moving average
method and linear interpolation method. In this study, the moving
average method and linear interpolation are used to make up for the
small amount of missing data.

4.1 Dependent variable: Carbon
Emission efficiency

Carbon emission efficiency will be measured as the ratio of
economic output (GDP) to total carbon emissions:

Carbon Emission Efficiency � GDP

Total Carbon Emissions
(1)

Where: GDP represents the economic output of a region,
adjusted for inflation using constant prices (2008 base year),
Total Carbon Emissions represents the emissions of CO2 and
other greenhouse gases in the region, measured in tons, The
SBM-DEA model will be used to capture the inefficiencies in
both carbon emissions and economic output. It allows for the
detection of both input slacks (excess carbon emissions) and
output slacks (inefficiencies in producing economic output).

min
θ,λ

θ � 1
N

∑N
i�1

yi −∑n
j�1 λjyij

yi
[ ] (2)

In Equation 2, θ is the efficiency score for the region, yi

represents output (GDP), and xi represents inputs (carbon
emissions) for each decision-making unit (region), λ is the
weight assigned to each decision-making unit, This model
captures the relative inefficiency in the conversion of carbon
emissions to economic output, offering a comprehensive
measurement of carbon emission efficiency.
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The traditional DEA method is easy to overestimate the actual
efficiency value, compared with the single carbon productivity
indicator, using the SBM model that incorporates unintended
outputs such as environmental pollution to measure carbon
emission efficiency can reflect the quality of economic
development in a more comprehensive way, and can more
accurately estimate whether the economic development mode is
in line with energy saving, emission reduction, and green
growth.The CCR model can calculate the resource allocation
efficiency oriented by the ratio of inputs to outputs in the case of
constant returns to scale, i.e., in the optimal state. The CCR model
can calculate the input and output oriented resource allocation
efficiency under constant returns to scale, and under this
assumption, DMU achieves scale efficiency efficiency, i.e., in the
optimal state, and the measured efficiency is the total technical
efficiency. Therefore, this paper adopts the CCR-SBM model in
which the slack degree variables of inputs and outputs are variable
according to the incremental condition and incorporate the CCR-
SBM model that includes non-desired outputs to measure the
carbon emission efficiency (eff_co2it), and build the model
Equation 3.

min ρ �
1
m∑m

i�1
�x
xik

1
r1+r2 (∑r1

s�1
�yd

�yd
sk
+∑r2

q�1
�yu

�yu
qk
)

s.t

�x≥∑n
j�1,≠ kxijλj; �y

d ≤∑n

j�1,≠ k
yd
sjλj

�yu ≥∑n

j�1,≠ k
yu
qjλj; �x≥ xk; �y

d ≤yd
k ; �y

u ≤yu
k

λj ≥ 0; i � 1, 2,/, m; j � 1, 2/, n
s � 1, 2, v, r1; q � 1, 2,/, r2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(3)

When it reaches its optimal value, the constraints of the SBM
model are converted to the CCR model and the slack variables are
re-specified, and the SBM model adds a constraint to this
assumption as shown in Equation 4.

x0 � Xλ* + s−*

y0 � Yλ*−s+*
θx0 � Xλ* + θ − 1( )x0 + s−* (4)

y0 � Yλ*−s+*
s− � θ − 1( )x0 + s−* ≥ 0

ρSBM ≤ θCCR

The indicator system consists of two components, the first being
the input component, which consists of capital, labour and energy.
The capital stock in the ‘perpetual inventory method’ is used as an
indicator of capital input to calculate the input of capital factors.
Taking 2008 as the base period, dividing the gross fixed capital
formation of the base year by 10% as the initial capital stock of the
city, with an annual depreciation rate of 9.6%, the data for the period
of 2008–2020 are measured, and then the obtained data are
uniformly adjusted to the corresponding value with 2008 as the
base period, which is deflated to obtain the capital factor input. The
annual depreciation rate is 9.6%, the data for the period
2008–2020 are measured, and then the obtained data are
uniformly adjusted to the corresponding value with 2008 as the
base period, and the level of capital input is obtained by deflating the

level of capital input in billions of yuan, and the capital stock is
calculated as shown in Equation 5:

Qi,t � Ii,t + 1 − δi,t( )Qi,t−1 (5)
where, Qi,t is the capital stock of prefecture i in year t, Qi,t−1 is the
capital stock of prefecture i in year t-1, Ii,t is the investment of
prefecture i in year t, and δi,t is the depreciation rate of fixed capital
of province i in year t.

Since the statistics of labour variables are affected by a variety of
factors such as the quality and type of labour, and the standard is
difficult to be unified, this paper adopts the method in most of the
literature, and chooses to use the number of current employment
(the sum of the number of employees in the primary, secondary and
tertiary industries) in each prefecture-level city to characterize the
input of labour factors, in ten thousand people. The total energy
consumption data of each province andmunicipal area from 2008 to
2020 is used as an indicator of energy input, and the total electricity
consumption of the whole society (10,000 kWh) is used to measure
the energy factor.

The second is the output part, including desired output and non-
desired output. Although many scholars have different views on the
output indicator of carbon emission, GDP is mostly used as the
indicator to measure the economic output of a region. In this paper,
the desired output level is based on the nominal GDP (billion yuan)
in 2007, and in order to exclude the influence of inflation, the
nominal GDP of each city in each year is converted to get the real
GDP in 2007 as the base period. The total carbon emission of
prefecture-level cities is chosen as the non-desired output indicator,
and the carbon emission includes the carbon emission from the
direct energy consumption and that from the consumption of
electric power and heat, which are included in the present study.
Carbon emissions include carbon emissions from direct energy
consumption and carbon emissions from electricity and heat
energy consumption, and in this study, carbon emissions from
liquefied petroleum gas (LPG), gas, transport and carbon
emissions from electricity and heat energy consumption are
added together as the total carbon emissions of each city.

4.2 Core explanatory variables: Digital
economy (dig)

The development level of the digital economy will be measured
using a comprehensive index constructed from four key dimensions:
digital infrastructure, digital industry development, digital
innovation, and digital financial inclusion. The evaluation
indicator system for digital economy development, as adapted
from Zhao (2010), is shown in Table 1 below. The entropy
weight-TOPSIS method will be used to calculate a composite
index for digital economy development.

The composite index will be calculated using the entropy
weighting methodology as shown in Equation 6.

DEI � w1 ·Digital Infrastructure + w2 ·Digital IndustryDevelopment

+w3 ·Digital Innovation + w4 ·Digital Financial Inclusion

(6)
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Where:w1,w2,w3 ,w4 are the weights assigned to each dimension
of the digital economy, determined through the entropy method.

4.3 Mechanism variables

(1) Marketization Level (mar):The marketization level is an
important mechanism influencing carbon efficiency. It will
be measured using the entropy value method, based on
indicators such as market competition, regulatory
environment, and financial market development:

MI � w1 ·Market Competition + w2 · Regulatory Environment

+ w3 · FinancialMarketDevelopment

(7)
In Equation 7 Market Competition: Measured using the

Herfindahl-Hirschman Index (HHI).
Regulatory Environment: Based on indices for ease of doing

business and labor market flexibility.
Financial Market Development: Measured by credit to

GDP ratio.
The weights (w1, w2, w3) for these dimensions will be

determined using the entropy method, and a composite
Marketization Index (MI) will be constructed.

(2) Human Capital Level (hum): The human capital level will be
measured by the share of college students as a percentage of
the resident population. As shown in Equation 8:

HumanCapital Level � Number ofCollege Students

Resident Population
× 100 (8)

This indicator reflects the level of education and skill within the
population, which is critical for the adoption of digital technologies
and for improving carbon efficiency.

(3) Industrial Structure Advanced (hsm):The industrial structure
will be characterized by the ratio of the share of the tertiary
industry GDP to the secondary industry GDP:

hsm � Tertiary IndustryGDP

Secondary IndustryGDP
(9)

This ratio reflects the shift from more energy-intensive sectors
(secondary industry) to less carbon-intensive sectors (tertiary
industry), a key aspect of the transition to a more
sustainable economy.

4.4 Control variables

In order to avoid bias due to omitted variables, the following
control variables will be included in the analysis: Regional Per
Capita GDP (pgdp): Measured by the logarithm of regional per
capita GDP, adjusted for inflation using constant 2008 prices.
Per Capita Research Expenditure (Rd): Measured by the portion
of local fiscal expenditure on research and education in the
current year, expressed in ten thousand yuan. Environmental
Regulation (env): Measured by the ratio of completed
investment in industrial pollution control to the value added
of the secondary industry. Transportation Infrastructure (roa):
Measured by the ratio of the area of urban roads in the region to
the average area of roads in each city. Energy structure (es):
Represents the proportion of energy consumption from clean
and non-clean sources. Foreign direct investment (FDI):Reflects
the impact of foreign investment on the region’s economy.
Financial development (fin_dev):Indicates the level of
development in the financial market. Telecommunications
business per million people (Tbmp):Indicates the level of
digital infrastructure.

4.5 Efficiency measurement

The SBM-DEA model will be used to measure carbon emission
efficiency, capturing inefficiencies in carbon emissions relative to
economic output. This model simultaneously considers input and
output slacks, allowing for a more nuanced measurement
of efficiency.

TABLE 1 Evaluation index system of digital economy development.

Guideline Layer Indicator Layer Measurement Standard/Unit Indicator
Attribute

Digital Infrastructure Broadband Internet Base
Mobile Internet Base

Number of international Internet users per 10,000 people/
households

Number of cell phone subscribers per 10,000 people/
households

+
+

Digital Industry
Development

E-commerce Industry Development Information
Industry Base

Telecommunication Industry Base

Number of urban e-commerce parks/pc
Number of employees in the IT industry per 10,000 people
Total amount of telecommunication business in million yuan

+
+
+

Digital Innovation Level Digital Innovation Base Digital Innovation Base Expenditure on R&D/Million Yuan
Level of high-tech penetration in listed companies

+
+

Digital Financial Inclusion Breadth of Coverage Depth of Use
Degree of Digitization

Digital financial coverage index
Digital financial inclusion depth of use index Digital financial

digitization index

+
+
+
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4.6 Spatial Econometrics model

Given that digital economy development can have spatial
spillover effects, a Spatial Durbin Model (SDM) will be employed
to account for both direct and indirect effects across
neighboring regions:

Yi � α + ρWYi + βXi + λWXi + ϵi (10)
Where: Yi represents the carbon emission efficiency of region i. Xi

represents the independent variables (digital economy,
marketization, etc.). W is the spatial weight matrix, indicating the
spatial proximity between regions.

Endogeneity: To address potential endogeneity between the
digital economy and carbon efficiency, instrumental variables
(IV) will be used. An appropriate instrument, such as distance
from the coastline, will be employed for digital economy
development.

4.7 Sample selection and data sources

Considering the completeness and availability of the data, this
paper selects 282 prefecture-level cities and above in China from
2008 to 2020 as the research object, and the data are mainly obtained
from China Statistical Yearbook, China Demographic Statistical
Yearbook, China Energy Statistical Yearbook, and some
provincial and municipal statistical yearbooks, and combined
with the Digital Inclusive Finance Index (2011) compiled by
Peking University and Ant Financial Services. (2011–2020). Some
missing data are made up using the moving average method and
linear interpolation method.

5 Empirical analysis

5.1 Descriptive statistics of
different variables

In Table 2, referring to Tone’s method (Tone, 2001), we
measures the crs_sbm and ebm of carbon emission efficiency
(eff_co2it)by constructing the super-efficiency SBM model, with
the mean values of 0.435 and 0.593 and the standard deviations
of 0.189 and 0.167, respectively. Our study indicates that there are
large differences in carbon emission efficiency among cities. The
mean value of digital economy (dig) is 0.355, and the standard
deviation is 0.028, inferring that the development level of China’s
digital economy is characterized by significant spatial
differentiation. The standard deviation of the industrial structure
upgrading indicator (hsm) among the mechanism variables is large
at 0.593, and all other variables are within the controllable range.
The trends of the explained variables and explanatory variables are
basically consistent with those of the mechanism variables and
control variables.

5.2 Benchmark regression results

This study uses the Environmental BenchmarkingModel (EBM)
to measure carbon emission efficiency, comparing regions to best
practice benchmarks. The EBM values reflect each region’s efficiency
relative to environmental best practices. Following the analytical
approach of (Arenius, 2011), high-dimensional fixed and mixed
effects are applied to Equation 1, with the baseline regression results
shown in Table 3. Column (1) reveals a significant inverted

TABLE 2 Descriptive statistical analysis of different variables.

Var-Name Obs Mean SD Min Median Max

Digital Economy 2820 1.75 0.683 0.1702 1.848336 3.344781

Carbon Efficiency 2820 0.44 0.187 0.129337 0.395511 1.43248

Human Capital 2820 0.05 0.046 −0.042244 0.037 0.448088

Marketization Level 2820 0.31 0.106 −0.028696 0.29135 1.64278

Energy Structure 2820 0.83 0.111 0.3615131 0.8452453 0.9855385

Energy Consumption 2820 0.14 1.499 −0.9928086 −0.0012489 40.36909

Industrial Structure 2371 45.68 11.113 11.7058 46.58 89.3

FDI 2820 9.90 2.273 0 10.18876 14.07759

Financial Development 2820 2.47 1.118 0.895133 2.164212 6.610044

Technological Innovation 2820 3270.82 9393.871 4 538 149,710

Industrial Waste Utilization Rate 2820 0.79 0.242 0.0366 0.89 1.1017

Per Capita GDP 2820 10.72 0.565 9.387063 10.68879 12.00751

Per Capita Research Expenditure 2820 7.24 0.538 4.56152 7.215464 8.821845

TBMP 2820 12.78 1.075 10.35275 12.63218 15.91346

City Road Area Ratio 2820 1.13 0.293 0.481432 1.098518 2.020058
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U-shaped relationship between the digital economy (dig) and
carbon emission efficiency, with a coefficient of 0.095 at the 1%
significance level. When the quadratic term for the digital economy
is added, the results confirm a non-linear relationship, indicating
that in the early stages of digital economy development, economic
growth leads to higher carbon emissions, as the effect of
technological emission reduction is less than the emissions
increase. However, as the digital economy matures, technological
advancements in emission reduction and energy efficiency lead to
improved carbon emission efficiency. Column (4) further supports
this inverted U-shaped relationship. The negative coefficient for the
linear term (dig) and the positive coefficient for the quadratic term
(dig2) suggest that in the early stages of digital economy
development, carbon emissions initially increase. However, once
a certain threshold is reached, further development of the digital
economy enhances carbon efficiency through energy optimization,
industrial upgrades, and reduced waste. This aligns with the Jevons

Paradox, where early improvements in energy efficiency can
increase overall consumption, but over time, these advancements
result in greater efficiency and lower emissions. The results remain
robust even after incorporating control variables, further supporting
the inverted U-shaped hypothesis (H1) that digital economy
development improves carbon emission efficiency only beyond a
certain threshold. Per capita research expenditure, regional GDP,
and environmental regulation all show significant positive
relationships with carbon emission efficiency. However, the
transportation infrastructure variable did not significantly impact
carbon efficiency, suggesting that while regional economic strength
is crucial, infrastructure alone may not drive improvements in
emission efficiency.

In this study, in order to analyze the spatial effect of the digital
economy on the impact of carbon emission efficiency, four types of
weight matrices, namely, geographic distance inverse, economic
distance, and composite and transportation matrices, are used to

TABLE 3 Baseline regression.

Serial number (1) (2) (3) (4)

Implicit variable Crs_sbm Crs_sbm Crs_sbm Crs_sbm

Dig 0.001* 0.095*** 0.019* −0.320***

(0.15) (2.36) (0.49) (−5.02)

dig2 0.061***

(5.27)

Rd 0.029*** 0.032*** −0.009* −0.007

(3.09) (3.46) (-1.68) (-1.45)

Pgdp 0.040*** 0.059*** −0.113*** −0.092***

(4.24) (4.29) (-5.48) (-4.40)

Tbmp 0.039*** 0.047*** −0.007* −0.005

(9.11) (11.11) (-1.78) (-1.36)

Roa −0.084*** −0.069*** −0.052*** −0.048***

(-4.71) (-3.75) (-4.44) (-4.20)

Es −0.124*** −0.119*** −0.194*** −0.180***

(-3.89) (-3.69) (-6.18) (-5.77)

FDI −0.004** −0.004** 0.001 −0.000

(-2.14) (-2.23) (0.43) (-0.06)

fin_dev −0.053*** −0.049*** −0.004 0.001

(-14.47) (-12.77) (-0.50) (0.12)

_cons −0.327*** −0.519*** 1.988*** 2.097***

(-3.16) (-4.35) (8.22) (8.93)

point-to-point effect no yes yes yes

individual effect no no yes yes

N 2820 2820 2820 2820

r2 0.130 0.148 0.765 0.770

Note: *, **, *** represent 10%, 5%, and 1% significance levels, respectively. The following tables are identical.
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in the regression Equation 4. The results, as shown in Table 4, show a
positive effect in all four types of weight matrices, with coefficients of
0.555, 0.270, 0.590 and 0.021, respectively. The effect is significant in
the geographic inverse and composite matrix models. The spatial lag
term coefficients indicate that the level of digital economy
development of neighboring cities has a robust and significant
positive spillover effect on the carbon emission efficiency of the
city, especially in the economic distance and the composite matrix
model, with the most significant effect, with coefficients of 2.856 and
1.237, respectively. The spatial autocorrelation coefficients are
significant in all the models, which indicates that there is
significant spatial correlation of the carbon emission efficiency
among the cities. The highest spatial autocorrelation coefficient
in the transportation matrix model is 0.459, indicating that the
transportation network has a significant effect on the spatial
connection between cities. The coefficients of both direct and
indirect effects are significant, indicating that the impact of the
digital economy on carbon emission efficiency is a cumulative result
of the direct effect and the indirect effect through spatial
spillover effects.

Geographic proximity plays a key role in knowledge
dissemination, infrastructure sharing and local policy spillovers.
The geographic proximity matrix (inverse distance) is best suited
to capture direct, localized spillovers from digital economy
development between physical neighborhoods. The economic
proximity matrix is used to model the spillover effects of the
digital economy, as carbon efficiency gains are mainly propagated
through economic linkages. Based on the focus of this study on

carbon efficiency and digital economy spillovers between Chinese
cities, the most appropriate choice depends on whether the
spillovers are caused by physical proximity or economic
integration. The spillovers in this study are mainly due to
economic linkages, trade and digital industry clusters that
transcend geographic constraints. Carbon efficiency gains are
mainly transmitted through economic linkages (trade, industry
transfers and investment flows), and the economic distance
matrix is more relevant, so it is used to model the spillovers
from the digital economy.

5.3 Endogeneity and robustness tests

Endogeneity concerns are addressed by considering potential
bidirectional causality or omitted variable bias, which may affect the
robustness of the findings. To mitigate these concerns, we conduct
endogeneity tests by using instrumental variables and fixed effects
models. In Table 5, the regression results across all models show a
statistically significant relationship between digital economy (dig)
and carbon emission efficiency (Crs_sbm). Specifically, in columns
(2) and (5), the coefficient for dig was 0.337* (at the 1% significance
level) and 0.367 (at the 5% significance level), indicating a positive
effect of digital economy development on carbon emission
efficiency. However, in column (6), the coefficient for dig was
negative (−0.323***), suggesting that in certain stages, the
expansion of the digital economy initially leads to a reduction in
carbon emission efficiency. This finding aligns with the Jevons

TABLE 4 Spatial measurement regression.

Variable name geographic inverse Economic distance Composite matrix Traffic matrix

(1) (2) (3) (4)

crs_sbm crs_sbm crs_sbm crs_sbm

Dig 0.555*** 0.270* 0.590*** 0.021

[0.163] [0.157] [0.165] [0.179]

Wx:dig 0.807** 2.856*** 1.237*** 2.375***

[0.337] [0.423] [0.390] [0.429]

Spatial:rho 0.341*** 0.232*** 0.383*** 0.459***

[0.033] [0.034] [0.035] [0.046]

Variance:sigma2_e 0.042*** 0.042*** 0.041*** 0.042***

[0.001] [0.001] [0.001] [0.001]

Direct:dig 0.593*** 0.350** 0.641*** 0.078

[0.157] [0.154] [0.158] [0.175]

Indirect:dig 1.472*** 3.705*** 2.316*** 4.337***

[0.490] [0.562] [0.630] [0.763]

Total:dig 2.065*** 4.055*** 2.957*** 4.414***

[0.434] [0.553] [0.566] [0.685]

Obs 3666 3666 3666 3666

R2 0.141 0.113 0.126 0.117
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Paradox, where technological advancements might initially increase
energy consumption before contributing to efficiency gains in the
long run. Multiple control variables were included in the analysis to
account for potential confounding factors. The regression results of
key control variables such as per capita GDP (pgdp), per capita
research expenditure (Rd), telecommunications business per million
people (Tbmp), transportation infrastructure (roa), energy structure
(es), foreign direct investment (FDI), and financial development
(fin_dev) indicate significant relationships with carbon emission
efficiency. Per capita GDP (pgdp) was positively and significantly
associated with carbon emission efficiency across several models,
indicating that higher economic development levels are linked to
improved carbon emission performance. Similarly, energy structure

(es) and foreign direct investment (FDI) exhibited a negative
relationship with carbon efficiency, suggesting that higher
reliance on non-clean energy and increased foreign investment
may contribute to higher emissions.

To address potential endogeneity, we utilized instrumental
variables, specifically minimum distance to optic cities (MinDist_
to_OpticCities) and spatial distance to Hangzhou (SphDist_to_
Hangzhou). The results from these instruments show that
MinDist_to_OpticCities had a positive and significant coefficient
(0.039*), indicating that proximity to digital infrastructure (i.e., optic
cities) is positively correlated with improved carbon emission
efficiency. In contrast, SphDist_to_Hangzhou showed a negative
coefficient (−0.045***), suggesting that greater spatial distance from

TABLE 5 Endogeneity test.

Serial number (1) (2) (3) (4) (5) (6)

Variable dig Crs_sbm dig Crs_sbm dig Crs_sbm

TR * Year −0.003***

(-13.60)

MinDist_to_OpticCities 0.039***

(7.57)

SphDist_to_Hangzhou −0.045***

(-3.72)

dig 0.367** 0.337*** −0.323**

(2.43) (5.64) (-2.54)

Rd −0.003 −0.006 0.143*** −0.025* 0.159*** 0.080***

(-0.76) (-1.13) (6.33) (-1.70) (6.81) (3.26)

pgdp 0.059*** −0.132*** 0.340*** −0.066*** 0.308*** 0.141***

(5.63) (-5.98) (16.10) (-3.26) (14.79) (3.31)

Tbmp 0.010*** −0.010** 0.080*** 0.015** 0.066*** 0.061***

(4.67) (-2.26) (8.57) (2.17) (7.02) (6.03)

roa 0.014*** −0.054*** 1.122*** −0.473*** 1.154*** 0.286*

(2.83) (-4.50) (35.34) (-6.46) (36.55) (1.94)

es 0.014 −0.203*** 0.550*** −0.329*** 0.600*** 0.071

(1.01) (-6.43) (7.90) (-5.87) (8.62) (0.83)

FDI 0.006*** −0.002 −0.020*** 0.005* −0.032*** −0.012***

(5.67) (-0.71) (-4.86) (1.85) (-7.31) (-3.14)

fin_dev −0.014*** −0.000 0.129*** −0.087*** 0.103*** −0.020

(-4.31) (-0.03) (13.81) (-11.79) (12.01) (-1.54)

point-to-point effect Yes yes yes

individual effect Yes yes yes

LM statistic 145.771*** 59.275*** 17.227***

Wald Fstatistic 244.173 66.993 17.155

N 2820 2820 2820 2820 2820 2820

r2 0.032 0.778 0.787
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Hangzhou is associated with lower carbon emission efficiency. To
further ensure the reliability of our results, we conducted robustness
checks, which confirmed the stability of the relationships. Per capita
research expenditure (Rd) and regional GDP (pgdp) consistently
showed significant positive relationships with carbon emission
efficiency. Additionally, environmental regulation (es) and foreign
direct investment (FDI) remained significant predictors of carbon
efficiency. The transportation infrastructure variable (roa), however,
did not exhibit a significant effect, suggesting that while economic
strength is crucial, infrastructure alone may not drive improvements
in emission efficiency.The endogeneity analysis in this study,
through the use of instrumental variables and robustness checks,
supports the relationship between digital economy development and
carbon emission efficiency. While early stages of digital economy
expansion may temporarily lead to increased emissions due to
infrastructure expansion and digital industry scaling, over time,
technological advancements in energy optimization and industrial
upgrades lead to greater carbon efficiency. Furthermore, the control
variables revealed complex effects of economic development, energy
structure, and foreign investment on carbon efficiency. Overall, the
impact of digital economy development on carbon emission
efficiency is dynamic, mediated by several factors, and exhibits a
non-linear relationship that changes as digital technologies mature
and industrial structures transition.

Another important consideration is potential spatial endogeneity,
which was not addressed in the original analysis. If unobserved factors
such as regional policies or external economic influences affect more
than one region at the same time, there may be spatial effects that can
lead to correlated errors. Failure to account for spatial dependence
may distort the results, as neighboring regions may exhibit similar
trends in digital economy development and carbon emission
efficiency. To address this issue, the study incorporates the Spatial
Durbin Model (SDM) to better account for spatial interactions and
improve the estimation of the relationship between the digital
economy and carbon emission efficiency. Drawing on the spatial
weightingmatrices selected in related studies, the spatial correlation of
carbon emission efficiency of 282 cities at prefecture level and above in
China from 2008 to 2020 is measured under four types of weighting
matrices, namely, geographic, economic, composite, and
transportation matrices, using the global Moran index. As shown
on Table 6 it can be seen that after 2014, the globalMoran index of the
four types of weight matrices passes the significance test at the 1%
level, and the spatial correlation shows positive. With the global
Moran index showing a continuous upward trend, the spatial
spillover effect of urban carbon emission efficiency is more
significant, and the mutual promotion effect is continuously
strengthened, gradually appearing contiguous spatial characteristics,
further confirming that the impact of the digital economy on the
carbon emission efficiency has a strong spatial spillover effect.
Accordingly, research hypothesis H4 is verified.

5.4 Mechanism of action analysis

5.4.1 Moderating effects of human capital
Human capital plays a leading role in the development of

digital economy and promotes the progress of green technology
and the advanced industrial structure, thus affecting the

relationship between digital economy and carbon emission
efficiency. Therefore, this paper adopts human capital as a
regulating mechanism variable to analyze the impact on
carbon emission efficiency, and incorporates the cross-
multiplier terms of digital economy and human capital into
the research model. The results, as shown in column (5) in
Table 7, the cross-multiplier term of digital economy and
human capital is significant at 1% level and the regression
coefficient is negative, and a higher level of human capital can
enhance the positive impact of digital economy on urban carbon
emission efficiency. Accordingly, hypothesis H2 is verified. The
increase of human capital level helps the city to form a good
innovation ecosystem, promotes the increase of invention patents
of scientific research institutions and social enterprises, and is
conducive to taking the lead in researching and developing more
advanced digital technology, energy-saving technology, new
energy technology, etc., and stimulates the large-scale
production and sale of scientific and technological inventions
and patents through the superior market network, which
provides a strong support for the enhancement of the level of
the development of the digital economy and the improvement of
the efficiency of carbon emissions at the macro level. Thus
providing strong support for the improvement of the level of
development of the digital economy and the efficiency of carbon
emissions at the macro level.

5.4.2 Analysis of the mediating effect of industrial
structure upgrading

In this paper, carbon emission efficiency (eff_co2it) is used as the
explanatory variable for multiple regression, according to the
mediation effect model (2) and model (3) constructed above, to
verify the intermediary channel mechanism of the digital economy
affecting urban carbon emission efficiency, the regression results are
shown in Table 7, Columns (1) and (2) show the test results of the
intermediary mechanism in the industrial structure upgrading.
Column (1) shows that the coefficient of dig on the effect of
industrial structure optimization (hsm) is 4.023, and the
regression coefficient is positive and significant at 1% level, and
Column (2) shows that the coefficient of dig on the improvement of
carbon emission efficiency is 0.822 and significant at 1% level. The
cross-multiplication terms of the explanatory variables, the
explained variables and the mediating variables are significant
and positive, and the mediating effect is amplified. The above
results indicate that as a mediating mechanism, industrial
structure upgrading has a significant indirect effect on the digital
economy to improve carbon emission efficiency, and optimizing
industrial structure is an important mechanism for the digital
economy to drive carbon emission reduction, and hypothesis
H3 is verified. The reason is that industrial structure upgrading
leads to changes in the structure of energy consumption, and the
improvement of energy structure is the most important factor in
reducing carbon emissions and improving carbon
emission efficiency.

5.4.3 Analysis of the mediating effect of the level of
marketization

The level of marketization can reflect the efficiency of factor
marketization and allocation of a country or region in a more
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comprehensive way. The entropy method is used to measure the
marketization level. Columns (3) and (4) in Table 7 show the test
results. Column (3) tests the role of the digital economy on the
level of marketization, and the coefficient is 0.869 and is
significant at the 1% level, which indicates that the digital
economy has a significant positive impact on the level of
marketization. In the test result of column (4), the coefficient
of marketization effect is 0.062 and significant at 5% statistical

level, indicating that the increase in the level of marketization
has a significant enhancement effect on the improvement of
carbon emission efficiency. Accordingly, hypothesis H3 is
verified. The reason for this is because the emergence of
digital economy can guide enterprises to plan production
according to market demand and market signals, reduce
energy consumption and resource waste, and thus improve
carbon emission efficiency.

TABLE 7 Mechanism tests.

Mechanism pathways Industrial structure
optimization effect

Marketization effect Human capital moderating effect

Serial number (1) (2) (3) (4) (5)

Variable Hsm crs_sbm mar crs_sbm crs_sbm

dig 4.023*** 0.822*** 0.869*** 0.654*** 1.832***

[0.469] [0.166] [0.067] [0.166] [0.117]

hsm −0.028***

[0.006]

mar 0.062**

[0.029]

hum 7.403***

[0.688]

dig*hum 21.020***

[1.965]

N 3666 3666 3666 3666 3666

R2 0.242 0.032 0.129 0.027 0.043

TABLE 6 The Moran’s I values of Urban Carbon Emission Efficiency from 2008 to 2020.

Year Geographic matrix Economic matrix Composite matrix Traffic matrix

Moran’s I Moran’s I Moran’s I Moran’s I

2008 0.100*** 0.039 0.089*** 0.087***

2009 0.072*** 0.039 0.070*** 0.070***

2010 0.080*** 0.030 0.086*** 0.074***

2011 0.057** 0.027 0.058*** 0.062***

2012 0.129*** 0.028 0.116*** 0.114***

2013 0.035 0.087*** 0.042** 0.035**

2014 0.100*** 0.061** 0.096*** 0.071***

2015 0.105*** 0.070*** 0.096*** 0.077***

2016 0.096*** 0.087*** 0.079*** 0.077***

2017 0.125*** 0.096*** 0.109*** 0.090***

2018 0.126*** 0.109*** 0.103*** 0.091***

2019 0.157*** 0.132*** 0.126*** 0.131***
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6 Further analysis

6.1 Analysis of regional heterogeneity

This study analyzes the regional heterogeneity of the impact of the
digital economy on carbon emission efficiency using a two-way fixed
effects model. The approach controls for the effects of time-invariant
regional characteristics and time-specific factors on the relationship
between the digital economy and carbon emission efficiency,
highlighting significant differences between regions. The level of
regional economic development plays a key role in shaping the
development of the digital economy, and as a result, improvements
in carbon emission efficiency vary across regions. We divide China into
four regions: eastern, northeastern, central, and western, which are
categorized based on differences in their level of economic development,
industrial structure, and stage of digital economy development.
Specifically, the eastern region is the most economically developed,
with a high degree of industrial concentration and advanced
infrastructure; the northeastern region is dominated by heavy
industry; the central region is undergoing economic transformation
and is gradually diversifying; and the western region is lagging behind,

and is still in the rapid development stage of industrialization and
infrastructure construction. The analysis of regional heterogeneity
reveals that the digital economy’s impact on carbon emission
efficiency varies across regions in China. As shown in Table 8, in
the Eastern region, with advanced infrastructure and concentrated
industries, digital technology significantly improves carbon efficiency
(coefficient = 48.358). In the Northeastern region, dominated by
energy-intensive heavy industries, digitalization has a negative
impact on carbon efficiency (coefficient = −98.147), as it may
increase emissions. The Central region benefits from digitalization,
which optimizes processes, reduces waste, and improves carbon
efficiency (coefficient = 115.734). However, in the Western region,
rapid industrialization and infrastructure development lead to higher
emissions in the short term, despite digitalization’s long-term potential
to improve efficiency (coefficient = −53.465). The eastern and central
regions are transitioning to more advanced economic models, and
digital technologies play a crucial role in enhancing carbon efficiency,
especially in the digital transformation of the manufacturing sector. In
contrast, the heavy industrial base in the Northeast is likely to increase
emissions due to the expansion of energy-intensive industries, while the
West faces higher emissions in the short term due to rapid

TABLE 8 Regional Heterogeneity1.

Serial number (1) (2) (3) (4)

District Eastern Region Western Region Central Region Northeast region

dig 0.267*** 0.031 0.025 −0.008

(3.26) (0.43) (0.47) (-0.07)

Rd −0.068 0.004 0.001 0.015

(-1.41) (0.65) (0.04) (0.85)

pgdp −0.094*** −0.068* −0.126*** −0.100*

(-3.58) (-1.87) (-3.47) (-1.92)

Tbmp −0.003 −0.005 −0.002 0.014

(-0.30) (-0.71) (-0.38) (1.10)

roa −0.077*** −0.013 −0.080*** −0.023

(-2.87) (-0.65) (-5.52) (-0.93)

es −0.425*** 0.013 −0.209*** −0.658***

(-5.08) (0.31) (-4.28) (-5.84)

FDI 0.018*** −0.001 −0.014* 0.008***

(3.35) (-0.19) (-1.76) (3.10)

fin_dev 0.028** −0.041*** 0.020 −0.040**

(2.33) (-2.64) (0.85) (-2.55)

_cons 1.738*** 1.227*** 2.076*** 1.869***

(3.64) (3.09) (4.73) (3.77)

point-to-point effect Yes yes yes yes

individual effect Yes yes yes yes

N 860 830 800 330

r2 0.785 0.743 0.768 0.809
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industrialization and infrastructure development. The eastern region
has larger cities, more advanced infrastructure and higher levels of
urbanization, factors that are inherently captured by regional
heterogeneity.

This analysis examines regional differences in the impact of the
digital economy on carbon emission efficiency in four different regions
(South, North, non-coastal and coastal). The model uses a two-way
fixed effects approach to control for time-invariant regional
characteristics and time-specific factors. As shown in Table 9, the
Southern region is Column 1 with a coefficient of 0.065, a positive
coefficient indicating that the development of the digital economy has a
slight positive impact on carbon efficiency in the Southern region.
Although the impact is not significant, it suggests that digital
technologies play a role in improving carbon efficiency in the
region. The Northern region is Column 2 with a coefficient
of −0.067, a negative coefficient indicating a small but significant
negative impact of the digital economy on carbon efficiency in the
Northern region. This may be due to specific regional characteristics or
industries that are less well optimized by digital technologies, possibly
due to a reliance on energy-intensive industries. The non-coastal region

is for column 3 and the coefficient is −0.029, a negative coefficient
indicating that the digital economy in non-coastal regions has the least
negative and non-significant impact on carbon emission efficiency. This
suggests that the digital economy has less of an impact outside of coastal
areas, and may even have a potentially negative impact, possibly due to
slower digital adoption or more traditional industries. The coastal
region is Column 4 and the coefficient is 0.209, a marginally
significant positive coefficient indicating a significant positive impact
of the digital economy on carbon efficiency in the coastal region. Coastal
zones, with their more advanced infrastructure and higher levels of
industrialization, are able to benefit more from digital technology,
which contributes to carbon efficiency. The results highlight the
regional heterogeneity of the impact of the digital economy on
carbon emission efficiency. Coastal regions, with their higher levels
of infrastructure and industrialization, benefit more significantly from
digital technologies. In contrast, other regions, especially the North and
non-coastal regions, show weaker or negative impacts, possibly due to a
reliance onmore traditional and energy-intensive industries. The South
has improved, while the North, despite progress in digital technologies,
still faces challenges in optimizing carbon efficiency.

6.2 Analysis of the heterogeneity of city
characteristics

This analysis examines the regional differences in the impact of the
digital economy on carbon emission efficiency across four distinct
groups: Small Cities, Large and Medium Cities, Non-Traditional
Industrial Bases, and Traditional Industrial Bases. The model uses a
two-way fixed effects approach to control for both time-invariant
regional characteristics and time-specific factors. As shown in
Table 10, the results highlight the regional heterogeneity in the
impact of the digital economy on carbon emission efficiency. Large
and medium cities benefit significantly from digital technologies due to
their advanced infrastructure and industrial concentration. Small cities
experience a slight negative impact due to slower adoption and limited
resources. Non-traditional industrial bases show some positive but non-
significant effects, while traditional industrial bases see no significant
improvements in carbon efficiency despite digital advancements.

7 Discussion and policy implications

7.1 Main findings

The digital economy is a significant catalyst for achieving high-
quality economic development and advancing the realisation of dual-
carbon goals. This paper utilises a two-way fixed effect model and a
mediation-regulation effect model to explore the dynamic evolution
process, mechanism and spatial heterogeneity of the impact of the
digital economy on carbon emission efficiency. The analysis is based on
balanced panel data from 282 Chinese cities from 2008 to 2020. The
following conclusions are drawn: Firstly, an analysis of extant
evidence suggests that the development of the digital economy
exerts a dual impact on carbon emission efficiency. It has been
demonstrated that the digital economy fosters episodic economic
growth. This, in turn, has been shown to precipitate large-scale
production expansion. Consequently, escalating energy

TABLE 9 Regional Heterogeneity2.

Serial number (1) (2) (3) (4)

Zone
classification

south north non-
coastal

coast

dig 0.065 −0.067 −0.029 0.209*

(1.15) (-1.15) (-0.77) (1.73)

Rd −0.028* −0.008 −0.005 −0.171**

(-1.79) (-1.55) (-0.91) (-2.54)

pgdp −0.192*** −0.071*** −0.097*** −0.171***

(-6.96) (-2.69) (-4.28) (-3.16)

Tbmp −0.003 −0.020*** −0.006 0.002

(-0.65) (-2.77) (-1.40) (0.12)

roa −0.055*** −0.039** −0.039*** −0.110***

(-3.59) (-2.34) (-3.18) (-3.55)

es −0.184*** −0.204*** −0.156*** −0.330***

(-4.81) (-3.96) (-5.00) (-3.16)

FDI −0.000 0.000 −0.001 0.027***

(-0.00) (0.06) (-0.33) (3.35)

fin_dev −0.013 0.001 −0.008 0.012

(-0.89) (0.09) (-0.79) (0.82)

_cons 2.896*** 1.788*** 1.809*** 3.356***

(8.62) (5.95) (6.88) (4.79)

point-to-point effect yes yes yes Yes

individual effect yes yes yes Yes

N 1860 960 2400 420

r2 0.768 0.758 0.748 0.796
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consumption and carbon emissions during the production process
can be expected. Concurrently, this phenomenon has been shown to
diminish the efficiency of carbon emissions. Conversely, the digital
economy has been demonstrated to enhance productivity through the
empowering effect of digital technology, which in turn has been
shown to improve the efficiency of carbon emissions. The impact of
digital economic development on carbon emission efficiency is non-
linear, exhibiting a ’U-shaped’ curve. It is evident that the conclusions
drawn remain valid even after the implementation of instrumental
variables for the endogeneity test and the utilisation of the EBMmodel
as opposed to the SBM model for the purpose of assessing the
robustness of the test for carbon emission efficiency. Secondly, a
thoroughgoing analysis of the mechanism clearly demonstrates that
the digital economic development of cities with high human capital
exerts a more marked effect on the improvement of urban carbon
emission efficiency. The digital economic development achieves this
through the upgrading and optimisation of the industrial structure
and the promotion of the level of marketisation. Thirdly, it is evident
that the development of the digital economy exerts a spatial spillover
effect on the efficiency of carbon emissions. The heterogeneity analysis

indicates that the impact of the digital economy on enhancing carbon
emission efficiency exhibits spatial heterogeneity, city-scale
heterogeneity, and differences in the nature of cities. In the eastern
and central regions of China, the influence of small cities and cities
that are not old industrial bases is particularly evident.

7.2 Policy implications

In response to the above conclusions, this paper puts forward the
following policy recommendations: First, integrate the changes in carbon
emissions into economic system analysis, deeply understand the
connotation and law of the impact of the digital economy on the
efficiency of carbon emissions, and actively develop the digital
economy to improve the digitalisation level of the city. Second,
accelerate the integration of the existing education system with the
development of the digital economy, enhance the interconnection
between digital knowledge and skills and different disciplines, and
vigorously cultivate professional, cross-border and composite digital
talents. Through the system of ‘learning by doing’ and ‘industry-

TABLE 10 Urban heterogeneity.

Serial number (1) (2) (3) (4)

City category Small Cities Large and Medium Cities Non-Traditional Industrial
Bases

Traditional Industrial
Bases

dig −0.076* 0.188** 0.053 0.000

(-1.79) (2.20) (0.86) (0.01)

Rd −0.011** −0.006 −0.007 0.003

(-1.97) (-0.40) (-1.00) (0.47)

pgdp −0.115*** −0.101** −0.102*** −0.121***

(-4.90) (-2.14) (-3.62) (-4.58)

Tbmp −0.008* −0.006 −0.005 −0.007

(-1.71) (-0.70) (-1.03) (-1.40)

roa −0.048*** −0.066*** −0.047*** −0.052***

(-3.51) (-3.22) (-2.80) (-3.83)

es −0.178*** −0.227*** −0.209*** −0.127***

(-4.85) (-4.53) (-4.45) (-4.09)

FDI 0.001 0.003 −0.000 0.003

(0.37) (0.77) (-0.14) (1.57)

fin_dev −0.009 0.005 −0.007 −0.016**

(-0.78) (0.38) (-0.49) (-2.08)

_cons 2.169*** 1.536*** 1.837*** 1.947***

(7.84) (2.90) (5.53) (6.54)

point-to-point effect yes yes yes yes

individual effect yes yes yes yes

N 2130 690 1650 1170

r2 0.758 0.812 0.741 0.835
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academia-research’, the digital literacy and skills of relevant workers will
be improved, so as to alleviate the current lack of digital talents in
traditional employment positions. Stimulate the vitality of talents to form
a virtuous cycle of digital technology basic research and development
capabilities, digital transformation and digital talent training. Thirdly, we
attach importance to the use of the digital economy to promote the
transformation and upgrading of traditional industries, create a new type
of intelligent industrial platform, promote the in-depth integration of
‘industry, academia and research’, and help enterprises in their digital
transformation to improve the operational efficiency of production,
management, operation, sales and other links. Improve the market
resource allocation system for the digital economy, form a market-
oriented and enterprise-oriented innovation model, improve the
efficiency of innovation transformation, and force backward low-end
industries to realise circular, efficient and intensive production methods.
Fourth, expand the radiation effect of digital economy development and
coordinate regional digital economy development. At present, China’s
digital economy development plateau is still clustered in developed
regions such as North, Shanghai and Guangzhou, while the level of
digital economy development in the surrounding areas is generally low.
Developed regions need to further consolidate the role of digital leaders,
form regional growth poles, and guide the spread of digital dividends to
neighbouring regions. Promote the free flow and optimal allocation of
capital, technology, talents and other factor resources across regions,
industries and sectors nationwide, give full play to the complementary
synergies of old and new technologies and those of neighbouring regions,
and give full play to the ‘demonstration effect’ and ‘trickle-down effect’ of
developed cities in the digital economy. The ‘demonstration effect’ and
‘trickle-down effect’will be brought into full play in developed cities of the
digital economy. At the same time, neighbouring regions need to identify
their own strengths, complement resources with those of developed
regions, and further achieve green development in digital sharing.

7.3 Research limitations and directions for
improvement

Firstly, with regard to the utilisation of data, this study employs
linear interpolation to address missing data, a process which may result
in systematic bias, such as an increased incidence of missing data in less
economically developed regions. Subsequent research could incorporate
firm-level energy consumption records with a view to improving the
accuracy of carbon accounting. Secondly, the study’s scope is limited to
the Chinese context. Consequently, the conclusions may not be
applicable to countries with significant variations in the development
stages of the digital economy. Furthermore, the extrapolation of the
conclusions is constrained, necessitating additional cross-country
comparative studies to compare the differences in the carbon
efficiency contribution of the digital economy under different policy
frameworks. Thirdly, with regard to the modelling, the SBM-DEA is
sensitive to the choice of input-output indicators and does not take into
account dynamic efficiency changes, such as the intertemporal impacts
of technological progress. This may result in an underestimation of the
spatial spillover effects of the digital economy on carbon efficiency or an
inaccurate assessment of regional heterogeneity. The enhanced
approach introduces the dynamic SBM model and Malmquist index
to analyse the intertemporal evolution of carbon efficiency. Fourthly, an
absence of heterogeneity analysis and limited city type segmentation

may obscure crucial mechanism differences and fail to accurately
identify high-potential emission reduction city types. Further
research could incorporate city functional classification.
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