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Nitrogen pollution in aquatic ecosystems, primarily from agricultural sources,
presents significant environmental challenges. At the land management decision
level, reducing nitrate leaching requires knowledge of nitrate loading over time
and location, the complexity of which is amplified by limited data availability,
especially in poorly gauged watersheds. This issue is particularly pronounced in
cold and humid regions where water quality data are often collected during the
growing season only. Large data gaps result in systematic errors when estimating
nitrogen load based on traditional regression methods. In this study, we explore
the feasibility of using process-based hydrologic model to estimate nitrate loads
from sparse temporal water quality data in a coastal agricultural watershed in
Atlantic Canada and compared its performance with three regression methods.
We found that the absence of the available 16% non-growing season data during
the 10-year study period can lead to significant biases (as high as 21%) in load
estimation by regression methods. In contrast, nitrate load estimates obtained
with the Soil and Water Assessment Tool (SWAT) were less sensitive to systematic
data gaps. The results suggest that process-based models like SWAT can be a
viable alternative for nitrate load estimation when limited data is available. As agri-
environmental water quality issues become more pressing, it is crucial to use
appropriate methods based on data quality and availability to avoid misleading
results.
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1 Introduction

Nitrogen (N) is one of the major pollutants in aquatic
ecosystems. Agroecosystems receive approximately 75% of the
reactive N generated by human activities to support agricultural
productivity (Galloway et al., 2003). A significant proportion of this
N (mainly in the form of nitrate) is lost to the environment,
adversely affecting the health of aquatic ecosystems due to the
limited utilization rate of N fertilizer by crops (Galloway et al.,
2008; Odgaard et al., 2019). Reducing nitrate load in aquatic
ecosystems has become a critical environmental challenge in
many regions, especially those with intensive agricultural
production (Milovanovic, 2007; Ongley et al., 2010; Hou
et al., 2019).

Decision making at the land management level to reduce
nitrogen losses requires detailed knowledge of nitrate loading
over time and location. This accuracy is crucial for several
reasons: (i) understanding the water quality of downstream
environments, (ii) calibrating and validating watershed models,
(ii) guiding policy-making for cost-effective pollution control
programs, (iii) evaluating the effectiveness of these programs, (iv)
assessing long-term N load trends, and (v) estimating riverine fluxes
and identifying specific upstream sources (Stenback et al., 2011; Lee
et al., 2016; Nguyen et al., 2017). One approach for quantifying
nitrate load involves frequent water sampling or taking
representative samples that capture the seasonality or major
hydrological events at multiple locations. However, nitrate
concentrations in such samples are known to be variable and
dependent on the flow regime. In addition, the selection of
representative samples can be subjective and sampling is often
constrained by accessibility and safety concerns, potentially
introducing significant uncertainties (Fu et al., 2017).

Nitrate load at the watershed scale results from complex surface
and sub-surface biophysiochemical transport processes and can be
estimated by integrating measured concentration and discharge data
(Zamyadi et al., 2007). The dynamic nature of stream discharge adds
to the challenge of accurately quantifying temporal nitrate loads.
However, the availability of water quality and stream discharge data
is a significant concern, as most watersheds worldwide are poorly
gauged or ungauged (Hrachowitz et al., 2013). Estimating nitrate
load is subject to various sources of error such as different sampling
frequencies and estimation methods.

Significant efforts have been made to explore the optimal
sampling frequencies for load estimation (Robertson and
Roerish, 1999; Toor et al., 2008; Jiang et al., 2019; Zhang and
Hirsch, 2019). It is widely agreed that high-frequency data
significantly reduces the uncertainty in estimating constituent
loads (Pellerin et al., 2014; Rode et al., 2016). For example,
Birgand et al. (2010) suggested that the uncertainty of
estimating nitrate flux using averaging or interpolation methods
increases with longer sampling intervals, and considerable
uncertainty arises when continuous flow data is not used.
Zhang and Hirsch (2019) applied a modified version of the
weighted regression method, WRTDS_K, to estimate
constituent flux under five different sampling regimes,
concluding that WRTDS_K performance improves with more
available samples. Ideally, continuous measurement of discharge
and constituent concentration data is required for accurate flux

estimates (Verma et al., 2012). However, continuous measurement
is rarely available due to the complexity of water quality
measurement, the high cost of monitoring equipment, and the
challenges in maintaining continuous monitoring equipment. The
deployment and maintenance of continuous monitoring
infrastructure/equipment requires ongoing funding and human
resources and can be particularly challenging in remote areas or
regions with extreme weather. Although daily or more frequent
discharge measurements on streams and rivers are often available
from environmental protection agencies or specific projects
(Ullrich and Volk, 2010; Yang et al., 2019), commonly used
sampling frequencies are monthly, bimonthly, event-based, or
even less frequent (Zamyadi et al., 2007). Moatar and Meybeck
(2005) pointed out that monthly sampling frequency has been the
primary strategy of 80% of water quality surveys conducted in
France since 1971. In an agricultural basin located in upstream of
the Huaihe River, one of China’s largest rivers, total N
concentration and discharge data were collected monthly and
bimonthly from 2006 to 2011 by the Bureau of Environmental
Protection of Zhumadian City (Yang et al., 2016). In Thailand,
water quality data was captured three to four times annually by
Pollution Control of Thailand (Yadav et al., 2019). These studies
indicated that discrete sampling regimes are still widely used.
Globally, an accurate estimate of nitrate flux remains
challenging due to limited data availability. Discrete sampling
does not fully capture the concentration-discharge range,
particularly during extreme wet or dry periods, when the
concentration-discharge relationship varies significantly
(Pellerin et al., 2014). Hirsch (2014) suggested that using a
single method across a wide range of cases can result in a
mixture of unbiased and severely biased results. Using the
appropriate method, therefore, becomes a critical step in
accurate load estimation.

Numerous approaches have been developed and applied for
constituent load estimation (Verhoff et al., 1980; Ferguson, 1986;
Preston et al., 1989; Mattikalli and Richards, 1996; Arnold et al.,
1998; Runkel et al., 2004; Hirsch et al., 2010; Li et al., 2020). These
approaches can be broadly classified into statistical methods,
process-based models, and remote sensing/GIS methods.
Statistical approaches explore certain statistical relationships
between flow and constituent concentration and can be further
categorized (Guo et al., 2002; Moatar and Meybeck, 2005; Verma
et al., 2012) into averaging methods and interpolation/extrapolation
methods, ratio estimators, regression-based methods, and data
mining methods. Averaging methods calculate flux using mean
concentration and mean flow. This approach is simple and
straightforward but the calculated results can be substantially
biased when insufficient data are used (Zamyadi et al., 2007).
Interpolation/extrapolation approaches assumes that
instantaneous concentration or flow data are representative of
much longer periods (Moatar and Meybeck, 2005). Linear
interpolation (LI) is a simple and straightforward approach that
assumes the change of concentration between two adjacent data
points follows a linear pattern. However, the accuracy of LI can be
highly sensitive to the number and timing of samples. Ratio
estimators use flow data as the independent variable and load as
the dependent variable (Guo et al., 2002). Regression-based
techniques utilize expected patterns of covariance between
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concentrations and flow and/or time (Lee et al., 2016), while data
mining methods are relatively user-friendly, given that they are not
constrained by data assumptions or the number of parameters used
(Li et al., 2020). LOADEST (Load Estimator) (Cohn et al., 1992;
Runkel et al., 2004) and the WRTDS (Hirsch et al., 2010) are widely
used regression methods for constituent load estimation. LOADEST
applies multiple regression techniques that accounts for changes in
streamflow, season, and time (Cohn et al., 1992). WRTDS uses
weighted regressions that give more relevance to closer and more
relevant data points, making it better at adapting to changing
environmental conditions (Hirsch et al., 2010). Both methods are
easy to apply and can handle larger datasets and incorporate effects
like seasonality and flow conditions, which are critical for accurate
load estimation. However, their accuracy is also dependent on high-
frequency data. Process-based models incorporate the underlying
biophysicochemical processes (e.g., plant growth, leaching, runoff,
nitrification/denitrification, etc.), using mathematical equations to
represent the movement of water and the transport and
transformation of chemicals at the field or watershed scale (Brilli
et al., 2017). A relatively complete suite of biogeochemical processes
is generally embedded in these models. Additionally, many of these
models incorporate watershed characteristics such as soil,
topography, climate, land cover/land use, and/or management
operations into models (Ator and Garcia, 2016; Molina-Navarro
et al., 2018; Sorando et al., 2019; Liang et al., 2020; Cordeiro et al.,
2022). The Soil and Water Assessment Tool (SWAT) is one of the
most widely applied process-based watershed models for water
quality and water quality estimation (Gassman et al., 2014; Fu
et al., 2019) due to its relatively complete representation of
biogeochemical processes of watershed (Neitsch et al., 2011;
Gassman et al., 2014). While the model offers a detailed
simulation of watershed processes, SWAT requires extensive data
input and high computational resources, especially when applied
over large watersheds.

Many studies have been conducted to evaluate commonly-used
process-based models (Borah and Bera, 2003; Brilli et al., 2017; Fu
et al., 2019), or the relative performance of different statistical
methods in predicting constituent load (Preston et al., 1989; Cohn,
1995; Guo et al., 2002; Moatar and Meybeck, 2005; Lee et al., 2016;
Lee et al., 2019; Li et al., 2020; Saha et al., 2024). No method
appears to offer a consistent advantage over others under all
circumstances, especially when dealing with sparsely collected
data. Markus et al. (2014) pointed out that it is difficult to
estimate load with regression methods for extreme dry or wet
periods given that these periods typically are not well represented
by historical records. Using linear interpolation to calculate nitrate
loads from discrete samples can be particularly sensitive to the
timing and number of discrete samples (Aulenbach and
Hooper, 2006).

In this study, we applied the physically-based SWAT model and
three statistical models—linear interpolation (LI), LOADEST, and
WRTDS_K—to estimate nitrate loads in a typical agricultural region
in Prince Edward Island (PEI), Canada. The primary goal is to
examine the variability of different methods in nitrate load
estimation when only sparse measurements are available and
identify the most suitable load estimation method, which has
broad relevance to nitrate load estimation in regions with a
similar setting.

2 Materials and methods

2.1 Study area and data collection

In cold and humid regions such as Atlantic Canada, water
samples are primarily collected during the growing season when
the water is not frozen, and sites are more accessible. According to
the public data from the Department of Environment of Prince
Edward Island (PEI) (https://www.princeedwardisland.ca/en/
service/view-surface-water-quality), 11 stations across the
province consistently recorded water quality data from 2011 to
2020. On average, each station collected 7.3 nitrate concentration
samples annually, with 6.1 (83.5%) of these samples taken during the
growing season (May to October). Estimating nitrate load during the
cold/wet seasons using data from the warm/dry seasons poses
significant challenges, as historical studies indicate strong
seasonality in stream discharge and nitrate loss in this region
(Bugden et al., 2014; Liang et al., 2019a; Oliver et al., 2024).
Previous research has shown that nitrate loss from croplands
mainly occurs during the non-growing season (late fall, winter,
and early spring) in PEI, when evapotranspiration is low and crop
uptake is reduced, resulting in more water and nitrogen being lost to
groundwater and surface water bodies (Bugden et al., 2014; Liang
et al., 2019a). Therefore, identifying an appropriate method for
estimating nitrogen load in regions such as PEI becomes
critically important.

This study was conducted in the Dunk River Watershed (DRW)
in the Atlantic Canada province Prince Edward Island (Figure 1).
The drainage area of the watershed is approximately 143 km2, 80%
of which is under agricultural production with a long history of
fertilizer application (Figure 1). Agricultural land use is dominated
by potatoes in rotation with forages and grains. The climate in this
region is characterized as humid with a cool to mild temperature
regime (Köppen-Geiger Dfb, data from WorldClim.org). The
annual (1999–2020) precipitation ranged from 951 mm (2001) to
1,488 mm (2009) with an average of 1,281 mm, approximately 24%
of which was in the form of snow in the dormant season (Dec - Mar)
based on data from the New Glasgow weather station (46.41N, 63.
35W). Discharge and water quality data have been monitored by
Environment and Climate Change Canada (ECCC) and the
provincial Department of Environment through the DUNK
RIVER AT WALL ROAD station (Station ID: 01CB002 and SSH
51; location: 46.35N, 63.63W) near the outlet of the watershed.
Long-term daily streamflow data has been monitored, and water
samples have been collected for water quality analysis at monthly or
biweekly intervals mainly in the non-frozen season, which is
generally between April and November. The analysis was carried
out using data from the period of 2011–2020, during which about
6~10 water samples were collected for water chemistry analysis
annually. Such a sampling strategy is a common approach in Canada
(Quilbé et al., 2006) due to the challenge of sampling in the long and
cold winter season. However, as illustrated in Figure 1, the discharge
of Dunk River and other rivers in the region is variable, especially
during the winter months because of the combined effects of low
evapotranspiration, snow precipitation, and freeze-thaw events. This
lack of water quality data and the large variation in discharge in the
non-growing season make the estimation of nitrate load in the
region challenging.

Frontiers in Environmental Science frontiersin.org03

Liang et al. 10.3389/fenvs.2025.1557004

https://www.princeedwardisland.ca/en/service/view-surface-water-quality
https://www.princeedwardisland.ca/en/service/view-surface-water-quality
http://WorldClim.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1557004


2.2 Nitrate load estimation

The process-based watershed model SWAT2012 (Arnold et al.,
1998), and three statistical methods including linear interpolation
(LI), LOADEST (Runkel et al., 2004) and WRTDS_K (Hirsch et al.,
2010; Zhang and Hirsch, 2019) were used to estimate the nitrate load
of the Dunk River Watershed between 2011 and 2020.

2.2.1 Soil and water assessment tool
The SWATmodel is a widely recognized watershed hydrological

model developed to predict the impact of climate, land use, and
management practices on water, sediment, and chemical yields in
complex watersheds with varying soils, land use, landscape, and
management conditions over long periods (Arnold et al., 1998;
Gassman et al., 2014; Fu et al., 2019). Being a physically basedmodel,
SWAT requires detailed spatial data, including the Digital Elevation
Model (DEM), soil properties, land use, and weather as model input.
By dividing a watershed into multiple sub-basins and further into
Hydrologic Response Units (HRUs), SWAT simulates the water
cycle and associated nutrient flows. Due to its capacity and
flexibility, SWAT has been broadly used for (1) evaluation of
water resources or/and water quality status (Awotwi et al., 2019;
Bauwe et al., 2019); (2) contaminant source analysis (Risal and

Parajuli, 2019; Liang et al., 2020); (3) scenario analysis such as land
use, management practices, climate variability, etc. (Yang and Best,
2015; Wagena et al., 2018; Chen et al., 2019; Wang et al., 2020); (4)
evaluation of existing or inform future management practices
(Moriasi et al., 2013; El-Khoury et al., 2015; Qi et al., 2018; Liang
et al., 2019b; Liang et al., 2023); (5) and tracing drivers of water
pollution (Li et al., 2009; Ouyang et al., 2018).

The SWAT model was setup using the ArcSWAT 2012 interface
under ArcGIS 10.5.1. with detailed annual land use from 2011 to
2020 and calibrated and validated against daily streamflow,
baseflow, and nitrate load for the study period using the SUFI-2
algorithm within the SWAT Calibration and Uncertainty Procedure
(SWAT-CUP 2019) (Abbaspour et al., 2015). Soil data was derived
from the National Soil DataBase (NSDB) of Canada. Annual land
use data was obtained from the Annual Crop Inventory maps
published by Agriculture and Agri-Food Canada from 2011 to
2020 (available at http://www.agr.gc.ca/atlas/aci/). Weather data
including precipitation, maximum and minimum daily
temperature, wind speed, solar radiation, and relative humidity
were obtained from the New Glasgow station (46.41, −63.35) of
ECCC. Gupta et al. (1999) proposed that logarithmic transformation
enhances the sensitivity to changes in low-flow conditions by
amplifying low flows and dampening high flows. Therefore, log-

FIGURE 1
Discharge and nitrate concentration of the Dunk River Watershed (A) in central west Prince Edward Island (B), Canada. Daily discharge data were
available (C), but water quality data were missing during the late fall–winter–early spring seasons (i.e., in 2015/2016) (D).
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transformed discharge and baseflow data were used for calibration.
The model was calibrated for daily discharge and nitrate from
2011 to 2016 and validated from 2017 to 2020.

The goodness-of-fit of the SWAT simulations on streamflow
and nitrate load was evaluated using the Nash-Sutcliffe Efficiency
(NSE), percent bias (PBIAS) and the coefficient of determination
(R2). NSE is a widely used statistical parameter for assessing the
goodness of fit of hydrologic models (Moriasi et al., 2007). The NSE
ranges from -∞ to 1, where 1 indicates a perfect match between
simulation and observation. PBIAS measures the average tendency
of the simulated values to be larger or smaller than observations.
Low magnitude PBIAS indicate better simulation with zero as the
optimum value. Positive PBIAS values indicate model
overestimation and negative PBIAS values indicate model
underestimation (Gupta et al., 1999). The R2 provides a measure
of how well the observed data is explained by the model, with R2

ranging from 0 to 1.

2.2.2 Linear interpolation
Linear interpolation uses concentration data to estimate the

missing data, and it assumes a linear relationship between two
adjacent concentration data points (Equation 1). Among flux
estimation methods, the LI method is one of the simplest
methods and has been broadly used to estimate constituent
concentration/load in many studies, and there have been very
few comparable evaluations of interpolation methods (Hirsch,
2014). However, the uncertainty of this method is that it ignores
the influence of discharge and the fact that two adjacent data points
may have been collected under vastly different hydrologic
conditions.

Cs � Ci + Ds −Di

Dj −Di
* Cj − Ci( ) (1)

where Cs is the estimated nitrate concentration of a specific data
point at day s (Ds), which is between day i (Di) and day j (Di).Ci and
Cj are the observed concentration data of two adjacent data points at
day i (Di) and day j (Di), respectively.

2.2.3 Load estimator
The LOADEST is a regression-based model specifically designed

for estimating constituent loads in rivers and streams by the US
Geological Survey (USGS) (Cohn et al., 1992; Runkel et al., 2004).
LOADEST has various levels of complexity depending on the use of
fewer, or more, explanatory variables (Runkel et al., 2004). A
complex form of LOADEST, the 7-parameter model was used in
this study as it has been shown to perform well in relatively large
watersheds (Cohn et al., 1992). The model uses multiple linear
regression to fit the variables, including streamflow, streamflow
squared, season (first-order Fourier series represented by sine
and cosine terms), time, and time squared (Equation 2).

ln Ct( ) � α0 + α1 lnQ + α2 lnQ( )2 + α3 sin 2πTt( ) + α4 cos 2πTt( )
+ α5Tt + α6Tt

2 + ε

(2)
where ln(Ct) is the natural logarithm of constituent concentration
for period t; lnQ is the natural logarithm of mean daily discharge; Tt

is adjusted decimal time in years, which equals decimal time minus

center of decimal time; ε is a model residual; and αk are model
parameters to be estimated.

The LOADESTmodel requires nitrate concentration and stream
discharge data as input to predict load. There are three statistical
methods for estimating LOADEST regression model coefficients
during calibration: Adjusted Maximum Likelihood Estimation
(AMLE), Maximum Likelihood Estimation (MLE), and Least
Absolute Deviation (LAD). The AMLE and MLE methods are
used when the calibration model errors or residuals follow a
normal distribution, while LAD is typically used when the errors
are randomly distributed. LOADEST has been widely applied in the
U.S. and beyond to estimate daily constituent load for a variety of
water quality parameters under different sample sizes and sampling
strategies (Park and Engel, 2015; Chen et al., 2022; Saha et al., 2024).

2.2.4 Weighted regression on time, discharge,
and season

Similar to LOADEST, the WRTDS model was also developed by
the USGS and is one of the commonly used regression methods for
estimating constituent load (Hirsch et al., 2010). The WRTDS is an
advanced regression-based approach, incorporating time, discharge,
and season to predict constituent concentrations (Equation 3).

ln Ct( ) � β0 + β1t + β2 lnQ + β3 sin 2πt( ) + β4 cos 2πt( ) + ε (3)
where ln(Ct) is the natural logarithm of constituent concentration
for period t; lnQ is the natural logarithm of mean daily discharge; t is
the time in years, ε is a model residual; and βk are model parameters
to be estimated.

WRTDS uses weighted regression to estimate the coefficients of
Equation 3. Unlike LOADEST, the equation for WRTDS is
estimated many times for a given dataset allowing the regression
coefficients to vary across the time and discharge domain. The
weight of each observation is based on the relevance of that
observation to the estimation point. The relevance of each
observation is defined by distances between the observation point
and estimation point with respect to time, discharge, and season.
And the weighted distance is measured through three dimensions,
which are the time distance, seasonal distance and discharge
distance (Hirsch et al., 2010). In this study, we applied the
modified version of WRTDS, known as the WRTDS_Kalman
Filter (WRTDS_K), which has shown improved performance
over WRTDS due to the incorporation of autocorrelation
information in model residuals on sampled days (Lee et al., 2019;
Zhang and Hirsch, 2019). Hirsch et al. (2010) suggested using at
least 100 observations with nonzero weight. To meet this data
requirement, the nitrate and discharge datasets from 1999 to
2020 were used for nitrate load estimation by WRTDS_K.

2.3 Statistical analysis

Statistical analysis was carried out by using R 4.2.2. The
WRTDS_K was implemented through an R package EGRET
(Exploration and Graphics for RivEr Trends); a detailed
description of the package is provided in Hirsch and De Cicco
(2015). LOADEST was executed using the FORTRAN program
available on the USGS website: https://water.usgs.gov/software/
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loadest/download/. Linear interpolation was performed using the
approx function in R. The mean, median, and standard deviation of
daily nitrate load estimated by different methods was analyzed.
Analysis of Variation (ANOVA) and correlation analysis was
performed to explore the relationship between daily nitrate load
estimated by different models, with p < 0.05 considered to be
statistically significant.

3 Results

3.1 Model evaluation

We calibrated the SWAT model using measurements of
streamflow, baseflow, and nitrate load from 2011 to 2017, and

subsequently validated the model with data from 2018 to 2020.
Moriasi et al. (2007) recommended that model performance can be
considered satisfactory if R2 > 0.50, PBIAS ≤ ±25%, and NS > 0.
50 for monthly simulation. The model’s performance in predicting
flow and nitrate load met the recommended standard. During the
calibration phase, the NSE, PBIAS, and R2 values were 0.6, 17.4%,
and 0.65 for streamflow, respectively. Comparable results were seen
during the validation phase, with NSE, PBIAS, and R2 values of 0.59,
11%, and 0.61. The baseflow predictions during calibration, the NSE,
PBIAS, and R2 values were 0.43, 8.6%, and 0.6. During the validation
phase, with NSE, PBIAS, and R2 values of 0.62, −5.6%, and 0.68,
respectively. For nitrate load predictions, the calibration period saw
NSE, PBIAS, and R2 values of 0.71, 6.5%, and 0.70. During the
validation period, similar values were recorded: NSE of 0.67, PBIAS
of −5.5%, and R2 of 0.68.

FIGURE 2
Daily (A) and accumulated nitrate load (B) of the Dunk River watershed estimated by LI (linear interpolation), LOADEST, WRTDS_K, and SWAT from
2011 to 2020.
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3.2 Estimated daily nitrate load

Large differences in nitrate load estimation were found between
the four methods during the 10-year study period (Figure 2). The
variations in nitrate load were correlated with changes in discharge,
with high flow often corresponding to high nitrate flux, and vice versa.
Although nitrate concentration decreased due to the dilution effect of
high flow, total nitrate exported from the watershed still increased as a
result of the high flow. Overall, high flowwas primarily observed from
late autumn to spring. This finding is consistent with other studies
conducted in similar climates (Devito et al., 1996; Devito et al., 2005;
Tan and Zhang, 2011; Qi et al., 2016). Peak flows are mostly observed
during late autumn to spring in response to diminished
evapotranspiration, rainfall, and snowmelt. The variation in timing
and magnitude of precipitation, evapotranspiration, and runoff are
therefore important drivers of the seasonal variation in streamflow.
Summer precipitation (June to August) accounted for only 20.4% of
annual precipitation. Evapotranspiration tends to be in excess of
precipitation only in the summer under cold and humid climates
(Devito et al., 1996).

During the growing/low flow season, nitrate load estimates from the
four methods provided reasonable approximations, compared with
observed loads, which were calculated from the measured nitrate
concentration and discharge data on specific days. The range of
daily nitrate load for SWAT and LOADEST was 17–3,149 and
148–2,083 kg day−1, respectively, compared with 163–15,383 and
178–14,702 kg day−1 for LI and WRTDS_K. The major differences
among the four methods occurred primarily during high flow seasons
when no observed nitrate concentration data were available. SWAT and
LOADEST demonstrated relatively similar patterns in the range of
estimated load and were substantially lower and narrower than those of
LI andWRTDS_K. The average estimated daily nitrate loads during the
10 years are 703 ± 443, 778 ± 424, 806 ± 910, and 829 ± 892 kg day−1 for
SWAT, LOADEST, LI, and WRTDS_K, respectively (Table 1). The
lowest loads typically occurred in August or September, while the
highest loads usually occurred in March or April. As also indicated
in Figure 2, the accumulated nitrate load estimated by WRTDS_K and
SWAT are consistently the highest and the lowest among the four
methods. The discrepancies between different methods increases over
time especially during high flow periods. For the entire 10-year period,
accumulated nitrate flux estimated by LOADEST, LI, and WRTDS_K
was 10.7%, 14.7%, and 18.0% higher than the SWAT model.

3.3 Nitrate load in the growing and non-
growing season

Nitrate loads varied significantly between growing and non-
growing season months across all methods (Figure 3). The daily

nitrate load peaks in April, were 1,293, 1,024, 1,697, and 1,683 kg
day⁻1 for LOADEST, SWAT, LI, and WRTDS_K, respectively. By
contrast, during August and September, daily nitrate loads decrease
to below 400 kg day⁻1 across all methods. Generally, the estimates
from the four methods are similar during the growing season, when
measured nitrate data are available. However, there are substantial
differences among models for the non-growing season months
(Figures 3, 4).

Results of ANOVA test indicate that daily nitrate load estimated
by WRTDS_K and LI are significantly higher than that by SWAT
(p < 0.01), while LI and LOADEST do not show a significant
difference. Notably, the largest discrepancies between the
regression methods and SWAT were found in 2014. Nitrate flux
estimated by LI and WRTDS_K was higher than that estimated by
SWAT by as much as 65.6% and 62.3%, respectively. Even though
the difference of the average daily nitrate load for 2010–2020 was not
obvious between SWAT and LOADEST, in some years the load
estimated by LOADEST can be substantially higher than SWAT.

Mean growing season nitrate loads were lower and very similar,
with values of 514 ± 288, 557 ± 293, 538 ± 365, and 537 ± 341 kg
day−1 for SWAT, WRTDS_K, LI, and LOADEST, respectively
(Figure 4; Table 2). In contrast, there were major differences in
load estimation during the non-growing season. Mean nitrate loads
in the non-growing season estimated by SWAT, LOADEST, LI, and
WRTDS_K were 894 ± 488, 1,002 ± 419, 1,077 ± 1,178, and 1,126 ±
1,146 kg day−1, respectively (Table 2).

Since nitrate loads were estimated primarily based on growing
season data, the correlations between nitrate load estimates by
different methods are stronger during the growing season than in
the non-growing season. At a seasonal level, correlation analysis
reveals that LOADEST, LI, and WRTDS_K exhibit a very strong
correlation in both the growing and non-growing seasons (Figure 5),
with correlation indices above 0.9. The strongest correlation is
between LI and WRTDS_K, with indices exceeding 0.97 in both
seasons. Although the nitrate load estimated by SWAT showed a
weaker correlation with the regression methods, its strongest
correlation was with LOADEST, with correlation indices of
0.77 in the growing season and 0.63 in the non-growing season.

3.4 Nitrate load estimation without non-
growing season data

Over the 10-year period, there were 76 water quality data points,
with 64 (or 84%) of them falling within the growing season. To
assess the variability of nitrate load estimations by these four
methods when non-growing season data are completely missing,
we removed the 12 non-growing season data points. The removal of
non-growing season data conversely led to significant variation in
estimated nitrate load for the non-growing season by the regression
methods. For instance, the average daily non-growing season nitrate
load estimated by LOADEST decreased by 21%, from 1,002 kg
day−1–831 kg day−1. Similarly, the average daily non-growing season
nitrate load estimated by WRTDS_K decreased by 18%, from
1,126 kg day−1 –957 kg day−1. A slight decrease was observed for
LI, with the average daily nitrate load decreasing by 1.8%, from
1,076 kg day−1–1,057 kg day−1. The removal of non-growing season
data had little to no impact on the estimation of growing season

TABLE 1 Daily nitrate load (kg/day) estimated by LOADEST, SWAT, LI, and
WRTDS_K between 2011 and 2020.

Metrics LOADEST SWAT LI WRTDS_K

Median 684 624 559 605

Mean 778 ± 424 703 ± 443 806 ± 910 829 ± 892

Range 148–2,083 17–3,149 163–15,383 178–14,702
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FIGURE 3
Boxplot of mean daily nitrate load by month, estimated for the study period by LOADEST, SWAT, LI, and WRTDS_K. The horizontal line inside boxes
represents the median value of nitrate load. Red dots indicate the mean nitrate load estimated by each model.

FIGURE 4
Non-growing season (A) and growing season (B) nitrate loads estimated by different methods. (C, D) show the in-season variation of daily nitrate
load estimated by different methods.
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nitrate load by regression methods. With LOADEST and WRTDS_
K, the average daily nitrate load decreased by 6.5% and 0.4%,
respectively. However, the removal of non-growing season data
for calibration had minimal impact on SWAT, for both the
growing and non-growing seasons.

4 Discussion

Discrete sampling has been a common strategy worldwide,
particularly in cold and humid regions such as Atlantic Canada.
In these areas, water samples are primarily collected during the
warm seasons when the water is not frozen, and sites are more
accessible. The highly dynamic nature and strong seasonal trends of
water flow make estimating nitrate loads using sparsely measured
water quality data a challenging task. Missing non-growing season
data can lead to severe biases in load estimation by regression
methods. These methods rely on existing data to establish the
relationship between flow and constituent concentration and thus
estimate load. Conversely, the process-based model SWAT, which is
calibrated for flow and nitrogen, simulates the water and nitrogen
cycling processes, and thus, can effectively represent the dilution
effect of increased stream flow on nitrate mass in the wet seasons.

Nitrate concentrations were higher during the growing season
and decreased during the non-growing season. Low nitrate
concentrations often occur at times of high flow due to the
dilution effect (Sith et al., 2019; Stutter et al., 2008). This

observation is also consistent with the historical nitrate data from
several watersheds in PEI, where low nitrate concentrations were
frequently observed during wet seasons (Jiang et al., 2015).
Regression methods generally overestimate nitrate loads during
high-flow periods (Duan et al., 2014), which aligns with the
results of our current study. This overestimation likely occurs
because regression methods use concentration data from low
flow periods to interpolate concentrations during high flow
periods and cannot effectively account for the dilution effect,
leading to an overestimation of both concentration and load.
This bias can be amplified during years with significantly higher
wet-season precipitation, resulting in high stream discharge during
late winter or early spring when the snow melts. Out of the total
1,420 mm of precipitation, 267 mm was attributed to snowfall.
Consequently, the nitrate load estimated by LOADEST was 28.2%
higher than that estimated by SWAT.

The USGS estimated nitrate-N exported from the Mississippi
River during 2004–2006 and found that LOADEST and a composite
method estimated loads that were 9% and 16% higher than loads
calculated using continuous in situ data (every 2–3 h) (Duan et al.,
2014). Additionally, nitrate concentrations below the root zone are
often highly variable during warmer months due to fertilizer
application. As previously discussed, nitrate concentrations in
rivers during the wet season can be significantly lower compared
to the growing season. Accordingly, in our study, regression
methods using concentration data from dry seasons to estimate
concentrations during wet seasons, resulted in overestimation of

TABLE 2 Growing season (GS) and non-growing season (NGS) daily nitrate load (kg/day) predicted by LOADEST, SWAT, LI, andWRTDS_K between 2011 and
2020.

Period Metrics LOADEST SWAT LI WRTDS_K

GS Median 472 452 451 443

Mean 557 ± 293 514 ± 288 538 ± 365 537 ± 341

Range 148–1,912 99–2,048 163–5,838 178–4,183

NGS Median 951 850 770 833

Mean 1,002 ± 419 894 ± 488 1,077 ± 1,178 1,126 ± 1,146

Range 266–2,084 18–3,149 231–15,383 242–14,702

FIGURE 5
Correlation heatmap of nitrate load estimated by different methods.
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nitrate loads for wet seasons. Markus et al. (2014) pointed out that
modeling loads with regression methods for extreme dry or wet
periods is challenging because these periods are typically
underrepresented in historical records. It is generally believed
that LI has significant uncertainties because it ignores the
influence of discharge and the possibility that two adjacent data
points may have been collected under vastly different hydrologic
conditions (Niedzielski and Halicki, 2023). Using LI to calculate
nitrate loads from discrete samples can be particularly sensitive to
the timing and number of discrete samples (Aulenbach and Hooper,
2006). Although LOADEST and WRTDS_K models account for
seasonality and time, these methods still subject to substantial
uncertainty in the non-growing season when there is no
measured concentration data available. For example, the strong
correlations between LI, LOADEST, and WRTDS_K in load
estimations during the non-growing season likely suggest that the
LOADEST and WRTDS_K might have also a problem to reliably
establish discharge-concentration relationship during this period.

The SWAT model offers a detailed representation of N cycles
and incorporates critical watershed input information such as land
use, climate, soil properties, and topography data to simulate the
hydrologic, chemical, or sediment cycles. In addition, N cycling,
being one of the most common SWAT applications, is well
represented in terms of processes in the model (Fu et al., 2019).
The calibration of daily streamflow, baseflow, and nitrate load
together with the detailed watershed information input, makes
SWAT likely to provide more reliable nitrate load estimates
under conditions of sparse water quality data, compared to other
regression methods. However, the model also requires an extensive
amount of data for model input and evaluation compared to
regression methods, which require only time, discharge, and
season of the collected samples.

Surface runoff and baseflow are the two primary processes
driving nitrogen loads in PEI. Baseflow/groundwater flow has
been reported as a major process that drives nitrogen to rivers,
particularly during dry seasons, while runoff plays a more significant
role during wet seasons (Jiang et al., 2004; Liang et al., 2020). For
example, Liang et al. (2020) reported that in the Wilmot River
watershed, which is adjacent to the Dunk River watershed,
groundwater contributed 82.3%–99.0% nitrate load under
different land uses during the growing season, whereas surface
runoff contributed about 11.3%–43.3% of the total nitrate load
during the non-growing season. Nitrate loads during the non-
growing season were enhanced by runoff resulting from
snowmelt events. The calibration of daily streamflow, baseflow,
and nitrate load ensures a reasonable estimation of nitrogen
transport through groundwater and runoff during both the
growing and non-growing seasons. This likely explains the
relatively small variation in SWAT’s estimation of nitrogen load
compared to regression models after the removal of 20% of the non-
growing season data. The large bias of nitrate load estimation by
regression models, especially during the non-growing season, results
from a lack of fit between concentration and discharge data, coupled
with substantial seasonal variability in their relationship. However,
numerous studies have demonstrated the advantages of regression
models such as LOADEST and WRTDS, especially when a
reasonable amount of representative water quality data is
available. They are favored for their ease of application and the

relatively small effort required for model setup (Chanat et al., 2016;
Lee et al., 2016). Our study suggests that caution is needed when
applying regression models for constituent load estimation when
there is insufficient water quality data to build a representative
discharge-constituent concentration relationship. Process-based
models such as SWAT could be a better alternative under such
circumstances. While there is no universally agreed-upon method
for calculating nitrate flux, the use of a more robust tool such as
SWAT can help limit these errors. Without leveraging information
from SWAT, regression methods may fail to provide reasonable
estimates, particularly when the monitoring data are too limited to
establish a reliable concentration-discharge relationship., This issue
is especially prevalent in regions with high and variable precipitation
weather patterns, such as Atlantic Canada.

5 Conclusion

Nitrate load estimation has been a challenge, particularly in
cold and humid regions like Atlantic Canada where data
availability is limited and seasonal variations in nitrate loss are
pronounced. Our study examined different methods for estimating
nitrate loads in the Dunk River watershed in PEI, aiming to identify
the most suitable approach for load estimation when the available
water quality data is predominantly (>84%) from the growing
season. Our study highlights the complexities of nitrate load
estimation with limited data availability and confirmed that the
absence of the 16% available non-growing season data during the
10-year study period can lead to significant biases in load
estimation by regression methods, with biases potentially
reaching as high as 21%, while nitrate load estimates obtained
with SWAT were found to be less sensitive to systematic data gaps.
In such cases, process-based models like SWAT may offer more
accurate estimates by incorporating detailed mathematical
representations of flow and nitrogen cycles and watershed
information calibrated for flow and nitrogen cycles under
conditions of limited data availability. Additionally, process-
based models also hold the benefits of scenario analysis (e.g.,
management/land use etc.), source identification, tracing of the
drivers of water pollutants, etc. Policymakers and researchers
should consider employing hydrological models for nitrate load
estimation in situations with limited water quality measurement,
despite their requirement for more expertise. However, the choice
of estimation method should be dynamic and case-specific,
considering the unique characteristics of each watershed and the
available data. With agri-environmental water quality issues
become increasingly pressing, it is crucial to employ data
collection strategies that capture seasonal variations in
streamflow and nitrate concentration effectively, especially in
regions like Atlantic Canada. By doing so, we can improve our
understanding of nitrate load dynamics and develop more effective
strategies for mitigating N pollution in aquatic ecosystems.
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