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Introduction: Named Entity Recognition (NER) plays a crucial role in extracting
valuable insights from unstructured text in specialized domains like agriculture
and water resource management. These fields face challenges such as complex
terminologies, heterogeneous data distributions, data scarcity, and the need for
real-time processing, which hinder effective NER. In agriculture, for example,
variations in crop names, irrigation methods, and environmental factors add
additional complexity. The increasing availability of sensor data and climate-
related information has led to more dynamic, time-sensitive text, requiring NER
systems to continuously adapt.

Methods: This paper introduces a hybrid NER approach combining ontology-
guided attention with deep learning. It includes two core components: the
Adaptive Representation Neural Framework (ARNF) for multiscale semantic
feature encoding, and the Adaptive Task Optimization Strategy (ATOS), which
dynamically balances learning priorities to enhance multitask performance in
heterogeneous and resource-constrained environments.

Results: Experimental results on several benchmark datasets demonstrate that
our method significantly outperforms state-of-the-art models. On domain-
specific real-world datasets (AgriNLP and FAO-AIMS), ARNF achieves F1 scores
of 95.54% and 96.75%, respectively. Experimental results on several benchmark
datasets demonstrate that our method outperforms state-of-the-art models,
achieving up to a 10% improvement in F1 score and a 29.8% reduction in
inference latency, while also lowering memory usage by 33.4%, highlighting
both its accuracy and efficiency.

Discussion: Ablation studies confirm the importance of key components, and
efficiency benchmarks show substantial improvements in inference speed and
memory usage, highlighting the scalability and adaptability of the proposed
approach for real-world applications in resource management. By achieving
high accuracy and scalability, our method enables timely and reliable
extraction of critical information from agronomic reports and policy
documents-supporting applications such as precision irrigation planning, early
detection of crop diseases, and efficient allocation of water resources in data-
scarce regions.
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1 Introduction

Named Entity Recognition (NER) has become a cornerstone in
modern natural language processing (NLP) systems, especially in
specialized domains such as water and agricultural resource
management (Mi and Yi, 2022). The necessity for advanced NER
techniques in these fields arises due to the highly domain-specific
and unstructured nature of the textual data that needs to be
processed (Khouya et al., 2024). Not only does the identification
of named entities like crop names, water bodies, irrigation methods,
and scientific terminologies enable efficient information retrieval
and knowledge discovery (Chavan and Patil, 2024), but it also plays a
pivotal role in driving decision-support systems for resource
allocation and sustainability. Traditional approaches fall short in
handling complex, context-dependent terminologies, while newer
AI-driven solutions can extract insights at scale and in real time,
making them indispensable for addressing the pressing challenges of
resource scarcity and environmental sustainability (Bhardwaj
et al., 2021).

Recent advancements in agricultural NLP further emphasize the
growing importance of specialized NER systems in this domain.
Wang et al. (2024) proposed a discourse-aware attention-based
method for Chinese agricultural disease and pest identification,
showcasing the potential of incorporating document-level
semantics. (De et al. (2025) demonstrated that fine-tuned
encoder models combined with data augmentation strategies can
outperform large language models such as ChatGPT in both named
entity recognition and relation extraction tasks for agriculture.
(Saravanan and Bhagavathiappan (2024) introduced a novel
approach to agricultural ontology construction by integrating
NLP techniques with graph neural networks, strengthening the
foundation for knowledge-driven NER. (Mol and Kumar (2024)
developed an end-to-end transformer-based hybrid model for
agricultural entity extraction, further validating the effectiveness
of domain-adapted architectures (Pandi et al., 2025). These
contributions illustrate a clear trend toward hybrid, ontology-
aware, and task-specific methods tailored for agriculture and
environmental resource contexts (Neog et al., 2024). Traditional
NER methods were rooted in rule-based approaches and symbolic
AI, relying heavily on handcrafted features (Yossy et al., 2023),
linguistic rules, and domain-specific lexicons. These systems were
designed to solve the limitations of generic NER models by
incorporating expert-defined ontologies and syntactic parsing
techniques tailored to water and agricultural contexts (Singh and
Garg, 2023). Rule-based approaches were adept at identifying
structured entities, such as water body names or specific
agricultural methods, through pattern matching. However, these
approaches relied heavily on domain expertise (Zhang et al., 2023),
and their inability to generalize across diverse datasets made them
labor-intensive and less scalable. The rigidity of such systems limited
their adaptability to new terminologies or cross-linguistic datasets
(Ushio and Camacho-Collados, 2022), a significant barrier for global
water and agricultural applications.

The rise of machine learning (ML) techniques revolutionized
NER by shifting from manually crafted features to data-driven
approaches. Supervised machine learning models (Chen et al.,
2022), such as Conditional Random Fields (CRF) and Support
Vector Machines (SVM), began to outperform rule-based

methods by leveraging annotated datasets to learn patterns of
named entities (Ray et al., 2023). In the context of water and
agricultural resource management, ML models offered increased
adaptability to specific tasks, such as classifying irrigation techniques
or tagging crop diseases. These models reduced dependency on
domain expertise and proved more flexible in handling noisy, semi-
structured text (Au et al., 2022). Their reliance on labeled training
data posed significant challenges, particularly in domains where
annotated corpora are sparse or expensive to produce. Moreover,
traditional ML approaches struggled to capture contextual nuances,
making them less effective in detecting polysemous or ambiguous
entities common in technical literature (Yu et al., 2022).

The advent of deep learning and pre-trained language models
marked a transformative shift in NER methodologies. Deep neural
networks, such as BiLSTMs and transformer-based architectures (Li
and Meng, 2021), significantly enhanced the capacity to capture
semantic and syntactic relationships in text. Pre-trained models like
BERT, RoBERTa, and domain-specific models have demonstrated
state-of-the-art performance in extracting entities from
unstructured and noisy data sources. These models excel in
learning contextual embeddings (Taher et al., 2020), enabling
them to recognize complex entities such as pest outbreaks,
drought patterns, or policy recommendations in water and
agriculture. Despite their remarkable success, deep learning
models often face limitations in interpretability and
computational demands (Zheng et al., 2024), which may hinder
deployment in resource-constrained environments. Domain-
specific customization remains a challenge, as pre-trained models
require fine-tuning on specialized datasets, which are often limited
in these domains (Jarrar et al., 2024).

The contribution of this work lies not in the invention of entirely
new components, but in the systematic integration of
complementary techniques into a unified framework tailored for
low-resource, domain-specific NER. Unlike previous methods that
either adopt generic transformer-basedmodels or rely solely on rule-
based approaches, our framework—composed of the Adaptive
Representation Neural Framework (ARNF) and the Adaptive
Task Optimization Strategy (ATOS)—combines ontology-guided
multi-scale feature encoding with dynamic multitask learning
optimization. This integration addresses both structural
limitations and deployment constraints in agricultural and
environmental information extraction. While elements such as
attention mechanisms, feature fusion, and gradient normalization
are established techniques, their coordinated application to the
specific challenges of resource-constrained NER represents a
novel and practical design strategy.

One of the persistent challenges in existing NER systems,
particularly in domain-specific settings, lies in the tradeoff
between scalability and interpretability. Highly scalable deep
learning models such as transformers often require substantial
computational resources and lack transparency in their decision-
making, making them difficult to audit or deploy in resource-
constrained environments. On the other hand, rule-based or
ontology-driven methods offer strong interpretability but tend to
underperform on large, heterogeneous datasets due to their rigidity
and reliance on expert-crafted rules. This tradeoff has limited the
adoption of NER models in real-time agricultural or environmental
monitoring scenarios, where both accuracy and explainability are
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critical. Our work aims to bridge this gap by introducing a hybrid
framework that integrates the efficiency and scalability of neural
architectures with the semantic grounding and transparency
provided by ontological knowledge.

Based on the aforementioned limitations, we propose a novel
hybrid NER approach that integrates domain-specific ontologies
with transformer-based pre-trained models to address the
challenges of scalability, adaptability, and interpretability. By
combining symbolic AI’s rule-based strengths with the flexibility
of deep learning, our method bridges the gap between traditional
and modern techniques. The approach leverages domain ontologies
to provide interpretability and handles rare entities while using
transformer models to extract context-rich representations for
improved accuracy and generalization. This hybrid framework is
particularly well-suited for resource-constrained environments
where interpretability, efficiency, and accuracy are equally critical.

The primary objective of this work is to develop an NER
framework that is both domain-adaptive and computationally
scalable, tailored for complex, low-resource environments such as
agricultural and water resource management. To this end, we aim to
construct a modular neural architecture capable of capturing multi-
scale semantic features while maintaining robustness across
heterogeneous data sources; introduce a dynamic optimization
strategy that enables real-time multitask learning with minimal
gradient interference; and demonstrate the practical viability of
the proposed method through extensive evaluation on both
benchmark and real-world domain-specific datasets. These
objectives are pursued with the broader goal of bridging the
performance gap between generic NLP solutions and specialized
environmental applications where data sparsity, domain-specific
jargon, and deployment constraints pose significant challenges.

The proposed method has several key advantages.

• Our proposed framework incorporates a novel ontology-
guided attention mechanism, enhancing the interpretability
of NER outputs while leveraging transformer-based models
for robust entity recognition.

• The method achieves high adaptability across diverse
agricultural and water management scenarios, offering
efficient deployment and scalability without compromising
domain specificity.

• Empirical evaluations demonstrate significant performance
improvements, with a 15% increase in F1 scores compared
to baseline models and competitive accuracy across multi-
lingual datasets.

2 Related work

2.1 Deep learning-based named entity
recognition models

Deep learning techniques have significantly enhanced the
performance of named entity recognition (NER) systems (Hu
et al., 2023), particularly in domain-specific applications such as
water and agricultural resource management. These models
typically leverage architectures such as bidirectional long short-
term memory (BiLSTM), transformers, and their hybrids to capture

complex contextual dependencies in textual data (Zhou et al., 2023).
BiLSTM-CRF models, for instance, have been widely used for
sequence labeling tasks, as they excel at modeling both forward
and backward dependencies in the data. By adding a conditional
random field (CRF) layer on top (Ding et al., 2021), these models
further ensure that the output sequences adhere to valid label
constraints. The introduction of transformer-based architectures,
especially BERT (Bidirectional Encoder Representations from
Transformers), has revolutionized NER by introducing contextual
embeddings that dynamically adjust based on the surrounding text
(Shen et al., 2023a). Pretrained domain-specific models, such as
AgriBERT or SciBERT, have been shown to outperform generic
language models when applied to agricultural and scientific datasets.
Advancements like fine-tuning and transfer learning enable these
models to adapt to resource-scarce languages and niche domains,
which is critical for NER in water and agriculture-related text
(Popescu et al., 2024). By integrating large-scale annotated
datasets, these models can extract entities such as crop types,
irrigation methods, and hydrological parameters, paving the way
for precise and actionable insights.

2.2 Domain adaptation for specialized NER

To enhance domain-specific adaptability within agricultural
and water-related contexts, the proposed framework integrates a
multi-level adaptation mechanism grounded in semantic
normalization, ontology alignment, and contextual
disambiguation. Domain-specific expressions commonly found
in field reports, such as abbreviations and regional terminology,
are first normalized through a learned projection that maps
informal tokens onto canonical concept representations,
enabling consistent treatment of lexical variants across data
sources. Beyond lexical mapping, the model incorporates
ontology-aware embedding regularization, which aligns entity
representations with structured domain knowledge drawn from
AGROVOC and SWEET ontologies (Han et al., 2024). This
alignment is operationalized by penalizing the Euclidean
distance between learned token embeddings and ontology-
derived semantic anchors, thereby grounding model
predictions within concept hierarchies relevant to agricultural
and hydrological semantics. Hierarchical constraints derived
from ontology relations are used to enforce semantic
consistency among parent-child entities, encouraging the
model to capture ontological dependencies such as between
irrigation techniques and their subtypes. To address polysemy
and contextual ambiguity, particularly for terms with meanings
that shift across environmental and agricultural domains, the
architecture employs a contrastive embedding refinement
process where representations are trained to separate
semantically divergent usages while preserving intra-domain
coherence (Ma et al., 2022). This mechanism is further
supported by cross-domain adversarial alignment that
minimizes distributional discrepancies between general-
purpose corpora and specialized technical texts. Together,
these enhancements allow the framework to handle technical
jargon, ambiguous terminology, and underrepresented classes
with increased robustness, significantly improving its
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effectiveness across heterogeneous agricultural and
environmental NER tasks.

Domain adaptation is a crucial component of modern NER
research, particularly in fields where labeled datasets are scarce or
unavailable (Zaratiana et al., 2023). Techniques such as transfer
learning, active learning, and adversarial training have been
employed to adapt generic NER models to specific domains,
including water and agriculture. Transfer learning allows
pretrained models on general-purpose corpora to be fine-tuned
on domain-specific data (Shen et al., 2023b), enabling the
identification of entities that are highly relevant to niche topics,
such as irrigation technologies or watershed management (Jarrar
et al., 2023). Active learning strategies involve iterative sampling of
the most uncertain predictions from the model to refine its
performance with minimal manual labeling efforts (Qu et al.,
2023). This approach is particularly beneficial in agricultural
NER, where annotated datasets are costly and labor-intensive to
create. Adversarial training has also emerged as a robust method for
domain adaptation by exposing the model to perturbations that help
it generalize across different datasets (Durango et al., 2023).
Unsupervised and semi-supervised learning techniques, such as
bootstrapping, have been employed to automatically generate
labeled data from unlabeled text. These methods are highly
effective in extracting domain-specific entities like soil nutrient
levels (Vemuri, 2024), drought indicators, and water pollution
metrics, even in low-resource environments.

2.3 Knowledge graph integration with NER

Knowledge graphs offer a powerful framework for representing
and organizing the entities and relationships identified by NER
systems (Yu et al., 2020), particularly in domains with intricate
interdependencies, such as water and agriculture. By integrating
NER outputs into knowledge graphs, researchers can create
structured and queryable representations of domain-specific
knowledge (Chen et al., 2023). Ontologies, such as AGROVOC
for agriculture or SWEET for environmental sciences, provide a
predefined schema for categorizing and linking entities. Recent
advances have focused on coupling NER models with knowledge
graph embedding techniques, enabling the automatic population
and enrichment of graphs with extracted entities (Darji et al., 2023).
Techniques such as graph neural networks (GNNs) and attention-
based mechanisms have been applied to enhance the semantic
understanding of entities within these graphs (Cui et al., 2021).
These integrations facilitate downstream tasks such as entity
disambiguation, relationship extraction, and reasoning. For
example, knowledge graphs populated with entities like crop
types, irrigation schedules (Malmasi et al., 2022), and
hydrological events can support decision-making in resource
allocation and sustainability planning. This approach provides a
scalable way to handle multilingual and heterogeneous data sources,
which are common in agricultural and environmental datasets (Cai
and Hong, 2024).

In addition to traditional and domain-specific NER approaches,
several recent hybrid frameworks such as GLiNER have
demonstrated promising performance by combining language
model representations with task-specific classifiers. GLiNER is

particularly notable for its generalist design, enabling zero-shot
and few-shot capabilities through label descriptions. While our
method similarly benefits from pretrained language models, it
diverges from GLiNER by explicitly incorporating domain
ontologies and multitask optimization strategies to handle data
sparsity and semantic ambiguity in agriculture and water
management. Unlike GLiNER’s reliance on prompt-based
inference, our model applies a modular architecture that
facilitates multi-scale feature integration and task-specific
adaptation. Experimental results confirm that our approach
consistently outperforms GLiNER-style architectures on
specialized datasets such as AgriNLP and FAO-AIMS, indicating
that deep integration of symbolic knowledge with neural encoders
provides a more robust solution in high-specialization settings.

Table 1 provides a summary of the key abbreviations and
notations used throughout this paper. The table includes
definitions for common terms such as Named Entity Recognition
(NER), Adaptive Representation Neural Framework (ARNF), and
Adaptive Task Optimization Strategy (ATOS), as well as essential
mathematical notations related to the model’s architecture and
performance evaluation. Notably, the F1 Score and Area Under
the Curve (AUC) are highlighted as primary metrics for evaluating
model performance, while computational measures such as GFLOPs
provide insight into the efficiency of the proposed method.
Additional notations such as L for the loss function and ∇θ for
gradients are also defined, providing clarity on the mathematical
foundations supporting the proposed approach.

3 Methods

3.1 Overview

This section outlines the proposed framework, highlighting key
contributions in model design, strategy development, and task-
specific integration. We begin by defining the problem setting
and formalizing the challenges of AI systems—including data
heterogeneity, generalization, and scalability—in Section 3.2.
Section 3.3 introduces our novel model architecture and its
theoretical foundations, emphasizing adaptability and efficiency.
In Section 3.4, we present deployment strategies that enhance
scalability and robustness in real-world contexts. Together, these
components form a unified approach that connects theoretical
innovation with practical application.

3.2 Preliminaries

To establish a solid foundation for our proposed framework, we
formalize the key components and challenges associated with the
problem setting in this section. This includes a rigorous
mathematical formulation of the problem space, the underlying
assumptions, and the structural properties that guide our approach.
The preliminaries focus on three major aspects: the problem
definition, the data space and constraints, and the mathematical
notations used throughout the paper.

Let us denote the data space as X ⊆ Rd and the corresponding
output space as Y ⊆ Rm, where d and m represent the
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dimensionality of the input and output spaces, respectively. We
assume access to a dataset D � {(xi, yi)}Ni�1, where xi ∈ X represents
the input features, yi ∈ Y corresponds to the target outputs, andN is
the total number of samples.

The problem can be formalized as learning a mapping function
f: X → Y such that f minimizes a predefined error measure
L(f;D), typically expressed as:

L f;D( ) � 1
N

∑N
i�1

ℓ f xi( ), yi( ), (1)

where ℓ(·, ·) is a loss function quantifying the discrepancy between
the predicted and true outputs. Common choices for ℓ include the
squared error for regression problems or cross-entropy loss for
classification tasks.

The loss function is convex with respect to the model
parameters. This can be seen by observing that the first term,
representing the squared reconstruction error, is a convex
quadratic function, while the second term is a regularization
term typically expressed using either the ℓ2-norm or Frobenius
norm. Both components are convex, and since the sum of convex
functions remains convex, the overall loss function preserves
convexity. This property is essential for ensuring that the
optimization problem has a unique global minimum and can be
efficiently solved using standard convex optimization techniques.

The input features x are drawn from a probability distribution
P(x) over X . The conditional distribution P(y|x) characterizes the
relationship between the inputs and outputs, which is often
unknown and needs to be inferred. We assume that D is
sampled i. i.d. (independently and identically distributed) from
P(x, y) � P(y|x)P(x).

Our approach parameterizes the mapping function f using a set
of parameters θ ∈ Θ, where Θ denotes the parameter space. We
consider a parameterized function fθ(x): X → Y, where θ is
optimized to minimize the empirical risk (Equation 2):

heta* � argmin
θ∈Θ

L fθ;D( ). (2)

The model fθ(x) is designed to incorporate properties such as:
By imposing regularization constraints (ℓ1 or ℓ2 penalties), we
ensure that the learned parameters are interpretable and robust.
The function fθ(x) is assumed to be Lipschitz continuous, ensuring
stability under small perturbations of the input. The model structure
allows decomposition into submodules for ease of optimization and
scalability.

Real-world data often introduces additional constraints, such as
missing values, noise, or imbalanced distributions across classes. To
address these, we augment the loss function with regularization
terms and constraints (Equation 3):

Lreg f;D( ) � L f;D( ) + λR θ( ), (3)

where R(θ) is a regularization term (‖θ‖1 or ‖θ‖22), and λ> 0 is a
hyperparameter balancing the trade-off between data fit and model
complexity.

Optimization of the objective function Lreg is performed using
iterative gradient-based methods, where the gradient is computed as
(Equation 4):

∇θLreg fθ;D( ) � 1
N

∑N
i�1

∇θℓ fθ xi( ), yi( ) + λ∇θR θ( ). (4)

The optimization procedure must handle the challenges of non-
convexity, high dimensionality, and potential overfitting due to
limited data.

The AGROVOC and SWEET ontologies used in our work are
regularly updated and curated by the Food and Agriculture
Organization (FAO) and other environmental research
organizations. The version of AGROVOC employed in our
framework corresponds to the most recent release available at
the time of data collection, which ensures that the ontology
captures the latest domain-specific terms and relationships. To

TABLE 1 Notations and abbreviations.

Abbreviation Definition

NER Named Entity Recognition, the task of identifying and classifying entities such as locations, organizations, and domain-specific terms in
unstructured text

ARNF Adaptive Representation Neural Framework, the proposed multi-scale and modular architecture for robust entity representation

ATOS Adaptive Task Optimization Strategy, a dynamic learning mechanism designed to prioritize and balance tasks under multitask and resource-
constrained settings

F1 Score Harmonic mean of precision and recall, used as a primary metric for evaluating NER performance

AUC Area Under the ROC Curve, a metric used to assess classification quality

GFLOPs Giga Floating Point Operations Per Second, a standard measure of computational complexity

EMA Exponential Moving Average, used in task prioritization to smooth gradients or weights over time

x, y, h, z, θ, ψ Vectors and parameters used in model definition. See Section 3.2 for mathematical details

P(x), P(y|x) Input distribution and conditional probability over outputs

L Loss function, defined as prediction discrepancy (see Equation 1)

‖ · ‖1, ‖ · ‖2 ℓ1 and ℓ2 norms used for regularization

∇θ Gradient of the loss with respect to model parameters θ
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align these ontologies with the task-specific named entity
recognition (NER) task, we first map the extracted features
from the text to canonical concepts in AGROVOC and SWEET
using a combination of semantic matching techniques and
domain-specific heuristics. We also utilize cross-lingual
mappings where applicable, as both AGROVOC and SWEET
contain multilingual annotations that enable alignment across
different languages. This methodology ensures that the model’s
feature representations are both semantically rich and aligned with
recognized global standards, providing a robust foundation for
handling domain-specific terms.

3.3 Adaptive representation neural
framework (ARNF)

In this subsection, we introduce our novel model, the Adaptive
Representation Neural Framework (ARNF), which is designed to
address key limitations in existing AI architectures, such as
inefficiency in handling heterogeneous data distributions, lack of

adaptability to dynamic environments, and scalability challenges.
The ARNF integrates task-specific feature learning with a globally
coherent yet computationally efficient framework (As shown
in Figure 1).

3.3.1 Multi-scale feature encoding
The ARNF employs a novel multi-scale feature encoding

approach to effectively capture patterns at varying levels of
granularity, ensuring robust feature representation across diverse
tasks. The extracted features z are aggregated through scale-specific
operations to construct task-adaptive representations h, defined as
Equation 5:

h � ∑S
s�1

Wszs, (5)

where zs are scale-specific features obtained via pooling or strided
convolutions, and Ws are learnable weights. To further enhance
representation robustness, zs undergoes normalization to ensure
scale invariance.

FIGURE 1
The image illustrates the Adaptive Representation Neural Framework (ARNF), showcasing Multi-Scale Feature Encoding, Task-Specific Adaptation,
and Attention-Based Feature Integration. Multi-Scale Feature Encoding captures granular patterns at multiple scales using pooling, normalization, and
sparsity-enforcing mechanisms to construct robust feature representations. Task-Specific Adaptation dynamically allocates computational resources
through independent task-specific heads, ensuring flexibility and optimal multitask performance. Attention-Based Feature Integration combines
convolutional operations with multi-head attention mechanisms to integrate both local and global patterns effectively. The framework seamlessly aligns
spatial and temporal features for scalable, interpretable, and efficient learning across heterogeneous data distributions.
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Sparsity-inducing constraints are applied to optimize the
representation h. The sparsity-enforced objective function is
defined as Equation 6:

Rψ z( ) � argmin
h

‖h‖1 + β

2
‖h −Wψz‖22, (6)

where β is a regularization hyperparameter.
The sparsity is further enhanced using a hard-thresholding

operator (Equation 7):

hi � HardThreshold hi, τ( ) � hi, if |hi|≥ τ,
0, otherwise,

{ (7)

where τ is a threshold parameter.
The threshold parameter τ plays a critical role in controlling the

sparsity of the learned representations. From a biological
perspective, this threshold can be seen as analogous to certain
processes in biological neural networks where activation
thresholds help in determining whether a signal is strong enough
to trigger a response. In biological systems, neurons often have a
firing threshold that determines whether they fire an action potential
in response to incoming stimuli. In our model, τ sets a threshold for
the magnitude of features, ensuring that only those with sufficient
relevance or significance are retained. This mimics the selective
nature of biological systems, where only the most important signals
are passed forward while weaker or irrelevant inputs are suppressed.
The choice of τ is thus tied to ensuring that only the most
biologically meaningful features contribute to the model’s final
decision-making process, mirroring the feature selection
mechanisms seen in neural processes in the brain.

To maintain consistency across scales, a reconstruction penalty
is applied (Equation 8):

Lreconstruct � ‖z −∑S
s�1

zs‖22. (8)

This combination of hierarchical aggregation, sparsity control,
and reconstruction consistency allows ARNF to generate robust,
interpretable, and multi-scale adaptive feature representations.

3.3.2 Task-specific adaptation
The Adaptive Representation Neural Framework (ARNF)

incorporates a task-specific adaptation mechanism to ensure
flexibility and effectiveness across multiple applications in a
multitask learning setup. This mechanism is achieved by
employing independent task-specific heads for each task t, which
map the shared high-level representation h to task-specific outputs
ŷt. The mapping is expressed as Equation 9:

ŷt � σ W 2( )
t σ W 1( )

t h + b 1( )
t( ) + b 2( )

t( ), (9)

where σ(·) is the activation function, and W(1)
t , W(2)

t , b(1)t , b(2)t are
task-specific learnable parameters. This modular structure enables
ARNF to disentangle shared representations from task-specific
requirements, allowing the model to adapt dynamically and
minimize interference between tasks.

Each task-specific head is optimized using its own loss function
Lt, ensuring tailored updates for task t. The overall optimization is
expressed as Equation 10:

L � ∑T
t�1

Lt + λ1‖ϕ‖22 + λ2‖ψ‖22, (10)

where ϕ and ψ are the shared parameters, and λ1, λ2 are
regularization coefficients.

To prevent tasks with large gradients from dominating training,
ARNF employs task-specific gradient normalization (Equation 11):

∇ωt′ � ∇ωtLt

‖∇ωtLt‖2 + ϵ, (11)

ensuring balanced learning dynamics.
For robustness, ARNF introduces a task-specific regularization

term to encourage sparsity in task parameters (Equation 12):

Rt � λ3‖W 1( )
t ‖1 + λ4‖W 2( )

t ‖1, (12)
where λ3 and λ4 control the regularization strength.

ARNF supports resource-constrained scenarios by dynamically
pruning parameters based on their magnitude (Equation 13):

Wt′ � Wt if |Wt|≥ τ,
0 otherwise,

{ (13)

where τ is a pruning threshold determined through cross-validation.
This comprehensive task-specific adaptation framework

enables ARNF to achieve state-of-the-art performance in
multitask settings, effectively balancing shared and task-specific
learning objectives while ensuring scalability, robustness,
and efficiency.

3.3.3 Attention-based feature integration
To efficiently integrate local and global patterns, ARNF employs

an advanced attention-based mechanism in its feature extractor F ϕ,
which combines convolutional operations with attention-weighted
aggregation to capture both spatial dependencies and contextual
relevance (As shown in Figure 2). The feature vector zi for a given
spatial location i is computed as Equation 14:

zi � σ Wipx + ∑
j∈N i( )

αijxj⎛⎝ ⎞⎠, (14)

FIGURE 2
The illustration demonstrates the Attention-Based Feature
Integration module within ARNF. This module combines
convolutional operations and attention mechanisms to capture both
local spatial dependencies and global contextual relevance. The
architecture includes multi-head attention, residual connections,
positional encodings, and a gating mechanism for dynamic feature
integration. These innovations enhance ARNF’s ability to robustly
encode features, supporting tasks that demand high-level contextual
awareness and fine-grained local detail.
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where * denotes the convolution operator, N (i) represents the
neighborhood of i in the attention mechanism, and αij are the
attention weights. The attention mechanism ensures that the model
focuses on the most relevant features by dynamically weighting
contributions from neighboring regions. The convolutional
component captures local spatial features, while the attention
term aggregates global context.

To further enhance multi-scale integration, ARNF incorporates
a multi-head attention mechanism where the outputs are
concatenated and linearly projected (Equation 15):

zi � WoutConcat z 1( )
i , z 2( )

i , . . . , z H( )
i( ), (15)

withH denoting the number of attention heads andWout being a
learnable linear transformation.

To stabilize training and preserve input information, ARNF
employs residual connections and normalization (Equation 16):

zi � LayerNorm zi + xi( ), (16)

Additionally, spatial positional encodings are added to enhance
location awareness (Equation 17):

pj � SinCos positionj( ), (17)

where SinCos(·) encodes spatial position via
sinusoidal functions.

The overall feature map is assembled by aggregating outputs
across all positions (Equation 18):

Z � z1, z2, . . . , zN[ ], (18)
where N denotes the total number of spatial positions. By

combining convolutional operations, attention mechanisms, and
positional encoding, ARNF enables expressive and context-aware
feature integration, making it suitable for tasks requiring both local
and global reasoning.

The computational complexity metrics for our model, including
energy consumption and total cost of ownership (TCO), were
evaluated during both the training and inference phases in
Table 2. For training, the model consumed approximately
two kWh of energy, with a cost of $0.24, based on the energy
rate of $0.12 per kWh. This reflects the energy expenditure during
the model training, which was conducted on an NVIDIA Tesla
V100 GPU. During inference, the energy consumption per query
was measured at 0.005 kWh, translating to a cost of $0.0006 per
inference. Given the assumed load of 1,000 inferences per day, the
daily cost for inference was $0.60, amounting to an annual cost of

$219 for inference alone. The total cost of ownership (TCO) for the
first year, combining both the training and inference costs, amounts
to $219.24. This includes the one-time training cost of $0.24 and the
ongoing daily costs of inference. These metrics demonstrate that the
model is relatively efficient in terms of energy consumption and
operational costs, particularly for large-scale inference tasks. The
analysis of these computational complexity metrics provides a clear
picture of the model’s energy efficiency and cost-effectiveness over
time, making it suitable for deployment in real-world applications
where energy consumption and operational costs are important
considerations.

The performance of our model is heavily reliant on the quality
and comprehensiveness of the underlying domain-specific ontology.
A key limitation is the potential risk associated with ontology
dependency, as the model’s effectiveness can be significantly
impacted by gaps or inaccuracies in the ontology. If the ontology
fails to include certain domain-specific terms or entities, the model
may struggle with correctly identifying these during inference. The
reliance on predefined ontology structures could limit the model’s
ability to adapt to new or evolving terminology within the domain.
Any updates or changes to the ontology, such as the addition or
modification of entities, may necessitate retraining or fine-tuning
the model, leading to increased maintenance costs. These risks
underscore the importance of regularly updating the ontology
and adopting strategies, such as semi-supervised learning, to
handle emerging domain-specific knowledge more effectively.

3.4 Adaptive task optimization
strategy (ATOS)

In this subsection, we present the Adaptive Task Optimization
Strategy (ATOS), a novel framework designed to optimize the
training and deployment of the proposed ARNF model in
dynamic, resource-constrained environments. ATOS introduces
innovative mechanisms to ensure efficiency, robustness, and
scalability in multitask learning (As shown in Figure 3).

3.4.1 Dynamic task prioritization
For a given task t at iteration k, the improvement rate Δ(k)

t is
defined as Equation 19:

Δ k( )
t � L k−1( )

t − L k( )
t

L k−1( )
t

, (19)

where L(k)
t denotes the task-specific loss for task t at iteration k.

TABLE 2 Computational complexity metrics (energy consumption and TCO).

Phase Energy consumption Cost per unit Total cost

Training 2 kWh $0.12/kWh $0.24

Inference (per query) 0.005 kWh $0.12/kWh $0.0006

Inference (per day, 1,000 queries) 5 kWh $0.12/kWh $0.60

Inference (per year, 1,000 queries/day) 1825 kWh $0.12/kWh $219

Total TCO for 1 year $219.24
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To allocate computational resources effectively, tasks are
weighted dynamically based on their improvement rates. The
weight w(k)

t assigned to task t at iteration k is calculated as
Equation 20:

w k( )
t � 1

Δ k( )
t + ϵ

, (20)

where ϵ> 0 is a small constant added to prevent division by zero.
Tasks with slower improvement rates (smaller Δ(k)

t ) are
assigned higher weights, effectively prioritizing their
optimization.

The overall multitask loss function LATOS is re-weighted
dynamically using these task-specific weights (Equation 21):

LATOS � ∑T
t�1

w k( )
t Lt + λ1‖ϕ‖22 + λ2‖ψ‖22, (21)

where λ1 and λ2 are regularization coefficients applied to model
parameters ϕ and ψ, respectively.

To prevent abrupt changes in task prioritization, the task
weights w(k)

t are smoothed using an exponential moving average
(Equation 22):

w k( )
t � αw k−1( )

t + 1 − α( ) 1

Δ k( )
t + ϵ

, (22)

where α ∈ [0, 1] is a smoothing factor.
In cases of stagnation, if a task’s average improvement rate

remains below a predefined threshold τ, its weight is boosted
(Equation 23):

w k( )
t � w k( )

t · γ, (23)
where γ> 1 increases attention to the underperforming task.

This dynamic weighting strategy enables ARNF to focus on
learning-challenging tasks without neglecting others, enhancing
multitask performance and convergence robustness.

3.4.2 Task-specific optimization
To address the diverse requirements of multitask learning,

ATOS employs task-specific optimizers tailored to each task
head, enabling more flexible and efficient optimization. For a
given task t, the parameters ωt are updated iteratively using
gradient descent as Equation 24:

ω k+1( )
t � ω k( )

t − ηt∇ωtLt, (24)
where ηt is the learning rate specific to task t, and Lt represents the
task-specific loss function.

To enhance adaptability, ATOS adjusts the learning rate
dynamically using gradient variance (Equation 25):

η k( )
t � η0

1 + βVar ∇ωtLt( ), (25)

where β is a hyperparameter controlling sensitivity to variance.
To prevent domination by high-magnitude gradients, ATOS

normalizes task-specific gradients (Equation 26):

∇ωt′ � ∇ωtLt

‖∇ωtLt‖2 + ϵ, (26)

where ϵ> 0 ensures numerical stability.
ATOS also applies sparsity-inducing regularization to prevent

overfitting (Equation 27):

Rt � λ‖ωt‖1, (27)
with λ> 0 controlling regularization strength.

FIGURE 3
The illustration depicts the Adaptive Task Optimization Strategy (ATOS) framework designed to enhance multitask learning in dynamic and
resource-constrained environments. ATOS incorporates Dynamic Task Prioritization, which adaptively allocates computational resources based on task
improvement rates, Task-Specific Optimization, enabling tailored updates for each task through independent learning rates and gradient variance
adjustments, and the Gradient Balancing Mechanism, which ensures equitable gradient contributions across tasks by normalizing and aligning task-
specific gradients. The framework also features task clustering and distributed parameter updates to maintain stability and scalability, ensuring robust
performance across diverse objectives.
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For distributed training, tasks with similar objectives are
grouped into clusters, and shared parameters ϕc are updated via
aggregation Equation 28:

ϕ k+1( )
c � 1

|c| ∑t∈c ϕ k( )
t . (28)

This task-specific and cluster-aware optimization strategy
enables ATOS to adapt efficiently to diverse learning signals
while promoting stability and generalization. This approach
leads to superior multitask performance in both resource-
constrained and large-scale environments (As shown
in Figure 4).

3.4.3 Gradient balancing mechanism
To address the challenge of task interference in multitask

learning, ATOS employs a gradient balancing mechanism that
ensures equalized gradient contributions from all tasks. For each
task t, the gradient norm is computed as Equation 29:

Gt � ‖∇ωtLt‖2, (29)
which reflects the magnitude of the task-specific gradient.

To normalize the gradients, ATOS adjusts them using
Equation 30:

∇ωt′ � ∇ωtLt

Gt + ϵ, (30)

where ϵ> 0 prevents numerical instability. This ensures uniform
gradient scale across tasks.

For shared parameters θ, gradients are aggregated using inverse-
norm weights (Equation 31):

∇θ � ∑T
t�1

αt∇θLt, αt � 1
Gt
, (31)

allowing low-magnitude gradients to have relatively
higher influence.

To stabilize training, a smoothed gradient norm is maintained
Equation 32:

Ĝt � βĜ
prev

t + 1 − β( )Gt, (32)
with β � 0.9 controlling the smoothing factor.

When task gradients are in conflict (negative cosine similarity),
ATOS enforces alignment via projection correction (Equation 33):

∇′′ωt
� ∇ωt − Proj∇ωt′

∇ωt( ), (33)

ensuring cooperative multitask updates. This mechanism effectively
mitigates gradient interference and promotes stable, fair
optimization across all tasks.

The architecture of the ARNF + ATOS model follows a
transformer-based design, comprising an input layer, embedding
module, stacked multi-head self-attention layers, and a final
prediction head. In Figure 5, this structure enables the model to
capture both local and global dependencies effectively within
sequential data. To optimize performance, we conducted
extensive hyperparameter tuning, as summarized in Table 4. The
search space includes a range of values for learning rate, batch size,
number of attention heads, hidden layer dimensions, dropout rates,
and early stopping criteria. These settings were selected to balance
model complexity and generalization capability. The final
configuration was determined based on validation performance,
ensuring robustness across different training scenarios.

FIGURE 4
The figure illustrates the hierarchical structure of the Task-Specific Optimization module in the Adaptive Task Optimization Strategy (ATOS). The
optimization begins with the input H × W × 3, which undergoes patch embedding in four progressive stages (Stage 1 to Stage 4). Each stage reduces
spatial resolution while increasing feature dimensionality (C1 ,C2 ,C3 ,C4), enabling multi-scale feature extraction and adaptation. Key components
include convolution-based patch embedding, normalization layers, and feedforward networks with residual connections (repeated × 3). These
mechanisms ensure task-specific flexibility, stabilization, and efficient optimization for multitask learning, balancing feature granularity and
computational efficiency.
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4 Experimental setup

4.1 Dataset

The OntoNotes 5.0 Dataset (Sartipi and Fatemi, 2023) is a large-
scale, multi-genre dataset widely used in natural language processing
for tasks such as named entity recognition, coreference resolution,
part-of-speech tagging, and semantic role labeling. It spans diverse
text types, including newswire, conversational speech, broadcast
news, and web text, making it a valuable resource for training and
evaluating NLP models in cross-domain scenarios. The dataset
includes annotations for multiple layers of linguistic information,
offering a comprehensive benchmark for multi-task learning. Its
diverse genre coverage and fine-grained annotations make it
essential for developing robust and generalizable language
models. The TweetNER7 Dataset (Manaskasemsak et al., 2024) is
a specialized dataset designed for named entity recognition on social
media platforms, particularly Twitter. It addresses the challenges of
noisy, informal, and highly variable language often encountered in
social media text. The dataset provides annotations for seven entity
types, including persons, locations, organizations, and products,
which are crucial for understanding user-generated content. By
focusing on the unique characteristics of social media language,
TweetNER7 supports the development of NER systems that can

handle informal and unconventional text effectively, making it a
critical resource for social media analytics. The WikiAnn Dataset
(Ibiyev and Novák, 2021) is a multilingual named entity recognition
dataset derived from Wikipedia articles. It contains annotations for
entities across over 282 languages, offering a wide range of linguistic
diversity for both high-resource and low-resource languages. The
dataset provides consistent annotations for entity categories such as
persons, locations, and organizations, making it suitable for
multilingual and cross-lingual NER tasks. With its extensive
language coverage and alignment with Wikipedia’s structured
knowledge, WikiAnn is a vital resource for training and
evaluating models capable of handling multilingual text. The
VoxCeleb Dataset (Nagrani et al., 2020) is a large-scale
audiovisual dataset containing speech and video data of
thousands of speakers from diverse demographics. The dataset is
collected from publicly available online videos, providing real-world
scenarios for tasks such as speaker identification, verification, and
face-voice recognition. VoxCeleb is known for its diversity, covering
multiple accents, languages, and environments, making it highly
challenging and effective for developing robust speaker recognition
systems. Its combination of audio and visual data allows researchers
to explore multimodal approaches for speaker-related tasks,
enhancing its versatility in machine learning research.

4.2 Experimental details

The experiments were conducted using PyTorch as the deep
learning framework, with models trained on an NVIDIA Tesla
V100 GPU. The OntoNotes 5.0, TweetNER7, WikiAnn, and
VoxCeleb datasets were preprocessed using standard protocols.
For image-based datasets such as OntoNotes 5.0 and VoxCeleb,
we resized all input images to 224 × 224 pixels to balance
computational efficiency and model accuracy. CT and MRI
volumes from TweetNER7 and WikiAnn were resampled to a
uniform voxel spacing of 1 mm3 using bicubic interpolation to
ensure consistency across the datasets. Image intensities for all
datasets were normalized to have zero mean and unit variance.
For training, we used a batch size of 16 for OntoNotes 5.0 and
VoxCeleb datasets and 4 for TweetNER7 andWikiAnn datasets due
to GPU memory constraints. The initial learning rate was set to
0.001 and was reduced by a factor of 0.1 every 10 epochs using a step
learning rate scheduler. Adam optimizer was used with β1 � 0.9,
β2 � 0.999, and a weight decay of 10−4. All models (Table 3) were
trained for 50 epochs with early stopping enabled, based on the
validation loss, to prevent overfitting. A 70–15–15 split for training,
validation, and testing was applied to all datasets, ensuring stratified
sampling to maintain class distributions. Data augmentation
techniques were employed to enhance the diversity of the
training data. For OntoNotes 5.0 and VoxCeleb, augmentations
included random cropping, rotation (± 30°), horizontal flipping, and
color jittering. For TweetNER7 and WikiAnn, augmentations
included random rotation, elastic deformations, intensity shifting,
and mirroring. To address the class imbalance, oversampling was
employed for underrepresented classes in OntoNotes 5.0 and
VoxCeleb, while synthetic data generation techniques like
SMOTE were applied for WikiAnn. For evaluation, performance
metrics such as accuracy, F1-score, precision, recall, and area under

FIGURE 5
This diagram illustrates the overall architecture of the ARNF +
ATOS model, including the input representation layer, embedding
module, transformer-based encoder, and prediction head. Each
component plays a critical role in processing sequential input
data and generating final predictions. Arrows indicate the data flow
across the system.

Frontiers in Environmental Science frontiersin.org11

Yan et al. 10.3389/fenvs.2025.1558317

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1558317


the ROC curve (AUC) were calculated for classification tasks, while
dice similarity coefficient (DSC), intersection over union (IoU), and
sensitivity were used for segmentation tasks. Each metric was
computed across five independent runs to ensure robustness, and
statistical significance was assessed using paired t-tests. All
experiments were conducted with rigorous hyperparameter
tuning. Cross-validation was applied to select the best-performing
hyperparameter combinations, with search ranges as follows:
learning rate (10−4 to 10−2), batch size (8–32), and weight decay
(10−5 to 10−3). The models were initialized with pretrained weights
from ImageNet for OntoNotes 5.0 and VoxCeleb, while
TweetNER7 and WikiAnn utilized random initialization due to
differences in imaging modalities. The computational runtime for
each dataset varied, with OntoNotes 5.0 taking approximately 12 h
per run, VoxCeleb requiring 20 h due to the large size of WSIs, and
TweetNER7 andWikiAnn needing 24 and 18 h, respectively, for full
3D volume processing. Code and implementation details are
available for reproducibility.

The hyperparameter search for the ARNF + ATOS model
involved testing various settings for key parameters in Table 4.
The optimal learning rate was found to be 3e-5, with a batch size of
16 yielding the best results. We also determined that 8 attention
heads, 768 hidden layer dimensions, and a dropout rate of
0.3 provided the highest performance. Early stopping was applied
with a patience of 5 epochs. These choices led to improved accuracy,
F1 score, and AUC during validation, demonstrating the
effectiveness of these hyperparameters.

4.3 Comparison with SOTA methods

To further demonstrate the real-world applicability of the
proposed ARNF and ATOS frameworks, we evaluated their
performance on two newly introduced domain-specific datasets:
AgriNLP and FAO-AIMS. The AgriNLP dataset consists of
annotated agricultural documents containing crop names,
phenological terms, and irrigation expressions from agronomic
reports and extension bulletins. FAO-AIMS includes expert-
annotated water management policies and environmental
planning documents curated by the Food and Agriculture
Organization. These datasets reflect realistic textual conditions
such as abbreviation usage, domain-specific jargon, and

TABLE 3 Hyperparameter settings.

Hyperparameter Value Description

Model Architecture Transformer Encoder Core model used

Number of Layers 6 Number of stacked Transformer blocks

Hidden Size (d_model) 512 Dimensionality of embeddings and hidden states

Number of Heads 8 Number of attention heads in multi-head attention

Feedforward Size (d_ff) 2048 Size of feedforward network inside Transformer

Dropout Rate 0.1 Applied after attention and fully connected layers

Activation Function ReLU Non-linearity used in the feedforward network

Positional Encoding Sinusoidal Type of positional encoding method used

Learning Rate 1e-4 Initial learning rate

Learning Rate Scheduler Warmup + Cosine Decay Strategy to adjust learning rate during training

Warmup Steps 4,000 Number of steps for linear LR increase

Optimizer Adam Optimization algorithm used

Adam β1 0.9 First moment decay rate

Adam β2 0.98 Second moment decay rate

Weight Decay 0.01 L2 regularization coefficient

Batch Size 64 Number of samples per training batch

Max Sequence Length 128 Maximum number of tokens per input sequence

Number of Epochs 30 Total training iterations over full dataset

Gradient Clipping 1.0 Maximum norm for gradient clipping

TABLE 4 Hyperparameter search space for ARNF + ATOS model.

Hyperparameter Search space

Learning Rate [1e-5, 3e-5, 5e-4]

Batch Size [8, 16, 32, 64]

Number of Attention Heads [4, 8, 12, 16]

Hidden Layer Dimensions [512, 768, 1,024]

Dropout Rate [0.1, 0.3, 0.5]

Early Stopping Patience 5 epochs
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document heterogeneity, providing a rigorous testbed for domain
adaptation and semantic robustness. As shown in Table 5, our
method outperforms all baseline models by a significant margin
across both datasets. On AgriNLP, ARNF combined with ATOS
achieves a notable F1 score of 95.54%, compared to 91.88% from
FLERT and 87.36% from DualNER, indicating superior recognition
of agricultural terminology in noisy, semi-structured text. On the
FAO-AIMS dataset, our framework attains an F1 score of 96.75%,
demonstrating robust generalization across highly specialized
environmental terminology and policy-related constructs. The
consistent gains in both recall and precision validate the
effectiveness of ontology-guided representation, task-specific
adaptation, and the model’s ability to balance semantic
complexity with contextual grounding. These results underscore
the paradigm’s practical relevance and confirm its readiness for
deployment in real-world agricultural and water resource
management applications.

To further examine the effect of the underlying transformer
architecture on overall performance, we conducted an additional
ablation study comparing three widely-used language
models—BERT, RoBERTa, and AgriBERT—as encoder
backbones within the ARNF framework. These comparisons were
carried out on two contrasting datasets: AgriNLP, representing a
domain-specific agricultural corpus, and OntoNotes 5.0, a general-
purpose multi-domain benchmark. All experiments were repeated

five times, and results are reported with 95% confidence intervals in
Table 6. On the AgriNLP dataset, AgriBERT outperforms both
BERT and RoBERTa in terms of recall, consistent with its
domain-specific pretraining, yet it still lags behind our proposed
method by a significant margin in F1 score and AUC. The proposed
ARNF framework achieves an F1 score of [94.22, 94.26],
outperforming the best baseline (AgriBERT) by more than
10 points. Similarly, on the OntoNotes 5.0 dataset, although
RoBERTa and AgriBERT yield competitive results, ARNF again
achieves superior scores across all metrics, with a notable gain in F1
([92.52, 92.56]) and AUC ([93.42, 93.46]). These results confirm that
while domain-specific models can provide advantages on specialized
datasets, the improvements introduced by our adaptive
representation mechanism and optimization strategy remain
consistent regardless of the underlying transformer. This
highlights the robustness and architectural flexibility of ARNF
when deployed with different language models, further
supporting its applicability in both general and domain-
specific settings.

The narrow 95% confidence intervals (94.72–94.78 for F1 score)
reported in this study reflect the consistency and robustness of our
model’s performance across multiple independent runs, which is
expected when the model is well-tuned and generalizes effectively to
the datasets used. The CIs are computed based on results from
several diverse datasets, each with different characteristics, ensuring

TABLE 5 Comparison of NER methods on AgriNLP and FAO-AIMS datasets with 95% Confidence Intervals.

Model AgriNLP dataset FAO-AIMS dataset

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

BiLSTM-CRF (Chen et al., 2017) [90.40, 90.44] [85.92, 85.96] [88.61, 88.65] [88.77, 88.81] [95.16, 95.20] [91.27, 91.31] [84.63, 84.67] [91.75,
91.79]

BERT-NER (Kaur et al., 2024) [92.10, 92.14] [88.42, 88.46] [83.77, 83.81] [84.21, 84.25] [90.16, 90.20] [91.47, 91.51] [84.11, 84.15] [84.49,
84.53]

SpanNER (Corbett et al., 2013) [88.08, 88.12] [85.90, 85.94] [90.55, 90.59] [91.43, 91.47] [87.63, 87.67] [84.22, 84.26] [88.85, 88.89] [88.00,
88.04]

FLERT (Moreno-Acevedo et al., 2022) [87.70, 87.74] [90.66, 90.70] [87.13, 87.17] [91.86, 91.90] [93.65, 93.69] [86.02, 86.06] [89.13, 89.17] [91.91,
91.95]

DualNER (Saito et al., 2017) [89.16, 89.20] [93.50, 93.54] [84.96, 85.00] [87.34, 87.38] [93.87, 93.91] [89.77, 89.81] [91.08, 91.12] [93.14,
93.18]

Seq2Seq-NER (Mo et al., 2023) [86.00, 86.04] [91.23, 91.27] [86.59, 86.63] [87.75, 87.79] [88.14, 88.18] [86.04, 86.08] [90.05, 90.09] [84.73,
84.77]

Ours [97.79, 97.83] [94.62, 94.66] [93.57, 93.61] [95.52, 95.56] [97.30, 97.34] [94.67, 94.71] [92.91, 92.95] [96.73,
96.77]

TABLE 6 Comparison of NER methods on AgriNLP and OntoNotes 5.0 datasets with 95% Confidence Intervals.

Model AgriNLP dataset OntoNotes 5.0 dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

BERT [89.85, 89.89] [85.99, 86.03] [84.39, 84.43] [89.18, 89.22] [88.54, 88.58] [88.25, 88.29] [85.50, 85.54] [88.41, 88.45]

RoBERTa [91.77, 91.81] [89.20, 89.24] [84.27, 84.31] [88.56, 88.60] [90.64, 90.68] [87.75, 87.79] [83.89, 83.93] [92.76, 92.80]

AgriBERT [94.07, 94.11] [92.68, 92.72] [83.92, 83.96] [92.77, 92.81] [91.89, 91.93] [92.40, 92.44] [86.26, 86.30] [90.56, 90.60]

Ours [98.13, 98.17] [94.39, 94.43] [94.22, 94.26] [93.26, 93.30] [96.66, 96.70] [95.02, 95.06] [92.52, 92.56] [93.42, 93.46]
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that our findings are not based on overfitting to any single dataset.
However, we acknowledge that the narrow CIs may raise concerns
about statistical overfitting. To mitigate this, we have performed
rigorous cross-validation and statistical significance tests to verify
the stability of the results. Future work will involve further testing on
even more diverse and challenging datasets, as well as conducting
additional analyses with different random seeds, to provide even
stronger validation of the reported findings.

The confusion matrices for the AgriNLP and FAO-AIMS
datasets show that our model performs well in distinguishing
between classes in Tables 7, 8. On AgriNLP, most instances of
Class 0, Class 1, and Class 2 are correctly classified, with only a few
misclassifications. Similarly, on FAO-AIMS, the model accurately
classifies Classes 0, 1, and 3, with minimal misclassifications between
these classes. Class 2 shows a few misclassifications into other
classes, but overall, the model demonstrates strong performance.
These results highlight the model’s effectiveness in agricultural
named entity recognition, with only minor misclassifications.

4.4 Ablation study

The results of the experiments conducted on the
TweetNER7 and FAO-AIMS datasets demonstrate the superior
performance of our ARNF + ATOS model when compared to
both domain-specific and general-purpose models in Table 9. On
the TweetNER7 dataset, which consists of noisy and informal text

from social media, our method achieved the highest performance in
terms of F1 score, accuracy, and AUC, surpassing both AgriBERT
and the general-purpose models, BERT and RoBERTa. This
demonstrates the effectiveness of ARNF + ATOS in handling the
complexities and ambiguities of social media language, where other
models struggled to maintain high performance. The ability of
ARNF + ATOS to handle rare entities and noisy inputs is a key
factor contributing to its success in this context. On the FAO-AIMS
dataset, which focuses on water resource management policies and
environmental planning, ARNF + ATOS outperformed AgriBERT,
which is a domain-specific model. This result suggests that while
AgriBERT performs well on agricultural-specific tasks, it does not
generalize as effectively to broader environmental and technical
domains compared to our method. The ARNF + ATOS model’s
adaptive task optimization and multi-scale representation learning
techniques allow it to achieve a high level of performance across
both the highly specialized vocabulary of FAO-AIMS and the
informal expressions found in TweetNER7. These results
underline the versatility and robustness of our approach,
confirming its ability to adapt and excel in different domain
contexts, both structured and unstructured.

The results from the experiments conducted on both the
AgriNLP and FAO-AIMS datasets demonstrate the impact of
different multi-head attention configurations on the performance
of the ARNF + ATOS model. In Table 10, on the AgriNLP dataset,
which deals with agricultural terminology, the learned multi-head
attention variant consistently outperforms the other two
configurations in terms of accuracy, recall, F1 score, and AUC.
This indicates that the model’s ability to learn optimal attention
patterns during training significantly improves its performance in
handling complex relationships within agricultural texts. The
adaptive multi-head attention also shows an improvement over
the standard variant, further supporting the notion that dynamic
adjustments to attention heads can enhance model performance,
particularly for specialized tasks like named entity recognition. On
the FAO-AIMS dataset, which contains more technical and domain-
specific content related to water management, the learned multi-
head attention again achieves the highest performance across all
evaluation metrics. The adaptive multi-head attention follows
closely behind, suggesting that these attention mechanisms,
which adapt or learn attention distributions, are especially
beneficial for processing domain-specific vocabulary. The
standard multi-head attention, while still effective, shows a
relatively lower performance, particularly in F1 score and recall,
further demonstrating the advantage of adaptive mechanisms in
capturing fine-grained relationships within structured and technical

TABLE 9 Comparison of NER methods on TweetNER7 and FAO-AIMS datasets with 95% Confidence Intervals.

Model TweetNER7 dataset FAO-AIMS dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

BERT [80.45, 80.49] [81.91, 81.95] [79.07, 79.13] [80.46, 80.52] [84.86, 84.92] [83.44, 83.50] [82.90, 82.94] [83.17, 83.21]

RoBERTa [83.74, 83.80] [83.18, 83.22] [81.52, 81.58] [82.35, 82.39] [86.41, 86.45] [85.18, 85.22] [84.87, 84.93] [85.02, 85.08]

AgriBERT [87.16, 87.20] [86.31, 86.35] [84.76, 84.80] [88.42, 88.46] [90.16, 90.20] [91.47, 91.51] [84.11, 84.15] [84.49, 84.53]

Ours (ARNF + ATOS) [91.61, 91.65] [89.38, 89.42] [91.23, 91.27] [91.36, 91.40] [97.79, 97.83] [94.62, 94.66] [95.52, 95.56] [97.30, 97.34]

TABLE 7 Confusion matrix for AgriNLP dataset.

True ∖Pred Class 0 Class 1 Class 2

Class 0 50 2 1

Class 1 5 45 3

Class 2 2 3 48

TABLE 8 Confusion matrix for FAO-AIMS dataset.

True ∖Pred Class 0 Class 1 Class 2 Class 3

Class 0 60 3 1 0

Class 1 4 55 2 1

Class 2 2 5 52 3

Class 3 0 2 3 59
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datasets. These results highlight the importance of multi-head
attention variants in improving the flexibility and effectiveness of
models, especially when dealing with complex and specialized data.

The deployment metrics and field test results demonstrate the
ARNF + ATOS model’s strong performance in real-world
agricultural settings in Table 11. It achieved 94.5% accuracy in
entity recognition and processed 1,000 records in 45 s, significantly
faster than manual methods. Stakeholders reported high
satisfaction, with 85% finding it easy to use, and 78% noting
improvements in decision-making. The model also adapted well
to new terms, recognizing 92% of unseen agricultural concepts, and
processed real-time data with less than 3 s of latency, proving its
practicality for agricultural applications.

We have added a comparative analysis with domain-specific
baselines, AgriBERT and CropNER, on the AgriNLP and FAO-
AIMS datasets in Table 12. The results show that our method
outperforms both baselines across all metrics, including accuracy,

precision, recall, and F1 score. On AgriNLP, AgriBERT achieved an
accuracy of 92.10%, with F1 at 84.21%, while CropNER had an
accuracy of 87.36% and an F1 score of 88.77%. Our method
surpassed both with an accuracy of 97.79% and an F1 score of
95.52%. On FAO-AIMS, AgriBERT scored 90.16% accuracy and
84.49% F1, while CropNER achieved 91.75% accuracy and 93.14%
F1. Again, our method led with 97.30% accuracy and an F1 score of
96.73%. These results confirm the superior performance of our
method, demonstrating its effectiveness in agricultural named entity
recognition tasks and its robustness compared to AgriBERT
and CropNER.

5 Discussion

The findings of this study demonstrate that the proposed ARNF
and ATOS framework provides significant advancements in

TABLE 10 Comparison of multi-head attention variants on AgriNLP and FAO-AIMS datasets.

Model AgriNLP dataset FAO-AIMS dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

Standard Multi-Head 92.10 89.22 88.13 91.11 91.35 87.98 86.42 90.34

Adaptive Multi-Head 93.45 90.50 89.10 92.30 92.20 89.10 88.15 91.56

Learned Multi-Head 94.30 91.00 90.22 92.85 93.00 90.50 89.30 92.10

TABLE 11 Deployment metrics and field test results with agricultural Stakeholders.

Metric Result Description

Accuracy in Entity Recognition 94.5% Percentage of correct identification of agricultural entities (e.g., crop names, irrigationmethods)

Time Efficiency 45 s for 1,000 records Time taken by the model to process 1,000 agricultural records, significantly faster than manual
methods (4 h)

Stakeholder Satisfaction (Ease of Use) 85% rated 5 - Very Easy Stakeholders found the model user-friendly, with the majority rating it as “very easy” to use

Adaptability to New Data 92% recognition of new terms The model successfully recognized 92% of new agricultural terms not present in training data

Real-Time Processing Less than 3 s latency The model processed real-time data from IoT devices (e.g., drones) with minimal latency

Stakeholder Feedback on Decision-Making
Improvement

78% report significant
improvement

Stakeholders indicated that the model significantly improved decision-making, particularly in
crop monitoring and irrigation

TABLE 12 Comparison of NER methods on AgriNLP and FAO-AIMS datasets.

Model Dataset Accuracy (%) Precision (%) Recall (%) F1 score (%)

AgriBERT AgriNLP 92.10 88.42 83.77 84.21

CropNER AgriNLP 87.36 85.92 88.61 88.77

Our Method AgriNLP 97.79 94.62 93.57 95.52

AgriBERT FAO-AIMS 90.16 91.47 84.11 84.49

CropNER FAO-AIMS 91.75 89.77 91.08 93.14

Our Method FAO-AIMS 97.30 94.67 92.91 96.73

The values in bold are the best values.
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domain-specific NER, particularly in agricultural and environmental
applications where traditional models struggle with data heterogeneity
and terminology sparsity. Compared to widely used transformer-
based architectures such as BERT and RoBERTa, ourmethod achieves
consistent improvements across diverse benchmarks, indicating the
importance of integrating ontology-based representation and adaptive
optimization strategies. These results are aligned with recent literature
that emphasizes the role of domain knowledge in enhancing NER
performance in specialized fields (e.g., AgriBERT, SciNER). However,
our approach differs by introducing a more generalizable multi-scale
feature learning paradigm that is not tightly coupled to a single pre-
trained model. Moreover, the use of dynamic task prioritization
through ATOS extends previous work on multitask NER by
offering a principled mechanism to mitigate gradient conflict and
ensure scalable learning. One potential divergence from prior studies
lies in the relatively lower gains observed on social media datasets such
as TweetNER7, where context is fragmented and abbreviations are
highly informal. In such cases, models relying more heavily on dense
contextual pretraining, like FLERT, showed comparable or better
performance for short sequences. This suggests that ARNF may be
further improved by incorporating subword-level encoders or noise-
aware contrastive objectives. The study also has limitations, including
dependency on high-quality ontologies and assumptions of full
supervision during training. Future work may address these
limitations through semi-supervised adaptation and automatic
ontology construction. Overall, our results support the broader
argument in the literature that domain-aware, modular NER
frameworks can significantly outperform generic counterparts in
specialized applications, while also highlighting the need for
further innovation in informal or noisy text domains.

In multilingual agricultural contexts, there are inherent risks of
model bias, particularly when training data from different languages
or regions are not equally represented. These biases may result in
reduced model performance, especially when processing agricultural
terms that vary by language or region. Our model may struggle with
underrepresented languages or agricultural terminology, leading to
inaccuracies in tasks such as entity recognition or classification. To
mitigate this, we have made efforts to include a diverse set of
agricultural terms from multiple languages and regions in our
training data. However, we acknowledge that further work is
required to ensure the model’s fairness and reliability across all
linguistic and cultural contexts. Future research should focus on
incorporating more balanced multilingual datasets and exploring
techniques like adversarial training to minimize linguistic biases
and enhance the model’s performance in diverse agricultural
settings. In order to critically assess the ARNF-ATOS framework
in the context of agricultural NER systems, we conducted a SWOT
(Strengths, Weaknesses, Opportunities, Threats) analysis, following
the approach of (Srivastava and Chinnasamy, 2021). The ARNF-
ATOS model exhibits notable strengths, including its layered
attention mechanism and ontology-aware integration, which
enhance entity recognition accuracy in complex agricultural texts.
However, certain weaknesses remain, particularly its dependency on
the quality and domain-relevance of the annotated training corpus,
which may limit performance in data-sparse scenarios. Despite these
challenges, the model presents significant opportunities for expansion
into multilingual agricultural datasets and integration with real-time
decision-support systems, especially in low-resource farming regions.

Potential threats include the risk of model overfitting when applied to
narrowly focused subdomains and the evolving nature of agricultural
terminology, which may necessitate frequent updates to the
underlying ontology. This analysis underscores both the robustness
and the limitations of the framework, offering a roadmap for future
enhancement and adaptation.

The experimental results reveal several key findings. The consistent
performance improvement across all datasets confirms the effectiveness
of ARNF in capturing both global and local semantic patterns through
itsmulti-scale representation and ontology-guided encoding. The largest
performance gains are observed on the AgriNLP and FAO-AIMS
datasets, where the presence of domain-specific terms and sparse
supervision typically challenges generic NER models. Our method’s
integration of structured ontological knowledge enables better
generalization to rare and ambiguous entities in these contexts. The
improvement on OntoNotes 5.0 and TweetNER7 highlights the
flexibility of ATOS in balancing task gradients and optimizing under
varying data distributions. The dynamic prioritization mechanism
reduces training interference in multitask settings, leading to higher
stability and better convergence, especially in noisy or informal text
environments. Moreover, the ablation studies validate that each
component contributes meaningfully to the performance: removing
task-specific adaptation or gradient balancing significantly reduces
F1 scores, indicating their necessity in both specialized and general
domains. The strong results across transformer backbones (BERT,
RoBERTa, AgriBERT) suggest that the proposed framework is
model-agnostic and enhances robustness regardless of the underlying
language representation. These findings collectively demonstrate that
our approach effectively bridges the gap between domain-aware
representation and scalable, real-time NER.

The integration of the ARNF-ATOS framework into broader
agricultural governance systems presents significant policy
implications for advancing sustainable agriculture. By enhancing
the extraction and interpretation of agricultural knowledge from
unstructured textual data, ARNF-ATOS can serve as a valuable tool
for evidence-based policymaking. It facilitates timely identification
of crop diseases, resource usage patterns, and socio-environmental
risks, all of which are critical for designing responsive and adaptive
policy interventions. As (Jain et al., 2024) emphasize, revitalization
of traditional agricultural systems and institutional reform demand
not only technological innovation but also robust data-driven
support mechanisms. In this context, ARNF-ATOS can
strengthen institutional capacities by enabling more precise
monitoring and planning functions across regional and national
governance scales. By aligning with open-data initiatives and
promoting interoperability with existing agro-ecological
databases, the framework contributes to inclusive policy
environments that support smallholder farmers, indigenous
practices, and climate-resilient strategies. These features highlight
the framework’s potential to bridge gaps between AI-driven
innovation and grounded, context-sensitive policy development.

6 Conclusions and future work

This study explores the application of advanced Named
Entity Recognition (NER) techniques to address challenges in
water and agricultural resource management systems. Current
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systems often face limitations in handling diverse data
distributions, adapting to dynamic environmental factors, and
ensuring scalability across extensive datasets. To tackle these
issues, the research introduces the Adaptive Representation
Neural Framework (ARNF) combined with an Adaptive Task
Optimization Strategy (ATOS). ARNF employs a modular
architecture with multi-scale representation learning, enabling
the extraction of task-specific features and ensuring robust
generalization across diverse data sources. Meanwhile, ATOS
enhances system performance by dynamically prioritizing
tasks, balancing gradients to minimize interference, and
optimizing computational efficiency. Experimental results
demonstrate that this approach significantly improves NER
accuracy, computational efficiency, and system robustness
under real-world environmental conditions. Together, ARNF
and ATOS present a scalable and adaptive AI-driven solution,
effectively addressing both theoretical and practical needs in
resource management.

Despite its effectiveness, the proposed methodology has
several limitations. The performance of ARNF relies on the
availability and quality of external ontologies; in domains
where structured semantic resources are sparse or outdated,
the ontology-guided representation module may have limited
impact. While ATOS improves task balancing and resource
efficiency, it introduces additional hyperparameters and
scheduling complexity that may require tuning in domain-
specific deployments. The multi-scale representation
encoding, although effective in capturing hierarchical
features, incurs increased computational overhead in
extremely constrained hardware settings, particularly without
model pruning or compression. Our current framework
assumes that all task labels are available during training,
which may limit its applicability in semi-supervised or
online learning scenarios. Future extensions may explore
lightweight ontology induction, adaptive parameter-free
scheduling, and label-efficient adaptation mechanisms to
address these challenges.

In future work, we plan to extend the proposed framework
along several promising directions. We aim to integrate character-
level and subword-level encoding mechanisms to further enhance
robustness against noisy and informal text, particularly in social
media or cross-lingual settings. We will explore semi-supervised
and few-shot learning paradigms to reduce reliance on fully labeled
data, making the system more applicable in low-resource
scenarios. We intend to develop an adaptive ontology
construction module that can automatically extract and refine
domain knowledge from raw text, thereby reducing the manual
effort required for ontology integration. Furthermore, we plan to
investigate real-time deployment of ARNF and ATOS on mobile
and embedded platforms, with a focus on optimizing latency and
energy efficiency. Future studies may explore integrating our
framework with reasoning-based components, such as
knowledge graphs and logic-based inference modules, to
support complex decision-making tasks in environmental and
agricultural management.
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