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Against the backdrop of global climate governance and China’s dual-carbon
goals, low-carbon city construction has emerged as a critical strategy for
balancing economic growth and environmental sustainability. This study
evaluates the impact of low-carbon city construction on inclusive green
growth in China from 2006 to 2021. Empirical results indicate that these
policies contribute to an average increase of 0.005 units in inclusive green
growth for the treatment group compared to the control group, with
robustness assessed through placebo tests and alternative variable
substitutions. Further analysis indicates that the policy effects are more
pronounced in central cities, resource-based cities, and cities with high
carbon abatement potential, driven strongly by urban technological
innovation, industrial structure optimization, and enhanced government
leadership. However, spatial effect analysis shows that, despite a significant
positive spatial correlation between cities, the spillover effects of low-carbon
policies are limited, primarily concentrated within the pilot cities. Therefore, it is
recommended to strengthen cross-regional governance alliances, establish
green technology transfer centers, promote the “R&D-manufacturing-
recycling” industrial chain, and deploy tailored regional transformation
incentives. Additionally, drawing on international models such as the EU’s
carbon border mechanism and Germany’s industry-university-research
framework, collaborative “regional green growth partnerships” should be
developed to foster inclusive green growth.

KEYWORDS

low-carbon city construction, inclusive green growth, difference-in-differences
method, double machine learning, energy policy evaluation

1 Introduction

As cities have become the new engine of global economic growth in the post-industrial
era, the rapid pace of urbanization has brought new challenges to global environmental
governance (McGee and Mori, 2021). It is estimated that cities account for over 80% of the
world’s gross domestic product (GDP) and over 75% of carbon dioxide emissions (CO2)
(Shan et al., 2021). As the second largest economy in the world, China’s reform and opening
up over the past 40 years has made remarkable achievements in economic growth and social
development. According to the data released by the National Bureau of Statistics of China in
the Statistical Bulletin of National Economic and Social Development of the People’s
Republic of China for 2023, the country’s total GDP for the year reached 126,058.2 billion
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yuan, marking a growth of 5.2% compared to the previous year. By
the end of the year, the urbanization rate of the national
permanent resident population was 66.16%, an increase of
0.94% points from the end of the previous year (NBSC, 2024).
However, the rough and reckless growth and the previous
development strategy of “pollute first, treat later” have led to
uncertainty in green growth and sustainable development (Cheng
et al., 2016; Liu et al., 2025; Zhao et al., 2020). Since 2006, China
has surpassed the United States to become the world’s largest
CO2 emitter (Zeng et al., 2021). China’s rapid economic
development, industrialization, and urbanization have led to a
continuous increase in energy demand and carbon dioxide
emissions. By 2021, China’s total energy consumption,
electricity consumption, and carbon dioxide emissions reached
5,259 million tons of standard coal, 8,259 TWh, and 10,647 Mt,
respectively, which is an increase of 258%, 559%, and 244%
compared to the year 2000. This vigorous growth trend means
that China must proactively abandon its traditional development
models and path dependencies, integrating the concept of green
growth into its new urbanization process, thereby fostering an
inclusive green growth model that balances societal development
and effective environmental management. In this context, this
paper examines China as a unique case and research area,
exploring the positive effects of implementing low-carbon
urban development to address current environmental
constraints and promote inclusive green growth. The findings
of this study are also of significant relevance to global sustainable
development.

The concept of inclusive green growth, first introduced by the
World Bank in 2012 and elaborated through the UN Sustainable
Development Goals (SDGs), establishes a dual mandate for
sustainable development that integrates environmental efficiency
(“greening”) with social equity (“inclusiveness”) (Berkhout et al.,
2018; Zhang and Li, 2023). In China’s context, this paradigm aligns
with the national strategy for high-quality development
characterized by innovation, coordination, green transition,
openness, and shared benefits (Said and Dindar, 2024). While
empirical studies confirm an upward trajectory in China’s
inclusive green growth, persistent regional disparities highlight
systemic challenges. Key barriers include technological
mismatches between innovation scale and green development
needs (Liu et al., 2021), economic policy uncertainties (Gu et al.,
2021), and institutional capacity deficits in urban governance (Fan
et al., 2023). These domestic findings resonate with international
evidence showing context-dependent sustainability outcomes. For
instance, Shobande and Asongu (2023) demonstrate that while
information and communication technologies (ICT) robustly
enhance environmental sustainability in South Africa, their
impacts in Nigeria remain ambiguous, underscoring the spatial
heterogeneity of policy effectiveness and the critical role of
infrastructure preparedness.

To address regional imbalances, China has implemented urban-
level policy experiments, among which the Low-Carbon City Pilot
Policy (LCCPP) serves as a cornerstone intervention (Xu et al., 2023;
Xu et al., 202a). Extant research delineates LCCPP’s
multidimensional impacts: economically, it stimulates green
industrial upgrading through technological innovation (Peng
et al., 2023; Wu et al., 2023; Yin and Guo, 2022); socially, it

fosters behavioral shifts toward sustainable lifestyles (Liu and Xu,
2022); environmentally, it improves energy efficiency and enables
synergistic governance of carbon and smog pollution (Li et al., 2022;
Wang et al., 2023). These domestic observations find parallels in
global policy analyses. Shobande et al. (2024) reveal that carbon
trading systems in OECD countries achieve emission reductions
primarily when coupled with renewable energy investments,
whereas standalone carbon taxes may exacerbate growth-emission
trade-offs. Furthermore, circular economy strategies integrated with
inclusive growth mechanisms—such as lifecycle product
management and workforce reskilling—prove effective in
accelerating decarbonization across EU nations. Such
international evidence complements China’s local experiments,
suggesting that policy coherence between technological,
economic, and social instruments is pivotal for achieving
sustainable transitions (Shobande et al., 2025). Despite these
advancements, critical knowledge gaps remain unresolved. First,
while existing studies extensively document LCCPP’s isolated
economic or environmental outcomes (Yang et al., 2023; Zeng
et al., 2023), its holistic impact on inclusive green growth—a
concept demanding simultaneous progress in both environmental
efficiency and social equity—has yet to be systematically evaluated.
Second, the transmission mechanisms require clarification: although
technological innovation and behavioral change are frequently cited
pathways (Liu and Xu, 2022; Yin and Guo, 2022), comprehensive
analyses integrating technological, institutional, and spatial drivers
remain lacking. Third, spatial dynamics are underexplored,
particularly the potential for policy spillovers across regions. This
omission contrasts with international findings demonstrating
spatially heterogeneous impacts of sustainability policies, as
evidenced by Shobande and Ogbeifun (2022) analysis of ICT’s
differential environmental effects across OECD nations.

To bridge these gaps, this study posits three core research
questions: (1) Can the LCCPP effectively promote inclusive green
growth in Chinese cities? (2) Through which
mechanisms—technological innovation, institutional
restructuring, or behavioral change—does the LCCPP exert its
influence? (3) Do these policy effects exhibit spatial spillovers or
regional heterogeneity? By synthesizing methodological
approaches from China-focused policy evaluations (Li et al.,
2022; Wu et al., 2023) and global analytical frameworks on
policy coherence (Shobande et al., 2025), our analysis provides
novel insights into optimizing multiscale sustainability
governance.

This study advances the literature on inclusive green growth and
low-carbon policy through three original contributions. First,
departing from existing measurement frameworks that often
emphasize single dimensions of sustainability, we systematically
construct a multidirectional index system spanning economic,
social, and environmental inclusiveness—the three constitutive
pillars of inclusive green growth—and apply it dynamically to
279 Chinese cities from 2006 to 2021. This novel metric not only
quantifies urban green development trajectories but also establishes
an analytical baseline for policy effect evaluation. Second, leveraging
the quasi-experimental setting of China’s low-carbon city pilot
policy, we employ a difference-in-differences (DID) approach
augmented by rigorous robustness checks (parallel trend analysis,
placebo tests, PSM-DID) to empirically isolate the policy’s causal
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impacts. The analysis further uncovers critical heterogeneity across
city types, challenging the “one-size-fits-all” policy presumption and
offering actionable insights for differentiated governance
frameworks. Third, extending beyond conventional evaluation
paradigms, we pioneer spatial econometric investigations that
reveal limited intercity spillovers despite significant spatial
autocorrelation—a counterintuitive finding that underscores the
localized nature of low-carbon policy benefits and necessitates
revised strategies for regional coordination. Collectively, these
theoretical, methodological, and empirical advancements deepen
academic understanding of sustainability policy mechanisms while
informing precision governance in green transitions.

The remaining structure of this paper is organized as follows:
The Section 2 conducts a theoretical analysis and formulates
research hypotheses. The Section 3 describes the methodology
and data used in the study. Sections 4, 5 present the empirical
results and the related testing procedures. The Section 6 offers the
research conclusions and policy recommendations.

2 Theoretical analysis and hypotheses
development

As shown in Figure 1, this study hypothesizes that LCCPP has a
positive impact on Inclusive Green Growth. Specifically, LCCPP can
promote urban technological innovation, optimize industrial
structure, and enhance government leadership behavior, thereby
advancing the level of Inclusive Green Growth. Therefore, this paper
proposes three research hypotheses, which are discussed in
detail below.

2.1 Urban technological innovation

In China, local governments have the authority to implement
tailored pilot policies and policy innovations that tackle specific
urban development challenges. Successful experiences obtained
from pilot cities can subsequently be replicated elsewhere (Zou
et al., 2022). Participating in these prestigious pilot initiatives
encourages local governments to offer greater support for
research and development in clean and green technologies,
mitigating uncertainty and reducing the risks enterprises face in
green investment, thus driving technological innovation capabilities
(Peng and Bai, 2018). Furthermore, pilot cities establish clear carbon
emission targets as well as platforms for carbon trading and
registration, providing enterprises sustained economic incentives,
such as through the sale of surplus carbon credits, to invest in green
production technologies (Chen et al., 2021). Urban technological
innovation fostered by these actions further promotes inclusive
green growth. First, targeted and coordinated investment in green
technological advancement improves technology coherence and
helps avoid resource allocation redundancies, thus enhancing
economic inclusiveness and sustainability (Sun et al., 2020; Zhou
and Feng, 2017). Second, higher technological innovation efficiency
strengthens resource use and production processes, facilitates new
sustainable business models, and promotes transition in residents’
consumption and employment patterns, eventually realizing stable
economic growth and environmental improvement simultaneously
(Trapp and Kanbach, 2021; Ulucak, 2020). In recent years, the
customized application of artificial intelligence in the environmental
field has injected new momentum into technological innovation for
low-carbon cities, supporting innovative green energy development

FIGURE 1
Theoretical framework.
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and ecological protection solutions. Its comprehensive technological
effects have been initially validated, and the enormous potential for
educational promotion has continuously emerged, receiving initial
research support from practical levels (Chen et al., 2024). At the
same time, the direct technological dividends brought by digital
transformation, which enhance production technology and
economic efficiency, are particularly evident in high-pollution
traditional enterprises. This helps improve overall departmental
production efficiency and promotes the greening of industrial
structures, thereby strengthening the mechanisms of policy
transformation towards innovation-driven governance (Zhao
et al., 2024). Thus, this study proposes:

H1: Low-carbon urban construction promotes inclusive green
growth through urban technological innovation.

2.2 Industrial structure optimization

Low-carbon city pilot policies leverage financial and policy
support to promote a shift from high-emission industries towards
green, service-oriented sectors, facilitating low-carbon travel and
green consumption (Zeng et al., 2023). Such initiatives encourage
market-driven elimination of non-transitionable high-emission
industries, economic structure adjustment, stringent
environmental standards, and early integration of sustainable
principles in urban planning (Zheng et al., 2021). This further
incentivizes low-carbon transportation, eco-friendly building
practices, environmental protection, new energy, and other high-
tech and emerging industries (Yang et al., 2019), alongside
accelerated growth within low-carbon service sectors (Liu, 2023).
Industrial structure upgrading enhances inclusive green growth in
two key respects: first, it fosters the concentration of high-quality
human capital, develops urban services, improves livelihood
infrastructure, ultimately advancing economic inclusivity and
welfare (Sun et al., 2022); second, boosting the proportion of
modern services, advanced manufacturing, and digital economies
maximizes economic output while minimizing energy consumption
and emissions, thus supporting sustainable, green growth (Cheng
et al., 2019; Ren et al., 2022). In the process of upgrading low-carbon
industries, the construction of a multidimensional applicable
evaluation benchmark management system is crucial for forming
an institutional framework for industrial collaborative growth and
accurately judging the adaptability of technical standards and
environmental constraints. This aims to enhance the structural
optimization level and precise management of new industrial
sectors, enabling urban economies to achieve more inclusive
green growth (Xu et al., 2024b). Accordingly, this research proposes:

H2: Low-carbon urban construction promotes inclusive green
growth through industrial structure optimization.

2.3 Government leadership behavior

The pilot policy for low-carbon cities, as a policy tool with
Chinese characteristics, strengthens government leadership through
dual institutional mechanisms. While the GDP-oriented

development model may weaken local governments’ incentives
for environmental governance, the policy innovation
demonstrated in low-carbon city construction creates a regional
demonstration effect (Hui et al., 2016), serving as an institutional
counterbalance to traditional growth priorities. This pilot system
establishes a “signaling-commitment” framework: in contexts with
weak environmental incentives, local governments utilize policy
experimentation to showcase administrative capabilities, while the
leadership activities in low-carbon development reciprocally
enhance policy implementation capacity and public behavior
regulation (Tie et al., 2020). The reinforced leadership facilitates
inclusive green growth through three ways: first, by
institutionalizing stricter environmental standards that internalize
ecological costs into production systems; second, through fiscal
reallocation that prioritizes green infrastructure investment; third,
via regulatory innovation that transforms environmental
governance from passive compliance to proactive prevention.
These institutional upgrades ultimately translate policy
innovation into sustainable growth outcomes through improved
resource allocation efficiency and green technological spillovers.
During the pilot process of low-carbon cities, a strict and
coordinated government policy standard was established. By
managing waste disposal and upgrading infrastructure
ecologically, residents’ awareness of green production and living
can be effectively enhanced. The normative and proactive
interventions demonstrated by the government in the exploration
of ecological civilization construction have led to a comprehensive
and continuous improvement in its ecological performance. This
aligns with the motivational norms of local governments under
policy and interest constraints and is also conducive to promoting
innovations in green production and consumption (Ma et al., 2024).
Therefore, this paper proposes the following research hypothesis:

H3: Low-carbon urban construction promotes inclusive green
growth by strengthening government leadership behavior.

2.4 Spatial spillover effects

The spatial spillover effects of low-carbon city pilot policies also
constitute an important driving mechanism for inclusive green
growth. As a vehicle for regional policy innovation, pilot cities
establish networks for the flow of factors and channels for
knowledge spillover across administrative boundaries, forming a
spatial transmission mechanism characterized by the diffusion of
clean technologies, the synergy of environmental regulations, and
the sharing of green infrastructure. Geographically proximate cities
achieve low-carbon technology transfer through industrial linkage
effects, facilitate the optimal allocation of green production factors
through interconnected transportation infrastructure, and promote
the convergence of environmental regulation standards through
policy learning effects. This spatial synergy effect not only breaks
through resource misallocation caused by administrative barriers
but also reduces marginal abatement costs through the economies of
scale in regional environmental governance, ultimately achieving a
balanced distribution of economic growth dividends and ecological
improvement benefits on a larger geographical scale. In particular, it
is worth mentioning that the policy experiences among emerging
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economic cities overseas have significant spillover and learning
effects. However, in countries where barriers to energy transition
are evident or where the monetary policy environment is relatively
volatile, the uncertainty of policy expectations may lead to
significant negative spillovers on the clean energy transition. This
indicates that spatial spillovers do not always occur positively, and
targeted localized experiments are needed to deepen particularly the
policy mechanisms, promoting upgrades in long-term governance
performance and collaboration (Liu et al., 2025). Therefore, this
paper proposes the following research hypothesis:

H4: The construction of low-carbon cities promotes inclusive green
growth through spatial spillover effects.

3 Methodology and data

3.1 Model specification

This article constructs a difference-in-differences model to
verify the impact of low-carbon city development on inclusive
green growth, as shown in Equation 1.

Iggit � λ0 + λ1Lcc pilot it + γControls it + ui + ηt + εit (1)

The dependent variable Iggit represents the inclusive green
growth index of city i in year t; Lcc pilotit is a proxy variable for the
low-carbon city pilot policy, where Lcc pilotit � 1 if city i is
designated as a pilot city for low-carbon development in year t,
and Lcc pilotit � 0 otherwise; λ1 is the coefficient to be estimated
(λ1 ≠ 0), indicating that when λ1 > 0, low-carbon city development
promotes inclusive green growth, and when λ1 < 0, it suppresses
energy transition. Controlsit includes a set of control variables; ui
represents city fixed effects; ηt represents time fixed effects; εit is the
random error term.

3.2 Variables

3.2.1 Dependent variable
Inclusive green growth (Igg). We refer to Zhang and Li (2023)

and Fan et al. (2023) and to construct a comprehensive evaluation
index system from the three dimensions of economic inclusiveness,
social inclusiveness, and environmental inclusiveness. Specifically,
economic inclusiveness is measured by per capitaGDP, GDP growth
rate, the ratio of per capita disposable income between urban and
rural residents, and the end-of-year balance of urban and rural
residents’ savings; social inclusiveness is assessed through the
number of hospital beds per 10,000 people, books per
10,000 people in public libraries, the number of theaters and
cinemas per 10,000 people, the number of participants in basic
pension insurance for urban workers, basic medical insurance, and
unemployment insurance; environmental inclusiveness is gauged by
industrial sulfur dioxide emissions, industrial wastewater discharge,
industrial particulate emissions, comprehensive utilization rate of
general industrial solid waste, harmless treatment rate of domestic
garbage, and centralized treatment rate of wastewater treatment
plants. In this paper, we refer to the practice of Zou et al. (2023) to

calculate the inclusive green growth index by using the entropy
weight TOPSIS method. The entropy weight TOPSIS method is
divided into two stages, firstly, the entropy weight method calculates
the weight of each evaluation index, and multiplies the evaluation
index data with the weight to get the weight matrix, and then the
weight matrix is calculated by the TOPSIS method to get the value of
(Iggi)t, and the larger the value of (Iggi)t the higher the level of
inclusive green growth of the region is.

(1) We first obtain the initial matrix Mt for year t, according to
Equation 2, whereXij denotes the value of indicator j for city
i,m denotes the number of cities, and n represents the number
of indicators.

Mt � Xij( )mn( )
t
�

X11 / X1n

..

.
1 ..

.

Xm1 / Xmn

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠
t

(2)

(2) The standardisation matrix Vt � ((Yij)mn)t is generated, and
the indicators with bigger and better values are standardised
according to Equation 3, and vice versa according to Equation
4. Where, Min i Xij{ } denotes the minimum value, and
Max i Xij{ } denotes the maximum value. In this step, we
carry out non-zero processing of the data after
standardisation.

Yij �
Xij −Min i Xij{ }

Max i Xij{ } −Min i Xij{ } (3)

Yij �
Max i Xij{ } −Xij

Max i Xij{ } −Min i Xij{ } (4)

(3) Determine the information entropy (ej) of the evaluation
indicators. In order to objectively measure the distribution
indicators of the whole system and avoid human subjective
behaviours, this paper adopts the information entropy (ej) to
determine the weight of each indicator. ej is based on the basic
principle of determining the weight of information according
to the amount of information conveyed by the indicator, and
the larger the ej of the indicator is, the more chaotic the
system is, and the larger the amount of information required
(Wang et al., 2018). Therefore, the greater the information
entropy of the indicator, the smaller the weight. The weight
entropy formula is shown in Equation 5:

ej � − 1
Lnm

∑m
i�1
PijlnPij (5)

In Equation 5, Pij � Yij∑m

i�1Yij
denotes the proportion of the

evaluation indicator j in city i, and m is the number of cities, in
this paper, m � 279.

(4) Determine the weight of evaluation indicator j according to
Equation 6, wj ∈ [0, 1],∑n

j�1wj � 1, n is the number of
evaluation indicators.

wj � 1 − ej∑n
j�1 1 − ej( ) (6)
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(5) The weighted decision matrix for the indicators in year t is
shown in Equation 7.

Rt � rij( )
mn

( )
t
�

r11 / r1n
..
.

1 ..
.

rm1 / rmn

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠
t

�
w1Y11 / wnY1n

..

.
1 ..

.

w1Ym1 / wnYmn

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠
t

(7)

TOPSIS method is a multi-criteria decision-making technique
(Li et al., 2018). The method selects the optimal solution by
constructing ideal solutions for and against the evaluation object,
calculating the relative proximity of each solution to the ideal
solution, and ranking the solutions. In this study, based on the
matrix Rt � ((rij)mn)t calculated by entropy weight method,
TOPSIS method is applied. The specific steps are as follows:

The positive ideal scenario S+j and negative ideal scenario S−j are
calculated by Equation 8; Equation 9, S+j denotes the set of maximum
values of the evaluation index j in all cities i, and S−j denotes the set of
minimum values of the evaluation index j in all cities i.

S+j � max r1j, r2j,/, rmj( ) � S+1 , S
+
2 ,/, S+n( ) (8)

Sj
− � min r1j, r2j,/, rmj( ) � S−1 , S

−
2 ,/, S−n( ) (9)

The Euclidean distance was used to calculate the distance
between the impact indicators and the positive and negative ideal
solutions for each province (Chen et al., 2022). The distancesD+

i and
D−

i between the ith evaluated province were calculated by
Equation 10.

D+
i �

�����������∑n
j�1

S+j − rij( )2√√
D−

i �
�����������∑n
j�1

S−j − rij( )2√√
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Finally, the inclusive green growth index (Iggi)t is calculated in
year t according to Equation 11.

Iggi( )t � Di
−

Di
+ +Di

−, Ci ∈ 0, 1[ ] (11)

3.2.2 Independent variable
Low-Carbon City Pilot Policy (Lcc_pilot). This paper matches

the lists of the three batches of low-carbon city pilots announced by
the National Development and Reform Commission with the data
from each city, combining the timing of the pilot city designations to
construct a dummy variable for the low-carbon city pilot policy
(Lcc_pilot). It should be noted that once a city is designated as a pilot
city for low-carbon development in a given year, it is considered a
low-carbon city pilot for all subsequent years.

3.2.3 Control variables
In this study, based on the existing literature and theoretical

framework, population size (Pop), urbanisation level (Urb),
information technology level (Info), and consumption level of
residents (Con) are selected as control variables, covering
economic, social and technological factors. The selection of these
control variables not only captures the impact of low-carbon city
building on inclusive green growth more comprehensively, but also

effectively reduces omitted variable bias. Specifically, (1) Population size
(Pop). Large-scale population agglomeration usually increases resource
consumption and carbon emissions, thus posing challenges to the
sustainable development of cities (Jones and Kammen, 2011).
Therefore, when studying the impacts of low-carbon city building, it
is necessary to include population size as a control variable to avoid the
interference of population size changes on the results. In addition,
population size is also closely related to various aspects such as
economic growth and infrastructure development (Golley and
Zheng, 2015). (2) Urbanisation level (Urb). The level of urbanisation
is an important indicator of the urban development process, which
broadly affects resource use efficiency and carbon emission levels. It has
been shown that as the urbanisation process advances, land use
efficiency and resource integration capacity increase, but it is also
accompanied by an increase in energy consumption and
environmental pressure (Liu et al., 2016). Including the level of
urbanisation as a control variable helps to remove the potential
impact of urbanisation process on inclusive green growth, thus
better identifying the role of low-carbon urban policies. (3)
Informatisation level (Info). Informatisation level reflects the city’s
development in information and communication technology (ICT).
Information technology plays a key role in promoting the application of
green technology and improving the efficiency of resource utilisation
(Li et al., 2023). The improvement of information technology can not
only reduce carbon emissions in traditional industries, but also promote
the innovation and application of new energy technologies, which has
an important impact on the green development of the city. (4)
Consumption level of residents (Con). The consumption level of
residents is an important indicator reflecting the living standard and
consumption ability of urban residents, which has a significant
correlation with energy demand and carbon emissions, and the
consumption level also reflects the demand of urban residents for
green products and services.

3.2.4 Mechanism variables
First, for H1, the number of patents applied is chosen as a proxy

variable for measuring technological innovation in the city (Urban_
tecinno). Secondly, for H2, the proportion of added value of tertiary
industry to GDP was used as a proxy variable to measure the
rationalisation level of the city’s industrial structure (Indust_
strura). Finally, for H3, the number of times’environmental
protection’appears in the government work report is calculated as
a proxy variable for government leadership behaviour (Gover_
leadbe), and this variable data comes from the annual work
report of each city government online, we use python based on
jieba thesaurus for keyword extraction and word frequency statistics.
This is because if the government sets strong and clear goals for what
needs to be achieved in local environmental governance, the
expression of this willpower will be released through
authoritative channels, such as public government documents
such as annual programme reports (Tie et al., 2020).

3.3 Data sources and descriptive
statistical analysis

The data used in this article are derived from the “China City
Statistical Yearbook,” the China Economic and Social Big Data
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Research Platform, and the EPS database. Missing data were
supplemented through the statistical yearbooks of various
prefecture-level cities and linear interpolation. Considering that
the years 2006–2021 encompass three crucial developmental
phases in China—namely the Eleventh, Twelfth, and Thirteenth
Five-Year Plans—this study collected balanced panel data for
279 prefecture-level cities from 2006 to 2021. The research
sample excludes the regions of Hong Kong, Macau, Taiwan, the
Tibet Autonomous Region, and cities with severe data deficiencies.
Additionally, logarithmic transformations were applied to the
dependent variables, control variables, and mechanism variables
to maintain model simplicity and interpretative power, while also
avoiding the issues of multicollinearity and data non-stationarity
that can arise from excessive complexity. Table 1 reports the
descriptive analysis results of the main variables.

4 Results

4.1 Benchmark regression

The baseline regression results are presented in Table 2. Models
(1) to (5) conducted regressions by progressively adding control
variables to validate the policy effects of low-carbon city

development on inclusive green growth. It was observed that the
regression coefficient for Lcc pilot is 0.005, which is significant at
the 1% level. This indicates that low-carbon city development
positively promotes inclusive green growth.

4.2 Sensitivity analysis

To ensure the reliability of the benchmark regression
conclusions, this study conducts sensitivity analyses from
multiple dimensions to eliminate the interference of random
factors. First, the results of the parallel trend test indicate that
prior to the implementation of the LCCPP, the levels of inclusive
green growth in pilot cities and non-pilot cities met the common
trend assumption, with significant differences only emerging after
the policy was enacted (Figure 3). This provides a prerequisite
guarantee for the applicability of the difference-in-differences
method. Secondly, a placebo test constructed with 500 virtual
policy time points reveals that the pseudo-estimated coefficients
are densely distributed around zero, with significance levels far lower
than the actual estimates (Figure 4), confirming the statistical
significance of the policy effects as non-random. Furthermore,
considering the potential non-random selection bias in the choice
of pilot cities, this paper re-estimates using the propensity score

TABLE 1 Descriptive statistics of the main variables.

Variable type Name Symbol N Mean Sd Min Max

Dependent Inclusive green growth Igg 4,464 0.189 0.072 0.095 0.804

Independent Low-carbon city construction Lcc_Pilot 4,464 0.236 0.425 0.000 1.000

Controls Population size Pop 4,464 −1.051 0.352 −10.379 0.012

Urbanization level Urb 4,464 −1.642 1.733 −9.710 5.957

Information level Info 4,464 3.967 0.287 2.854 4.605

Resident consumption level Con 4,464 5.738 0.914 1.609 7.882

Mechanism Urban technological innovation Urban_tecinno 4,464 7.146 1.780 1.386 12.388

Industrial structure optimisation Indust_strura 4,464 2.921 1.165 −20.723 5.148

Government leadership behaviour Gover_leadbe 4,464 0.327 0.142 0.000 1.239

TABLE 2 Benchmark regression results.

Model Igg Igg Igg Igg Igg

(1) (2) (3) (4) (5)

Lcc_pilot 0.006*** (5.34) 0.006*** (5.24) 0.006*** (5.28) 0.006*** (4.95) 0.005*** (4.80)

Constant 0.187*** (523.42) 0.182*** (80.05) 0.184*** (76.46) 0.303*** (16.67) 0.061 (0.82)

Controls YES YES YES YES YES

City fixed YES YES YES YES YES

Time fixed YES YES YES YES YES

Observations 4,464 4,464 4,464 4,464 4,464

R2 0.942 0.942 0.942 0.943 0.943

Note: *, **, *** indicate significance at the 10%, 5%, and 1% levels, respectively, with robust t-statistics in parentheses.
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matching difference-in-differences method (PSM-DID). The
results show that after controlling for covariates such as urban
economic scale, industrial structure, and resource endowment, the
policy effect remains robust (Table 3). Additionally, by excluding
special samples such as municipalities directly under the central
government and special economic zones, and by removing the
overlapping effects of “smart city” pilot policies within the same
period, it was found that the direction and significance level of the
core explanatory variable coefficients did not undergo substantial
changes, as shown in Table 4. The consistency of the series of test
results indicates that the mechanism through which the low carbon
city policy promotes inclusive green growth is highly robust, and
the benchmark regression conclusions are not affected by model

specification bias, sample selection bias, or exogenous
policy shocks.

4.2.1 Parallel trends test
Prior to the implementation of the low-carbon city pilot

policy, the levels of inclusive green growth in both pilot and
non-pilot cities should exhibit similar trends. Therefore,
according to Equation 12, the specific regression model setup
is as follows:

Iggit � β0 + β1 Lcc pilot −3it + β2 Lcc pilot −2it + . . . + β15 Lcc pilot 11ii

+ δXit + vt + γi + εit

(12)

TABLE 3 PSM-DID regression results.

Model Base Weight! = 0 On_support

(1) (2) (3)

lcc_pilot 0.005*** 0.003*** 0.006***

(4.80) (2.73) (4.87)

Constant 0.061 0.210*** 0.060

(0.82) (3.38) (0.81)

Controls Yes YES YES

City fixed YES YES YES

Time fixed YES YES YES

Observations 4,464 3,045 4,454

R2 0.943 0.916 0.943

Note: *, **, *** indicate significance at the 10%, 5%, and 1% levels, respectively, with robust t-statistics in parentheses.

TABLE 4 Robustness test results.

Model Excluding special cases Considering other concurrent policies

Excluding
municipalities

1% tail
trimming

Broadband Smart city Big data Concurrently

(1) (2) (3) (4) (5) (6)

lcc_pilot 0.005*** (4.18) 0.004*** (3.97) 0.005*** (4.78) 0.005*** (4.83) 0.006*** (4.88) 0.006*** (4.89)

bc_pilot 0.001 (0.86) 0.001 (0.71)

sc_pilot 0.002 (1.45) 0.001 (1.32)

bd_pilot −0.001 (−0.94) −0.001 (−0.84)

Constant 0.044 (0.60) 0.201*** (4.09) 0.060 (0.81) 0.058 (0.78) 0.057 (0.77) 0.053 (0.72)

Controls YES YES YES YES YES YES

City fixed YES YES YES YES YES YES

Time fixed YES YES YES YES YES YES

Observations 4,464 4,464 4,464 4,464 4,464 4,464

R2 0.912 0.936 0.943 0.943 0.943 0.943

Note: *, **, *** indicate significance at the 10%, 5%, and 1% levels, respectively, with robust t-statistics in parentheses.
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The model adopts a dynamic distributed lag design,
systematically evaluating the time-varying effects of the low-
carbon city pilot policy (Lcc_pilot) on inclusive green growth
(Igg) by introducing 15 annual dummy variables (from 3 years
before to 11 years after the policy implementation) and interaction
terms with the treatment group dummy variable. The coefficients for
the first three periods before the policy (t = −3 to t = −1) are used to
validate the parallel trend assumption, while the coefficients for the
policy period (t = 0) and the subsequent 11 periods (t = 1 to t = 11)
reveal the dynamic evolution path of the policy effects. The control
variable set (Xit) and two-way fixed effects (city γi and year vt)
control for observable confounding factors and unobservable
spatiotemporal heterogeneity, and the error term (εit) uses city-
clustered standard errors to address serial correlation. Figure 2
reports the results of the parallel trend test in 90% confidence
interval, where the estimated coefficients are not significant,
indicating that there were no significant differences in the trends
of energy transformation development between the treatment group
and the control group before the implementation of the low-carbon
city construction. Furthermore, the estimated coefficients are
significantly positive, indicating that in the year of implementing
low-carbon city construction, the trend in the level of inclusive green
growth in the treatment group was significantly higher than that in
the control group, validating the parallel trend assumption of this
study’s baseline regression. The absolute values of the estimated
coefficients show a trend of rapid growth after fluctuation as k
increases, suggesting that low-carbon city construction has a long-
term positive dynamic effect on promoting inclusive green growth,
which gradually expands over time.

4.2.2 Placebo test
In order to rigorously rule out the influence of potentially

unobservable confounding factors, we conducted placebo tests to

verify if the increase in inclusive green growth is indeed driven by
low-carbon city construction rather than by random chance.
Specifically, we randomly reassigned the policy implementation
years within our sample cities and re-estimated the baseline
regression model 500 times. Figure 3 visually summarizes the
results of these placebo tests through the probability density
distributions of estimated coefficients and their P-values. The
kernel density plot for these placebo regression coefficients
closely approximates a normal distribution centered around zero,
implying no substantial false positive tendency. The majority of the
placebo-derived coefficients are statistically insignificant (with their
P-values greater than 10%), suggesting minimal risk of identifying
spurious policy effects. Importantly, none of these coefficient
estimates exceeds the actual policy effect size obtained from our
benchmark regression (0.005), as highlighted by the vertical dashed
reference line. Overall, these findings confirm that the previously
identified significant baseline results are robust and not merely
attributable to random factors, lending further credibility to our
empirical conclusions.

4.2.3 PSM-DID
Considering that there may still be some selection bias in

practical operations, namely, that the government’s selection of
pilot cities may involve a “special list,” the assumption of
random grouping may not be strictly satisfied. Directly
comparing differences between pilot and non-pilot cities could
involve selection bias. Therefore, this paper employs the
propensity score matching (PSM) method proposed by Heckman
et al. (1997) to address this issue. Specifically, to obtain each city’s
propensity score, a logit regression is conducted on the binary
variable indicating whether a city is a low-carbon city
construction pilot (treat), using a 1:2 nearest neighbor matching
method with the control variables. Subsequently, cities closest in

FIGURE 2
Parallel trend test results.
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propensity score to the experimental group are chosen as matched
pairs. Before matching, there is a significant deviation between the
kernel density curves of the treatment and control groups, but this
deviation significantly narrows after matching, indicating a
significant reduction in characteristic differences between the two
groups, suggesting effective matching. Table 3 presents the
regression results of the PSM-DID, showing that even with the
PSM-DID method, the construction of low-carbon cities still
significantly promotes inclusive green growth.

4.2.4 Robustness tests on special samples and
other policy influences
(1) Excluding Special Cases. To further verify the robustness of

the research conclusions, two strategies were employed to
eliminate special cases: Strategy 1 considers the administrative
level and economic development of Beijing, Tianjin,
Shanghai, and Chongqing, which are significantly higher
than other cities, thus samples from these four
municipalities were excluded. Strategy 2 involves trimming
1% of the tails from both the dependent variable and control
variables before regression to eliminate the impact of extreme
values. As shown in columns (1)–(2) of Table 4, excluding
these special cases did not significantly alter the conclusions of
this paper.

(2) Considering Other Concurrent Policies. In assessing the
policy effects of constructing low-carbon cities on inclusive
green growth, it is necessary to exclude the influence of other
concurrent pilot policies. China implemented pilot programs
for “Smart Cities,” “Broadband China,” and “National Big
Data Comprehensive Experimental Zones” in 2012, 2014, and
2015 respectively. For this purpose, dummy variables for
“Broadband China Pilot (Bc_pilot),” “Smart City Pilot (Sc_
pilot),” and “National Big Data Comprehensive Experimental

Zone Pilot (Bd_pilot)” were established and included in the
regression equations. Results from Model (3)–(6) in Table 4
indicate that after removing the influence of concurrent
policies, the baseline regression conclusions remain robust.

5 Discussion

5.1 Heterogeneity test

Table 5 demonstrates the heterogeneous impacts of low-carbon
city building in different types of cities, revealing that policy effects
vary according to city characteristics. These differences reflect the
complexity and diversity of low-carbon transitions in different
economic and social structures and provide important insights
into the effectiveness of policies.

5.1.1 Heterogeneity analyses based on the
administrative level of cities

The policy effects of low-carbon city building on inclusive green
growth are all characterised by significant heterogeneity, which
necessitates an in-depth discussion. In this paper, municipalities
directly under the central government, sub-provincial cities and
provincial capitals are classified as central cities, and other
prefectural cities are classified as non-central cities, in order to
reveal the impacts of resource and policy tilting, and the comparative
results are shown in Table 5 model (1)–(2). Centre cities are usually
the areas where economic and policy resources are concentrated,
and low carbon city building produces a significant positive effect in
these cities. The administrative level of cities serves as an effective
proxy for policy effect heterogeneity because it institutionally
determines resource allocation priorities and policy
implementation capacities in China’s governance system. Central

FIGURE 3
Placebo test results.
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cities (municipalities, sub-provincial cities, and provincial capitals)
inherently possess superior political status that grants them
preferential access to fiscal transfers, innovative talent pools, and
pilot policy authorizations from central/provincial governments.
This hierarchical advantage enables them to secure stronger
financial backing, accelerate technological adoption, and
implement low-carbon initiatives through streamlined
administrative coordination factors critically reflected in their
enhanced inclusive green growth outcomes. Conversely, non-
central cities face structural constraints in resource acquisition
and policy flexibility due to their lower administrative ranking,
resulting in delayed infrastructure upgrades and fragmented
industrial transitions despite identical policy mandates. The
administrative hierarchy thus fundamentally shapes cities’
institutional capacity to convert low-carbon policies into tangible
green growth outcomes through its embedded mechanisms of
resource concentration and governance efficiency differentiation.

5.1.2 Heterogeneity analysis based on urban
resource endowment

Based on the National Sustainable Development Plan for
Resource-Based Cities (2013–2020) issued by the State Council,
the sample cities are divided into resource-based cities and non-
resource-based cities, and the comparison results are shown in
Table 5 Models (3)–(4). It can be found that resource-based
cities rely on traditional high-carbon emission industries, such as
coal and oil, and therefore face greater structural challenges in
promoting green transformation. However, the data in the table
suggests that resource-based cities show a significant increase in
green growth driven by low-carbon policies. This may be due to the
fact that these cities have accelerated their industrial restructuring
under the pressure of low-carbon policies, and have taken the
initiative to reduce their reliance on highly polluting industries in
favour of greener alternatives, such as renewable energy and energy-
saving technologies. The remarkable results of resource-based cities
in building low-carbon cities reflect the huge potential for policy

transformation in these ‘high-emission towns’. In contrast, non-
resource cities, which rely less on traditional industries with high
carbon emissions, have seen a relatively small marginal effect of
green transformation, which may indicate that these cities already
have a certain foundation for green development and that the
additional effect of low-carbon policies is relatively limited.

5.1.3 Heterogeneity analysis based on the carbon
emission reduction potential of cities

We measure the carbon emission reduction potential of a city
based on the ratio of carbon dioxide emissions to GDP. If this
ratio in a given year exceeds the national median, it indicates
relatively low carbon emission efficiency for that city, and hence
it is classified as having high carbon emission reduction potential.
Otherwise, the city is categorized as having low carbon emission
reduction potential. Estimation results reported in Table 5
[Models (5)–(6)] present the heterogeneous impacts of city-
specific characteristics on the marginal effects from low-
carbon policies. As expected, the policy effects are more
pronounced in cities assessed as having high carbon emission
reduction potential. Typically, these cities are facing greater
pressures to control emissions and thus can realize more
significant carbon reductions and substantial economic
restructuring when transitioning into low-carbon cities.
Consequently, introduction of policies promoting low-carbon
city construction has provided strong transformative
motivation to these cities, leading to a notable increase in
inclusive green growth. By contrast, the policy impact is
comparatively moderate in cities classified as having low
carbon emission reduction potential, although still positive.
This is likely because these cities already possess a relatively
solid foundation in emission efficiency and green growth.
Therefore, the incremental stimulus provided by additional
policy intervention tends to be smaller. For these cities, low-
carbon policies primarily serve to reinforce and sustain gains
from their previously established green developments, rather

TABLE 5 Results of heterogeneity test.

Model Administrative level Urban resource endowment Carbon emission
reduction potential

Central cities Non-central cities Resource-based Non-resource LCRP HCRP

(1) (2) (3) (4) (5) (6)

Lcc_pilot 0.013** 0.002** 0.005*** 0.002 0.003* (6)

(2.42) (2.03) (3.84) (1.33) (1.68) 0.006***

Constant −0.974*** 0.223*** 0.132 0.091 0.108 (3.77)

(−3.08) (4.44) (1.26) (1.11) (1.14) 0.144

Controls YES YES YES YES YES (1.47)

City fixed YES YES YES YES YES YES

Time fixed YES YES YES YES YES YES

Observations 304 4,160 2,704 1,760 2,200 YES

R2 0.971 0.853 0.959 0.730 0.955 2,248

Note: *, **, *** indicate significance at the 10%, 5%, and 1% levels, respectively, with robust t-statistics in parentheses.
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than significantly transforming their current economic
structures.

The heterogeneity analysis indicates that the effectiveness of
low-carbon city policies varies significantly depending on cities’
emission intensity, economic structures, and resource endowments.
Generally, policy effects are found to be stronger in high-emission,
resource-based or central cities, suggesting that these cities pose
greater potential and need greater policy-driven transformation in
industrial and technical structures to achieve inclusive green growth
targets. By contrast, lower-emission, non-resource-based or
peripheral cities, which already offer more favourable baseline
conditions and existing green infrastructure, tend to benefit
modestly, mainly through policy guidance and demonstration
effects that consolidate their advantages. These differentiated
patterns underscore that policymakers must carefully consider
each city’s unique context, tailoring policies and resource
allocations accordingly. By precisely targeting policies in
accordance with urban heterogeneity criteria, authorities may
optimize the effectiveness of low-carbon policies, contributing to
the achievement of coordinated regional green development and
long-term sustainability. Similar to recent integrated
multidimensional assessments [such as Peng et al. (2024)], our
results emphasize the necessity of evaluating sustainability-related
issues from multiple perspectives to more precisely implement
urban sustainable policies.

5.2 Mechanism test

The empirical results confirm that advancing the construction
of low-carbon cities can significantly promote inclusive green
growth. Further discussion will be made on the transmission
mechanism of this policy effect. This paper draws on the
mediation effect model proposed by Jiang (2022) to construct
the following test equation. The test results are presented
in Table 6.

Mechanismit � δ0 + δ1 Lcc pilot + γControls it + ui + ηt + εit (13)

In Equation 13, Mechanismit is the mechanism variable, δ1 are
the coefficients to be estimated.

5.2.1 The mediating role of urban technological
innovation

From the perspective of urban technological innovation, the
results in the column (1) indicate that the construction of low-
carbon cities significantly promotes urban technological innovation.
Low-carbon city pilot projects not only advance the implementation
of environmental protection policies but also enhance the overall
innovation capacity of cities by encouraging technological research
and application. This aligns with the spatial resonance of the policy
pilot diffusion theory proposed by Zou et al. (2022), which suggests
that local governments transform the construction of low-carbon
cities into a competitive arena for technological innovation through
an internal championship mechanism. Urban technological
innovation is the core driving force behind low-carbon
transformation, especially in the context of intensified global
technological competition and increasing demands for
environmental protection. The enhancement of urban
technological innovation provides strong momentum for the
transition to a green economy.

5.2.2 The mediating role of industrial structure
optimization

Columns (2) confirm that optimizing industrial structure is
another key pathway to achieving inclusive green growth in the
construction of low-carbon cities. The results indicate that the
development of low-carbon cities significantly promotes the
upgrading and optimization of industrial structures. By reducing
reliance on traditional high-pollution and high-energy-consuming
industries, low-carbon policies accelerate the emergence of green
industries and foster the development of emerging sectors such as
clean energy and green manufacturing. The pathway through which

TABLE 6 Mechanism test results.

Model Urban technological innovation Industrial structure optimization Government leadership behaviour

Urban_tecinno Indust_strura Gover_leadbe

(1) (2) (3)

lcc_pilot 0.091*** 0.008** 0.020***

(2.63) (2.52) (2.62)

Constant 2.404 −0.103 0.718**

(1.43) (−0.75) (2.11)

Controls YES YES YES

City fixed YES YES YES

Time fixed YES YES YES

Observations 4,464 4,464 4,464

R2 0.918 0.842 0.373

Note: *, **, *** indicate significance at the 10%, 5%, and 1% levels, respectively, with robust t-statistics in parentheses.
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industrial structure upgrading drives the development of green
industries aligns closely with the research by Zeng et al. (2023).
Furthermore, empirical studies by Yang et al. (2019) demonstrate
that the construction of low-carbon cities facilitates economic green
transformation through the cultivation of emerging high-tech
industries, such as environmental protection and new energy
sectors. This finding complements the analysis in column (3)
regarding the mechanism by which the rise of emerging
industries enhances resource utilization efficiency. Additionally,
the dual approach proposed by Zheng et al. (2021)—eliminating
outdated capacity through market mechanisms and embedding low-
carbon standards in the planning phase—has been concretized in
the policy effects of this study. Local governments are not only
compelled to transform traditional industries through carbon
trading mechanisms but also raise the entry thresholds for
heavily polluting industries at the urban planning level, reflecting
the connection between theory and policy practice. The
optimization of industrial structure has a very significant impact
on inclusive green growth, indicating that the transformation and
upgrading of industrial structures are one of the key driving factors
of green growth. This may be attributed to the fact that, on one hand,
optimizing industrial structure promotes high-quality population
agglomeration while accelerating the development of smart
industries and the digital economy Ren et al. (2022).

5.2.3 The mediating role of government
leadership behavior

Finally, government leadership plays a crucial role in promoting
the construction of low-carbon cities and inclusive green growth.
Columns (3) confirm that the development of low-carbon cities
significantly influences government leadership behavior, while
active government participation and guidance notably foster
inclusive green growth. This aligns closely with the logic revealed
by Hui et al. (2016) regarding “low-carbon pilot projects triggering a
competition for policy innovation among local governments”
—even under the pressure of GDP assessments, local
governments demonstrate their ability to innovate beyond
traditional paths through practical actions such as setting
industry access thresholds and investing in green infrastructure.
Additionally, government policy signals are key in managing market
expectations and creating a stable policy environment for green
economic activities. The result also supports the direct impact of
government leadership on inclusive green growth, indicating that in
the implementation of low-carbon policies, the government serves
not only as a policymaker but also as a guarantor of policy
effectiveness. This echoes Tie et al. (2020), who argue that low-
carbon pilot policies compel local governments to shift from being
“passive responders” to “active innovators,” ultimately advancing
green transformation by enhancing their environmental regulatory
capabilities and guiding the public and market.

5.3 Spatial effects test

To capture the multidimensional spatial spillover effects of Low-
Carbon City Pilot policies (LCCPP) on Inclusive Green Growth
(Igg), this study employs a tripartite spatial econometric framework
incorporating three model specifications and three spatial weight

matrices. The Spatial Error Model (SEM) accounts for unobserved
spatial correlation in residuals, the Spatial Lag Model (SLM)
examines spillovers through endogenous interaction effects, and
the Spatial Durbin Model (SDM) simultaneously considers both
endogenous interaction and exogenous spillovers from explanatory
variables. These models are estimated using: (1) an inverse distance
matrix reflecting geographic proximity decay, where spatial
dependence decreases with physical distance; (2) an economic
distance matrix calibrated by per capita GDP disparities,
capturing core-periphery economic linkages; and (3) an
economic-geographic nested matrix combining both dimensions
to identify synergistic spatial effects. Through comparative analysis
across these model-matrix combinations, the research systematically
verifies the existence, direction, and transmission channels of
LCCPP’s spatial spillovers while controlling for spatial
autocorrelation biases. The results reveal how technological
diffusion and regulatory convergence in pilot cities generate
cross-border growth externalities through geographically bounded
knowledge spillovers and economically driven factor mobility,
providing empirical foundations for coordinated regional
decarbonization strategies.

5.3.1 Spatial correlation results
In order to comprehensively assess the impact of low-carbon city

building on inclusive green growth, it is first necessary to test
whether there is a spatial correlation of inclusive green growth
between regions. Spatial correlation implies that a city’s inclusive
green growth is not only influenced by its own economic,
technological and policy factors, but may also have some
correlation with the level of economic development and policy
implementation of neighbouring cities. In other words, inclusive
green growth among cities may not occur in isolation, but rather
spatial dependence through interregional interactions and linkages.
The results are shown in Table 7.

It can be seen that the Moran’s I under all three weight matrices
is positive and the p-value is less than 0.001 in all years, indicating
that there is a significant positive spatial correlation of the inclusive
green growth index in all years and under all matrices. This spatial
positive correlation implies that there is a linkage effect between a
city’s level of inclusive green growth and its neighbouring cities.
Specifically, if a city achieves a high level of inclusive green growth in
a given year, its neighbouring cities tend to show similar
growth trends.

The Moran’s I (column 1) of the inverse distance matrix is
relatively small, usually ranging from 0.046 to 0.059, reflecting the
fact that the spatial positive correlation of inclusive green growth
between regions weakens as distance increases. This result is
consistent with the classical theory of spatial economics that the
closer the geographical distance, the closer the economic activities,
policy diffusion and technology sharing between cities. Thus, under
the inverse distance matrix, while the correlation exists, this spatial
dependence is more limited, suggesting that spatial interactions
occur mainly between relatively close regions.

The economic distance matrix (Column 3) shows a relatively
high Moran’s I, with values typically ranging from 0.238 to 0.332.
This suggests that the higher the economic similarity between cities,
the stronger the spatial dependence of their inclusive green growth
performance. That is, cities with similar economic conditions are
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more likely to influence each other on their green development
paths. This may be due to the fact that these cities face similar
economic structures and development needs, and are therefore more
likely to achieve shared green growth through policy coordination,
industrial cooperation and technology diffusion. This higher Moran
index highlights the important role of economic linkages in
promoting green development between regions, suggesting that
policy influence may not be limited to geographic proximity, but
is also closely related to similarity in economic structure.

The Moran’s I for the economic-geographical nested matrix
(column 5) falls somewhere in between, usually between 0.069 and
0.084. This result reflects the interaction of the dual dimensions of
economy and geography, taking into account both geographic
proximity and economic linkages. This matrix reveals that the
spatial relevance of inclusive green growth is stronger in groups
of cities that are both economically and geographically
interconnected. It can be understood that such cities are not only
relatively close geographically, but also have stronger linkages in
terms of economic interactions, policy implementation and resource
sharing. Thus, economic and geographic nesting effects combine to
drive synergies on inclusive green growth in these cities.

Figure 4 illustrates the spatial correlation of the inclusive green
growth index in 2006 and 2021 under three different weighting
matrices. Overall, the inverse distance matrix, the economic distance
matrix and the economic-geographical nested matrix reveal the
linkage effects of inclusive green growth between cities under
geographical, economic and combined factors, respectively.

Under the inverse distance matrix, the Moran’s I is relatively low
in 2006 and 2021, reflecting some positive correlation between
geographically neighbouring cities, but this correlation is weak.
The scatter is concentrated near the origin, suggesting that most
cities have more similar levels of growth to their neighbours, but the
strength of spatial interaction is lower. In contrast, the economic
distance matrix shows a higher Moran’s I, suggesting a stronger
green growth linkage effect between cities with similar economic
conditions. Cities with similar economies are more likely to show
consistent green development trends, both in 2006 and 2021, which
may be due to the fact that similar industrial structures, policy
orientations, and levels of economic development allow these cities
to show greater synergies in the implementation of low-carbon
policies. However, the linkage effect between economically similar
cities is still significant, even though the Moran’s I of the economic
distance matrix decreases in 2021 compared to 2006. The economic-
geographical nested matrix, on the other hand, combines economic
and geographical factors to reflect the dual spatial and economic
linkages between cities. Under this matrix, the spatial correlation
exhibits a moderate level and is relatively stable, suggesting that
economically and geographically similar cities play complementary
roles in promoting green development. Overall, these scatter plots
reveal the dependence of inclusive green growth on the spatial
dimension, i.e., the green growth of cities is influenced not only
by their own policies and economic conditions, but also by their
neighbouring cities, especially those that are more
economically similar.

TABLE 7 Global Moran’s I based on different weight matrices.

Model Inverse distance matrix Economic distance matrix Economic-geographic nested
matrix

Moran’s I P_value Moran’s I P_value Moran’s I P_value

(1) (2) (3) (4) (5) (6)

2006 0.059 <0.001 0.332 <0.001 0.081 <0.001

2007 0.057 <0.001 0.331 <0.001 0.080 <0.001

2008 0.053 <0.001 0.308 <0.001 0.073 <0.001

2009 0.053 <0.001 0.289 <0.001 0.073 <0.001

2010 0.051 <0.001 0.273 <0.001 0.071 <0.001

2011 0.054 <0.001 0.306 <0.001 0.076 <0.001

2012 0.050 <0.001 0.308 <0.001 0.069 <0.001

2013 0.046 <0.001 0.238 <0.001 0.069 <0.001

2014 0.055 <0.001 0.271 <0.001 0.080 <0.001

2015 0.053 <0.001 0.270 <0.001 0.081 <0.001

2016 0.051 <0.001 0.260 <0.001 0.076 <0.001

2017 0.056 <0.001 0.267 <0.001 0.084 <0.001

2018 0.051 <0.001 0.317 <0.001 0.074 <0.001

2019 0.052 <0.001 0.305 <0.001 0.077 <0.001

2020 0.052 <0.001 0.279 <0.001 0.077 <0.001

2021 0.053 <0.001 0.270 <0.001 0.081 <0.001
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5.3.2 Spatial effects results
Table 8 shows the regression results of low carbon city building

on inclusive green growth index under three different weight
matrices, namely, inverse distance matrix, economic distance
matrix, and economic-geographical nested matrix, and three
spatial models, namely, spatial error model (SEM), spatial lag
model (SLM), and spatial Durbin model (SDM), which reveal the
direct and spatial effects of low carbon city building on inclusive
green growth. From the results, no matter which matrices and
models are chosen, the direct effect of low-carbon city
construction on inclusive green growth is always significant, and
the main effect coefficient is positive and significant in all models,
about 0.005, indicating that low-carbon policy effectively promotes
inclusive green growth in the areas where the policy is implemented.

However, the results show a more mixed case when discussing
spatial effects. First, while there is spatial dependence, particularly in
the spatial error and lag models, and the spatial coefficients are
positive and significant under all matrices, suggesting that there is
indeed some spatial correlation in the inclusive green growth index
between cities, this correlation is more in the form of growth
synergies between similar cities than spillover effects through
policy diffusion. Specifically, the spatial lag term under the
inverse distance matrix and the economic-geographic nested
matrix is not significant in the spatial Durbin model, and even
presents a negative value under the inverse distance matrix,
implying the failure to form significant positive policy
interactions between neighbouring cities. The spillover effect
under the economic distance matrix, although positive in the
SDM model, is still insignificant, suggesting that the diffusion
effect of low-carbon policies between cities fails to be significant

even if the economic structures are similar. The total effect (LR_
Total) is more significant in the spatial lag model, especially under
the inverse distance and economic distance matrices, which shows
that the total effect includes a strong direct effect, but the indirect
effect is more limited, and the spatial spillover effect does not appear.
The positive effects of low-carbon policies are mainly reflected in the
areas where the policies are implemented, and are not effectively
transmitted to neighbouring areas, indicating that even under
conditions of geographical proximity or economic similarity, the
cross-regional effects of the policies are limited by the differences in
resources, policy implementation capacity and economic structure
between cities. This result reveals the limitations of low-carbon
policies, which, despite their contribution to green growth in
individual cities, lack significant regional diffusion effects,
suggesting that future policy design may need to focus more on
interregional synergies in order to achieve broader policy spillovers
and cross-regional development effects.

6 Conclusion and policy
recommendations

This study constructs a comprehensive evaluation system for
inclusive green growth and reveals the driving effect of China’s low-
carbon city pilot policy on inclusive green growth and its
mechanisms based on a multi-period difference-in-differences
(DID) approach. The research findings are as follows: (1) The
construction of low-carbon cities significantly promotes inclusive
green growth. This conclusion remains robust under various
sensitivity analyses. (2) Low-carbon city construction enhances

FIGURE 4
Scatterplot of localised Moran’s I under three weighting matrices (2006, 2021). Note: The horizontal axis (z) denotes the standardized value of the
dependent variable after standardization. The vertical axis (Wz) represents the standardized spatial lagged variable value of the dependent variable, which
is calculated from the given spatial weight matrix.
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the level of inclusive green growth in pilot cities through three
pathways: stimulating urban technological innovation, optimizing
industrial structure, and strengthening government leadership
behavior. This effect is particularly pronounced in central cities,
resource-based cities, and high carbon abatement potential cities. (3)
Furthermore, although spatial econometric tests indicate a positive
spatial correlation in green growth among cities, the policy effects
are primarily localized, showing no significant spillover effects to
neighboring cities.

To improve the practicality of policy recommendations, we
distinctively propose strategies targeted towards national
governments, local governments, and the private sector,
respectively. At the national level, policymakers can establish
provincial-level “Low-Carbon Governance Alliances” inspired by
the EU’s cross-regional cooperation on carbon adjustment
mechanisms, facilitating unified carbon emission trading and
ecological compensation across jurisdictions. At the local-
government level, cities can collaborate to form regional green
technology transfer centers modeled after the Fraunhofer
Institute approach in Germany, accelerating innovation
diffusion through patent sharing pools and risk-sharing
mechanisms. Moreover, regional governments could draw
lessons from Kitakyushu Eco-Town in Japan and collectively
develop “Green Industry Maps,” cultivating intercity networks
based on integrated “R&D–Manufacturing–Recycling” chains. At

the private-sector level, businesses in high-emission and
resource-based cities can be incentivized by tailored financing
programs (e.g., capacity replacement funding) and expanded
green-certificate trading schemes. Together, these tiered
interventions support the formation of replicable Regional
Green Growth Partnerships that enhance inclusive green
development nationwide.

This paper has some limitations that need to be addressed. First,
while the control variables were carefully selected based on
theoretical frameworks and data availability, the complexity of
green growth determinants suggests the potential value of
incorporating additional socio-technical factors. Future studies
could expand the analytical framework by integrating cross-
disciplinary datasets, particularly in areas such as educational
attainment gradients and transportation infrastructure spatial
networks. Second, considering data availability and completeness,
this study only selected key indicators to measure the main
characteristics of inclusive green growth. Future research could
incorporate more indicators to supplement and improve the
current evaluation system. Third, this study simplified the
mediation effect model process and attempted to use new testing
methods. Future research could consider applying more advanced
mediation effect testing models combined with machine learning
techniques to improve the robustness of the mechanism analysis
conclusions.

TABLE 8 Results of considering spatial effects in multiple scenarios.

Model Inverse distance matrix Economic distance matrix Economic-geographic nested
matrix

SEM SLM SDM SEM SLM SDM SEM SLM SDM

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Main 0.005** 0.005** 0.005** 0.005** 0.005** 0.005** 0.005** 0.005** 0.005*

(0.002) (0.002) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Wx — — −0.002 — — 0.007 — — 0.001

(0.020) (0.005) (0.020)

Spatial 0.651*** 0.648*** 0.607*** 0.151*** 0.171*** 0.140*** 0.380*** 0.366*** 0.300**

(0.078) (0.083) (0.081) (0.036) (0.037) (0.035) (0.097) (0.117) (0.116)

Variance <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001***

(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

LR_Direct — 0.005** 0.005** — 0.005** 0.005** — 0.005** 0.005*

(0.002) (0.003) (0.002) (0.002) (0.002) (0.002)

LR Indirect — 0.010* 0.001 — 0.001** 0.009 — 0.003 0.004

(0.006) (0.048) (0.001) (0.006) (0.002) (0.027)

LR_Total — 0.015** 0.006 — 0.007** 0.014** — 0.008** 0.008

(0.007) (0.047) (0.003) (0.006) (0.004) (0.026)

Fix type Both Both Both Both Both Both Both Both Both

Observations 4,464 4,464 4,464 4,464 4,464 4,464 4,464 4,464 4,464

R2 0.047 0.040 0.024 0.060 0.060 0.012 0.047 0.048 0.037

Note: *, **, *** indicate significance at the 10%, 5%, and 1% levels, respectively, with robust standard errors in parentheses.
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