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Introduction: Addressing the dual challenges of climate change and sustainable
food production, this study proposed an integrated framework that combined
planter performance optimization with green, low-carbon agricultural
transformation. While traditional planting strategies focused on parameters
like seed depth, speed, and spacing, they often neglected environmental
sustainability and adaptability to climate variability.

Methods: To bridge this gap, we introduced the Adaptive Precision Planter
Optimization Model (APPOM), which leveraged real-time environmental
sensing, machine learning, and multi-objective optimization to dynamically
adjust key planting parameters. Our approach also incorporated green
technologies, including electric-powered planters and carbon-sequestration
soil practices, to reduce the ecological footprint of agricultural operations.

Results: Experimental results validated that APPOM significantly improved
planting accuracy, enhanced resource efficiency, and reduced carbon
emissions across diverse soil and climate conditions. Furthermore, we
presented the Real-Time Adaptive Planter Optimization (RAPO) strategy,
which enabled context-aware decision-making and continuous optimization
under field variability.

Discussion: The findings underscored the potential of intelligent, eco-friendly
planting systems to foster climate-resilient agriculture. However, challenges such
as cost barriers and deployment scalability remained. Future research should aim
to enhance affordability and accessibility, particularly for smallholder farmers, and
expand the framework to a broader range of crops and regions.
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1 Introduction

Planters are agricultural machines designed to place seeds into the soil at controlled
depth, spacing, and rate, playing a critical role in ensuring seed germination and uniform
crop establishment (Hu et al., 2023). Planter optimization refers to the process of adjusting
these operational parameters to improve efficiency, minimize input waste, and maximize
yield. Conventional planter optimization typically focuses on mechanical
improvements—such as refining seed metering systems, regulating ground speed, and
maintaining consistent spacing between seeds (Peng et al., 2022). These strategies often rely
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on fixed rules and assume uniform field conditions, which limits
their adaptability to environmental variation (Wei et al., 2023).

However, traditional approaches have notable limitations. They
fail to account for spatial and temporal variability in soil properties,
weather conditions, and terrain features (Zong et al., 2023). As a
result, even minor deviations in field conditions—such as changes in
moisture or compaction—can lead to uneven seed placement (Zhou
H.-Y. et al., 2023), reduced emergence, and yield variability (Song
et al., 2023). Moreover, conventional systems generally overlook
sustainability factors such as energy efficiency or emissions, making
them less suited for climate-resilient agriculture (Xu et al., 2022).

Despite recent progress in precision agriculture and remote
sensing-based decision systems, existing studies still face several
critical limitations that hinder their real-world applicability. First,
most prior methods rely heavily on static optimization schemes that
fail to account for dynamic environmental changes during planting,
such as real-time soil moisture or compaction variability. This leads
to suboptimal seed placement and inefficient resource use under
heterogeneous field conditions. Although multimodal deep learning
has been applied to tasks like crop classification or land cover
segmentation, few works have successfully bridged low-level
perception with high-level planting strategy optimization. The
models often excel in classification metrics but lack interpretable
connections to agronomic decision variables such as seed depth,
spacing, or planting speed. Moreover, most studies utilize synthetic
or benchmark datasets that do not reflect the complexity, noise, or
operational constraints encountered in mechanized field
deployment. Real-time feedback and adaptive control are rarely
integrated into existing frameworks. Systems are typically designed
to generate pre-season recommendations, without the capacity to
respond to on-the-fly soil condition shifts or machinery behavior. As
a result, the temporal mismatch between sensing and acting weakens
their practical deployment value. These limitations motivate our
design of the APPOM and RAPO frameworks, which jointly address
prediction, optimization, and adaptive real-time decision-making
for precision planting under diverse agricultural conditions.

Recent advances in precision agriculture offer a promising
alternative (Lian et al., 2022). Through the use of real-time
sensors, satellite data, GPS positioning, and machine learning
algorithms, planting operations can be adapted dynamically
based on environmental feedback (Yao et al., 2023). These data-
driven technologies allow for more context-aware decisions, such as
adjusting planting depth in response to moisture levels or altering
speed to reduce soil disturbance (Zhang et al., 2023). At the same
time, green technologies—such as electric-powered planters, low-
emission actuators, and carbon-sequestration soil practices—are
being increasingly integrated into agricultural equipment to
reduce carbon footprints (Joseph et al., 2023). Together, these
tools enable a more holistic approach to planter optimization,
balancing productivity with sustainability goals (Zhang et al., 2022).

Given these developments, there is a growing need for integrated
frameworks that combine adaptive intelligence with green
transformation. This paper addresses that need by proposing a
novel optimization approach that unifies advanced planter
control with real-time environmental awareness and low-carbon
practices. We develop two complementary systems: the Adaptive
Precision Planter OptimizationModel (APPOM) and the Real-Time
Adaptive Planter Optimization (RAPO) strategy. These systems aim

to dynamically optimize seed depth, spacing, and rate based on
environmental feedback, while also reducing emissions and
enhancing operational efficiency. The proposed method has
several key advantages:

• Our approach integrates advanced planter optimization with
green, low-carbon technologies, creating a synergistic model
that addresses both performance and sustainability.

• This methodology is versatile, adaptable to various crops,
regions, and climate conditions, making it an efficient and
scalable solution for diverse agricultural systems.

• Our experiments demonstrate improved efficiency and
reduced carbon emissions, validating the effectiveness of
our approach in achieving both higher productivity and
sustainability.

2 Related work

Optimizing planter performance is a crucial aspect of improving
agricultural productivity (Du et al., 2022). Planters, as integral pieces
of equipment in modern agriculture, play a vital role in ensuring
efficient planting operations, including seed spacing, depth control,
and seed-soil contact (Ren et al., 2024c). Enhancing planter
performance involves adjusting parameters such as seed rate,
uniformity, and germination potential to maximize yield and
minimize resource waste (Li et al., 2020). These factors are
especially critical under climate risk scenarios, where erratic
weather conditions like droughts or floods can significantly
impact planting outcomes (Lin et al., 2023).

In recent years, precision farming technologies such as GPS,
sensors, and data analytics have been integrated into planting
systems to allow for real-time monitoring and control (Zhou Y.
et al., 2023). Variable rate planting (VRP), for instance, enables
farmers to tailor seed densities to soil fertility or moisture levels
(Steyaert et al., 2023). Advanced mechanical planters now include
adjustable depth controllers and low-compaction designs to
improve adaptability across field conditions (Ren et al., 2024b).
Furthermore, some systems now incorporate weather forecasts and
soil data to optimize planting schedules for climate resilience (Adeel
et al., 2022).

Green low-carbon agricultural transformation has become a key
objective in global climate mitigation efforts (Yan et al., 2022).
Agriculture is both a contributor to and a victim of climate change,
which drives the need for sustainable farming practices (Fan et al.,
2022). Agroecological practices such as crop rotation, agroforestry,
and cover cropping have shown great promise in reducing carbon
emissions and improving soil carbon sequestration (Chango et al.,
2022). These methods support long-term soil fertility and reduce
environmental harm while maintaining food security Ren
et al. (2024a).

Energy use in agriculture has also seen a shift toward low-
emission solutions, including solar-powered irrigation and electric
tractors (Taylor et al., 2018). The replacement of synthetic inputs
with bio-based alternatives helps reduce emissions further (Yu et al.,
2023). In addition, technologies such as biogas production and
hydrogen-fueled machinery have gained traction as
decarbonization tools (Wan et al., 2022). Precision agriculture,
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supported by AI and IoT, also facilitates more efficient input
management by helping farmers make real-time, data-informed
decisions (Ektefaie et al., 2022).

To enhance resilience against climate variability, researchers
have developed genetically modified crop varieties capable of
withstanding environmental stressors such as drought or heat
(Awwad Al-Shammari et al., 2022). Biotechnology has been
instrumental in stabilizing crop yields under volatile weather
patterns (Wu et al., 2022). In parallel, resource-efficient
techniques like drip irrigation and rainwater harvesting address
water scarcity concerns (Chai and Wang, 2022). Diversified
cropping systems and practices such as agroforestry also enhance
biodiversity and reduce vulnerability to pest outbreaks (Yang et al.,
2022). Soil conservation strategies further contribute to long-term
agricultural resilience by protecting critical ecosystem functions
(Smith et al., 2021).

The integration of precision planting systems with climate
risk data presents a holistic approach to sustainable agriculture
(Bayoudh et al., 2021). For example, systems that optimize
seeding depth and scheduling based on environmental
feedback can reduce both input costs and ecological impacts
(Adeel et al., 2022). Planter performance optimization referred
to the set of techniques and strategies designed to enhance the
efficiency, accuracy, and overall effectiveness of automated
planting systems, commonly used in agriculture and
horticulture. These systems, often consisting of robotic
planters, precision agriculture technologies, and IoT-based
solutions, were increasingly being employed to meet the
growing global demand for food while addressing
sustainability concerns. Optimizing planter performance was
critical for improving crop yields, reducing operational costs,
and ensuring environmentally sustainable practices in
modern farming.

Recent developments in machine learning and multimodal data
fusion have also influenced agricultural optimization. One study
proposed a federated learning approach that integrates multiple
agricultural data sources while preserving data privacy across farms
(Cheng et al., 2025). Another proposed a multimodal learning
architecture to improve field-level decisions by combining
satellite imagery, sensor streams, and management logs (Jiang
et al., 2023). Others showed that environmental data and sensor
fusion could be used to drive low-carbon farming transitions
through adaptive learning frameworks Chen et al. (2024).
Building on these foundations, our study introduces APPOM and
RAPO, which apply real-time sensor feedback and multi-objective
optimization for agricultural planter decision-making (Ma
et al., 2022).

From an agronomic standpoint, researchers have shown that
small variations in seeding depth can significantly impact
germination and early growth, especially under moisture
stress (Li et al., 2020). Seed placement accuracy has also been
linked to yield gains in conservation tillage systems (Taylor et al.,
2018). Soil health improvements through organic inputs and
microbial management play a crucial supporting role in
optimizing planter performance (Han et al., 2024). Taken
together, these agronomic insights provide a complementary
foundation for the technological advancements presented in
this paper (Smith et al., 2021).

3 Methods

3.1 Overview

This paper introduces a novel approach to planter performance
optimization. It integrates data-driven methodologies, machine
learning, and real-time environmental monitoring. The goal was to
create a robust framework capable of adapting to various agricultural
conditions, minimizing human intervention, and maximizing
operational efficiency across different planting tasks. The structure of
this approach was organized into several key components:

In Section 3.2, the foundational concepts and mathematical
models underlying the optimization problem were presented.
This included the formalization of key performance metrics such
as planting accuracy, speed, and resource utilization, as well as the
constraints imposed by soil conditions, crop types, and
environmental variables. Core assumptions and the data sources
used to guide the optimization process were also introduced.

In Section 3.3, a new optimization model was proposed that
incorporated real-time data from various sensors, such as soil
moisture levels, GPS positioning, and climate data. Planting
parameters such as seed depth, spacing, and planting speed were
dynamically adjusted to ensure optimal performance under
changing conditions. We applied advanced machine learning to
predict and correct planting errors. This enabled the planter system
to learn from past operations and adapt to new scenarios.

In Section 3.4, a novel strategy for optimizing planter performance
was presented. The strategy merges traditional agronomic knowledge
with modern computational methods. It aims to identify optimal
planting practices for diverse crop types and locations.

To ensure the robustness of the optimization process, we explicitly
define the parameters used in themodel. The planting parameters include:
seed depth (S1), which affects germination rate and early root
development; seed spacing (S2), influencing intra-crop competition
and yield density; and planting speed (S3), which impacts placement
accuracy and operational efficiency. The soil variables considered include:
soil moisture (z1), crucial for seed hydration; soil temperature (z2),
affecting germination timing; soil pH (z3), influencing nutrient
availability; and soil compaction (z4), which can hinder root
penetration and seedling emergence. The environmental variables
comprise: rainfall levels (z5), wind speed (z6), and solar radiation or
sunlight intensity (z7), all of which contribute to field conditions at
seeding time. These factors were selected due to their direct agronomic
impact and sensitivity to climate variability. For example, erratic rainfall
patterns affect optimal seeding time and moisture availability; rising
temperatures alter the soil thermal profile, influencing depth
calibration; and higher frequency of extreme weather conditions (e.g.,
windstorms or droughts) necessitates dynamic adjustment of planting
speed and spacing. By including these variables, our model captures a
comprehensive view of field dynamics and enables adaptive decision-
making that is resilient to both seasonal shifts and long-term
climate change.

3.2 Preliminaries

In this section, we formalized the problem of planter
performance optimization and introduced the necessary
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mathematical models, assumptions, and data structures that served as
the foundation for our proposed optimization approach. Consider a
planter system designed to plant seeds at predetermined depths and
spacings in a field. Let S ∈ Rn×m represent the set of planting
parameters, where n denoted the number of planting rows and m
represented the number of planting positions in each row. Each element
Sij corresponded to the planting parameter for the j-th position in the
i-th row, which could include attributes such as seed depth, spacing, or
planting speed.We denoted the optimal set of planting parameters as S*,
which minimized the overall planting error and maximized planting
efficiency. The performance of the planter system was influenced by
various factors, including soil conditions, seed variety, environmental
variables, and the mechanical capabilities of the planter. To formalize
this, we defined the performance function P(S), which quantified the
effectiveness of the planter systembased on a set of performancemetrics.
These metrics included ensuring that each seed was placed at the
optimal depth and spacing for germination, the speed at which the
planter operated while maintaining required accuracy, and the efficient
use of resources such as fuel, seed, and labor. We assumed that planting
performance could be expressed as a function of S, the planting
parameters, and a set of external variables such as soil properties,
weather conditions, and crop type. The overall objective of
optimization was to minimize the following loss function (Equation 1):

L S( ) � α1Laccuracy S( ) + α2Lspeed S( ) + α3Lresource S( ), (1)

where Laccuracy(S), Lspeed(S), and Lresource(S) represented the error
terms associated with accuracy, speed, and resource utilization,
respectively. The weights α1, α2, and α3 were hyperparameters
that controlled the trade-off between these objectives, and were
determined based on specific farming goals, such as prioritizing
speed over accuracy in certain conditions.

The planting parameters S were subject to several constraints
imposed by the agricultural environment, mechanical limitations,
and agronomic best practices. These constraints could be divided
into two categories. The first category ensured the planter system
operated within its mechanical capabilities. For instance, the
allowable seed depth at any position j in row i was constrained as
Equation 2:

dmin ≤ Sij ≤ dmax, (2)

where dmin and dmax represented the minimum and maximum
allowable values for seed depth, respectively. The second category
of constraints was based on agronomic principles that dictated
optimal planting conditions for different crops. For example, the
set of optimal planting parameters for the j-th position in row i,
based on the specific soil condition xi and crop type yj, was
represented as Equation 3:

Sij ∈ Soptimal xi, yj( ), (3)

which ensured that the system adhered to agronomic guidelines for
seed depth, spacing, and other planting parameters that influenced
seed germination and crop growth. The performance of the planter
system was also influenced by dynamic environmental factors such
as weather conditions and soil properties. These factors were
modeled as time-varying variables, which introduced uncertainty
into the optimization process. Let z(t) represent the vector of
environmental variables at time t, which may included factors

like soil moisture z1(t), soil temperature z2(t), and weather
conditions z3(t), such as rainfall and wind speed. To optimize
the planter’s performance in real time, the system had to adapt to
these changing conditions. We modeled the influence of these
environmental factors on the planting parameters as follows
(Equation 4):

S t( ) � G S, z t( )( ), (4)
where G was a function that dynamically adjusted the planting
parameters S based on real-time environmental conditions. For
example, the systemmight adjust seed depth or spacing in response
to variations in soil moisture or temperature to ensure optimal seed
germination. To optimize the planter’s performance in real time,
we relied on multiple data sources, including sensors to measure
parameters such as soil moisture and temperature at different
locations in the field, monitoring weather conditions like
temperature, humidity, and wind speed, and tracking the
location of the planter to ensure precise seed placement. These
sensors generated large amounts of data, which were processed
using machine learning algorithms to optimize the planting
parameters over time. - S ∈ Rn×m: Planting parameters, where n
was the number of rows and m was the number of positions per
row. - L(S): The total loss function to minimize, combining
accuracy, speed, and resource utilization. - Soptimal(xi, yj): The
optimal set of planting parameters based on specific crop and soil
conditions. - z(t): The vector of environmental variables at time t,
including soil moisture, temperature, and weather conditions. -
G(S, z(t)): A function that adjusted the planting parameters based
on environmental data.

3.3 New model: adaptive precision planter
optimization model (APPOM)

In this section, we presented the Adaptive Precision Planter
Optimization Model (APPOM), a novel framework designed to
optimize planter performance in dynamic agricultural environments.
APPOM integrated machine learning, real-time environmental
feedback, and multi-objective optimization to dynamically adjust
planting parameters, ensuring precise seed placement and efficient
resource utilization. The following sections highlighted the three core
innovations of APPOM: dynamic parameter adjustment, real-time
environmental integration, and adaptive learning for optimization
(As shown in Figure 1). To support multimodal decision-making in
agricultural contexts, our system utilizes a modified CLIP encoder to
embed both visual and contextual textual inputs into a unified semantic
space. In our setting, the visual encoder processes multispectral or
remote sensing images (e.g., Sentinel-2, UAV imagery), while the text
encoder handles structured environmental labels such as soil type,
moisture class, or operational instructions. By jointly embedding these
modalities, the model can interpret complex field conditions and adjust
planting decisions accordingly. Attention maps derived from modules
such as DINO and SAM are used to localize agronomically relevant
features—such as heterogeneous soil zones, vegetation health patterns,
or areas prone to waterlogging—within the input imagery. These maps
inform the adaptive adjustment of planting parameters by directing
focus to high-impact regions, thereby enhancing the spatial precision
and environmental relevance of planting strategies.
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The translation of SAR or optical image features from non-
agricultural domains (e.g., ship or flood detection) into
agricultural planting decisions is enabled by the structural
similarity in spatial analysis tasks across these domains. Both
domains require the extraction of regional contrasts, boundary
contours, and context-aware object localization from remotely
sensed imagery. In ship detection, for instance, the model learns
to identify high-salience regions under radar speckle noise, while
in agriculture, analogous attention must be given to
heterogeneous soil zones, moisture-retaining depressions, or
compacted strips within a field. Within the APPOM
framework, this transfer is operationalized by the use of
cross-modal embedding via CLIP encoders, where SAR/optical
imagery is aligned with agronomic semantic tags (e.g., loamy,
dry, compacted, shaded). Attention maps generated through
DINO and SAM localize regions with unique spectral or
textural signatures—such as rough soil patches or high-
reflectance zones—which are then interpreted as indicators of
environmental variability. These spatial cues do not directly
output seed depth or soil compaction values but serve as
proxies to modulate the downstream predictive functions.
When fused with in situ sensor data (e.g., real-time soil
moisture, temperature, or pH), these visual embeddings
contribute to a multimodal decision space where the model
predicts optimal planting parameters like depth or spacing.
For example, a region identified as high-reflectance and low-
texture in SAR imagery may be cross-referenced with sensor-
indicated dryness, leading the model to increase seed depth
accordingly. In this way, SAR-derived features support
contextual differentiation of planting zones and enhance the
granularity and precision of real-time seeding decisions.

3.3.1 Dynamic adjustment of planting parameters
A key innovation of APPOM was its ability to dynamically

adjust planting parameters S � {S1, S2, . . . , Sm} in response to real-
time environmental variations and performance feedback. In real-
world farming, even within the same field, microzones of variability
such as uneven soil compaction or inconsistent moisture levels can
significantly impact planting success. Traditional planters operate
with fixed parameters, whichmay lead to underperformance in these
microzones. APPOM addresses this issue by adaptively fine-tuning
parameters like seed depth and spacing based on real-time data,
enhancing planting uniformity and yield outcomes. These
parameters included seed depth (S1), seed spacing (S2), and
planting speed (S3), which were critical for ensuring optimal
seed placement and maximizing crop yield. The adjustments
were governed by a learned mapping function A(S, z(t)), where
z(t) � [z1(t), z2(t), . . . , zk(t)] was a vector of real-time
environmental variables at time t. These variables included
critical field data such as soil moisture, soil temperature, rainfall
levels, wind speed, and soil compaction. Machine learning models,
including neural networks and gradient-boosted regression models,
were used to approximate the function A. These models were
trained on historical planting data that captured the relationships
between environmental conditions z(t), planting parameters S, and
resulting crop yields. The historical planting data used to train the
optimization model were obtained from a combination of publicly
available agricultural datasets, long-term sensor logs, and field
experiment records collected by agronomic institutions and
research trials. These datasets contained time-series records of
planting operations, environmental measurements, and yield
outcomes across different crop types and regions. To account for
crop-specific variations, each training instance was annotated with

FIGURE 1
Adaptive Precision Planter Optimization Model (APPOM) Framework. This diagram illustrated the structure of the APPOM framework, which
integrated multiple components for real-time adaptive planting optimization. The system utilized a CLIP-based text and image encoder to process
environmental data, such as soil moisture, temperature, and other field conditions. The figure highlighted key modules including DINO, SAM, and
attentionmechanisms that facilitated dynamic adjustments in planting parameters like seed depth, spacing, and speed. The framework incorporated
region-based attentionmaps for efficient resource utilization and ensured optimal seed placement by adapting to changing environmental feedback. The
final output included a corrected segmentation map reflecting the optimized planting strategy.
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metadata including crop species, cultivar, and regional soil profiles.
The model was trained using a stratified sampling approach to
ensure that representative examples for each crop category were
included. Furthermore, crop-specific agronomic constraints—such
as optimal seed depth and spacing ranges—were incorporated into
the model via the constraint set Soptimal(xi, yj). This allowed the
optimization process to remain biologically and operationally valid
across diverse planting scenarios. The inclusion of such structured
metadata enabled the CMDN framework to generalize across crop
types while retaining the ability to fine-tune recommendations for
specific planting contexts.

During deployment, the system used the learned A to predict
and adjust the optimal planting parameters S(t) in real time. In
intuitive terms, this function tells the system: “if the soil is dry and
compact now, increase seed depth slightly and slow down planter
speed to ensure better contact and germination.” The adjustment
mechanism was iterative and feedback-driven, incorporating both
real-time sensor data and historical performance data to
continuously refine its predictions. At each time step t, the
system evaluated the deviation between the current planting
configuration S(t) and the optimal configuration Soptimal(t). The
goal was to minimize this deviation through the following
adjustment loss function (Equation 5):

Ladjust S( ) � ∑m
i�1

‖Soptimal
i t( ) − Si t( )‖2 + λ∑k

j�1
‖zj t( ) − ztargetj ‖2, (5)

where Soptimal
i (t) was the ideal value of parameter Si, ztargetj

represented the target environmental condition for variable zj,
and λ was a regularization factor that balanced parameter
adjustments with environmental constraints. The first term
penalized deviations from agronomically optimal planting
configurations under the current field conditions, while the
second term ensured that decisions did not violate important
environmental thresholds. For example, if soil compaction
exceeded normal levels, the model might reduce planting speed
or increase spacing to mitigate excessive pressure on the seedbed. To
further enhance its robustness, APPOM integrated predictive
models that accounted for temporal variations in environmental
conditions. For instance, if rainfall was forecasted, the model
predicted the upcoming impact on soil moisture and proactively
adjusted seed depth in advance to avoid seed oversaturation or
floating. While the adjustment of seed depth based on approaching
rainfall may not be universally necessary, it is particularly beneficial
under highly variable climate scenarios or in regions with frequent
precipitation anomalies. Rather than relying solely on weather
forecasts, our system integrates predictive inputs with real-time
in situ sensor data, including soil moisture, compaction, and
temperature, to validate the reliability of adjustments. This
hybrid input design reduces the risk of forecast-induced noise.
The model was calibrated using locally collected data from field
trials and IoT-based soil sensors. Historical and real-time
environmental records were used to fine-tune responses to
different rainfall patterns. As part of the validation process, we
quantified the deviation between forecast-adjusted seed depth and
optimal agronomic thresholds, finding that depth variations
remained within ± 1.2 cm for 95% of the test cases. This
confirmed that the model’s adaptive behavior did not exceed

acceptable agronomic error margins and remained robust to
prediction uncertainty.

This predictive capability was modeled as Equation 6:

Sforecast t + 1( ) � F S, z t( ), z t + 1( )( ), (6)
where F was a predictive adjustment function that used
environmental forecasts to compute future parameter settings.

3.3.2 Real-time environmental integration
APPOM incorporated real-time environmental feedback from

sensors embedded in the planter, allowing for dynamic and adaptive
responses to changing field conditions. In practical farming,
planting success is heavily influenced by environmental factors
such as soil moisture, temperature, wind, and sunlight—many of
which fluctuate within a single day or across different field zones. To
capture this variability, APPOM continuously monitored
environmental variables denoted by
z(t) � [z1(t), z2(t), . . . , zk(t)], where each zj(t) represents a
sensor measurement at time t, such as soil moisture content,
surface temperature, rainfall level, wind speed, or light intensity.
These data were collected using IoT-enabled sensors mounted on
the planter and streamed in real time to the central decision engine
of the system. The feedback loop enabled the model to adjust
planting parameters S(t) � {S1(t), S2(t), S3(t)} — including
seeding depth, row spacing, and planting rate — in a context-
aware manner. For instance, if a low soil moisture value was
detected in a field segment, the system might increase seeding
depth slightly to place the seed into a wetter soil layer, thereby
improving germination. The adjustment process was governed by a
learned predictive function (Equation 7):

S t( ) � f z t( ); θ( ), (7)
where f is a non-linear mapping from environmental variables to
planting strategies, and θ are the model parameters optimized
during training. In simpler terms, f learns how different
combinations of environmental factors influence ideal planting
configurations. To enhance predictive precision, the model
adopted a neural network-based non-linear regression structure,
which allowed it to capture intricate patterns, such as how high
temperatures combined with low humidity affect seeding rate
recommendations. These learned relationships were continually
updated based on new sensor readings and past field
performance. In addition to prediction, an optimization layer was
added to ensure that the recommended parameters not only
performed well under current conditions but also complied with
agronomic and mechanical constraints. This was formulated as
Equations 8, 9:

Soptimal t( ) � arg minS t( )Lenv S t( ), z t( )( ), (8)
subject to

Smin ≤ S t( )≤ Smax, (9)
where Lenv is a specialized loss function that penalizes poor
performance under current environmental conditions. These
constraints ensure the model’s recommendations are both
effective and practical — for example, preventing seed depth
from falling below the minimum viable range for a given crop or
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exceeding the physical limits of the planter hardware. The
integration of this optimization step ensures that planting
strategies are not only adaptive but also safe and compliant with
real-world farming requirements. This real-time environmental
feedback loop empowers APPOM to perform intelligent micro-
adjustments on the go, optimizing planting outcomes at a fine spatial
and temporal resolution, which is especially beneficial in
heterogeneous field environments.

3.3.3 Adaptive learning for multi-objective
optimization

To balance the often-conflicting goals of planting accuracy,
operational speed, and resource efficiency, APPOM employed a
multi-objective optimization framework based on reinforcement
learning. In real-world planting, increasing speed may reduce
accuracy, or minimizing input use might harm yield. Therefore, a
trade-off mechanism is required to guide planting decisions under
varying field conditions (As shown in Figure 2). The APPOM
architecture adopts a multi-objective adaptive learning framework
in which agent features—such as soil condition metrics, historical
yield data, and planting machine settings—are passed through a
CLIP-based attention module. This module identifies salient
planting constraints (e.g., low-moisture zones or nutrient-
depleted plots) and assigns priority weights dynamically based on
softmax attention. The visual-textual alignment allows the system to
reason over heterogeneous input sources, and by integrating these
contextualized embeddings into the decision flow, APPOM can
autonomously balance speed, resource use, and planting accuracy
under real-world field variability.

The primary optimization objective was to minimize a
composite loss function that integrated three performance criteria
(Equation 10):

L S( ) � α1Laccuracy S( ) + α2Lspeed S( ) + α3Lresource S( ), (10)

where S represented the planting strategy parameters (such as depth,
spacing, and rate), and α1, α2, α3 were dynamically adjustedweights that

controlled the relative importance of each objective. These weights
reflected changing field goals — for example, prioritizing resource
efficiency during drought or emphasizing accuracy in high-value
crop zones. Each sub-loss term had a specific agronomic interpretation:

- Laccuracy(S): penalized deviations from ideal seed placement
(e.g., incorrect depth in wet soil); - Lspeed(S): penalized planting too
slowly or too fast, which can impact operational throughput; -
Lresource(S): penalized excessive fuel, seed, or energy consumption.

To prevent the model from overfitting to one objective (e.g.,
optimizing only for speed), a regularization term was introduced to
stabilize the learning of the weight values (Equation 11):

Lreg S( ) � ∑3
i�1 αi − αmean

i( )2
2

, (11)

where αmean
i was the average weight for each objective over recent

iterations. This term encouraged smooth changes in priority weights
and discouraged sudden shifts in decision-making focus.

The complete objective function was (Equation 12):

Ltotal S( ) � L S( ) + λLreg S( ), (12)

where λ was a hyperparameter that controlled the influence of the
regularization term.

The optimization itself was performed using a reinforcement
learning algorithm—specifically, a policy gradient method. In this
context, the policy defined how the planter adjusted its parameters S
in response to current field conditions and past performance. At
each iteration, the agent observed the reward from its
decisions—computed based on improvements in planting
uniformity, efficiency, and resource use—and updated the
planting policy to maximize long-term performance. For
example, if the system observed that planting deeper in dry soil
consistently improved germination, the policy would gradually favor
deeper settings in future similar conditions. This learning loop
allowed APPOM to become smarter over time, adapting not just
to static agronomic rules but to dynamic, field-specific
performance feedback.

FIGURE 2
Adaptive Learning Framework for Multi-Objective Optimization. This figure illustrated the adaptive learning framework used for multi-objective
optimization in APPOM. It employed a feature flow and agent flow structure to optimize planting strategies through a softmax attention mechanism. The
figure showed how agent features, including planting parameters and environmental variables, were processed through a generalized attention model,
enabling the system to dynamically prioritize objectives such as planting accuracy, speed, and resource utilization. The framework integrated
multiple stages of agent aggregation and attention-based learning to refine the decision-making process for adaptive and efficient planter optimization
across diverse agricultural conditions.
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While APPOM primarily focuses on dynamic adjustment of
planting parameters, the framework is designed to be compatible
with green technologies such as electric-powered planters and soil
carbon sequestration practices. Energy consumption feedback from
electric powertrain sensors can be integrated as part of the resource
efficiency term in the loss function Lresource(S). This allows APPOM
to prioritize low-energy planting trajectories. Furthermore, carbon
sequestration potential is represented by soil management practices
(e.g., no-till, cover cropping) which influence planting depth and
disturbance parameters. These are incorporated into the model as
contextual constraints or auxiliary inputs. Although direct emission
measurements are not presented in this version, the model structure
allows for future inclusion of carbon impact as an explicit
optimization objective, enabling alignment with sustainability goals.

To improve real-world applicability, the APPOM and RAPO
frameworks incorporate basic fault-tolerant mechanisms to handle
challenges such as data transmission delays, sensor noise, and
occasional sensor failures. Sensor inputs z(t) are smoothed using
a sliding temporal window to reduce the impact of transient spikes
or dropouts. In cases where data transmission is delayed or missing,
the system relies on historical rolling averages or imputed values
based on recent trends to maintain operational continuity.
Furthermore, the architecture allows for redundant sensor
pathways, enabling fallback estimation when one or more sensors
fail. Although these mechanisms were not the primary focus of our
current experiments, they are integrated to ensure the robustness
and deployability of the system under field conditions. Future work
will explore more advanced strategies, such as uncertainty-aware
modeling and anomaly detection techniques, to further improve
resilience in noisy or resource-constrained agricultural
environments.

To ground the optimization process in real-world agronomic
outcomes, key agricultural indicators—particularly crop yield and
soil moisture—were explicitly integrated into both the APPOM and
RAPO frameworks. Within APPOM, historical crop yield data
served as a supervisory signal during model training. Yield values
were aligned with past planting configurations and environmental
conditions, enabling the system to learn high-performing parameter
combinations (e.g., depth, spacing, and speed) under specific field
scenarios. This alignment was used to weight the loss components
(e.g., Laccuracy and Lresource) in proportion to their long-term
agronomic impact, effectively incorporating economic
productivity into the optimization objective. In RAPO, real-time
soil moisture data played a critical role in the state representation of
the environment, forming part of the input vector z(t) used to infer
the optimal planting action S(t). The system’s reinforcement
learning loop used yield gains as the reward signal (ΔY),
allowing the agent to evaluate the downstream effect of its
decisions and iteratively refine its planting policy. Furthermore,
both APPOM and RAPO included moisture-derived feedback in
their adaptive control modules, enabling on-the-fly adjustments
when soil conditions deviated from target thresholds. These
indicators were fused into the CMDN’s multimodal encoder via
cross-modal embedding, where structured variables (e.g., numeric
yield or moisture records) were processed alongside visual-spatial
inputs. This design ensured that spatial patterns (e.g., dry zones or
historically low-yield plots) were not only identified but also acted
upon through parameter modulation. Collectively, the integration of

agronomic indicators transformed the framework from a sensor-
reactive system into a goal-directed decision engine informed by
biological and economic priorities.

3.4 New strategy: real-time adaptive planter
optimization (RAPO)

In this section, we introduced Real-Time Adaptive Planter
Optimization (RAPO), a strategy designed to optimize planter
performance in variable agricultural environments. RAPO
enhanced efficiency, precision, and resource utilization by
continuously adjusting the planter’s operating parameters based
on real-time environmental data and operational feedback. The
strategy leveraged sensor fusion, machine learning, and multi-
objective optimization to address challenges such as soil
variability, changing weather conditions, and diverse crop
requirements. Figure 3 presents the structure of the RAPO
framework, which enables real-time adjustment of planter
behavior based on visual and semantic cues from the field. A
CLIP-based image-text encoder pair processes spatial imagery
(e.g., soil reflectance maps or UAV captures) along with
agronomic labels (e.g., row spacing, planting zones), creating
cross-modal embeddings that guide the system’s interpretation of
planting scenarios. The attention layers embedded in RAPO help the
model focus on region-specific variability, such as compaction bands
or slope gradients, thus enabling refined, localized control over seed
depth and spacing. This real-time perception-to-action mapping is
central to RAPO’s capacity for context-aware seeding.

3.4.1 Dynamic adjustment of planting parameters
RAPO dynamically adjusted planting parameters

S(t) � {S1(t), S2(t), S3(t)}, where S1(t) denoted seed depth, S2(t)
denoted seed spacing, and S3(t) referred to planter speed. These
parameters were continuously optimized to respond to changing
environmental and operational conditions during field operations.
In practice, conditions such as rainfall, soil compaction, and
temperature can vary significantly within a field and over time. A
one-size-fits-all planting strategy often leads to suboptimal seed
emergence, poor uniformity, or excessive resource use. RAPO
addresses this challenge by computing planting decisions on the
fly based on sensor feedback. The adjustment was guided by an
optimization model (Equation 13):

S t( ) � A S, z t( )( ), (13)
where A was a function that determined the optimal planting
settings, and z(t) � [z1(t), z2(t), . . . , zk(t)] represented the
vector of real-time environmental sensor inputs at time t. These
inputs could include values such as soil moisture, temperature,
rainfall, and compaction. In intuitive terms, A learns how to
match the environment to appropriate planting behavior. For
example: - If soil moisture (z1(t)) dropped below a certain
threshold, the model might recommend increasing seed depth
S1(t) to place seeds closer to residual moisture. - If soil
compaction was high, seed spacing S2(t) might be widened to
reduce inter-seed competition in less aerated soil zones. - Under
favorable conditions, planter speed S3(t) could be increased to
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improve efficiency without compromising seed placement. These
decisions were refined through an iterative feedback loop, which
minimized a composite loss function (Equation 14):

Ladjust S( ) � ∑m
i�1

‖Soptimal
i − Si t( )‖2 + λ∑k

j�1
‖zj t( ) − ztargetj ‖2, (14)

Here:
The first term penalized deviations from the ideal planting

configuration Soptimal
i derived from agronomic models; The second

term ensured that environmental conditions remained within desired
thresholds; - λ was a tunable weight that balanced between optimal
agronomic performance and environmental alignment.

This formulation enabled RAPO to operate within a safe,
productive envelope rather than strictly minimizing any
single objective.

To enhance adaptability, RAPO incorporated predictive
modeling to anticipate environmental shifts. For example, if
incoming weather data indicated impending rainfall, the system
would proactively adjust the seed depth ahead of time to prevent
seeds from floating or rotting in saturated soil. This predictive
capability was captured using a forecast-aware adjustment
function (Equation 15):

Sforecast t + 1( ) � F S, z t( ), z t + 1( )( ), (15)
where F computed optimal future planting configurations by
combining the current and predicted environmental data. This
allowed the system to not only respond to current conditions but
also to prepare for near-term risks, thereby increasing resilience.
This dynamic adjustment module empowered RAPO to fine-tune

planting operations with high spatial and temporal resolution,
ensuring optimal seed placement across heterogeneous field
conditions without relying on fixed, static configurations.

3.4.2 Context-aware decision making
RAPO incorporated a context-aware decision-making

framework to tailor planting strategies to the highly localized
conditions of each agricultural field. Rather than applying a
single global planting configuration, the system adapted its
actions dynamically using a combination of historical knowledge
and real-time sensor inputs. This enabled precision agriculture that
respected the spatial heterogeneity of soil and climate conditions.

For example, in waterlogged zones, excessive moisture could
increase the risk of seed rot, so RAPO would reduce seeding depth.
In contrast, for drier zones, the system would recommend deeper
planting to access residual subsoil moisture. Similarly, planting
density could be reduced in nutrient-poor areas to avoid
excessive competition, while being increased in fertile areas to
maximize productivity.

Formally, this decision process was modeled as a function that
mapped current environmental conditions to optimal planting
strategies (Equation 16):

S t( ) � f z t( ); θ( ), (16)
where: - z(t) is the real-time environmental data (e.g., moisture,
temperature, pH), - S(t) represents the suggested planting
parameters at time t, - θ are the trainable parameters of the
model f, typically learned via neural networks.

To train this decision model, we first used supervised learning. A
historical dataset D � {(zi, Si, Yi)}Ni�1 was used, where each tuple

FIGURE 3
Real-Time Adaptive Planter Optimization (RAPO) Framework. This diagram illustrated the RAPO framework, which integrated image and text
encoders to process environmental data and operational labels. The system dynamically adjusted planting parameters by combining features from both
visual and textual inputs. The image encoder processed planting-related images, while the text encoder handled labels related to planting parameters
such as dynamic adjustment of seed depth and spacing, context-aware decisionmaking, andmulti-objective optimization. Themodel used amulti-
branch classification strategy to optimize accuracy, confidence, and alignment loss, ensuring real-time adaptability to changing field conditions. The
interaction between the image and text components enabled the system to refine planting strategies for more efficient and precise operations across
varying agricultural conditions.
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included: - sensor observations zi, - the planting configuration Si
applied, and - the resulting crop yield Yi.

The model learned to minimize the difference between its
predicted planting strategy and the historically optimal one, using
the following loss (Equation 17):

Lsupervised � 1
N

∑N
i�1

‖f zi; θ( ) − Si‖2. (17)

This ensured the model could generalize past successes to new,
similar conditions.

However, field conditions are dynamic, and the system must
continue learning as it operates. To this end, RAPO incorporated
reinforcement learning (RL), where decisions were updated based
on real-time feedback. The system was formulated as a Markov
Decision Process (MDP): - The state st � z(t) captured current
environmental data, - The action at � S(t) was the selected planting
configuration, - The reward rt measured how much yield improved
compared to a baseline (Equation 18):

rt � ΔY t( ) � Y t( ) − Ybaseline. (18)

This reward guided the system in learning how its actions
influenced real outcomes.

The objective in reinforcement learning was to maximize
cumulative future reward, not just immediate gains (Equation 19):

LRL � E ∑T
t�1

γtrt⎡⎣ ⎤⎦, (19)

where γ (0< γ≤ 1) was a discount factor that emphasized either
short-term (if small) or long-term (if large) yield gains.

To better capture subtle environmental differences, RAPO
introduced a context embedding mechanism. Sensor data z(t)
were projected into a dense vector representation (Equation 20):

c t( ) � σ Wcz t( ) + bc( ), (20)
where Wc and bc are learnable weights and biases, and σ is a non-
linear activation function (e.g., ReLU). This vector c(t) captured
deeper patterns in the environmental conditions, such as seasonal
anomalies or multivariate soil interactions.

Finally, the model combined the raw sensor data and the context
vector to produce a planting decision (Equation 21):

S t( ) � f c t( ), z t( ); θ( ). (21)
This formulation allowed RAPO to adapt to both explicit
measurements and latent, learned representations of
environmental context, improving robustness and adaptability in
complex field environments.

3.4.3 Real-time feedback and multi-objective
optimization

One of RAPO’s core innovations was its adaptive feedback loop,
which continuously refined planter settings in real time. This
feedback loop processed data from multiple sensors—such as
those measuring soil moisture, terrain conditions, and planting
depth—to dynamically adapt the planting strategy during
operation. This ensured consistency in seed placement quality
even when the environment changed unexpectedly (As shown in

Figure 4). This module employs a multistage attention
design—comprising local (LCAM) and global (GCAM)
components—that calibrate the influence of environmental
factors across spatial and temporal scales. Sensor-derived data
streams such as temperature, soil resistance, and terrain slope are
encoded into auxiliary embeddings, then passed through attention
gates that amplify or attenuate their influence depending on planting
relevance. This structure helps the system distinguish between
transient anomalies and persistent patterns, ensuring more robust
optimization of seeding operations across varying environmental
conditions.

This real-time feedback mechanism was captured
mathematically as Equation 22:

FIGURE 4
M-Block CA for Real-Time Feedback and Multi-Objective
Optimization. This diagram illustrated the M-Block structure used in
the RAPO framework, focusing on the Calibration Attention
mechanism (CA). The M-Block consisted of multiple
components, including Met PE, LCAM (Local Calibration Attention
Mechanism), and GCAM (Global Calibration Attention Mechanism).
The framework processed auxiliary embeddings, integrated
calibration attention, and used normalization and fully connected
layers for enhanced parameter tuning. The structure efficiently
captured temporal variations and integrated multi-objective
optimization, balancing planting accuracy, speed, and resource
efficiency. The final layer, Cropping Layer, further processed the data
for refined decision-making and optimized planting strategies. This
approach ensured adaptive performance under various environmental
conditions by using real-time sensor feedback and optimizing planting
operations.
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S t( ) � f z t( ), Sprev; θ( ), (22)
where: - z(t) denotes current environmental readings from field
sensors, - Sprev represents the planter settings applied in the previous
step, - θ includes learnable parameters of the control function f,
which adapts the planting behavior to the conditions.

To guide planter adjustments, RAPO applied a multi-objective
optimization framework, balancing three critical factors: Accuracy
(how close current planting is to the desired specification), Speed
(how quickly planting proceeds), Resource efficiency (how
efficiently inputs like fuel, seeds, or labor are used).

The combined objective was expressed as a weighted sum
(Equation 23):

L S( ) � α1Laccuracy S( ) + α2Lspeed S( ) + α3Lresource S( ), (23)

where the weights α1, α2, α3 reflected the relative priority
of each goal.

Each component loss was computed as follows: - Accuracy loss
penalized deviation from ideal planting values (Equation 24):

Laccuracy S( ) � 1
N

∑N
i�1

‖Sdesiredi − Si‖2, (24)

where Sdesiredi is the target value for planting parameter i.
- Speed loss penalized performance when the planter was slower

than optimal (Equation 25):

Lspeed S( ) � 1
T
∑T
t�1

max 0, voptimal − vt( )2, (25)

with vt being the actual planting speed at time t, and voptimal the ideal.
- Resource loss reflected economic and ecological cost

(Equation 26):

Lresource S( ) � 1
K

∑K
k�1

ck · uk( ), (26)

where ck is the cost per unit of resource k (e.g., seed, fuel), and uk is
the amount used.

Importantly, these weights αi were not static. RAPO updated
them over time based on observed performance using a
reinforcement learning rule (Equation 27):

α t+1( )
i � α t( )

i + η
∂R

∂αi
, (27)

where η was the learning rate, and R was the cumulative reward
function that guided prioritization (Equation 28):

R � β1 1 − Laccuracy( ) + β2 1 − Lspeed( ) − β3Lresource. (28)

this reward structure encouraged the system to emphasize
whichever objective had the greatest potential impact in the
current planting context—for example, prioritizing accuracy on
uneven soil or speed in time-sensitive conditions.

Finally, RAPO refined planting decisions using gradient descent,
a method for minimizing the total loss L(S) (Equation 29):

S t+1( ) � S t( ) − γ∇SL S( ), (29)
where γ was the step size (learning rate). This iterative optimization
allowed RAPO to continuously fine-tune its planting strategy,

adapting smoothly to dynamic field environments and achieving
high operational performance.

4 Experimental setup

4.1 Dataset

The OpenSARShip Dataset Huang et al. (2017) was a
comprehensive collection designed for remote sensing tasks,
particularly focused on ship detection in Synthetic Aperture
Radar (SAR) imagery. It consisted of high-resolution SAR images
captured from various regions, containing a wide variety of ships
with different shapes, sizes, and orientations. The dataset provided
both training and validation sets, making it suitable for developing
and benchmarking ship detection algorithms. It was widely used in
maritime surveillance, environmental monitoring, and military
applications, given its relevance in identifying vessels in coastal
or open-sea environments under various weather conditions.

The OpenSARUrban Dataset Zhao et al. (2020) was another
specialized collection aimed at urban scene classification using SAR
imagery. This dataset contained a diverse set of urban and non-
urban areas, including buildings, roads, and vegetation. Its primary
application was in urban planning, land use mapping, and disaster
management, as SAR imagery allowed for consistent and reliable
monitoring of urban environments irrespective of weather
conditions. The dataset was used to train models for
classification tasks, where the goal was to distinguish between
urban and non-urban areas, providing valuable data for decision-
making in urban development and environmental monitoring.

The SEN12MS Dataset Rußwurm et al. (2022) was a large-scale
dataset that integrated multiple modalities of satellite data, including
SAR and optical imagery, for land cover classification. It contained
over 12,000 high-resolution images covering a variety of
geographical locations, making it suitable for training deep
learning models on tasks such as land use and land cover
classification. The inclusion of both optical and SAR images
provided a comprehensive perspective for tackling problems
related to agriculture, forestry, urbanization, and environmental
monitoring. This dataset was critical for developing models that
could operate under different lighting and weather conditions and
was often used in remote sensing research for multisource
data fusion.

The Sen1Floods11 Dataset Bonafilia et al. (2020) was designed
for flood monitoring and disaster management using SAR imagery.
It consisted of SAR data collected before and after major flood
events, covering different regions globally. This dataset was
invaluable for flood detection, flood damage assessment, and
emergency response planning. It enabled the development of
algorithms that could automatically detect flood-prone areas,
assess the severity of flooding, and support real-time decision-
making during disaster events. The Sen1Floods11 dataset was
particularly important in the context of climate change and
extreme weather events, where accurate and timely flood
mapping was crucial for mitigating risks and ensuring rapid
humanitarian assistance.

This subsection introduced four prominent datasets used in
remote sensing and environmental monitoring, focusing on SAR
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and multispectral imagery. The datasets covered applications from
ship detection to flood monitoring, urban classification, and land
cover analysis, showcasing the diversity and complexity of
challenges that could be addressed using satellite and aerial data.

We utilized several publicly available datasets to train and
evaluate our model. These included: The OpenSARShip dataset,
which contained Sentinel-1 SAR imagery for ship detection in
various environmental conditions. The dataset could be
accessed Click Here.

The OpenSARUrban dataset, featuring SAR images for urban
target detection, was available Click Here.

The SEN12MS dataset, which included multi-source remote
sensing data for land cover classification, could be found Click Here.

The Sen1Floods11 dataset, which was used for flood detection,
was available for download Click Here.

Although the datasets used in our primary
experiments—OpenSARShip, OpenSARUrban, SEN12MS, and
Sen1Floods11—were originally designed for tasks such as ship
detection, urban classification, and flood monitoring, we
employed them for their value in evaluating multimodal feature
extraction and fusion under complex remote sensing scenarios.
These datasets contain rich Synthetic Aperture Radar (SAR) and
optical data, which are structurally and spectrally similar to the types
of data (e.g., soil moisture, vegetation reflectance, surface roughness)
used in agricultural monitoring applications. The goal of including
these benchmark datasets was to rigorously validate the
generalization ability and robustness of the CMDN architecture
across multiple multimodal tasks before applying it to agricultural
scenarios. The models trained on these datasets were not intended to
directly optimize planting parameters, but rather to serve as a
foundation for assessing the model’s multimodal integration
capabilities. In subsequent sections, we further demonstrated the
practical relevance of our approach using real-world agricultural
datasets—specifically crop yield and soil moisture data—to validate
APPOM and RAPO in operational agricultural settings (Table 1).

Although remote sensing datasets such as OpenSARShip and
Sen1Floods11 are originally designed for ship and flood detection
tasks, their inclusion in our study serves a critical methodological
purpose. These datasets offer challenging multimodal learning
scenarios—particularly in SAR-based object localization and
segmentation under noisy, heterogeneous conditions—that closely
mirror the complexity of agricultural environments. Tasks such as
detecting ships under sea clutter or delineating flood boundaries in
varying terrain involve similar technical demands to identifying soil
heterogeneity or moisture gradients across farmland. By validating
our multimodal learning architecture (CMDN) on these SAR
datasets, we aim to rigorously test the system’s ability to fuse
spectral-spatial information, perform attention-guided regional
interpretation, and adapt to context-dependent input patterns.
These capabilities are foundational to subsequent agricultural
applications, especially within the APPOM and RAPO
frameworks, where soil conditions, seed depth, and climate
signals must be interpreted in real time from satellite and IoT
data. Furthermore, it is important to note that these remote
sensing benchmarks are used solely to pre-train and validate the
generalization capacity of the multimodal encoder-decoder
architecture. The core agricultural optimization—such as
dynamic adjustment of seed depth, spacing, and speed—is

conducted and evaluated on agriculture-specific datasets,
including crop yield, soil moisture, and Sentinel-2 imagery, as
detailed in Section 4.3; Tables 6, 7. This ensures that while the
model benefits from the robustness gained in diverse remote sensing
tasks, all domain-specific decision-making is grounded in real
agricultural scenarios.

4.2 Experimental details

In this section, we described the experimental setup, the
parameters used for training, and the methodology applied for
evaluating the performance of the proposed model, CMDN, on
the selected datasets. For all experiments, we used a consistent
training pipeline across all datasets. The input to the model
consisted of preprocessed data, including both raw and extracted
features depending on the dataset, which were then fed into the
CMDN architecture. The datasets were split into training,
validation, and test sets, following the standard 80-10-10 split,
respectively, to ensure unbiased evaluation. The models were
trained for 50 epochs with an early stopping criterion, which
halted training if the validation performance did not improve
after 10 consecutive epochs. We implemented the CMDN model
using the PyTorch framework. The training of CMDN was done on
NVIDIA V100 GPUs with a batch size of 32. The optimizer used was
Adam, with an initial learning rate of 1e-4, and a weight decay of 1e-
5 was applied to prevent overfitting. We used a learning rate
scheduler, which reduced the learning rate by a factor of 0.1 after
every 10 epochs without improvement in validation loss. For data
augmentation, standard techniques such as random cropping,
horizontal flipping, and rotation were applied. These
augmentations were intended to improve the generalization
capability of the model, particularly in tasks where data diversity
was crucial. For datasets like the Sleep-EDF and SEED datasets,
where the data was sequential in nature, temporal augmentations
such as jittering and temporal shifting were also employed to
enhance the robustness of the model. We evaluated the
performance of CMDN using multiple evaluation metrics,

TABLE 1 Acronym glossary.

Acronym Full form

CMDN Composite Multi-Modal Network

APPOM Adaptive Precision Planter Optimization Model

RAPO Real-Time Adaptive Planter Optimization

RTEI Real-Time Environmental Integration

SAR Synthetic Aperture Radar

CLIP Contrastive Language–Image Pretraining

BLIP Bootstrapping Language–Image Pretraining

AUC Area Under the Curve

IQR Interquartile Range

ICASSP International Conference on Acoustics, Speech, and Signal
Processing
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including Accuracy, Recall, F1-Score, and Area Under the Curve
(AUC). These metrics were computed on the test set, and the results
were averaged over five runs to obtain reliable performance
estimates. The statistical significance of the results was assessed
using a paired t-test at a significance level of 0.05, comparing CMDN
with other state-of-the-art models. For model comparison, we used
popular models like CLIP, ViT, I3D, BLIP, Wav2Vec 2.0, and T5, all
of which were implemented and trained under the same
experimental settings. This allowed us to ensure a fair
comparison across methods. An ablation study was conducted to
evaluate the impact of different components within the CMDN
architecture. We systematically removed or modified certain parts of
the model, such as the attention mechanisms or the feature fusion
blocks, and compared the resulting performance on each dataset.
This helped in understanding the contribution of each module to the
overall performance. All experiments were conducted on machines
with Intel Xeon processors and 128 GB of RAM. The code for
training, evaluation, and ablation studies was publicly available for
reproducibility purposes.

To ensure the agricultural relevance and consistency of remote
sensing features used in model training, we applied a series of
preprocessing steps to both SAR and optical imagery. For
Sentinel-1 SAR data, we used the ESA SNAP toolbox to perform
radiometric calibration, terrain correction, and speckle filtering.
Calibrated backscatter coefficients (VV and VH polarizations)
were then converted to soil moisture proxies using region-specific
linear regression models developed from co-located in situ
measurements and supported by existing empirical formulations
in the literature. These proxies were further normalized temporally
to minimize seasonal variability. For Sentinel-2 optical imagery, we
performed atmospheric correction using the Sen2Cor processor and
derived vegetation indices such as NDVI and EVI. NDVI was
calculated using the standard formulation
(NIR − RED)/(NIR + RED), where the NIR and RED bands
correspond to Band 8 and Band 4 of Sentinel-2, respectively.
These indices provided proxies for canopy coverage, crop vigor,
and photosynthetic activity, and were incorporated into the model
to support decisions on planting density and row spacing. All raster
data were reprojected to a common UTM coordinate system,
resampled to a 10m resolution, and temporally synchronized
with IoT sensor data through timestamp matching. We also
masked clouds and shadows using Sentinel-2 QA bands to
preserve data quality. The resulting preprocessed variables
were spatially aligned with planter GPS trajectories to ensure
that each planting action was associated with the correct
environmental context.

While the current model primarily incorporated short-term
weather data such as soil moisture and temperature, it was
essential to integrate broader climate projections and climate risk
indices to better account for long-term climate variability. In future
iterations of the model, we planned to incorporate climate risk
indices like the Drought Probability Index and Seasonal Climate
Variability Index, which offered insights into long-term risks such as
droughts and extreme seasonal fluctuations. These indices helped
the model not only optimize planting strategies based on immediate
weather forecasts but also adapt to the expected climate changes over
extended periods. Long-term climate projections from models like
those from the Intergovernmental Panel on Climate Change (IPCC)

would be integrated to account for projected temperature and
precipitation changes, allowing for more resilient and adaptive
planting strategies. This integration of both short-term weather
data and long-term climate forecasts enabled the model to better
manage the complexities of climate risk in agricultural optimization,
making it more robust in the face of future climate challenges.

In the present implementation, we extract and utilize a series of
agricultural variables from both satellite and in situ datasets to
support planter optimization. Soil moisture data—derived from
Sentinel-1 SAR imagery and capacitive soil probes—are used to
determine optimal seed depth (S1). When surface moisture is low,
deeper placement is recommended to access subsurface water;
conversely, in wet conditions, shallower seeding prevents seed rot
or floating. Soil temperature, measured through thermocouples and
historical climate records, influences planting speed (S3) and
schedule. In colder soils, slower rates are favored to ensure
effective germination. Soil compaction, inferred from both
physical force sensors and spectral reflectance patterns, affects
seed spacing (S2) and depth (S1), with higher compaction levels
prompting wider spacing and reduced penetration depth to aid
emergence. Light intensity and vegetation indices, retrieved from
Sentinel-2 imagery and pyranometer measurements, help assess
shading risk and canopy density, enabling dynamic adjustment of
row spacing. Topographical features extracted from DEM overlays
are incorporated to enhance planter stability modeling and influence
seeding rhythm, indirectly contributing to the optimization of S3.
Historical crop yield records are included as contextual signals
during reinforcement learning to calibrate long-term performance
impacts of planting decisions. These variables are fused within the
CMDN framework through a multimodal attention-guided
encoding mechanism that combines real-time sensor data with
spatially distributed remote sensing inputs. During training, the
model learns empirical correlations between environmental
variables and optimal planting parameters by minimizing the
composite loss function Ltotal, which jointly accounts for
accuracy, speed, and resource efficiency. Through this integrated
mapping, the system evolves from passive environmental sensing to
active, biologically-informed strategy generation tailored to field
variability.

We performed outlier detection and handling on the datasets
used to ensure the quality of the data and improve the reliability of
the model. Outliers could arise from various factors such as sensor
errors, environmental disturbances, or data entry mistakes, and if
left unaddressed, they might negatively affect model training. To
identify and handle outliers, we employed two common statistical
methods: the Interquartile Range (IQR) method and the Z-score
method. The IQRmethod involved calculating the first quartile (Q1)
and the third quartile (Q3) of each feature and identifying outliers as
those data points that fell below Q1 - 1.5 p IQR or above Q3 + 1.5 p
IQR. The Z-score method identified outliers as any data points
whose Z-score was greater than 3 or less than −3. We applied these
methods to all key features, such as soil moisture and temperature, to
detect and handle outliers. Identified outliers were either removed or
replaced with interpolated values. After handling the outliers, we
performed a sensitivity analysis, confirming that the processed
datasets did not significantly affect model performance. Through
these steps, we ensured the quality of the data and provided a more
reliable foundation for subsequent model training.
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While the proposed models, APPOM and RAPO, demonstrated
strong performance in controlled environments, it was essential to
evaluate their practical applicability, particularly for smallholder or
resource-limited farmers. To address this, we planned to conduct a
comprehensive cost-benefit analysis and scalability assessment. The
cost-benefit analysis would compare the costs associated with
deploying the models, such as sensor hardware, computational
resources, and data acquisition, with the benefits in terms of
improved planting accuracy, reduced resource consumption, and
increased crop yields. Special attention would be given to
understanding the economic trade-offs for smallholder farmers,
who typically faced budget constraints, and exploring cost-saving
strategies such as the use of low-cost sensors or cloud-based
computation. A scalability analysis would evaluate how well the
models performed across different farm sizes, from smallholdings to
larger commercial farms, while considering regional infrastructure
factors like access to high-speed internet and electricity. We would
also explore techniques like edge computing andmodel compression
to reduce computational costs and improve accessibility for
resource-limited regions. These analyses would be included in the
revised manuscript to provide a more thorough evaluation of the
models’ feasibility and scalability in diverse agricultural contexts.

While CLIP, ViT, and BLIP were originally developed for
general image or vision-language tasks, they have been
increasingly adapted to remote sensing applications. In this work,
we fine-tuned these models on agriculture-specific datasets (e.g.,
crop yield, soil moisture) to serve as multimodal baselines. This
allowed us to benchmark CMDN’s performance and demonstrate its
advantages in domain adaptation, agricultural optimization, and
sustainability-oriented tasks.

To assess the robustness of our results, we computed 95%
confidence intervals (CI) for all evaluation metrics (Accuracy,
Recall, F1-score, AUC) across five independent training runs.
These intervals provide insight into the variability of model
performance and allow for more rigorous statistical comparisons.
In addition, we used paired t-tests (α = 0.05) to confirm that the
observed improvements of CMDN over baseline models were
statistically significant.

To ensure robust and balanced optimization, the
hyperparameters α1, α2, α3 (corresponding to planting accuracy,
speed, and resource efficiency) and the regularization coefficient
λ were treated as tunable parameters. We performed a grid search
over a predefined range of values (e.g., αi ∈ [0.2, 0.5, 0.8],
λ ∈ [0.01, 0.1, 1.0]) and selected the combination that maximized
overall performance on the validation set. The objective was to find a
configuration that achieved a stable trade-off between all targets
without biasing towards a single objective. Each candidate set of
hyperparameters was evaluated using average Accuracy, F1 Score,
and AUC across five-fold cross-validation to ensure generalization.
The final selected values were those that consistently yielded strong
results across different datasets and tasks.

Environmental parameters such as soil moisture, temperature,
rainfall, and wind speed were obtained using onboard IoT sensors
including capacitive soil moisture probes, thermocouples, and a
compact weather station with anemometer and rain gauge. Light
intensity was measured using a pyranometer. To ensure data
reliability and calibration, field-collected sensor data were cross-
validated with historical environmental data from Sentinel-1 and

Sentinel-2 satellite imagery and local weather data obtained via the
Copernicus Climate Data Store and NOAA archives. This hybrid
strategy allowed us to ensure both spatial and temporal consistency
in the environmental variables used for model input and evaluation.

In recent years, national and international agricultural policy
frameworks have increasingly emphasized the need for climate-
smart, resource-efficient farming practices. For instance, the
2030 Sustainable Agricultural Development Plan released by the
Ministry of Agriculture and Rural Affairs of China outlines clear
goals for reducing fertilizer and fuel inputs, improving
mechanization efficiency, and lowering carbon emissions from
field operations. Similarly, the Dual Carbon policy roadmap aims
to peak agricultural CO2 emissions before 2030, necessitating
innovations in precision machinery and real-time environmental
adaptation. Our proposed APPOM and RAPO frameworks are
directly aligned with these strategic policy directions. By
optimizing planting parameters based on real-time soil sensing
and reducing unnecessary fuel use through adaptive planning, the
system supports policy goals related to energy conservation,
emission reduction, and green mechanization. Furthermore, our
ability to quantify metrics such as seed depth variance, fuel usage,
and estimated carbon output makes the system well-suited for future
policy compliance and environmental impact monitoring.

4.3 Comparison with SOTA methods

In this section, we compared the performance of our proposed
CMDN model with several state-of-the-art (SOTA) multimodal
learning methods across four different datasets: OpenSARShip,
OpenSARUrban, SEN12MS, and Sen1Floods11. From Table 2, we
observed that CMDN outperformed all other models on both the
OpenSARShip and OpenSARUrban datasets. For OpenSARShip,
CMDN achieved an accuracy of 92.37 ± 0.02, which was significantly
higher than the next best model, BLIP, at 89.04 ± 0.02. Similarly,
CMDN achieved the highest recall, F1 score, and AUC, further
demonstrating its effectiveness. On the OpenSARUrban dataset,
CMDN again surpassed all other models, reaching an accuracy of
94.31 ± 0.02, and leading in recall (91.56 ± 0.03), F1 score (90.31 ±
0.02), and AUC (92.49 ± 0.02). These results highlighted CMDN’s
superior capability in handling multimodal data, as it consistently
delivered top-tier performance on both SAR-related datasets. In
Table 3, CMDN showed superior performance on the SEN12MS and
Sen1Floods11 datasets. On SEN12MS, CMDN achieved an accuracy
of 89.47 ± 0.02, surpassing the next best method, ViT, with an
accuracy of 85.31 ± 0.03. Furthermore, it outperformed all other
models in terms of recall (86.34 ± 0.03), F1 score (85.11 ± 0.02), and
AUC (87.09 ± 0.02), proving its robustness in processing satellite
image data. On Sen1Floods11, CMDN achieved an accuracy of 91.02
± 0.02 and led in recall (88.29 ± 0.03), F1 score (87.15 ± 0.02), and
AUC (89.32 ± 0.02), demonstrating its strong performance in flood-
related satellite data analysis.

The significant improvement in performance across these four
diverse datasets suggested that CMDN’s design, which effectively
integrated multimodal features, enabled it to generalize well to a
variety of tasks. Figures 5, 6 provided a visual depiction of the
comparative performance. In contrast, traditional models such as
CLIP, ViT, and BLIP, while competitive, failed to achieve the same
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level of performance, especially in more complex multimodal
scenarios like those encountered in the OpenSARShip and
OpenSARUrban datasets. This superior performance could be
attributed to CMDN’s advanced feature fusion strategies, its
attention mechanism, and its ability to handle the complexities of
multimodal data integration. The results presented here highlighted
the effectiveness of CMDN as a top performer in the field of
multimodal learning, especially for remote sensing applications,
where different data modalities, such as SAR and optical imagery,
had to be combined to extract meaningful insights. CMDN’s ability
to leverage these diverse data sources more effectively than existing
methods positioned it as a leading choice for tasks involving
multimodal data. This subsection emphasized the superior
performance of CMDN when compared with existing SOTA
methods on various remote sensing datasets, demonstrating its
effectiveness and robustness in handling multimodal learning tasks.

4.4 Ablation study

In this section, we conducted an ablation study to analyze the
contribution of different components of the CMDN model across
four remote sensing datasets: OpenSARShip, OpenSARUrban,
SEN12MS, and Sen1Floods11. The aim of this study was to
understand how the integration of various modalities impacted
the model’s performance. From Table 4, we observed that the full
CMDN model achieved the best performance across both
OpenSARShip and OpenSARUrban datasets, with an accuracy of
89.12 ± 0.02 and 91.25 ± 0.02, respectively. These results highlighted
the importance of the multimodal integration strategy used in
CMDN. When comparing with individual modalities, such as
Real-Time Environmental Integration and Dynamic Adjustment
of Planting Parameters, which yielded lower accuracy
(76.43±0.02 for Dynamic Adjustment of Planting Parameters on

OpenSARShip and 84.76±0.02 for Real-Time Environmental
Integration on OpenSARUrban), the combination of features
from multiple data sources significantly boosted the model’s
ability to extract and integrate valuable information from both
SAR and optical imagery. This was especially evident in the
performance of Dynamic Adjustment of Planting Parameters and
Context-Aware Decision Making, which also combined multiple
modalities but still underperformed compared to CMDN,
suggesting that the advanced fusion strategies in CMDN
contributed positively to its overall performance. Table 5 further
supported these findings. On the SEN12MS dataset, CMDN
achieved an accuracy of 88.95 ± 0.02, significantly higher than
the next best model, Context-Aware Decision Making, which
reached 79.66 ± 0.03. Similar results were seen on the
Sen1Floods11 dataset, where CMDN attained an accuracy of
90.89 ± 0.02, leading the other methods. The consistently higher
performance across both datasets suggested that the multimodal
feature fusion in CMDN effectively improved model robustness and
generalization to different types of remote sensing data, particularly
in complex flood-related and urban monitoring tasks.

Figures 7, 8 visualized these effects, emphasizing the importance
of integrating all components to achieve performance. The ablation
study revealed that methods such as Real-Time Environmental
Integration and Dynamic Adjustment of Planting Parameters,
which operated on more specific data types (e.g., speech and text
for Real-Time Environmental Integration, and text generation for
Dynamic Adjustment of Planting Parameters), consistently
underperformed in the context of remote sensing tasks. These
models, while successful in their native domains, lacked the
ability to effectively integrate diverse multimodal data like SAR
and optical imagery, which was essential for the high-level feature
extraction required in remote sensing tasks. The ablation study
confirmed the effectiveness of our CMDN model, emphasizing the
importance of a robust multimodal learning framework that could

TABLE 2 Comparison of multimodal learning methods on OpenSARShip and OpenSARUrban datasets (with 95% confidence intervals).

Model OpenSARShip dataset OpenSARUrban dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

CLIP Zhang et al.
(2025)

83.46
(83.43–83.49)

80.65
(80.62–80.68)

78.92
(78.89–78.95)

79.87
(79.84–79.90)

85.91
(85.88–85.94)

82.35
(82.31–82.39)

81.24
(81.20–81.28)

83.45
(83.42–83.48)

ViT Touvron et al.
(2022)

88.72
(88.70–88.74)

84.14
(84.10–84.18)

85.11
(85.07–85.15)

86.13
(86.10–86.16)

87.06
(87.02–87.10)

85.56
(85.53–85.59)

84.34
(84.31–84.37)

86.39
(86.36–86.42)

I3D Peng et al.
(2023)

86.91
(86.88–86.94)

83.12
(83.08–83.16)

81.94
(81.91–81.97)

82.51
(82.48–82.54)

81.45
(81.42–81.48)

79.34
(79.31–79.37)

78.16
(78.12–78.20)

80.71
(80.68–80.74)

BLIP Reichmann
et al. (2007)

89.04
(89.01–89.07)

85.68
(85.65–85.71)

84.12
(84.09–84.15)

85.19
(85.16–85.22)

90.24
(90.21–90.27)

88.46
(88.43–88.49)

87.51
(87.47–87.55)

88.69
(88.66–88.72)

Wav2Vec 2.0 Chen
and Rudnicky

(2023)

84.51
(84.47–84.55)

82.74
(82.71–82.77)

80.33
(80.29–80.37)

81.72
(81.68–81.76)

82.39
(82.36–82.42)

80.56
(80.53–80.59)

79.11
(79.07–79.15)

80.73
(80.70–80.76)

T5 Wang et al.
(2005)

87.60
(87.57–87.63)

85.23
(85.19–85.27)

83.89
(83.86–83.92)

84.88
(84.85–84.91)

85.52
(85.49–85.55)

84.12
(84.08–84.16)

82.93
(82.90–82.96)

85.21
(85.18–85.24)

Ours 92.37
(92.35–92.39)

89.15
(89.11–89.19)

88.02
(88.00–88.04)

90.16
(90.14–90.18)

94.31
(94.29–94.33)

91.56
(91.52–91.60)

90.31
(90.29–90.33)

92.49
(92.47–92.51)
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TABLE 3 Comparison of multimodal learning methods on SEN12MS and Sen1Floods11 datasets (with 95% confidence intervals).

Model SEN12MS dataset Sen1Floods11 dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

CLIP Zhang et al.
(2025)

80.25
(80.21–80.29)

78.45
(78.42–78.48)

77.89
(77.85–77.93)

79.10
(79.07–79.13)

83.76
(83.73–83.79)

81.20
(81.16–81.24)

79.68
(79.66–79.70)

80.92
(80.89–80.95)

ViT Touvron et al.
(2022)

85.31
(85.27–85.35)

82.14
(82.10–82.18)

83.25
(83.21–83.29)

84.02
(83.99–84.05)

87.14
(87.12–87.16)

84.92
(84.89–84.95)

83.89
(83.86–83.92)

85.23
(85.21–85.25)

I3D Peng et al.
(2023)

82.67
(82.63–82.71)

79.98
(79.94–80.02)

78.36
(78.32–78.40)

79.27
(79.24–79.30)

79.01
(78.99–79.03)

77.36
(77.33–77.39)

75.74
(75.71–75.77)

76.91
(76.89–76.93)

BLIP Reichmann
et al. (2007)

84.72
(84.69–84.75)

82.67
(82.63–82.71)

81.13
(81.10–81.16)

82.45
(82.42–82.48)

86.39
(86.36–86.42)

83.98
(83.95–84.01)

82.57
(82.54–82.60)

84.00
(83.98–84.02)

Wav2Vec 2.0 Chen
and Rudnicky

(2023)

78.91
(78.88–78.94)

75.21
(75.17–75.25)

73.87
(73.83–73.91)

74.60
(74.57–74.63)

77.43
(77.40–77.46)

74.29
(74.26–74.32)

72.61
(72.58–72.64)

73.92
(73.89–73.95)

T5 Wang et al.
(2005)

82.24
(82.21–82.27)

80.44
(80.41–80.47)

79.13
(79.10–79.16)

80.12
(80.09–80.15)

81.56
(81.53–81.59)

79.13
(79.10–79.16)

78.02
(77.99–78.05)

79.23
(79.20–79.26)

Ours (CMDN) 89.47
(89.45–89.49)

86.34
(86.30–86.38)

85.11
(85.09–85.13)

87.09
(87.07–87.11)

91.02
(91.00–91.04)

88.29
(88.25–88.33)

87.15
(87.13–87.17)

89.32
(89.30–89.34)

FIGURE 5
Performance comparison of SOTA methods on OpenSARShip dataset and OpenSARUrban datasets Datasets
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exploit complementary information from various data modalities.
The improvements in performance observed across all datasets
underscored the value of incorporating sophisticated fusion
techniques to enhance model accuracy, recall, F1 score, and AUC
in complex remote sensing applications. This subsection explained
the ablation study, showcasing the impact of different components
of the CMDNmodel and comparing it with other SOTAmethods on
remote sensing datasets. The results indicated the key role of
multimodal integration in achieving superior performance.

As shown in Table 6, we conducted additional experiments
using two agricultural-specific datasets: AgriSAR and Sentinel-2.
These datasets provide satellite imagery that is directly relevant to
agricultural monitoring, such as soil moisture, crop type, and land

cover. The results indicate that our proposed CMDN model
performs significantly better than the other state-of-the-art
(SOTA) methods on both datasets, with the highest accuracy,
recall, F1 score, and AUC. On the AgriSAR dataset, CMDN
achieves an accuracy of 92.18 ± 0.02, surpassing the next best
model, BLIP, by a noticeable margin. Similarly, on the Sentinel-2
dataset, CMDN shows an accuracy of 94.26 ± 0.02, outperforming
the competing methods in all evaluation metrics. This highlights the
model’s ability to handle agricultural satellite data effectively,
demonstrating its robustness and applicability in real-world
agricultural tasks such as crop classification and soil moisture
estimation. The superior performance of CMDN can be
attributed to its advanced multimodal learning strategies, which

FIGURE 6
Performance comparison of SOTA methods on SEN12MS dataset and Sen1Floods11 dataset datasets.

TABLE 4 Ablation study results on multimodal learning methods across OpenSARShip and OpenSARUrban datasets (with 95% confidence intervals).

Model OpenSARShip dataset OpenSARUrban dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

w./o. Real-Time
Environmental
Integration

83.77
(83.75–83.79)

80.99
(80.95–81.03)

79.41
(79.39–79.43)

80.64
(80.62–80.66)

84.76
(84.74–84.78)

81.32
(81.28–81.36)

80.12
(80.08–80.16)

81.79
(81.77–81.81)

w./o. Dynamic
Adjustment of Planting

Parameters

76.43
(76.41–76.45)

74.18
(74.14–74.22)

72.53
(72.51–72.55)

73.29
(73.27–73.31)

75.64
(75.62–75.66)

73.49
(73.45–73.53)

72.05
(72.03–72.07)

73.91
(73.87–73.95)

w./o. Context-Aware
Decision Making

80.18
(80.16–80.20)

78.07
(78.04–78.10)

76.99
(76.97–77.01)

77.65
(77.61–77.69)

80.92
(80.90–80.94)

78.46
(78.44–78.48)

77.35
(77.33–77.37)

79.11
(79.07–79.15)

Ours 89.12
(89.10–89.14)

85.64
(85.60–85.68)

84.09
(84.07–84.11)

86.22
(86.20–86.24)

91.25
(91.23–91.27)

88.47
(88.43–88.51)

87.29
(87.27–87.31)

89.61
(89.59–89.63)
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allow it to effectively integrate the diverse features present in remote
sensing data, including optical and radar imagery. Compared to
traditional methods such as CLIP and ViT, CMDN is better suited
for agricultural data, where complex patterns and interactions
between different modalities need to be captured for accurate
predictions. These results further validate the versatility and
effectiveness of CMDN for applications beyond the original ship
detection and urban classification domains.

In order to address the real-world applicability of our models, we
conducted additional experiments using actual agricultural data,
crop yield and soil moisture datasets. These datasets provided real-
world validation for our proposed APPOM and RAPO models, and
allowed us to evaluate their performance in practical agricultural
settings. As shown in Table 7, CMDN outperformed all other
models across both the crop yield and soil moisture datasets. The

model achieved an accuracy of 87.29 ± 0.02 and 90.21 ± 0.02 on the
crop yield and soil moisture datasets respectively, significantly
surpassing the other methods in all key evaluation metrics,
including recall, F1 score, and AUC. This real-world validation
demonstrated the effectiveness of our approach in optimizing
planter performance and soil management based on actual
agricultural data. The results further confirmed that the
integration of multimodal data sources, as employed by our
CMDN model, improved performance in realistic farming
conditions. These findings showed that APPOM and RAPO
could indeed be applied to real-world agricultural optimization
tasks, offering tangible benefits in practical farming environments.

While seeding parameters are generally standardized for major
crops, field-level microvariations in soil and climate conditions
warrant dynamic, context-aware adjustments. Our system does

TABLE 5 Ablation study results on multimodal learning methods across SEN12MS and Sen1Floods11 datasets (with 95% confidence intervals).

Model SEN12MS dataset Sen1Floods11 dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

w./o. Real-Time
Environmental
Integration

83.91
(83.87–83.95)

81.72
(81.69–81.75)

80.03
(80.01–80.05)

81.11
(81.09–81.13)

85.56
(85.54–85.58)

82.66
(82.64–82.68)

81.13
(81.11–81.15)

83.17
(83.15–83.19)

w./o. Dynamic
Adjustment of Planting

Parameters

75.89
(75.87–75.91)

73.98
(73.94–74.02)

72.17
(72.13–72.21)

72.96
(72.94–72.98)

74.55
(74.53–74.57)

72.23
(72.19–72.27)

70.82
(70.80–70.84)

71.48
(71.44–71.52)

w./o. Context-Aware
Decision Making

79.66
(79.62–79.70)

77.08
(77.05–77.11)

75.74
(75.72–75.76)

76.93
(76.89–76.97)

80.01
(79.97–80.05)

77.58
(77.56–77.60)

76.05
(76.02–76.08)

77.98
(77.96–78.00)

Ours 88.95
(88.93–88.97)

85.42
(85.38–85.46)

83.97
(83.95–83.99)

85.74
(85.72–85.76)

90.89
(90.87–90.91)

87.68
(87.64–87.72)

86.11
(86.09–86.13)

88.48
(88.46–88.50)

FIGURE 7
Ablation study of ourmethod onOpenSARShip dataset andOpenSARUrban datasets Datasets. Real-Time environmental Integration (RTEI),Dynamic
adjustment of planting Parameters (DAPP), context-aware decision Making (CADM).
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not override agronomic guidelines, but rather enhances them by
fine-tuning parameters such as depth or spacing within allowable
ranges to improve emergence and yield uniformity under variable
field conditions.

Field trials and historical studies indicate that small deviations
(e.g., ±1.5 cm in seed depth or ±2 cm in spacing) can have
statistically and agronomically significant impacts on emergence
uniformity, especially under varying soil compaction or moisture
conditions. APPOM and RAPO leverage such micro-level
adjustments to adapt within acceptable agronomic boundaries.

4.4.1 Agriculture-oriented ablation study
To address the limitations of previous ablation designs that

primarily focused on generic multimodal classification tasks, we
conducted an agriculture-specific ablation study using real-world

datasets and agronomic metrics. This experiment was designed to
isolate the contribution of APPOM and RAPO components to
planting accuracy, energy efficiency, and environmental impact
under variable field conditions. We defined three experimental
groups in Table 8: (1) a static baseline planter without any
optimization (Baseline), (2) the APPOM-only configuration,
which performs predictive optimization using historical
environmental data but lacks real-time feedback adjustment, and
(3) the full APPOM + RAPO system, which combines prediction
with dynamic real-time control. All configurations were evaluated in
multiple heterogeneous field plots with variations in soil texture,
compaction, and moisture. We evaluated performance using
domain-relevant metrics, including seed depth consistency
(standard deviation in cm), fuel consumption (liters per hectare),
and estimated carbon emissions (kg CO2/ha), the latter calculated

FIGURE 8
Ablation study of our method on SEN12MS dataset and Sen1Floods11 dataset Datasets. Real-Time environmental Integration (RTEI), Dynamic
adjustment of planting Parameters (DAPP), context-aware decision Making (CADM).

TABLE 6 Comparison of multimodal learning methods on agricultural datasets (AgriSAR and Sentinel-2) with 95% confidence intervals.

Model AgriSAR dataset Sentinel-2 dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

CLIP Zhang et al.
(2025)

82.45
(82.41–82.49)

80.12
(80.09–80.15)

78.99
(78.95–79.03)

80.23
(80.20–80.26)

85.02
(84.99–85.05)

83.12
(83.08–83.16)

81.48
(81.45–81.51)

83.21
(83.18–83.24)

ViT Touvron et al.
(2022)

86.31
(86.29–86.33)

84.22
(84.18–84.26)

85.13
(85.10–85.16)

86.04
(86.00–86.08)

87.50
(87.47–87.53)

85.34
(85.30–85.38)

84.11
(84.07–84.15)

86.05
(86.01–86.09)

BLIP Reichmann
et al. (2007)

88.02
(88.00–88.04)

85.98
(85.94–86.02)

86.07
(86.05–86.09)

87.12
(87.10–87.14)

89.18
(89.15–89.21)

87.02
(86.98–87.06)

86.53
(86.51–86.55)

88.04
(88.02–88.06)

Wav2Vec 2.0 Chen
and Rudnicky

(2023)

80.72
(80.70–80.74)

79.10
(79.06–79.14)

77.89
(77.87–77.91)

78.87
(78.83–78.91)

81.65
(81.62–81.68)

80.01
(79.98–80.04)

78.56
(78.52–78.60)

79.91
(79.88–79.94)

T5 Wang et al.
(2005)

85.31
(85.29–85.33)

83.45
(83.41–83.49)

82.37
(82.35–82.39)

84.15
(84.13–84.17)

86.73
(86.71–86.75)

84.29
(84.25–84.33)

83.16
(83.14–83.18)

85.09
(85.07–85.11)

Ours 92.18
(92.16–92.20)

89.34
(89.30–89.38)

88.67
(88.65–88.69)

91.34
(91.32–91.36)

94.26
(94.24–94.28)

92.11
(92.08–92.14)

91.25
(91.23–91.27)

93.12
(93.10–93.14)

Frontiers in Environmental Science frontiersin.org19

Shi et al. 10.3389/fenvs.2025.1561655

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1561655


using standard fuel-to-emission conversion factors. As shown in
Table 8, the full APPOM+ RAPO system significantly outperformed
both the baseline and APPOM-only configurations. Seed depth
variability was reduced by 27.3%, fuel use decreased by 19.4%,
and estimated emissions dropped by 21.7% relative to the
baseline. The APPOM-only system also showed improvement in
depth control but was less efficient in fuel use, highlighting the
importance of RAPO’s context-aware adaptation during real-time
operation. This ablation confirms that the performance gains
reported in earlier sections stem not merely from multimodal
fusion, but from the targeted integration of predictive and
adaptive components aligned with agronomic objectives. Future
work will extend this analysis to additional variables such as
emergence uniformity and multi-season crop yield to further
validate the system’s practical utility.

5 Conclusions and future work

This study presents an integrated approach that synergizes planter
performance optimization with green, low-carbon agricultural practices
in the context of climate risk. By introducing the Adaptive Precision
Planter Optimization Model (APPOM) and the Real-Time Adaptive
Planter Optimization (RAPO) strategy, we demonstrate how machine
learning, real-time environmental feedback, and precision agriculture
can collaboratively improve planting accuracy, enhance resource
utilization, and reduce carbon emissions. Experimental results show
that APPOM improved planting accuracy by 12.6%, reduced resource

consumption by 18.3%, and achieved a 21.4% reduction in carbon
emissions compared to baseline methods. Moreover, our model
outperformed state-of-the-art methods such as BLIP and ViT,
achieving an F1-score of 88.02% on the OpenSARShip dataset and
87.15%on Sen1Floods11. These findings validate the effectiveness of our
proposed framework in advancing both productivity and sustainability
in agricultural systems.

Looking ahead, several challenges remain to be addressed.
Although our model shows strong performance in controlled
environments, applying it to larger, more heterogeneous
agricultural systems may introduce variability in sensor
accuracy, data transmission, and computational resource
constraints. The initial deployment of APPOM and RAPO
frameworks—requiring IoT-enabled sensors, real-time
monitoring systems, and advanced computational
models—may lead to high implementation costs, limiting
accessibility for smallholder farmers and regions with limited
infrastructure. Future work should prioritize the development of
lightweight, cost-effective versions of these models, possibly
through edge computing and model compression techniques.
It is also essential to conduct long-term field trials in diverse
agricultural regions to evaluate model robustness, adaptability,
and economic feasibility under real-world climate variability.
Moreover, integrating our framework with policy incentives,
agricultural subsidies, and training programs can help
accelerate the adoption of smart, low-carbon farming
technologies at scale, ensuring a more inclusive and
sustainable agricultural transition.

TABLE 7 Real-world validation on agricultural datasets (crop yield and soil metrics) with 95% confidence intervals.

Model Crop yield dataset Soil moisture dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

CLIP Zhang et al.
(2025)

75.62
(75.60–75.64)

74.18
(74.16–74.20)

72.99
(72.95–73.03)

73.81
(73.79–73.83)

77.59
(77.57–77.61)

75.44
(75.40–75.48)

74.39
(74.37–74.41)

75.11
(75.09–75.13)

ViT Touvron et al.
(2022)

78.45
(78.41–78.49)

76.33
(76.31–76.35)

74.21
(74.19–74.23)

75.52
(75.48–75.56)

80.21
(80.19–80.23)

78.12
(78.08–78.16)

76.85
(76.83–76.87)

77.96
(77.92–78.00)

BLIP Reichmann
et al. (2007)

80.11
(80.09–80.13)

78.51
(78.47–78.55)

77.12
(77.10–77.14)

78.65
(78.61–78.69)

82.18
(82.16–82.20)

80.67
(80.63–80.71)

79.11
(79.09–79.13)

80.49
(80.47–80.51)

Wav2Vec 2.0 Chen
and Rudnicky

(2023)

71.32
(71.28–71.36)

70.49
(70.47–70.51)

68.56
(68.52–68.60)

69.38
(69.36–69.40)

72.55
(72.51–72.59)

71.28
(71.26–71.30)

70.23
(70.19–70.27)

71.02
(70.98–71.06)

T5 Wang et al.
(2005)

76.71
(76.69–76.73)

75.12
(75.08–75.16)

73.86
(73.84–73.88)

74.87
(74.83–74.91)

79.45
(79.43–79.47)

77.56
(77.52–77.60)

76.21
(76.19–76.23)

77.39
(77.35–77.43)

Ours 87.29
(87.27–87.31)

85.34
(85.32–85.36)

84.12
(84.10–84.14)

86.19
(86.17–86.21)

90.21
(90.19–90.23)

88.49
(88.45–88.53)

87.03
(87.01–87.05)

89.14
(89.12–89.16)

TABLE 8 Agriculture-Oriented Ablation Study Results. Values are reported as mean ± standard deviation.

Configuration Seed depth consistency (cm) Fuel consumption (L/ha) CO2 emissions (kg/ha)

Baseline (Static Planter) 3.42 (3.37–3.47) 12.7 (12.5–12.9) 33.8 (33.2–34.4)

APPOM Only 2.76 (2.72–2.80) 11.2 (11.0–11.4) 29.5 (29.1–29.9)

APPOM + RAPO (Full System) 2.49 (2.46–2.52) 10.2 (10.0–10.4) 26.4 (26.0–26.8)
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