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Oil and gas reservoirs represent suitable containers to sequester carbon dioxide (CO2)
in a supercritical state because they are accessible, reservoir properties are known, and
they previously contained stored buoyant fluids. However, plannersmust quantify the
relative magnitude of the CO2 storage resource in these reservoirs to formulate a
comprehensive strategy for CO2 mitigation. Even reconnaissance-type estimates of
CO2 storage resources of known oil and gas reservoirs may require complicated
calculations involving 1) estimates of recoverable oil and gas, 2) reservoir properties
(depth, temperature, pressure, etc.), and 3) the physical qualities of the retained fluids.
We demonstrate the application of machine learning (ML) algorithms to bypass these
computations to yield more rapid estimates of CO2 storage resources in reservoirs
capable of hosting CO2 in a supercritical state. ML algorithms are computationally
efficient because they do not impose the strong assumptions on the data-generating
process that standard statistical or engineering procedures require. Further, ML
algorithms can capture highly complex, particularly nonlinear, relationships among
predictor variables. We demonstrate the application of four different ML algorithms
using data from onshore and offshore oil and gas reservoirs in Europe, and show they
performwellwhenpredictions are compared to engineering estimates. The proposed
methods andmodels provide an effective and novel way to more rapidly and directly
determine the subsurface CO2 storage capacity of oil and gas reservoirs around the
world, information that operators, researchers, and policymakers alike require tomeet
energy transition and decarbonization goals.
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1 Introduction

Carbon dioxide (CO2) capture and geologic storage is one of the methods proposed to
moderate the growth and even reduce CO2 emissions to the atmosphere. To make
meaningful contributions to this goal, potential geologic storage units must be
identified, and the CO2 storage resource assessed1 (Bachu et al., 2007). Depleted oil and

OPEN ACCESS

EDITED BY

Jill A. Engel-Cox,
University of Colorado Denver, United States

REVIEWED BY

Mohammad H. Elkady,
Texas A and M University, United States
Mostafa Saghafi,
Shahrood University of Technology, Iran
Derek Vikara,
National Energy Technology Laboratory (DOE),
United States

*CORRESPONDENCE

Emil Attanasi,
attanasi@usgs.gov

Timothy Coburn,
tim.coburn@colostate.edu

RECEIVED 16 January 2025
ACCEPTED 11 April 2025
PUBLISHED 28 April 2025

CITATION

Attanasi E, Freeman P and Coburn T (2025)
Machine learning provides reconnaissance-
type estimates of carbon dioxide storage
resources in oil and gas reservoirs.
Front. Environ. Sci. 13:1562087.
doi: 10.3389/fenvs.2025.1562087

COPYRIGHT

© 2025 Attanasi, Freeman and Coburn. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

1 This study uses the term CO2 storage resource to denote pore space in the reservoir occupied by

recoverable oil and gas that could be utilized to store CO2.This terminology is consistent with Society

of Petroleum Engineers (2017) accepted definitions
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gas reservoirs2 represent a class of such geologic structures that are
already identified and whose storage potential may be appraised
using known production and reservoir data. These reservoirs are
appealing because data characterizing the reservoir and the
contained hydrocarbons have already been collected by the
producer and regulatory authority. Moreover, the structural
integrity of these reservoirs has already been demonstrated
because they have previously stored hydrocarbons.

In this study we develop machine learning (ML) approaches to
make reconnaissance-type estimates of the CO2 storage resources of
known oil and gas reservoirs. These reconnaissance-type estimates
are based on data that characterize the properties of individual oil
and gas reservoirs located in a study area. Such data may be
published in public or propriety databases. Reconnaissance
estimates are particularly important to policymakers and
planners because they can provide a comprehensive view of the
potentially available resources required for environmental policy
and planning decisions. The data-driven nature of ML allows such
estimates to be computed more rapidly than those obtained through
a workflow of conventional engineering calculations, and it permits
nonlinearities in the data to be accommodated directly without
complex computation.

The oil and gas reservoir data used here included 9,340 known
oil and gas reservoirs located in onshore and offshore western
Europe that are currently or were formerly producing (IHS
Markit, 2021); now known as S&P Global, retrieved September
2021. The calculation of CO2 storage resources for these reservoirs,
even at the reconnaissance level, requires complex computations
entailing estimates of recoverable oil and gas, reservoir properties,
and the physical properties of the produced oil and gas (see
Supplementary Appendix 1). To this end, we applied ML
algorithms using reservoir and oil and gas properties to facilitate
the calculation of the CO2 storage resources. The algorithms are
trained and tested using a screened subset of these data. This paper
first provides a short literature review, then describes the reservoir
data, and briefly identifies the ML algorithms applied along with
their hyperparameters. The predictive performance of the
algorithms is then compared and summarized, and final remarks
and discussion are provided.

2 Literature review

Various engineering and volumetric methods have been
used in recent years to estimate the geological resource that
could be available to store captured carbon (Bradshaw et al.,
2006; Bachu, 2008; Pingping et al., 2009; Popova et al., 2012;
Goodman, 2012; Heidug, 2013; Gorecki et al., 2015; NETL, 2015;
Cantucci et al., 2016; Goodman et al., 2016; Ajayi et al., 2019;
Moore, 2022). U.S. Geological Survey (2013), Consoli (2016),

Kearns et al. (2017), Sanguinito et al. (2020), Zhang et al. (2022),
and others provide estimates of geological CO2 storage capacity
on a global or regional scale, and/or for specific depositional or
operational settings. Peck et al. (2017), for example, specifically
discuss best practices for quantifying CO2 storage resources in
the context of enhanced oil recovery (EOR). Argatan et al.
(2018) address CO2 storage in depleted oil and gas fields
in the Gulf of Mexico, and Haagsma et al. (2020) and Jones
et al. (2024) consider storage in Michigan Basin oil and gas
reservoirs.

This body of literature suggests that the various estimates of
geologic CO2 storage resources are quite uncertain, a situation
largely attributable to methodological differences and treatment
of the subsurface physics. Kadeethum et al. (2023) note that the
various subsurface reservoir environments in which CO2

could be stored are rather heterogeneous in terms of their
physical and flow characteristics, and the behavior of these
phenomena are often nonlinear and difficult to model,
requiring significant time and computational resources. On
the other hand, ML provides a way to effectively capture the
relationships among subsurface features, including any
nonlinear behaviors, without having to specifically rely on the
theoretical constructs and assumptions more often associated
with engineering approaches.

In layman’s terms, ML is “a method of data analysis that
automates analytical model building” or “a branch of artificial
intelligence based on the idea that systems can learn from data,
identify patterns and make decisions with minimal human
intervention” (SAS n. d.; Wilpon et al., 2017). Consequently,
the use of ML has been suggested as an alternative, surrogate, or
proxy approach with which to address various aspects of carbon
capture, utilization, and storage (CCUS) (Dumakor-Dupey and
Arya, 2021; Mahoob et al., 2022; Kadeethum et al., 2023). For
example, You et al. (2019) use ML to evaluate EOR and CO2

storage resources in the Farnsworth Unit in the Texas Panhandle.
Smeenk and Leeuwenburgh (2023) and Ferreira et al. (2024) use
deep learning approaches to evaluate CO2 storage resources in
depleted gas fields. Bakhshian et al. (2022) use deep learning to
assess CO2 storage resources in reservoirs containing residual
gas. He et al. (2022) provide an ML workflow for CO2 storage
capacity in deep saline reservoirs. Chen et al. (2018), Chen and
Pawar (2019), Thanh et al. (2020), and Abdulwarith et al. (2024)
use ML to address CO2 EOR and storage capacity in residual oil
zones. Moreover, Wen et al. (2023) develop a nested Fourier
neural network model trained on detailed reservoir model output
data to produce high-resolution CO2 storage resource estimates
for site-specific reservoirs. Here, we consider a novel application
of ML to formulate reconnaissance-type estimates of CO2

geologic storage resources, with specific reference to
western Europe.

3 Data description

Country-wide, regional, or basin-wide high-level or
reconnaissance appraisals of the CO2 storage resources of oil and
gas reservoirs commonly assume CO2 will replace the produced
reservoir fluids in the reservoir’s pore space (Bachu et al., 2007;

2 The U.S. Energy Information Administration (2000) defines conventional

oil and gas reservoirs as underground formations containing an individual

and separate pool (natural accumulation) of producible oil and/or gas that

is confined by impermeable rock or water barriers and is characterized by a

single natural pressure system
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Goodman et al., 2011; Cantucci et al., 2016; Aminu et al., 2017).3

Because data on the location and appraisal of the CO2 storage
resources are critical for long-range planning for deployment of CO2

transport and storage, the approach taken here is to base the CO2

storage resource on an estimate of the reservoir volume of the
recoverable hydrocarbons that can be expected to be produced from
startup to abandonment. Supplementary Appendix 1 presents
details of the multiple steps of the more conventional engineering
procedure that uses the individual reservoir properties to estimate
the CO2 storage resource for each reservoir.

As of 2021, IHS Markit (2021) identified 9,340 oil and gas
reservoirs located in western Europe. A reservoir was classified as oil
if the natural gas to oil ratio, in terms of thousands of cubic feet
(MCF) to barrels of oil (bbl), was less than 20 to 1 (Charpentier and
Klett, 2005). Otherwise, it was classified as a non-associated gas
reservoir (hereafter just called gas reservoir). Applying this criterion
resulted in 3,943 oil reservoirs and 5,397 gas reservoirs. Total
recoverable oil in the reservoirs is estimated to be 97.6 billion
barrels and the total recoverable non-associated gas in the
reservoirs is estimated to be 584 trillion cubic feet of gas (IHS
Markit, 2021).

We first arrayed oil and gas reservoirs separately by the
estimated subsurface volume of their contained hydrocarbons in
order to screen by subsurface size. The largest 1,017 oil reservoirs by
subsurface volume accounted for 95 percent of the cumulative

subsurface oil reservoir volume, and similarly, the largest
1,619 gas reservoirs accounted for 95 percent of the cumulative
gas reservoir volume. We further screened the oil and gas reservoirs
using reservoir pressure and temperature data to identify reservoirs
that could theoretically sustain injected CO2 in its supercritical
phase. That screening left 950 oil and 1,278 gas reservoirs. These
950 oil reservoirs accounted for 85.6 BBO of recoverable
(producible) oil and the 1,278 gas reservoirs accounted for
509.1 TCF of producible gas.

A fundamental assumption of the procedure for computing the
reconnaissance level estimates of CO2 storage is that the volume of
supercritical CO2 that can be safely stored is equivalent to the
reservoir volume of pore space vacated by the producible
hydrocarbons. These estimates do not account for the injected
CO2 that might also be incidentally stored in formation water or
in the residual oil and gas left in the reservoir after commercial
production ceases. Alternatively, at a reconnaissance level, there is
no way to determine which reservoirs might have been subject to
subsidence after production, thus reducing the actual CO2

storage resource.
We assumed that CO2 is injected and stored in its supercritical

state. Figure 1 shows how the density of supercritical CO2 varies with
pressures at various levels of constant temperature. For the pressure
and temperature range in the figure, the supercritical CO2 density
increases as pressure increases and temperature declines.

The locations of individual reservoirs are proprietary to IHS
Markit (2021), but cell maps show the sum total CO2 storage
resource of reservoirs within each 25-km square grid cell.
Figure 2 is a map that shows the geographical distribution of the
950 oil reservoirs and Figure 3 shows the map of the 1,278 gas
reservoirs used in this study. The total estimated CO2 storage
resource for the 950 screened oil reservoirs amounted to

FIGURE 1
Density of supercritical carbon dioxide (CO2) as a function of pressure at various temperatures. C is degrees Celsius, and F is degrees Fahrenheit.
Calculations using the predictivemodel byOuyang (2011) are based on theNational Institutes Standards and Technology (NIST, 2024) data from Span and
Wagner (1999).

3 Zhao et al. (2014) point out that injected CO2 may also be retained in the

formation water or the residual crude oil, or that it may be mineralogically

retained in the reservoir rock formation. Furthermore, if extraction of the

formation water is economic, the CO2 storage resource can be expanded
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17.7 metric gigatons (GT), and similarly, the 1,278 CO2 storage
resources for the gas reservoirs amounted to 40.3 GT.

Both oil and gas reservoirs exhibit a right skewed size
distribution in terms of recoverable hydrocarbon resources and

estimated volumes of CO2 storage resources. There are many
small reservoirs which together account for a small fraction of
the total resource in contrast to relatively few large reservoirs
that account for most of the resource. Figures 4A,B show the

FIGURE 2
Estimated CO2 storage resources in mass of megatons (Mt) for oil reservoirs in western Europe. Estimates of CO2 storage resource are calculated
from the estimates of volumes of recoverable oil from IHSMarkit (2021). Cells of dimension 25 km by 25 km show the combined CO2 storage resource of
all individual oil reservoirs within the cell.
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frequency volume distribution of the screened oil and gas reservoirs,
respectively, and Figures 5A,B show the frequency volume
distributions of the estimated CO2 storage resource of the
screened oil and gas reservoirs. In these figures, the horizontal

axes providing the size classes are delineated in log base two in
order to more clearly depict the wide range of sizes. In Figures 4A,B
the largest five percent of the oil reservoirs (47) contain nearly half of
the oil, and similarly, the largest 5 percent of the gas reservoirs (64)

FIGURE 3
Estimated CO2 storage resources in mass of megatons (Mt) for gas reservoirs in western Europe. Estimates of CO2 storage resource are calculated
from the estimates of volumes of recoverable gas from IHSMarkit (2021). Cells of dimension 25 kmby 25 km show the combined CO2 storage resource of
all individual gas reservoirs within the cell.
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contain 55 percent of the non-associated gas. Further, in Figures
5A,B the largest five percent of oil and gas reservoirs account for
53 percent and 55 percent of the estimated CO2 storage resource,
respectively.

4 Methodology

Oil and gas reservoirs were modeled separately because they use
different measures for quality of the hydrocarbons, i.e., API gravity
for oil and specific gravity for gas. Three observations of CO2 storage
resources beyond five standard deviations from the mean for the gas
reservoirs were eliminated as extreme outliers, as well as one
observation with an invalid gas specific gravity value. The final
data sets represented 950 oil reservoirs and 1,274 gas reservoirs.
Each reservoir dataset was then randomly divided into a training set
containing 70 percent of the respective observations and a test set
containing the remaining 30 percent. The predictor variables used
for the CO2 storage resource for oil reservoirs were reservoir
temperature, reservoir pressure, API gravity, estimated oil

recovery and estimated natural gas recovery. Predictor variables
used for the CO2 storage resource in gas reservoirs included
reservoir temperature, reservoir pressure, specific gravity of the
gas, and the estimate of the volume of recoverable gas from
the reservoir.

Descriptive statistics of the predictor variables and CO2 storage
resource estimates are presented in Table 1, 2. The table shows the
means and standard deviations, as well as the coefficients of
variation (ratio of standard deviation to the mean) associated
with each predictor variable in the training and test sets
associated with the oil and gas reservoirs, respectively.
Supplementary Appendix 2 provides box plots of the predictors
and the CO2 storage values for the oil and natural gas reservoirs
(Supplementary Appendix 2; Figure 1), as well as tables of bivariate
correlations (Supplementary Appendix 2; Tables 1, 2). The box plots
for both the oil and gas reservoirs show observations concentrated in
the smaller sizes of recoverable oil and gas, and for CO2 storage
resource. The bivariate correlation matrix shows the recoverable oil
and gas having the strongest predictor correlations with the storage
values of CO2.

FIGURE 4
Distributions of reservoir sizes and respective cumulative
percentages of recoverable resource volume: (A), recoverable oil in
millions of barrels in oil reservoirs, and (B), recoverable gas in billions of
cubic feet in gas reservoirs where the minimum size oil or gas
reservoir is estimated to have the equivalent of 1 megaton (Mt) CO2

storage resource. Note: The reservoir class size doubles on the x-axis.

FIGURE 5
Distributions of CO2 storage resource and cumulative
percentage of total CO2 storage resource volume: (A), individual oil
reservoir size and (B) individual gas reservoir size (minimum reservoir
CO2 storage resource is 1 megaton, Mt). The size class doubles
on the x-axis.
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Four different machine learning algorithms were applied to the
data to construct predictive models. The algorithms and their
respective hyperparameters, along with the procedures applied to
the data are described in the following section. Each algorithm was
trained on the same training dataset and the evaluation of predictive
performance used the same test dataset.

4.1 Machine learning

4.1.1 Algorithms
Random Forest (RF) (Breiman, 2001), Gradient Boosting Trees

(GBT) (Friedman, 2002), Extreme Boosting (XGBoost) (Chen and
Guestrin, 2016), and deep neural network (DNN) (James et al.,
2021) were used along with the values of the above-mentioned
reservoir/resource predictor variables to directly model their
relationship with the CO2 storage resource estimates computed
with the procedure outlined in Supplementary Appendix 1. The

three tree-based algorithms, RF, GBT, and XGBoost, are related to
the classification and regression tree (CART) algorithms of Breiman
et al. (1984). Except for XGBoost, the computational routines are
available from H2O.ai’s open-source platform (H2O.ai, 2022). The
XGBoost algorithm is published in R format (Chen et al., 2019). The
DNN algorithm used here is also provided in the H2O platform, and
it automatically standardizes the data prior to model calibration and
then transforms the predictions back to the original metric (Candel
and LeDell, 2023).

The tree-based approaches model non-linear relationships by
partitioning the data space into progressively smaller groups so that
data observations becomemore homogeneous within each partition.
Individual trees are assembled by recursive partitioning that
maximizes the local partition homogeneity with the tree structure
being interpretable as a series of decision rules. The trees are
assembled using the training data and predictive performance is
evaluated by applying the trained model (algorithm) to the
test dataset.

TABLE 1 Means, standard deviations, medians and coefficients of variation of predictor variables in the training and test sets of oil reservoirs [psia, pounds
per square inch absolute; MMBO, million barrels oil; BCF, billion cubic feet; Mt, megatons or millionmetric tons; stddev, standard deviation; CV, coefficient
of variation].

Set type Number Statistic Temper-
ature

Pressure API
gravity

Recover-
able oil

Recoverable
gas

CO2

storage

(°F) (Psia) (degree) (MMBO) (BCF) (Mt)

Training set 665 mean 177.0 4,307.9 35.3 89.2 139.2 18.7

stddev 54.3 2,133.6 6.7 260.4 836.3 60.5

median 167.3 3,850.3 36.2 27.3 21.0 5.0

CV 0.3 0.5 0.2 2.9 6 3.2

Test set 285 mean 174.6 4,183.8 34.4 92.5 88.9 18.5

stddev 54.5 2,088.3 7.7 244.1 205.4 49.8

median 168.6 3,773.0 36.0 28.4 20.0 5.4

CV 0.3 0.5 0.2 2.6 2.3 2.7

TABLE 2 Means, standard deviations, medians and coefficients of variation of predictor variables in the training and test sets of gas reservoirs. [psia, pounds
per square inch absolute; BCF, billion cubic feet; BCF, billion cubic feet; Mt, megatons or million metric tons; stddev, standard deviation; CV, coefficient of
variation].

Set type Number Statistic Temper-ature Pressure Specific gas gravity Recoverable gas CO2 storage

(°F) (Psia) (BCF) (Mt)

Training set 891 mean 177.6 3,913.7 0.8 288.8 21.8

stddev 59.1 1,708.4 0.1 607.1 41.6

median 171.1 3,867.6 0.8 123.0 10.4

CV 0.3 0.4 0.1 2.1 1.9

Test set 383 mean 179.7 3,935.2 0.8 267.2 22.0

stddev 61.3 1,823.4 0.1 546.7 42.8

median 173.0 3,847.2 0.8 116.5 10.2

CV 0.3 0.5 0.1 2.0 1.9
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The RF algorithm generates an ensemble (or forest) of individual
trees by applying bootstrap sampling to the training data and the
predictors when forming individual trees. These sampling
procedures are used to induce a degree of independence among
individual trees. For regression analysis the predicted value of the
target variable (in the present case, a reservoir’s estimated CO2

storage resource) is the average of the predicted values computed
from all the individual trees in the forest (Breiman, 2001).

Individual trees are constructed sequentially by the GBT
(Friedman, 2002) and XGBoost (Chen and Guestrin, 2016)
algorithms rather than generating a forest of trees at the outset.
The training data are used to construct a tree initially, but for the
next iteration another tree is trained using the computed errors
(residuals) associated with the predictions of the previous iteration.
The “tree ensemble” is the sequence of fitted trees represented by the
iterations, and target variable predictions are computed recursively
using the constructed sequence of trees. Both the GBT and XGBoost
algorithms entail bootstrap sampling of some fraction of each stage’s
residuals/training observations to fit successive trees and avoid
overfitting. The XGBoost algorithm also samples the predictors at
each iteration to build the next tree to further improve the
robustness of predictions.

Hastie et al. (2009) describe single-layer artificial neural
networks where predictor variable values are mapped using an
activation to a single hidden layer composed of neurons (or
activations). The hidden layer neurons, in turn, are mapped to a
single-variable output layer by activation functions (Figure 6A).4

These functions determine whether a neuron should be activated by
computing the weighted function of input values (from the adjacent
layer) and adding a bias term. The effect is to introduce non-linearity
into the neuron output (James et al., 2021). Generally, any number
of variables might be represented in both input and output layers.

A DNN network commonly has multiple hidden layers between
the input and output layers. A schematic of a DNN having four
hidden layers (layers of neurons between the input layer and the
output layer) with each layer having four neurons is presented in
Figure 6B. The network links represent unknown parameters

(weights) that the network algorithm fits with the training data.
Model predictions or outputs are calculated by forward propagation
computations and the backward pass fits the neural network’s
unknown parameter weights (James et al., 2021). The
architecture of the model, along with the specification of the
activation functions, regularization parameters that include the
dropout rate,5 and the linear and quadratic penalty parameters,
determines how well the DNN model fits the training data and how
accurately it can predict the target variable values for the test data.
(James et al., 2021).

4.1.2 Hyperparameters
Table 3 identifies each algorithm’s hyperparameters and shows

the parameter values used to train and test the models. For tree-
based algorithms, hyperparameters place restrictions on the
stochastic components, complexity, and size of the constructed
trees. For DNN algorithms, hyperparameters restrict the size and
the architecture of the neural network. The training dataset is used to
calibrate the predictive model. The purpose of optimizing tuning
hyperparameters is to minimize a measure of the expected error for
new data (separate from the training dataset) when predicting the
value of the target variable, which in the present case is the estimate
of the reservoir’s CO2 storage resource. For all the algorithms
evaluated here, we applied to the training data an estimate of the
generalization error (e.g., the average root mean square error)
obtained using a five-fold cross validation6 approach. We
generated the models’ hyperparameters using an exhaustive grid
search over a range of possible hyperparameter values (Halder,
2023). Table 3 in Supplementary Appendix 2 shows the range
searched. Following the search, some adjustments were made to
avoid overfitting the trained model.

FIGURE 6
Illustration comparing schematics of (A) neural network and (B) deep neural network, DNN. Figure modified from Xing and Du (2019).

4 An activation in a neural network is a mathematical function that collects

and classifies information according to a specific architecture (number of

layers, number of neurons).

5 The dropout rate randomly disengages certain nodes in a layer according

to the stated dropout probability imposed during training

6 In cross-validation, the training set is divided into multiple folds, with one

of the folds designated as a validation set, and the model is trained on the

remaining folds. This process is repeated multiple times, and each time a

different fold is used as the validation set. The performancemeasures from

each of the validation folds are averaged to estimate themodel’s predictive

performance when new data are applied
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5 Predictive performance

Table 4 shows three measures of predictive performance. The
first measure is the mean absolute error, the second is the root
mean square error, and the third is the fraction of the variation
in each dataset’s target variable (predicted CO2 storage resource)
explained by the model. The mean absolute error is the average
absolute difference between the predicted values and the actual
target value, irrespective of direction. The root mean square

error is the square root of the average of the squared differences
between predicted values and actual target values, thus giving
higher weight to large errors encountered in predicting
extreme values. The variation explained is computed as one
would compute the coefficient of determination (or R2)
commonly associated with regression analysis. The evaluation
of predictive performance focusses on how well the
trained models predict the target variable for the common
test dataset.

TABLE 3 Hyperparameter values specified for each model for oil reservoirs and for gas reservoirs.

Algorithm/Hyperparameter Explanation Oil reservoirs Gas reservoirs

Random Forest

Mtrie Number of predictors sampled 3 3

Min_row Minimum observations: terminal node 3 3

Max_depth Maximum branches from root to leaf per tree 5 5

Ntrees Number of trees 900 400

Sample_rate Fraction of training data sampled 1 0.95

Gradient Boosting Trees

Learn_rate Weight contribution for each tree 0.05 0.05

Max_depth Maximum branches from root to leaf per tree 2 4

Sample_rate Fraction of training data sampled 0.9 1

Col_sample_rate Fraction available data after sample_rate 0.9 0.9

Ntrees Number of rounds 400 300

Extreme Boosting (XGBoost)

Eta (learning rate) Weight contribution for each tree 0.2 0.15

Max_depth Maximum branches from root to leaf per tree 5 3

Minimum_child_weight Threshold observation weights required for node 3 1

Subsample fraction Fraction of training data sampled 1 1

Colsample_bytree Fraction of predictors sampled 1 0.9

Ntrees Number of rounds 77 53

Gamma Fixed threshold of gain improvement for split 0 2

Lambda Quadratic regularization parameter 0 0

Alfa Linear regularization parameter 0 0

Deep Neural Network

Hidden Number of hidden layers 5 4

Neurons per hidden layer Number for each hidden layer 15 20

Activation Activation function choice depends on software Rectifiera Rectifiera

Input dropout rate Dropout rate 0 0

Epochs Iterations through training set 35 20

l1 Linear regularization parameter 0 0

l2 Quadratic regularization parameter 0 0

aRectifiers are a type of activation function representing an option for the activation hyperparameter.
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For three of the 4 ML algorithms, the predictive performance of
the models associated with the gas reservoir CO2 storage resources is
superior to the corresponding models used to predict the CO2

storage resource of oil reservoirs (see Table 3). Of the gas
reservoir prediction models, the DNN model explained the target
variable’s variation (R2) the best while having the lowest root mean
square error. For the gas reservoir models, the tree-based algorithms
were able to explain at least 90 percent of the target variable’s
variation for the test data. For the oil reservoirs, the DNN algorithm
had superior predictive performance in terms of mean absolute
error, root mean square error and explained variation statistics. The
greater complexity of the DNN algorithm may account for its
superior predictive performance for both oil and gas reservoirs7.

Figures 7A,B show the predicted versus calculated (see
Supplementary Appendix 1) CO2 storage resources assigned to
the test data oil reservoirs and gas reservoirs, respectively. The
solid lines show cumulative storage resource growth across
storage size classes, and the bars show storage volume attributed
to each size class. The bar charts suggest that oil reservoir storage
predictions at the size classes smaller than 16 million barrels
substantially overestimate CO2 storage values; and although the
larger size classes are underestimated, the cumulative curve shows
substantial displacement. The natural gas reservoir storage
predictions substantially underestimate the calculated storage
values in size classes greater than 32 Mt to 128 Mt, as well as for
gas reservoirs with storage resource greater than 256 Mt. The graphs

suggest why the root mean square errors associated with the test data
are large even though the explained variation is relatively high.

Examination of the importance of the predictors may prove
helpful in explaining the difference in predictive performance of
both the oil and gas reservoir models. Table 5 shows the ordered
relative importance (percent explanation) of the predictive variables
for the RF, GBT, XGBoost, and DNNmodels. The leading predictors
of CO2 storage resources for oil reservoirs are the estimated
recoverable oil and recoverable gas for all tree models, but not
for DNN. Similarly, the tree-basedmodels have the leading predictor
of CO2 storage resources as recoverable gas reservoirs8. The
importance of the predictor variables seems to be equalized for
the DNN model. Perhaps because of the complexity of the DNN
algorithm that was applied, the algorithm may have detected the
added influence that reservoir temperature and pressure have on the
supercritical CO2 density. For the gas reservoirs, the tree-based
models show the same predictor importance ordering; recoverable
gas is first, and reservoir temperature is second. Again, the gas
reservoir DNN model seems to detect the separate importance that
reservoir temperature and pressure have on the density of
supercritical CO2.

TABLE 4 Predictive performance of four algorithms: Random Forest (RF), Gradient Boosting Trees (GBT), Extreme Boosting (XGBoost), and Deep Neural
Network (DNN) [Mt, megatons or million metric tons].

Training set Test set

Reservoir
type

Number of
observations

Mean
absolute
error (mt)

Root
mean
square
(mt)

Variation
explained

Number of
observations

Mean
absolute
error (mt)

Root
mean
square
(mt)

Variation
explained

Random forest

Oil reservoirs 665 4.4 16.5 0.926 285 5.2 15.6 0.903

Gas reservoirs 892 4.1 15.4 0.863 383 3.9 9.4 0.951

Gradient Boosting Trees

Oil reservoirs 665 4.7 19.2 0.900 285 5.4 14.6 0.914

Gas reservoirs 892 3.3 13.0 0.901 383 3.7 13.7 0.897

Extreme Boosting (XGBoost)

Oil reservoirs 665 0.8 1.5 0.999 285 4.0 17.7 0.873

Gas reservoirs 892 1.7 3.9 0.991 383 2.9 10.1 0.944

Deep Neural Network

Oil reservoirs 665 3.0 7.3 0.985 285 3.8 12.0 0.942

Gas reservoirs 892 3.6 17.8 0.817 383 2.4 7.3 0.971

7 The cross-validation performance statistics for the DNN oil and gas

models are presented in Supplementary Appendix 2, Table 4.

8 For the tree-based H2O models (i.e., RF and GBT), variable importances

are calculated from gains in the squared error loss function over all trees.

XGBoost uses a gradient in conjunctionwith a Hessian (Chen andGuestrin,

2016) formulation. According to Candel and LeDell (2023), the H2O DNN

algorithms use the method developed by Gedeon (1997) based on weight

connecting neurons in the first two hidden layers.
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6 Summary and extensions

Conventional reconnaissance-type estimates of CO2 storage
resources of known oil and gas reservoirs require complicated
engineering calculations involving 1) estimates of recoverable oil
and gas, 2) reservoir properties (depth, temperature, pressure,
etc.), and 3) the physical properties of the fluids. In lieu of the
engineering calculations, this study examines the predictive
performance of 4 ML algorithms to by-pass these
computations to yield more rapid estimates of CO2 storage
resources using the same inputs. We demonstrate this
capability for oil and gas reservoirs located in western Europe.
The predictive performance of the DNN algorithm was superior
to those of the RF, GBT, and XGBoost algorithms as measured by
the root mean square errors, explained variation of the target

variable, and mean absolute error statistics. The root mean
square error estimates for all models (in Table 4) appear
somewhat high relative to the mean CO2 resource estimates
shown in Table 1, 2. This is likely induced by the skewed size-
frequency distributions of the oil and gas reservoirs and their
estimates of CO2 storage resources. Future analysis may focus on
ways to partition the data to reduce these errors in predicting
extreme values. In particular, there may be value in
developing separate models for onshore and offshore
reservoirs due to differences in physical characteristics,
dispositional environments, and related operational and
management factors.

Whereas reconnaissance estimates of CO2 storage resources may
be useful to answer broad planning questions they are not
sufficiently sophisticated for site specific evaluation (Wen et al.,
2023). Such evaluations involve much more detailed spatial data to
be used for reservoir modeling (Erten et al., 2023). Future studies
could lead to the potential combining of geostatistical approaches to
ML. Da Silva (2020) provides a comparative analysis of ML and
geostatistics for mineral resource estimation.

TheMLmethods andmodels developed and presented here may
be important to the energy transition and the climate change debate
because they provide a more rapid and direct path for a
reconnaissance assessment of subsurface carbon storage
resources. The work presented here represents an effective means
for operators, researchers, and policymakers alike to rapidly and
accurately quantify the potential storage resource.

Data availability statement

The data analyzed in this study is subject to the following
licenses/restrictions: Part of the data are available for purchase
from IHS Markit (now part of S&P Global). Part is available
from the National Institute of Standards. Requests to access these

TABLE 5 Ordered relative importance (percent explanation) of predictor
variables for Random Forest (RF), Gradient Boosting Trees (GBT), Extreme
Boosting (XGBoost), and Deep Neural Network (DNN) algorithms for
predicted reservoir CO2 storage resource.

Predictor RF GBT XGBoost DNN

Oil reservoirs

Recoverable oil 74.0 78.0 42.2 19.3

Associated gas 23.6 15.5 24.4 21.4

Reservoir pressure 1.4 2.1 17.3 22.9

API gravity 0.6 3.2 6.1 16.0

Reservoir temperature 0.4 1.2 10.0 20.5

Gas reservoirs

Recoverable gas 91.3 89.5 51.0 27.7

Reservoir temperature 4.8 6.1 22.4 34.1

Reservoir pressure 2.9 1.1 15.4 19.1

Specific gravity of gas 1.1 3.3 11.2 19.1

FIGURE 7
Predicted versus the calculated (see Supplementary Appendix 1)
CO2 storage resources assigned to: (A), the 285 oil reservoirs of the
test data set, and (B), the 383 gas reservoirs of the test data set. Solid
line shows cumulative resource growth across storage size
classes and bars shows storage volume attributed to each size class.
Test data predictions used the deep neural network (DNN) models
(see Table 2) trained with the training data sets for oil and gas
reservoirs, respectively. The size class doubles on the x-axis. Box plots
of the distributions of predictor variables and CO2 storage variables
used in the machine learning (ML) models for: (A), oil reservoirs, and
(B), natural gas reservoirs, respectively (psia, pounds per square inch
absolute; MMBO, million barrels oil; BCF, billion cubic feet; Mt,
megatons or million metric tons.).
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datasets should be directed to https://energyportal.ci.spglobal.com/
home and https://webbook.nist.gov/chemistry/fluid.
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