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Facing escalating climate challenges, the Chinese government has highlighted
the importance of targeted industrial policy for driving low-carbon
transformation within its Five-Year Plans, whose effectiveness warrants
evaluation. This paper employs a fixed-effects model across provinces,
industries, and years, adopting data from 36 sectors across 30 Chinese
provinces from 1997 to 2019, to assess the impact of the targeted industrial
policy on low-carbon transformation. We reveal that industries receiving targeted
support exhibit a 9.2% higher low-carbon transformation index than those
without. The effects of industrial policy on low-carbon transformation are
more pronounced in the context of local government policy, recent Five-Year
Plans, sectors withmoderate to low technological complexity, and high-emission
sectors. Mechanism analysis shows that industrial policy facilitates low-carbon
transformation by structural effects and technological effects. These insights
offer a foundation for refining industrial policy design and execution to achieve
carbon neutrality goals and foster sustainable growth.
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1 Introduction

Decarbonization has become a consensus direction in the global industrialization
process and is the thematic essence of China’s new development philosophy (Stern and
Xie, 2023). However, China’s industrial low-carbon transformation (LCT) still faces
numerous difficulties and significant challenges (Lin and Guan, 2023). According to
data from the China Carbon Emission Accounting Database (CEADs), China’s
industrial sectors saw a 3-fold increase in carbon emissions during the past 20 years
(Xu J. et al., 2024). As a result, the development model marked by “high investment,
intensive energy use” domestically led to severe ecological crises (Zhao et al., 2016).
Globally, as one of the world’s largest energy consumers and carbon emitters, China’s
carbon dioxide emissions now account for one-third of the global total (IEA, 2021).
Therefore, China’s promotion of the low-carbon transformation of its industry is an
important link and a top priority for the world to deal with environmental pollution and
climate change.

In the institutional context of China, to navigate the challenges of industrial low-carbon
transformation effectively, a policy-driven approach is essential (Lin and Wang, 2023).
Industrial policy (IP) generally aims to foster industrial development and efficiency (Juhász
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et al., 2024). As a burgeoning industrial power, industrial policy has
significantly shaped China’s industrialization and structural shifts
(Branstetter et al., 2023). Currently, facing environmental
constraints and rising costs, China’s industrial growth is at a
crossroads, where traditional factor-driven models fall short of
the new era’s demands for “low-carbon, green, and sustainable”
development (Yang M. et al., 2022). Given the limitations of
marketization in China’s context, the transition to low-carbon
industries still predominantly depends on government policy
directives (Zhang, 2015; Chen et al., 2025). Among all, industrial
policy plays a critical role in fostering resource efficiency and
technological innovation, thus catalyzing the shift towards a low-
carbon economy, whose effect is yet to be discovered and quantified
(Wang and Wang, 2024).

While China’s Five-Year Plans (FYP) exemplify a centralized,
strategic approach to driving industrial low-carbon transformation,
other major economies adopt distinct mechanisms to achieve similar
goals. In the European Union, the Clean Industrial Deal integrates
affordable clean energy, demand for low-carbon products, and
circular economy principles—targeting a 24% circular material
use rate by 2030—within a comprehensive framework supported
by over €100 billion funding and market-based tools like the
Emissions Trading System (Veugelers et al., 2024). In the
United States, the Department of Energy’s Industrial
Decarbonization Roadmap promotes energy efficiency,
electrification, low-carbon fuels, and carbon capture technologies
to decarbonize industry (Cresko et al., 2022), while state-level
policies also play a key role, such as prioritizing low-carbon
industrial products through procurement strategies (Alliance,
2022). In contrast, China’s Five-Year Plans embed low-carbon
objectives within a top-down national economic strategy,
distinguishing them from the EU’s multilateral, market-driven
approach and the U.S.‘s technology- and procurement-focused
model. China’s experience in low carbon transition highlights the
diversity of policy tools and governance structures in advancing
industrial decarbonization, positioning its uniqueness and
globally relevance.

In the literature, the industrial low-carbon transformation
has become an important and emerging strand of literature, given
its importance for achieving sustainable economic development
and controlling climate change. From a government policy
perspective, a large body of literature centers around
dedicated, standalone environmental policies such as
environmental regulation (Hou et al., 2023), carbon trading
(Liu et al., 2023), innovation pilot (Zhou et al., 2023), energy
conservation and emission reduction policy (Tao et al., 2024),
and tax reform (Kong et al., 2024). While numerous studies have
investigated the influence of environmental policies on fostering
industrial low-carbon transformation and achieving sustainable
development, the specific role of industrial policy in this context
has received comparatively less attention.

Meanwhile, research closely aligned with this paper examines
the effects of targeted industrial policy, as stipulated by the Five-Year
Plans (Xu, 2022). However, a consensus on its environmental
impacts remains elusive. Some researchers argue that industrial
policy can simultaneously bolster industrial development and
mitigate carbon emissions. For instance, industrial policy could
decrease the carbon emission intensity of supported sectors.

Specifically, emission reductions will occur in high-emission
sectors supported by industrial policy, while low-emission sectors
will expand in size (Yu et al., 2020). Conversely, industrial policy
may also cause overinvestment (Zhou and Zhao, 2022), or as a result
of economic growth orientation, bias technological innovation in
favor of production-oriented technologies, thereby inhibiting green
total factor productivity progress (Zhu et al., 2021).

The existing literature has yet to definitively answer how
targeted industrial policy influences the industrial low-carbon
transformation. Given the diverse nature of industries, a uniform
policy application across all sectors and regions is impractical. This
necessitates selective support for industries with greater potential for
low-carbon transformation (Meckling, 2021). This study seeks to
bridge this gap by exploring the impact of China’s targeted industrial
policy, as deployed through the Five-Year Plans on the low-carbon
transformation.

Starting from the practical demands for China’s industrial
shift towards low-carbonization and the divergent views in the
existing literature, this paper poses the following progressive
questions: What has been the impact of industrial policy on the
industrial low-carbon transformation? Under what
circumstances are industrial policy more effective? What
specific channels does industrial policy utilize to drive the
low-carbon transformation? Utilizing specific policy data from
the Five-Year Plan governmental documents, combined with the
calculated indices of industrial low-carbon transformation, this
paper develops a unique Year-Province-Industry panel dataset
covering the period from 1997 to 2019 for China’s 36sectors in
30 provinces and applies a fixed-effects model to empirically
analyze the correlation between industrial policy and industrial
low-carbon transformation. The findings indicate that targeted
industries experience a 9.2% increase in low-carbon
transformation index compared to non-targeted counterparts.
Additionally, the paper explores the varied impacts of industrial
policy on low-carbon transformation from various perspectives.
We find that: local government policy has the most significant
effect, followed by those jointly implemented by central and local
governments, with central government policy having a lesser
impact. The effectiveness of industrial policy in enhancing low-
carbon transformation grows with each successive Five-Year
Plan. Furthermore, industrial policy is particularly effective in
promoting low-carbon transformation in mid and low-tech
industries and is more beneficial for high-emission industries
than for those with lower emissions. Further, this paper identifies
two primary mechanisms through which industrial policy
facilitates low-carbon transformation: structural and
technological effects. Structurally, it encourages a shift towards
low-carbon industrial and energy structures. Technologically, it
boosts low-carbon innovation and fosters the development of
energy-saving technologies.

This paper contributes to the literature in three key ways.
First, it examines how China’s industrial policy, particularly
through the Five-Year Plans, fosters a “win-win” scenario by
aligning industrial development with low-carbon
transformation, shifting the focus from environmental
regulations to national development strategies and introducing
the concept of “development-driven transformation” (Li et al.,
2020; Du and Yi, 2022). Second, this paper leverages a
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comprehensive dataset of industrial input-output, carbon
emissions, and energy consumption across 36 manufacturing
industries in 30 Chinese provinces, using the SBM-GML
model to construct a provincial sub-sectoral low-carbon
transformation index, offering a nuanced analysis of industry
and regional heterogeneity (Bai et al., 2023; Zhao et al., 2023).
Third, we employed an emission reduction decomposition
framework and heterogeneity analyses to elucidate the
structural and technological mechanisms of industrial policy
(Song et al., 2024), clarifying variations in national versus
local policy effects and industry-specific responses (Huwei
et al., 2023).

The remainder of this paper is arranged as follows. Section 2
proposes the theoretical framework and research hypothesis. Section
3 introduces the research design, including the model, variables, and
data. Sections 4 and 5 report the main result, heterogeneous analysis,
and mechanism analysis. Section 6 discusses the conclusions and
policy implications.

2 Institutional background, theoretical
analysis, and hypothesis

2.1 Institutional background of
industrial policy

The inception of China’s “Five-Year Plans” in 1953 marked a
strategic approach to national development, with industrial
policies playing a crucial role in guiding the evolution and
modernization of China’s industrial sectors. Throughout each
Five-Year Plan cycle, the Chinese government formulates a set of
industrial policies to direct the developmental trajectory of
industries over the coming 5 years, selecting key sectors for
support and establishing specific development objectives for
them. The government employs a comprehensive array of
measures to support its prioritized sectors, thereby achieving
the objectives set out in its industrial policy, including providing
financial incentives such as subsidies and tax breaks, facilitating
access to low-interest loans, creating favorable regulatory
environments, investing in infrastructure development,
fostering research and development through grants and
partnerships, and implementing import and export controls to
protect domestic industries.

Since the beginning of the 21st century, the Five-Year Plan
industrial policy has increasingly focused on sustainable
development goals (Stern and Xie, 2023). The 9th Five-Year
Plan (1996-2000) was the first to set energy conservation and
emission reduction targets for major pollutants such as SO2,
emphasizing the importance of cleaner industrial production,
marking a significant initiation of sustainable industrial
development strategies. The 10th Five-Year Plan (2001-2005)
introduced a quantitative SO2 emission reduction target of 10%
and set environmental technology development goals for targeted
industries. The 11th Five-Year Plan (2006-2010) marked a
turning point by introducing a mandatory energy efficiency
target—reducing energy intensity (energy consumption per
unit GDP)—while encouraging clean energy adoption in
industries (Yuan and Zuo, 2011).

Further advancing the commitment to sustainable development,
the 12th Five-Year Plan explicitly set low-carbon transformation as a
developmental direction, introducing specific goals such as
significantly reducing the intensity of carbon dioxide emissions
and energy consumption, adjusting industrial and energy
structures, and promoting the research and application of low-
carbon technologies, along with corresponding policy tools (Li
and Wang, 2012). In this regard, a carbon emission intensity
target (CO2 emissions per unit of energy consumption) was
introduced for the first time. The 13th Five-Year Plan established
the concept of “promoting transformation through development”,
signifying the maturation of industrial policy’s strategic approach to
industrial low-carbon transformation (Gosens et al., 2017).

Figure 1 displays the changes in the low-carbon transformation
index—a composite measure of carbon efficiency and emission
reduction (detailed in Section 3.2)—between industries supported by
industrial policy (IP) and those not supported. Industries targeted by IP
refer to sectors prioritized in China’s Five-Year Plans for development
and decarbonization incentives, while non-targeted industries lack such
policy support. As can be seen, before 2001, the difference in low-carbon
transformation trends between the two categories of industries was not
significant. Since 2001, the growth rate of low-carbon transformation in
targeted industries has significantly accelerated, with the disparity
continuing to widen. It was not until 2016 that the rates of low-
carbon transformation in both categories of industries began to
converge. However, the degree of transformation in targeted
industries has consistently remained higher than in unsupported
industries. This provides prima facie evidence of the low-carbon
transformation effects of industrial policy.

2.2 Theoretical analysis and hypothesis

2.2.1 Industrial policy and low-carbon
transformation

Overall, industrial policy can promote the low-carbon
transformation of target industries through direct subsidies, goal-
setting, and resource reallocation (Di Tommaso et al., 2020). Firstly,
industrial policy provides direct subsidies to retrofit production lines
in key industries, making the production process cleaner through
energy-saving and emission-reduction modifications (Reijnders,
2003). Industrial policy strategically applies direct subsidies to
encourage targeted industries to retrofit their production lines,
focusing on energy efficiency and pollution reduction. This not
only facilitates a cleaner production process by integrating advanced
technologies but also significantly reduces operational costs in the
long term (Zhang F. et al., 2020). The reduction in energy
consumption and emissions directly contributes to environmental
sustainability and aligns with global standards for green
manufacturing.

Secondly, specific targets for energy saving and emission
reduction are set, allowing companies that meet these criteria to
enjoy additional support, thereby encouraging enterprises to
undertake decarbonization-related costs (Du and Yi, 2022).
Setting specific targets for energy saving and emission reduction
serves as a powerful incentive for industries. Companies meeting or
exceeding these targets receive additional governmental support,
such as tax rebates or further subsidies. This not only rewards
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compliance but also motivates ongoing improvements, fostering a
competitive environment where companies strive to innovate and
enhance their environmental practices. By doing so, industrial policy
can accelerate the adoption of end-of-pipe treatments and other
pollution control technologies, enhancing overall industry
compliance with environmental regulations (Wang et al., 2023).

Lastly, industrial policy introduces investments that steer
resources towards high-productivity, low-resource consumption
enterprises, allowing key industries to fully utilize factor resources
to increase output, thereby reducing energy consumption and carbon
emissions (Yang X. et al., 2022). By redirecting investments towards
enterprises that exhibit high productivity and low resource
consumption, industrial policy promotes an efficient allocation of
capital. This encourages industries to optimize their use of resources,
leading to increased output while minimizing input costs related to
energy and rawmaterials (Usman and Balsalobre-Lorente, 2022). As a
result, industries are able to lower the energy and carbon intensity of
their production processes, contributing to a substantial decrease in
overall industrial carbon footprints. This strategy not only supports
sustainable industrial growth but also positions industries to be
resilient and adaptive in a resource-constrained world, thereby
ensuring long-term economic stability and environmental
sustainability (Wu et al., 2021). Based on the institutional
background outlined above, this paper proposes research
hypothesis 1:

H1: Industrial policy can facilitate low-carbon transformation in
targeted industries.

2.2.2 The structural effect of industrial policy in
driving low-carbon transformation

From the institutional background, it is evident that the pathway
through which industrial policy drives industrial low-carbon
transformation primarily involves advancing upgrades in

industrial and energy structures, encouraging green innovation,
and energy-saving biased progress in low-carbon technologies
(Zhang Y. et al., 2020).

In terms of structural effect, on one hand, industrial policy can
promote the relative expansion of low-carbon emission industries
while constraining the scale of highly polluting industries, thereby
substituting high-emission sectors and achieving the
decarbonization of industrial structures (Zhao et al., 2022).
Industrial policy can facilitate the growth of industries with lower
carbon footprints by providing financial incentives, regulatory
support, and research and development funding, which
encourage the scaling of these industries. Concurrently,
governments also impose stricter regulations and higher costs on
high-emission industries, effectively reducing their competitive edge
and market share, which leads to a natural phasing out of less
efficient and more polluting sectors (Zhang et al., 2022).

On the other hand, industrial policy can leverage various
preferential measures to incentivize enterprises to replace fossil
fuels with clean energy, thus achieving the purification of the
energy structure (Xu et al., 2020). By promoting subsidies for
renewable energy sources and penalizing the use of fossil fuels,
industrial policy encourages enterprises to switch to cleaner energy
alternatives. This not only reduces the carbon intensity per unit of
production but also aligns with trends towards energy sustainability
(Lee et al., 2023). Based on the above analysis, this paper proposes
the following hypothesis 2:

H2: Industrial policy can drive low-carbon transformation through
structural effects.

2.2.3 The technological effect of industrial policy in
driving low-carbon transformation

In terms of technological effects, on one hand, industrial policy
can stimulate enterprises to innovate in low-carbon technologies

FIGURE 1
Industrial low-carbon transformation index under different industrial policy support scenarios. Note: Detailed variable construction and
methodology elaborated in the research design Section 3.2.
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thereby reducing the carbon emissions per unit of output, thus
improving carbon productivity (Song et al., 2022). By providing
innovation subsidies and access to green financing, governments
incentivize companies to invest in low-carbon R&D (Lin and Xie,
2023). These financial instruments lower the risk and increase the
potential return on investments in new technologies, which are
essential for driving decarbonization-related innovation (Qi
et al., 2022).

On the other hand, industrial policy can promote biased
technological progress, i.e., encouraging enterprises to substitute
capital for energy, thus achieving low-carbon transformation (Su
and Fan, 2022). The implementation of renewable energy
subsidies and other fiscal instruments encourages a shift in
production techniques, from energy-intensive methods to
those that are more capital and technology-intensive (Zhou
et al., 2020). By increasing the relative cost of nonrenewable
energy, particularly fossil fuels, industrial policy shifts the
economic balance, making it more cost-effective for
companies to invest in energy-saving technologies rather than
continuing with traditional, less efficient tech practices (Shao and
Wang, 2024). Based on the above theories, this paper proposes
the following hypothesis 3:

H3: Industrial policy can drive the industrial low-carbon
transformation through technological effects.

The hypotheses H1, H2, and H3 are interrelated rather than
independent, forming a cohesive framework to assess industrial
policy’s role in low-carbon transformation. H1 posits that industrial
policy facilitates low-carbon transformation in targeted industries,
serving as the foundational hypothesis and primary empirical focus
of this paper. H2 and H3, in turn, delineate the mechanisms through
which this effect manifests.

3 Research methodology

3.1 Model

This paper employs a model incorporating fixed effects for
province, industry, and year to evaluate the influence of
industrial policy on the low-carbon transformation (Wu et al.,
2019). We adopted a fixed-effects model to assess the impact of
targeted industrial policies on low-carbon transformation based
on theoretical considerations and data characteristics (Angrist
and Pischke, 2008; Clark and Linzer, 2015; Breuer and Dehaan,
2024). This approach controls for unobserved, time-invariant
heterogeneity across provinces and industries—such as varying
industrial bases or policy enforcement capacities—critical in the
context of Five-Year Plans. A random-effects model, which
assumes uncorrelated individual effects with explanatory
variables, is less suitable here, as province-specific factors
likely influence both policy implementation and LCT. As
shown in Table 2 column (3), we conducted a Hausman test,
which strongly favored the fixed-effects model, rejecting the null
hypothesis of no systematic difference between specifications.
Specifically, the model is set as following:

LCTi,j,t � α + βIPi,j,t + γXi,j,t + μi + λj + θt + ϵi,j,t (1)

In the model, the subscript i represents the province, j represents
the industry, and t represents the year. LCTi,j,t is the outcome
variable. The explanatory variable IPi,j,t is the industrial policy. If
the coefficient of interest, β, is significantly positive, this suggests
that industrial policy facilitates the low-carbon transformation of
targeted industries when compared to industries without targeted
support. Xi,j,t is a series of control variables. μi, λj, and θt are fixed
effects for the province, industry, and year, respectively. ϵi,j,t is the
random disturbance term.

3.2 Variables

3.2.1 The explained variable: industrial low-carbon
transformation index

The dependent variable in this paper is the Industrial Low-
Carbon Transformation Index (LCT), calculated at the sub-sector
level for each province in China (Song and Zhou, 2021). This study
conceptualizes industrial low-carbon transformation as a
multifaceted process that integrates considerations of output
growth, emission reduction, and energy efficiency. Drawing on
established methodologies, we employ the super-efficiency Slack-
based measure (SBM) model in conjunction with the Global
Malmquist-Luenberger (GML) index decomposition approach to
calculate the LCT (Meng and Qu, 2022).

The SBM and GML method are sequentially linked in
constructing the low-carbon transformation (LCT) index.
Initially, the SBM model (Equation 2) calculates the carbon
emission efficiency for each industry k in period t, where ρ
represents efficiency scores based on inputs (x), desirable outputs
(y), and undesirable outputs (p), accounting for slacks (λj). These
SBM efficiency scores DG(xt

k, y
t
k, p

t
k) and DG(xt+1

k , yt+1
k , pt+1

k ) serve
as inputs for the GML index (Equation 3). The GML index,
GMLt,t+1k , then measures the change in efficiency from period t
to t+1 by comparing these efficiency scores across periods,
incorporating global benchmarks (DG). Thus, GMLt,t+1k reflects
the dynamic evolution of carbon efficiency, forming the LCT
index used in our analysis.

First, the algorithm for the super-efficient SBM can be
expressed as:

min ρ �
1
m

∑m

i�1
�x

xik
( )

1
r1 + r2

∑r1

w�1
�yw

ywk
+∑r2

u�1
�pu

puk
( )

s.t.

�xi ≥ ∑n
j�1,≠ k

xijλj, i � 1, 2, . . . , m;

�yw ≤ ∑n
j�1,≠ k

ywjλj, w � 1, 2, . . . , r1;

�pu ≥ ∑n
j�1,≠ k

pujλj, u � 1, 2, . . . , r2;

λj ≥ 0, �xi ≥ xik, �yw ≤ywk, �pu ≥puk; j � 1, 2, . . . , n j ≠ k( );

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2)

In model (Equation 2), xik、 ywk, and puk represent the inputs,
desired outputs, and undesired outputs respectively, where the
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desired output is industrial value added, the non-desired output is
carbon emissions, and the input variables are capital stock, number
of labors employed and energy consumption. λ denotes the weights
of the indicators, and ρ represents the efficiency values of the
decision-making units (DMU). If ρ≥ 1, it indicates that the
decision-making unit is efficient; otherwise, the DMU is deemed
inefficient. After calculating the efficiency values, the carbon
productivity is further computed using the GML method:

GMLt,t+1
k � 1 +DG xt

k, y
t
k, p

t
k( )

1 +DG xt+1
k , yt+1

k , pt+1
k( ) �

1 +Dt xt
k, y

t
k, p

t
k( )

1 +Dt+1 xt+1
k , yt+1

k , pt+1
k( )

×
1 +DG xt

k, y
t
k, p

t
k( )

1 +Dt xt
k, y

t
k, p

t
k( ) ×

1 +Dt+1 xt+1
k , yt+1

k , pt+1
k( )

1 +DG xt+1
k , yt+1

k , pt+1
k( )[ ] (3)

The term GMLt,t+1k represents the change in industrial low-
carbon transformation index from period t to t + 1. If GMLt,t+1k > 1,
it indicates that the LCT has improved in period t + 1; conversely, if
GMLt,t+1k < 1, it signifies a relative decrease in LCT.

3.2.2 Explanatory variable: industrial policy
The explanatory variable in this paper is derived from the

industrial policy references within the Five-Year Plan (FYP)
documents issued by both central and local governments
(Barbieri et al., 2019; Chen et al., 2022). To operationalize
industrial policy, we employ a text analysis approach, coding it
as a dummy variable. Specifically, industries mentioned within the
9th FYP to the 13th FYP by central and provincial governments, and
described with terms such as “key”, “priority”, and “pillar”, among
other related terms, are identified as targeted by policy. For any given
industry j in region i in year t that is highlighted as a key
development sector in the FYP of the central or local
government, IPi,j,t = 1. If an industry is not designated as
such, IPi,j,t = 0.

3.2.3 Control variables
To isolate the causal effect of industrial policy on low-carbon

transformation, we include control variables informed by prior
theoretical and empirical research (Bai et al., 2023; Pan et al.,
2023; Shang and Lv, 2023; Zeng et al., 2023; Kong et al., 2024; Tan
et al., 2024). On one hand, government environmental regulation

represents the primary confounding factor. Additionally,
industrial productivity and state capital control capacity are
significant influences on the formulation of industrial policies.
On the other hand, development economics posits that industry
characteristics and endowments determine the potential for low-
carbon transition. Accordingly, this study controls for typical
industry features such as scale, profitability, and capital intensity.
Given that existing studies provide detailed discussions on the
theoretical basis for variable selection, we prioritize brevity here
while summarizing their relevance and expected effects. (1)
Environmental Regulation (ER), proxied by the ratio of
environmental protection-related words in Government
Working Reports, is expected to promote low-carbon
transformation by incentivizing green innovation. (2) Per
Capita Output (PROD), industrial value added per employee,
may enhance low-carbon efficiency through productivity gains.
(3) Government Intervention (GOV), the share of state and
collective capital, may hinder low-carbon transformation due
to inefficiencies associated with high state ownership. (4)
Industry Scale (SIZE), logged enterprise units per sector, likely
supports decarbonization through scale economies. (5) Profit
Rate (PROFIT), profit-to-value-added ratio, is anticipated to
facilitate low-carbon investments. (6) Average Firm Size
(AVERFIRM), employees per enterprise, may improve
emission reduction via innovation capacity. (7) Capital
Intensity (CAPIN), capital stock per employee, is expected to
drive sustainability through technological upgrades.

3.3 Data

Following the previous work on this dataset relatively unique
dataset, this paper further applied this province-sectors-year
panel data to identifies the casual relationship between
industrial policy and the LCT (Zhou and Song, 2022). The
data for calculating the industrial low-carbon transformation
and control variables is derived from the China Industrial
Economic Statistics Yearbook, the energy consumption and
pollution emission data are acquired from the China Emission
Accounts and Datasets. The industry policy data utilized in this

TABLE 1 Descriptive statistics.

Variable N Mean S.D. Min. Median Max

LCT 24267 3.4184 2.7769 0.1568 2.3682 10.4397

IP 24267 0.4559 0.4981 0 0 1

ER 24267 0.0042 0.0033 0.0020 0.0064 0.0151

PROD 24267 38.8115 58.2978 29.8360 20.2567 197.2267

GOV 24267 0.2635 0.2684 0.0067 0.1559 0.8877

SIZE 24267 4.6478 1.5025 2.0794 4.8110 7.1148

PROFIT 24267 0.0359 0.0589 −0.0579 0.0250 0.1836

AVERFIRM` 24267 0.0341 0.0293 0.0097 0.0235 0.1222

CAPIN 24267 26.1463 40.8401 12.0782 11.2500 148.0588
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paper is sourced from the National Economic and Social
Development Five-Year Plans published by the Central
People’s Government of the People’s Republic of China and
provincial local governments. To ensure data quality and
reliability, we implemented several preprocessing steps. First,
missing values were addressed in three ways: (1) within-province
industry gaps were filled using linear interpolation; (2)
consecutive missing values for specific units were imputed
with the average from adjacent provinces in the same industry
and year; and (3) industries with severe missing data in certain
provinces were excluded entirely. Second, to mitigate the impact
of extreme values, all continuous variables underwent
Winsorization at the 1st and 99th percentiles. Third, price
deflation was applied to ensure comparability: industrial
output (PROD) was deflated using the Producer Price Index
from the China Price Statistical Yearbook, while capital stock

(CAPIN) was adjusted with provincial Fixed Asset Investment
Price Indices.

Table 1 demonstrates the descriptive statistics of the
main variables.

4 Results and discussions

4.1 Baseline results

Table 2 presents the results for the baseline model. Column
(1) is the OLS model result, column (2) includes all the control
variables, and only provincial, and industrial fixed effects, and
column (3) is the full model. The baseline results suggest that the
industrial policy has significantly fostered the LCT of targeted
industries. In Column (3), the coefficient for the IP is 0.312.

TABLE 2 Impact of industrial policy on industrial low-carbon transformation.

(1) (2) (3)

LCT LCT LCT

IP 0.291*** 0.303*** 0.312***

(0.0345) (0.0352) (0.0599)

ER 68.05*** 65.90***

(13.31) (12.53)

PROD 0.000405*** 0.000586

(0.0000509) (0.000453)

PROFIT 0.181*** 0.0610

(0.0425) (0.0570)

GOV −0.425*** −1.030***

(0.0650) (0.126)

SIZE 0.0857*** 0.175***

(0.0145) (0.0397)

AVERFIRM 0.00374 0.0695

(0.0483) (0.0733)

CAPIN 0.000371*** 0.0000634

(0.000110) (0.000439)

_cons 3.278*** 2.529*** 2.374***

(0.0233) (0.113) (0.210)

Province NO Yes Yes

Industry NO Yes Yes

Year NO NO Yes

N 24267 24267 24267

adj. R2 0.003 0.567 0.745

Hausman Test 326.10***

Note: ***, **, and * indicate significance levels at 1%, 5%, and 10%, respectively. Standard errors in parentheses are clustered at the provincial × industry level. The same setting applies below.
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Hence, in terms of economic significance for the regression, if an
industry is prioritized by the industrial policy, the LCT would rise
by 9.2% relative to the untargeted. Thus, the hypothesis
H1 is verified.

Our analysis shows that targeted industrial policies increase
the low-carbon transformation index by 9.2%, a statistically
significant result with notable economic implications. Based on
the data from IEA, China’s industrial sector contributed
10.15 billion tons of CO2 in 20201. A 9.2% reduction equates
to approximately 933.8 million tons of CO2 avoided annually.
Valued at China’s carbon market price of $14 per ton2, this
translates to a cost saving of approximately $13.048 billion per
year, reflecting the economic benefit of reduced emission
allowances. However, low-carbon transformation
encompasses more than emissions reduction; it also enhances
production efficiency, a benefit not fully captured by current
data. Consequently, our estimate likely understates the true
economic impact of these policies, as efficiency gains—such as
reduced energy costs or improved output—remain
unquantified.

4.2 Endogeneity and robustness tests

4.2.1 Difference in differences model with
propensity score matching

The non-randomness of the core explanatory variable, industrial
policy, may cause selection bias. Due to potential systematic differences
between industries that are supported and those that are not, the effect
of industrial policy might stem from the characteristics of the industries

rather than the actual impact of the policy. This could lead to a situation
where the paper’s conclusions arise because industries with a higher
degree of low-carbon transformation are more likely to be selected by
governments.

To ensure that this critical endogeneity does not affect the
identification of the empirical result, the paper uses changes in
key industries between the successive Five-Year Plans as quasi-
natural experiments. To address the challenges of conducting
parallel trend tests due to the constant changes in industrial
policy across different Five-Year Plan periods, this paper first
uses control variables to calculate propensity scores and
performs 1:1 matching between industries that are supported
(treatment group) and those that are not supported (control
group). Then, employing a difference-in-differences design, we
test the causal impact of industrial policy on low-carbon
transformation:

LCTi,j,t � α + β1treati,j,t × posti,j,t + γXi,j,t + μi + λj + θt + ϵi,j,t (4)

In Equation 4, posti,j,t represents the change of Five-Year Plans,
where the value is 1 when turning the next FYP and 0 in the previous
FYP. The variable treati,j,t is a dummy variable indicating the change of
industrial policy: if industry jwas not supported in the previous FYP but
becomes a targeted industry in the current FYP, then treati,j,t is 1. As in
the control group, if an industry is not designated as targeted in either
the current or previous FYP, then treati,j,t is 0.

From Table 3, it is evident that conducting a difference-in-
differences regression based on propensity score matching yields
results that are still significantly positive. This further mitigates the
concern of self-selection bias on the empirical results.

4.2.2 Heckman sample selection model
The effects of industrial policy implementation on the LCT might

be biased by endogenous issues. For example, targeted industries are not
randomly selected by the government, but depend on unobserved
qualities. With non-random policy, researchers are unable to observe
the counterfactual scenario of what would happen to the industrial low-
carbon transformation if key industries had not received policy support.
To address this concern, we employ the Heckman sample selection
model to control for such endogeneity (Song et al., 2020). Specifically,
based on the literature regarding the mechanisms of industrial policy
formulation (Wu et al., 2019), we selected a set of variables potentially
influencing government decisions to support certain industries3 to
conduct a Probit regression and computed the Inverse Mill’s Ratio
(IP_imr). This was then incorporated into the original regressionmodel
to correct for sample selection bias. The result is presented in Column
(1) of Table 4. The significance of the Inverse Mill’s Ratio confirms the
existence of sample selection bias. However, the direction and
significance of the corrected regression coefficients remain
unchanged, suggesting that the baseline model’s results would not be
dampened by selection bias.

TABLE 3 Results of endogeneity tests.

(1) (2) (3) (4)

9th~10th 10th~11th 11th~12th 12th~13th

treat × post 0.185*** 0.496*** 0.411*** 0.287*

(0.0445) (0.0840) (0.133) (0.159)

_cons 1.084*** 1.780*** 3.536*** 5.116***

(0.0170) (0.0649) (0.244) (0.111)

Controls Yes Yes Yes Yes

Province Yes Yes Yes Yes

Industry Yes Yes Yes Yes

Year Yes Yes Yes Yes

Obs 6,201 5,940 4,210 4,301

R2 0.186 0.259 0.176 0.038

1 See the IEA Data Explorer: https://www.iea.org/data-and-statistics/data-

tools/greenhouse-gas-emissions-from-energy-data-explorer.

2 See the International Carbon Action Partnership websites: https://

icapcarbonaction.com/en/ets-prices.

3 According to the literature, we include the following variables: total

industrial output, capital input, labor input, total factor productivity,

output share, government intervention, industry size, industry profit,

and average firm size (Wu et al., 2019).
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4.2.3 Panel data model with interactive
fixed effects

Although the fixed-effect model adopted in this paper controls for
endogeneity issues at the provincial, industrial, and year levels, potential
biases may still exist. To mitigate endogeneity issues associated with
unobservable factors, this paper further controls for three extra groups
of interaction fixed effect: (1) Province × Industry; (2) Province × Year
and Industry ×Year; (3) Province × Five-Year Plan and Industry × Five-
Year Plan. Columns (2) to (4) in Table 4 show that after incorporating
these interactive fixed effects, the direction and significance of the
regression results remained unchanged, indicating that the empirical
results of the baseline are not easily influenced by omitted variables and
the conclusions are robust.

4.2.4 Generalized method of moments estimation
When the random disturbance term in the baseline model exhibits

heteroskedasticity and serial correlation, for instance, if the current
value of the LCT depends on its previous value, the traditional static

fixed-effect model might not yield consistent estimates. To address this,
it becomes necessary to employ a dynamic panel model for verification.
In response to this, we utilize the System Generalized Method of
Moments estimator, incorporating the lagged term of the dependent
variable into the baseline model. Column (5) of Table 4 presents the
result. Upon including the lagged values of the dependent variable, the
Sargan estimator indicates no over-identification of the instrumental
variables; the AR (2) estimator is not significant, suggesting the absence
of second-order autocorrelation in the error term. At this juncture, the
regression coefficient of the industrial policy remains significantly
positive, further substantiating the robustness of the results.

4.2.5 Anticipatory effect of industrial policy
Owing to the possibility that industrial policy might cause

strategical behavior in an anticipatory manner, where firms
might be impacted by the forthcoming industrial policy due to
the advanced dissemination of targeted information, it becomes
imperative to examine if such policy foresight could affect the result

TABLE 4 Results of robustness tests.

(1) (2) (3) (4) (5) (6)

LCT LCT LCT LCT LCT LCT

IP 0.313*** 0.914*** 0.756*** 0.757*** 1.271*** 0.845***

(0.0287) (0.0736) (0.0927) (0.0921) (0.0382) (0.0411)

IP_imr 0.816***

(0.0734)

L.IP 0.517***

(0.00665)

IP_prev 0.356***

(0.0421)

_cons −1.702*** −0.847 −1.005** 0.515*** −1.543***

(0.455) (0.669) (0.422) (0.115) (0.205)

Controls Yes Yes Yes Yes Yes Yes

Province Yes Yes Yes Yes Yes Yes

Industry Yes Yes Yes Yes Yes Yes

Year Yes Yes Yes Yes Yes Yes

Province × Industry No Yes No No No No

Province × Year No No Yes No No No

Industry × Year No No Yes No No No

Province × FYP No No No Yes No No

Industry × FYP No No No Yes No No

Sargan 0.6457

AR (1) 0.000

AR (2) 0.234

Obs 24245 9622 9622 9622 9790 7457

adj. R2 0.748 0.615 0.711 0.705 0.619
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(Schulz and Rode, 2022). To this end, we incorporated the industrial
policy from the previous Five-Year Plan into the regression model to
disentangle the effects of policy anticipation by introducing a
dummy variable for the industrial policy from the previous
planning period (IP_prev). In column (6) of Table 4, the
coefficient of the industrial policy remains significantly positive,
indicating that the results are robust to the anticipatory effect.

4.3 The heterogeneous impact of industrial
policy on the industrial low-carbon
transformation

From existing literature, it’s evident that there remains
significant controversy regarding the effectiveness of industrial
policy, the heterogeneity inherent in industrial policy itself is one
of the primary reasons leading to inconsistent policy assessment
outcomes. Therefore, the evaluation of the impact of industrial
policy should not merely focus on their effectiveness. Instead, it
should address the more pivotal question of under what conditions
are industrial policy effective (Aiginger and Rodrik, 2020). In light of
this, this paper further delves into the heterogeneous effects of
industrial policy on the industrial low-carbon transformation
from the perspective of policy origins, planning cycles,
technological complexity, and pollution level.

4.3.1 Heterogeneous effect of central and local
government industrial policy

To examine the varied impacts of industrial policies
originating from different government levels, this study
categorizes industrial policy into three distinct types: targeted

by central-local jointly, central government-only targeted, and
local government-only targeted. The classification leads to three
dummy variables: IPcp indicates joint support (1 if supported,
0 otherwise), IPoc for central-government-only IP, and IPop for
local-government-only IP.

Results in Table 5 show significant differences in how central
versus local government policy affects industrial low-carbon
transformation. Results suggest local government policy has the
most substantial impact, followed by joint policy support, with
central government policy having the least effect. This hierarchy
remains consistent when comparing all policy types simultaneously
in the regression, highlighting that locally supported industries
outperform others in low-carbon transformation by 12.3% over
the average, versus 9% for jointly supported and 7.1% for centrally
supported industries. The effectiveness of local policy likely stems
from local governments’ greater awareness of regional industry
strengths and needs, enabling more targeted and efficacious

TABLE 5 The heterogeneous impact of central and local government
industrial policy on the low-carbon transformation.

(1) (2) (3) (4)

LCT LCT LCT LCT

IPcp 0.0869*** 0.308***

(0.0323) (0.0381)

IPoc 0.0735** 0.243***

(0.0311) (0.0351)

IPop 0.264*** 0.419***

(0.0346) (0.0387)

_cons 2.751*** 2.760*** 2.766*** 2.658***

(0.0969) (0.0968) (0.0965) (0.0971)

Controls Yes Yes Yes Yes

Province Yes Yes Yes Yes

Industry Yes Yes Yes Yes

Year Yes Yes Yes Yes

Obs 24267 24267 24267 24267

adj. R2 0.746 0.746 0.746 0.747

TABLE 6 Heterogeneity of different five-year plan cycles.

(1) (2) (3) (4) (5)

Ninth Tenth Eleventh Twelfth Thirteenth

IP −0.00388 0.214*** 1.015*** 1.079*** 1.122***

(0.0108) (0.0302) (0.0582) (0.0783) (0.0974)

_cons 1.282*** 1.946*** 2.106*** 4.213*** 5.944***

(0.0377) (0.0947) (0.203) (0.383) (0.590)

Controls Yes Yes Yes Yes Yes

Province Yes Yes Yes Yes Yes

Industry Yes Yes Yes Yes Yes

Year Yes Yes Yes Yes Yes

Obs 4164 5254 5329 5325 4213

adj. R2 0.239 0.272 0.358 0.434 0.483

TABLE 7 Heterogeneity with different levels of technological complexity.

(1) (2) (3)

Low Middle High

IP 0.308*** 0.359*** −0.0838

(0.0367) (0.0599) (0.139)

_cons 2.370*** 3.152*** 3.207***

(0.153) (0.208) (0.283)

Controls Yes Yes Yes

Province Yes Yes Yes

Industry Yes Yes Yes

Year Yes Yes Yes

Obs 13521 5476 5270

adj. R2 0.729 0.752 0.797
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policy formulation to foster low-carbon development (Pan
et al., 2023).

Local government policies outperform central policies due to
decentralization advantages (Sun et al., 2023). Local authorities
possess superior information about regional industrial structures
and environmental conditions, enabling tailored interventions that
align with specific needs (Song et al., 2025). This aligns with fiscal
federalism, where proximity enhances policy efficacy.

4.3.2 Impact of industrial policy on the low-carbon
transformation in different FYP cycles

It is essential to examine how evolving industrial policy has
influenced low-carbon transformation in China. Given the continual
improvement in policy implementation, we categorize the data by
FYP periods: the 9th (1997-2000), 10th (2001-2005), 11th (2006-
2010), 12th (2011-2015), and 13th (2016-2019). Findings in Table 6
highlight an escalating influence of industrial policy on low-carbon
transformation across these periods. The 9th FYP saw negligible
policy impact. However, from the 10th FYP onwards, as
environmental targets became integral to national development
goals, the government increasingly focused on low-carbon
growth, thus enhancing the effectiveness of industrial policy from
the 11th to the 13th FYPs.

4.3.3 Heterogeneity with different levels of
technological complexity

This study continues to investigate whether sector-specific
industrial policy can foster low-carbon transformation across
industries with varied technological complexities. To do so, we
classify two-digit industrial sectors into low, medium, and high
technology groups according to established categorizations (Chen
et al., 2021).

This finding in Table 7 reveals significant variation in the
effectiveness of industrial policy across technological complexity
tiers. Notably, medium and low-tech industries have seen substantial
benefits from IP, with themedium-tech sector experiencing themost
significant enhancement in low-carbon transformation. Conversely,
high-tech industries have not shown similar progress.

Medium- and low-tech industries benefit more than high-tech
sectors from these policies (Yang et al., 2023). This may stem from
their lower technological complexity and greater adaptability to
standardized low-carbon measures, such as energy efficiency
upgrades, which require less innovation capacity compared to
high-tech industries reliant on cutting-edge R&D. While
medium-low industries, with their complex developmental
trajectories, benefit from policy guidance towards low-carbon
paths, high-tech sectors pose a challenge. High-tech sectors,
conversely, may face diminishing returns from broad policies due
to their specialized needs (Xu P. et al., 2024). Despite their high
innovation costs and risks that seemingly warrant policy support,
the government’s limited knowledge and guidance capabilities fall
short of promoting low-carbon advancements in these areas.

4.3.4 Heterogeneity with different pollution levels
Whether government industrial policy is fine-tuned to match the

specific needs of different sectors, particularly emphasizing the pollution
levels of industries is of great importance (Yu et al., 2020). To examine if
the impact of industrial policy on low-carbon transformation differs by
pollution levels, this study conducts a grouped regression analysis in two
steps. Initially, industries are classified into heavily-polluted and non-
heavily-polluted categories based on official environmental guidelines.
Additionally, the sample is segmented into high, medium, and low
emission intensity groups based on tertiles.

Findings in Table 8 reveal that industrial policy significantly
fosters low-carbon transformation in heavily polluted industries
more than in non-heavily polluting samples. Furthermore, the
positive impact is most pronounced in the high-emission group,
diminishing in the medium-emission group, and least in the low-
emission group. This underscores that industrial policy is
strategically directed at mitigating pollution in sectors with
higher emission levels. Industries with higher pollution levels
show amplified effects, reflecting their greater potential for
emission reductions under stringent regulation (Lin and Zhang,
2023). Rigorous environmental regulations can drive innovation and
efficiency gains, particularly in high-emission sectors with
substantial room for improvement, making policy interventions

TABLE 8 The heterogeneity with different pollution levels.

(1) (2) (3) (4) (5)

Heavily polluting Non heavily Polluting High Middle Low

IP 0.382*** 0.223*** 0.377*** 0.180*** 0.114**

(0.0409) (0.0398) (0.0390) (0.0397) (0.0576)

_cons 3.031*** 1.590*** 1.494*** 1.968*** 2.378***

(0.148) (0.146) (0.159) (0.169) (0.204)

Controls Yes Yes Yes Yes Yes

Province Yes Yes Yes Yes Yes

Industry Yes Yes Yes Yes Yes

Year Yes Yes Yes Yes Yes

Obs 10623 13644 7953 7988 7871

adj. R2 0.742 0.771 0.774 0.844 0.848
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more impactful by unlocking larger absolute reductions (Huang and
Yi, 2023).

5 Mechanism analysis

In order to test the influence mechanism of industrial policy to
promote the low-carbon transformation, the following mediation
effect model is constructed:

Mi,j,t � α + α1IPi,j,t + γXi,j,t+μi + λj + θt + ϵi,j,t (5)
LCTi,j,t � α + β0IPi,j,t + β1Mi,j,t + γXi,j,t+μi + λj + θt + ϵi,j,t (6)

Where Mi,j,t is the mediator variable, while the remaining
variables are the same as Equation 1. In this two-stage mediation
model, if the coefficient α1 in Equation 5 is significant, it indicates
that industrial policy affects the mediating variable. Further, if the
coefficient β1 in Equation 6 is significant, it indicates that industrial
policy affects LCT through the mediating variable.

5.1 Structural effect

This paper verifies whether industrial policy can promote industrial
low-carbon transformation through the decarbonization of industrial
structures and the purification of energy structures.

The mediating variable of industrial structure decarbonization
(UCE) is measured by the proportion of low-carbon industries in the
total industrial output value of the province (Tian et al., 2019). A
positive coefficient of UCE would suggest that industrial policy is
facilitating this transformation by enhancing the share of low-
carbon industries.

Another critical pathway is the shift toward cleaner energy
structures, vital for reducing carbon emissions primarily sourced
from fossil fuels (Xu et al., 2020). This paper measures energy
structure upgrading (NF) through the proportion of renewable
energy consumption to total energy consumption. A significantly
positive coefficient will indicate that IP is effectively encouraging a
move away from fossil fuels towards cleaner energy sources.

The mediation effect regression results of structural effects are
presented in column (1)–(4) in Table 9. Column (1) shows that
industrial policy significantly contributes to the expansion of low-
emission industries. Column (2) further verified that industrial
policy can promote LCT by expanding low-carbon industries. In
column (3), supported industries demonstrate a 3.98% higher share
of non-fossil energy consumption than unsupported ones. The
coefficients for IP and NF are both significantly positive in
column (4), confirming that IP can promote industrial low-
carbon transformation by encouraging the use of renewable
energy. According to the above results, the research hypothesis
2 was verified.

TABLE 9 Regression results for mechanism analysis.

(1) (2) (3) (4) (5) (6) (7) (8)

UCE LCT NF LCT LCIN LCT ZK LCT

IP 0.241*** 0.954*** 0.0398*** 0.995*** 0.281*** 0.602*** 0.127*** 0.925***

(0.0351) (0.0414) (0.0136) (0.0419) (0.0264) (0.0408) (0.0286) (0.0288)

UCE 0.168***

(0.00778)

NF 0.138***

(0.0205)

LCIN 0.0786***

(0.0141)

ZK 0.249***

(0.00964)

_cons −7.706*** 0.781*** 0.605*** 0.437*** 0.719*** 10.60*** 5.366*** 1.818***

(0.0357) (0.0732) (0.0138) (0.0444) (0.0918) (0.142) (0.0291) (0.0552)

Controls Yes Yes Yes Yes Yes Yes Yes Yes

Province Yes Yes Yes Yes Yes Yes Yes Yes

Industry Yes Yes Yes Yes Yes Yes Yes Yes

Year Yes Yes Yes Yes Yes Yes Yes Yes

Obs 23984 23984 23718 23718 12469 12469 23969 24036

adj. R2 0.917 0.624 0.665 0.618 0.597 0.806 0.764 0.604
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5.2 Technological effect

To explore how industrial policy facilitates low-carbon
transformation via technological effect, this paper focuses on the
mediating effect of low-carbon innovation and energy-saving
technological progress. Due to the challenge of collecting accurate
proxies for low-carbon innovation at a granular level (Zhu et al.,
2019), we aggregate the number of low-carbon patent applications
by all listed Chinese companies from 1997 to 2019 to the year-
province-industry level, and then take natural logarithm to serve as
the proxy for low-carbon innovation effect (LCIN). Additionally, the
capital-to-energy input ratio (ZK) is used to represent energy-saving
biased technological progress, highlighting the shift towards more
energy-efficient technologies (Acemoglu et al., 2012; Dong et al.,
2019). A higher value of ZK indicates greater substitution of energy
inputs with capital inputs within the input structure, reflecting a
technological inclination towards using capital rather than energy,
thereby making the industry cleaner.

Table 9 column (5) reveals that industries supported by
industrial policy see a 28.1% higher rate of low-carbon patent
applications than their unsupported counterparts, demonstrating
the policy’s role in spurring low-carbon technological innovation.
Column (6) further verifies the channel through which IP promotes
LCT by encouraging low-carbon innovation.

Column (7) shows that supported industries exhibit a significant
shift towards energy-saving technological progress, evidenced by a
relative increase in capital input compared to energy input. Finally,
the results in column (8) confirm the impact pathway of energy-
saving biased technological progress. Accordingly, this paper
confirms the research hypothesis 3.

6 Conclusions and policy implications

6.1 Findings

Industrial policy serves as a critical mechanism by which
governments can shape economic growth, steer the industry
toward modernization and efficiency, and address market
failures. Facing escalating environmental pressures and
resource limitations, China urgently needs to pivot towards a
low-carbon development model to sustain high-quality growth.
This study examines the role of industrial policy in facilitating
low-carbon transformation within China’s industrial sector.
Employing a fixed-effects model that accounts for variations
across regions, industries, and years, adopting data spanning
36 industries across 30 provinces from 1997 to 2019, this paper
aims to quantify the effectiveness of the industrial policy in
promoting low-carbon transformation.

The key findings are as follows. First, industrial policy has
significantly promoted the low-carbon transformation. Compared
to unsupported industries, the low-carbon transformation index of
those supported by targeted industrial policy will see an increase of
9.2%. Second, in terms of heterogeneity, this paper finds that the
effects of local government industrial policy, later Five-Year Plans,
and policy in industries with medium or low technological
complexity, and in heavily polluting and high-emission industries
are more significant. Furthermore, industrial policy can promote

low-carbon transformation through low-carbon structural
upgrading and technological progress.

6.2 Policy implications

Based on the conclusions of this paper, the Chinese government
should continue to implement effective industrial policy to drive the
low-carbon transformation. China’s industrial policy, particularly
those enacted by local governments under the Five-Year Plans have
significantly contributed to the low-carbon industrial
transformation, suggesting that sustainable industrial
development can be promoted through the strategy of
“development-driven transformation”. The increase in the low-
carbon transformation index provides actionable insights for
policymakers. To maximize this effect, we suggest: (1) increasing
subsidies for green technologies, such as carbon capture and
renewable energy, targeting high-emission sectors like steel and
cement; and (2) promoting regional low-carbon industrial
clusters to enhance scale and innovation spillovers. A notable
real-world example is the Ordos Low-Carbon Industrial Park in
Inner Mongolia, launched in 2021 (Li et al., 2023). This initiative
integrates renewable energy with traditional industries, reducing
CO2 emissions by an estimated 3.5 million tons annually while
creating over 10,000 green jobs by 2023. Supported by the 14th Five-
Year Plan, it showcases how policy-driven transformation can align
economic growth with decarbonization.

To enhance this transformation further, it’s essential to refine
policy formulation and implementation, focusing on the distinct
needs of central and local governance as well as industry-specific
characteristics. The heterogeneity analysis of this paper underscores
the need for tailored approaches to policy implementation. In terms
of government functions, the central government should define clear
policy goals and incentives, granting flexibility to local authorities.
Local governments, in turn, should capitalize on regional strengths
and prioritize sectors with substantial growth potential for low-
carbon initiatives. For high-tech industries, the government needs to
find effective incentives, provide special subsidies for high-tech, low-
carbon production models and technology applications, and utilize
market mechanisms such as carbon quotas and carbon pricing to
encourage high-tech enterprises to implement low-carbon
transformation. Moreover, designing policy for high-emission
industries is crucial for fostering low-carbon transformation and
preventing a lock-in of outdated low-carbon strategies. In addition
to encouraging high-pollution industries to reduce carbon emissions
themselves, industrial policy also needs to consider promoting the
expansion of low-emission industries and facilitating regional or
international industrial transfers to gradually replace high-pollution
industries during policy formulation and implementation.

Mechanism analysis highlights that structure upgrading and
technological progress are pivotal in driving low-carbon
transformation. China’s central and local governments should
guide traditional and high-pollution industries towards modern,
eco-friendly practices, encouraging the growth of low-carbon
sectors. To this end, prioritizing the development of a cleaner
energy infrastructure and shifting financial incentives from fossil
fuels to sustainable energy sources are vital steps. To stimulate
industrial low-carbon transformation effectively, policy should focus
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on supporting breakthroughs in essential technologies and increase
funding for energy-efficient innovations. Encouraging the adoption
of green technologies through subsidies and emphasizing energy-
saving targets in R&D can maximize the technological
advancements’ benefits for low carbon transformation.

Implementing these recommendations, however, faces
feasibility challenges and potential obstacles. Ensuring local
governments can effectively execute policies requires addressing
capacity disparities, as some regions lack technical expertise or
administrative resources (Tu et al., 2024). This can be mitigated
through targeted training programs and central government-led
pilot projects to build local competency. Resource allocation poses
another difficulty, particularly for subsidies in high-tech and low-
emission industries, given fiscal constraints in less-developed
provinces. A solution is to leverage public-private partnerships
(PPPs) and international funding, such as green bonds, to
supplement local budgets. For high-tech industries, the
complexity of designing effective incentives may encounter
resistance from firms prioritizing short-term profits over long-
term sustainability. Introducing phased carbon pricing and
performance-based subsidies can align market incentives with
policy goals (Chen and Wang, 2023). High-emission industry
transitions risk economic disruption or job losses, which could be
addressed by phased industrial transfer plans and retraining
programs for affected workers. These strategies enhance
feasibility while overcoming implementation barriers, ensuring
policies translate into tangible low-carbon outcomes.

6.3 Limitation and future perspectives

While this paper offers robust evidence on the role of
industrial policy in driving low-carbon transformation, certain
limitations should be acknowledged. First, the data primarily
cover China’s industrial sector within a specific timeframe,
potentially limiting generalizability to other regions or periods
(especially after COVID-19) with differing industrial and policy
contexts. Second, despite using fixed-effects models and control
variables to address confounding factors, unobserved
heterogeneity or reverse causality—such as low-carbon
progress shaping policy design—may still affect causal
inference. Third, the analysis does not account for the varying
support intensity of Five-Year Plans across industries, which may
influence the effectiveness of policies in promoting low-carbon
transitions in different sectors.

These limitations highlight directions for future research.
Expanding the dataset to include cross-national comparisons
could assess the applicability of our findings across diverse
governance and industrial settings. Developing more precise
variable approaches to measure industrial policy intensity—such

as industry-specific investment allocations or policy enforcement
metrics—would better capture the differential impacts of Five-Year
Plans. Additionally, investigating the interplay between industrial
policy and emerging factors, such as carbon markets, could further
elucidate low-carbon transformation dynamics.
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