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Projection and assessment of
future droughts in lowa:
developing a machine learning
model and an interactive
application

Ingrid Cintura* and Antonio Arenas*

Department of Civil Construction and Environmental Engineering, lowa State University, Ames, IA,
United States

Climate change has intensified the frequency and severity of droughts,
significantly impacting water resources, agriculture, and ecosystems.
Traditional drought indicators typically focus on recent conditions rather than
future projections, and conventional forecasting methods often struggle to
capture the complex, non-linear relationships between long-term climate
variables and droughts. This project aims to fill this gap by developing a
machine-learning model to project drought conditions in lowa, specifically
focusing on the U.S. Drought Monitor categories. The developed model, a
Long Short-Term Memory neural network, was validated to assess its reliability
and accuracy. With a Root Mean Squared Error of 0.19 and an R? of 91%, the
model achieved a high level of accuracy, making it effective in guiding
conservation practices and enabling timely interventions. The model was
trained on historical data from 2012 to 2019 and thoroughly evaluated using
out-of-sample data from 2002 to 2011. It exhibited strong performance in the
projection of drought conditions across lowa's Hydrologic Unit Code
08 watersheds. Drought conditions for the period 2030-2050 were projected
using three general circulation models (GCMs): MPI-ESM1-2-HR, BCC-CSM2-
MR, and CNRM-ESM2-1. These projections were conducted under two
contrasting Shared Socioeconomic Pathways (SSPs): SSP1-2.6, representing a
low-emissions sustainability scenario, and SSP5-8.5, reflecting a high-emissions,
fossil-fuel—intensive trajectory. Results indicate that droughts in the coming
decades will become more intense, prolonged, and frequent, with projections
suggesting intensities up to twice as severe and durations and frequencies in
northwestern regions up to nine times higher than historical records. Moreover,
this research developed an interactive application for visualizing future drought
conditions in lowa. This tool aids users in making informed water management
decisions by providing stakeholders with detailed visualizations and technical
information.

drought projections, long short-term memory, climate data analysis, drought intensity,
drought duration, drought frequency, future drought viewer
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1 Introduction

Understanding and predicting droughts is key to mitigating
their most devastating effects on environmental degradation. The
impacts of droughts extend far beyond water scarcity. Economic
implications, such as reduced agricultural output, can lead to
increased food prices and economic instability in rural
communities dependent on farming (Drugova et al., 2022; Gana
and Sa’id, 2022). Regions with high ecological vulnerability
experience more severe drought impacts, potentially leading to
long-term habitat degradation and loss of species (Jordaan et al,
2019). According to the Fifth National Climate Assessment report,
droughts and related heatwaves in the U.S. have caused
approximately $328 billion in damages between 1980 and 2022
(USGCRP, 2023). Even more concerning is that droughts are
expected to increase in intensity, duration, and frequency,
particularly in the U.S. Southwest, affecting both surface water
and groundwater supplies (USGCRP, 2023).

Given these projections, understanding drought dynamics at
regional scales is essential for effective adaptation and mitigation
strategies. Iowa, as one of the leading corn-producing states in the
U.S., is particularly vulnerable because of its reliance on rainfed
agriculture, making it susceptible to periods of low rainfall and
drought (Hatfield and Prueger, 2004; Yildirim and Demir, 2022).
Historically, Iowa has experienced some notable droughts, with the
most severe events occurring in 1988 and 2012. The 2012 drought
was characterized by extreme heat and below-average precipitation,
leading to substantial agricultural losses. This drought was among
the most severe in the Midwest, affecting crop yields significantly
and prompting emergency relief declarations for many counties
(Islam S et al., 2024; Loecke et al., 2017). Drought also threatens
Iowa’s water supply systems and natural ecosystems, as reduced
streamflow and soil moisture compromise municipal water sources,
wetlands, and biodiversity.

In managing drought, Iowa has adopted several strategies to
reduce its impacts. These include utilizing drought models based
on climate data as part of the broader national USDM system (“What
is the USDM? |U.S. Drought Monitor,” n.d.) and employing advanced
agricultural techniques to improve resilience to drought conditions,
like drought-resistant crops, soil moisture monitoring, and
conservation tillage (Islam SMS et al, 2024). For instance, the
Standardized Streamflow Index (SSI) has been used to evaluate
drought conditions and inform water management strategies
(Anderson and Schilling, 2024). The state has also concentrated on
enhancing soil moisture management and implementing improved
crop rotation practices to build drought resilience (Khong et al., 2015).
Furthermore, the use of machine learning models as an example of
advanced technology to forecast agricultural outcomes during
droughts has been explored by researchers (Branstad-Spates et al,
2023). Although many of these approaches are still being developed,
they have not yet been fully integrated into operational drought
planning. Despite these efforts, most current approaches prioritize
short-term responses rather than long-term projections, creating a
gap in preparedness for future droughts.

Recently, Towa has implemented a comprehensive drought
plan developed by the
Department of Natural Resources, the Iowa Department of

management collaboratively Towa

Agriculture and Land Stewardship, and the Iowa Department of
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Homeland Security and Emergency Management, with input from
various stakeholders (“lIowa Drought Plan - January 2023,” 2023).
The plan divides the state into five drought regions, each with
distinct topography, soils, geology, and hydrology. It features a data-
driven system to assess drought status and outlines specific actions
for different levels of severity. Additionally, the plan includes a
vulnerability and impact assessment that recognizes regional
vulnerabilities, particularly concerning agriculture, water supply,
and public health. While this plan is a step forward, its primary
reliance on observed data underscores the need for forward-looking
models capable of integrating climate projections to support long-
term resilience planning.

As global temperatures rise and climate patterns shift,
understanding the dynamics of drought becomes increasingly
and policy
formulation. Various indices and monitoring and synthesis tools

important for effective resource management
have been developed to assess different types of droughts in the U.S,,
including meteorological, agricultural, and hydrological droughts.

Some of them are:

o The Standardized Precipitation Index (SPI) is used to assess
meteorological drought by comparing current precipitation
with a reference period. It is widely recognized for its
versatility in monitoring meteorological droughts at various
time scales and regions (Vicente-Serrano et al, 2011). Its
ability to standardize precipitation data facilitates the
comparison of drought conditions over time and space,
which is vital for effective management (Santos et al., 2019).

o The Palmer Drought Severity Index (PDSI), introduced by
Palmer in 1965, this method evaluates drought severity based
on temperature and precipitation data, but it is sensitive to
local climate conditions and depends on historical data (Salimi
et al.,, 2021).

o The Standardized Precipitation Evapotranspiration Index
(SPEI) considers both precipitation deficits and temperature
effects on evaporation, making it particularly relevant in the
context of climate change (Vicente-Serrano et al., 2010).

o The U.S. Drought Monitor (USDM), established in 1999 by
the National Oceanic and Atmospheric Administration,
United States Department of Agriculture, and the National
Drought Mitigation Center, is one of the most commonly used
tools for monitoring and synthesizing drought conditions
nationwide (Current Map, 2024). By integrating in situ
measurements, remote sensing data, and expert input, the
USDM provides a comprehensive assessment of drought
severity. Published weekly, it utilizes various indicators,
such as precipitation, soil moisture, temperature, and
vegetation health, to create detailed maps that reflect the
complex nature of drought and its impact on sectors like
agriculture and water supply (Benedict et al, 2021). The
USDM categorizes drought conditions from “abnormally
dry” to
practices, water resource management, and emergency

“exceptional drought,” informing agricultural

responses and supporting federal and state relief efforts
(Benedict et al., 2021).

While traditional drought indices such as SPI, PDSI, SPEI, and
the monitoring and synthesis tool USDM assess current drought
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conditions, they are based on past observations. These indices and
tools provide a snapshot of the current drought conditions, but they
do not offer sufficient insight into how droughts might evolve in the
future. As the impacts of climate change intensify, there is a need to
go beyond historical analysis and develop tools to project future
drought scenarios. This limitation is increasingly problematic in a
changing climate, where reliance on historical patterns may no
longer be sufficient for risk assessment.

In recent years, machine learning techniques like Long Short-
Term Memory (LSTM) networks (Hochreiter and Schmidhuber,
1997), have become increasingly popular in drought forecasting and
monitoring. These networks excel at processing sequential data,
such as past and current climate variables, to forecast drought
conditions (Abbes et al., 2023; Danandeh Mehr et al., 2023; Das
et al,, 2023; Yang et al., 2025).

Previous research has shown that LSTM models can deliver
more accurate predictions of long-term drought conditions than
traditional methods and can forecast droughts up to 18 months in
advance, which is crucial for proactive management and mitigation
strategies (Dikshit et al., 2021; Vo et al., 2023). Nevertheless, many
existing models fall short in integrating projected climate data or in
offering spatial resolution tailored to specific decision-making
regions like HUC8 watersheds (Gyaneshwar et al, 2023). This
research seeks to address this gap by integrating historical and
projected climate data and developing a model to predict future
drought conditions, which is essential for effective climate change
adaptation strategies.

This manuscript presents an LSTM machine learning model
trained in historical precipitation and maximum temperature data at
the HUCS level for Iowa. The model is designed to predict future
drought conditions by analyzing future precipitation and maximum
temperature values from climate models, enabling the identification
of regions likely to be impacted by drought conditions in the
2030-2050 period. Additionally, we introduce a new tool for
drought assessment in Iowa: an interactive application that
supports stakeholders  with
information on drought conditions. The application displays

decision-making and provides
drought projections at the HUCS level based on the outputs of
the LSTM model.

The objectives of this research were to 1) Build a machine
learning model to project USDM drought conditions at the
HUCS level in the 2030-2050 period, 2) Develop an interactive
application for displaying future USDM categories at the
HUCS8 and 3)
Frequency (IDF) analysis to characterize future drought patterns

levels in Iowa, Apply Intensity-Duration-

and assess their potential impact on water resources and agriculture.

2 Methodology

This section outlines the approach and methodologies used in
this research to develop and implement the projection and
assessment of future droughts in Iowa. It begins with an
overview of the study area, followed by a detailed description of
the machine learning model employed. Additionally, the
methodology for calculating drought’s IDF is also presented,
outlining the steps for deriving intensity, duration, and frequency

metrics based on historical and projected data. Finally, this section
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covers the development of the interactive application, including its
design, user interface, and the integration of the model results to
display projected drought conditions in Iowa’s HUC8 watersheds.

2.1 Study area

Towa covers approximately 56,272 square miles, with around
85% of its land used for agriculture, mainly corn and soybean
production (USDA, 2024; USDA/NASS, 2023). The state receives
an average annual precipitation of 30-35 inches, though this can
vary significantly (Drainage Water Management - Iowa Agriculture
Water Alliance, n.d.). Irrigation is limited, mostly concentrated in
western Iowa, with higher drought risks (USDA/NASS, 2023). Tile
drainage systems are widely used, particularly in northern and
central Towa, to improve water management in poorly drained
soils, especially in fields dedicated to row crops (Drainage Water
Management, 2024; lowa Regional Crop 2024; Corn and Soybeans,
n.d.). The area of study map is shown in Figure 1.

2.2 Drought projection model

This manuscript’s scope covers the 56 HUCS8s in the State of
TIowa. The temporal window analyzed goes from January 2012 until
December 2019, for the training data. Out-of-sample validation
was performed for the period 2002 to 2011. Drought projections
were made for the period from 2030 to 2050 using data from the
MPI-ESM1-2-HR, BCC-CSM2-MR, and CNRM-ESM2-1 climate
models. These projections were conducted under two contrasting
Shared Socioeconomic Pathways (SSP1-2.6 and SSP5-8.5),
representing low- and high-emissions scenarios, respectively.
The variables considered in this paper are precipitation (PPT),
maximum temperature (Tmax), and USDM categories (including
categories such as DO - Abnormally Dry, D1 - Moderate Drought,
D2 - Severe Drought, D3 - Extreme Drought, and D4 - Exceptional
Drought). The model is based on average data for each HUCS.
Both input and output data will be average values for each
watershed, representing the behavior of the variables in that
specific area. This allows predictions and analysis to reflect each
region’s average conditions accurately. The data span a wide
gradient of drought conditions in Iowa, making it an ideal time
window and region for developing and testing robust drought
prediction methods.

2.2.1 Model datasets

The study employs a detailed analysis of hydrologic data at the
HUCS8 scale in Iowa. This scale was selected because HUCSs
represent sub-basins that align with hydrological processes and
management boundaries, providing a consistent framework for
understanding water resources and assessing drought impacts at
a regional level. Additionally, the HUCS scale strikes a balance
between data availability and computational efficiency. Using a
smaller scale, such as HUCI2 or finer, would significantly
increase the consumption of computational resources and
processing time, making it less practical for large-scale studies.
This choice is supported by previous hydrologic reports, such as
those by the Iowa DNR and the Iowa Flood Center/ITHR (ITHR,
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FIGURE 1
Area of Study - lowa. Map of lowa displaying HUC8-level watersheds, with cultivated crop areas highlighted in orange.

TABLE 1 Model datasets.

Dataset Data Coverage Spatial Time Time Data source
type Res Res window
Physical HUG 8 Shape - L NA NA NA National Hydrography Dataset |U.S.
Boundaries Polygons owa Geological Survey (2024)
USDM Image
USDM g The U.S. NA Week 2000-2022 Current Map (2024)
category Collection
PRISM
Historical Data L Gridded The U.S. 4.6 km Month 1895-2024 PRISM Climate Group (2024)
Historical PPT and
Tmax
CMIP6 Models
SSP5-8.5
Future Data —————————  Gridded North America 4.6 km Day 2025-2059 CMIP Data Access - Coupled Model
SSP1-2.6 Intercomparison Project (2024)
PPT and Tmax

2019a; 2019b), which also conducts analyses at the HUCS8 scale to ~ temperature (Tmax), and USDM data. The datasets and models
ensure effective water resource management and drought employed are listed in Table 1.

monitoring in the state. The analysis is structured around The HUC 8 boundaries define the study regions, allowing for
extracting and processing precipitation (PPT), maximum  targeted geospatial analyses. The USDM categories provide a reliable
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framework for monitoring water stress events, incorporating both
climatic variables and expert judgment; it has been available since
2000. This is why the USDM was selected as the target variable for
projection, as it enables the development of additional methods for
future drought management. For historical data, PRISM was used,
offering detailed monthly representations of PPT and Tmax over
time. These data are available in the Google Earth Engine (GEE)
repository, simplifying geospatial analysis.

The period selected for the training and testing analysis reveals a
complex interplay of climatic factors, seasonal variability, and the
impacts of drought on agriculture and water resources. Particularly,
2012; 2013 were marked by extreme drought conditions that
severely affected crop yields and water availability across Iowa
(USDA, n.d.-b). The 2012 drought, in particular, was
characterized by extreme heat and below-average precipitation,
leading to significant reductions in corn and soybean yields
(Hoerling et al., 2014). Iowa also experienced a significant
drought in 2003, affecting the northwest and southwest areas of
the state. Another severe drought occurred in 2020, with 80% of
Towa experiencing moderate drought conditions or worse (Iowa,
2024). While there was some
northwestern regions faced significant precipitation deficits (Iowa

improvement in 2021, the

| Drought.Gov, n.d.). These recurring drought episodes, with at least
one or two extreme droughts recorded per decade, support the
selection of the analysis period.

The analysis was carried out monthly to identify drought events
that can significantly affect water resources, agriculture, and
ecosystems. This approach is supported by research indicating
that monthly data provides the necessary temporal resolution to
track and respond to drought dynamics before they escalate, which
is critical for effective water management and agricultural planning
(Kuzucu and Onusluel Giil, 2023). Studies have also shown that
indices such as the monthly-calculated SPEI effectively capture both
the frequency and intensity of drought occurrences, with droughts
becoming more frequent and severe at this scale (Shi et al., 2017).
Furthermore, groundwater studies highlight that droughts lasting
more than a month have a more pronounced effect on groundwater
fluctuations, emphasizing the significance of monthly intervals in
understanding (Khorrami  and
Gunduz, 2019).

Temporal variability highlights the importance of monthly data

hydrological ~ processes

for accurately assessing drought trends. This temporal resolution
also supports the development of models for long-term projections,
such as those spanning decades, making data management more
efficient. Furthermore, monthly data is essential for effective water
resource management, agricultural planning, and understanding the
broader implications of climate variability on drought patterns.

For drought projection, the models MPI-ESM1-2-HR, BCC-
CSM2-MR, and CNRM-ESM2-1, all part of the CMIP6 framework,
were selected due to their advanced capabilities and reliable
performance in climate simulations (Eyring et al, 2016). These
widely recognized models have undergone rigorous testing across
different regions and climate extremes, making them highly reliable
for predicting droughts.

The MPI-ESM1-2-HR excels with its high spatial resolution,
allowing for detailed simulation of precipitation patterns, which is
important for accurately predicting droughts. Its strength in capturing
ocean-atmosphere interactions also makes it particularly effective for
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studying climate variability on both regional and global scales
(Jungclaus et al, 2019). The BCC-CSM2-MR, developed by the
Beijing Climate Center, has made significant improvements in
simulating surface air temperature and atmospheric circulation.
This model is particularly adept at representing land-atmosphere
interactions, which enhances its ability to model extreme weather
events (Wu et al, 2019). The CNRM-ESM2-1, from the Centre
National de Recherches Meétéorologiques, integrates advanced
biogeochemical processes, such as carbon and water cycles, which
are vital for understanding and predicting droughts. Numerous
studies have validated these models for their accurate simulation of
climate variables, which are key variables in drought dynamics
(Séférian et al., 2019).

Shared Socioeconomic Pathways SSP5-8.5 and SSP1-2.6 were
selected for analysis as they represent the upper and lower bounds
of the Shared Socioeconomic Pathways framework. SSP5-8.5 reflects a
high-emission, fossil fuel-driven pathway characterized by rapid
economic growth, high energy demand, and limited environmental
regulation, leading to intensified greenhouse gas emissions and
considerable  strain  on  water  resources. In  contrast,
SSP1-2.6 represents a low-emission, sustainability-oriented scenario
with strong global cooperation, reduced resource intensity, and
proactive climate policies aimed at mitigation and adaptation.
Examining these divergent pathways enables a comprehensive
evaluation of how varying socioeconomic and emission trajectories
may influence the spatial and temporal characteristics of future
droughts, thereby informing the development of targeted adaptation

and mitigation strategies to address these evolving challenges.

2.2.2 Data preprocessing

Data preprocessing is crucial in ensuring that the model can
effectively capture complex patterns and make accurate predictions
of drought conditions. This study used data on PPT, TMAX, and the
USDM values from 2012 to 2019. The data was first filtered and
sorted by HUC8 watersheds to maintain spatial and temporal
integrity. For short-term temporal dependencies, lagged values of
PPT and TMAX were included for the current month and with lags
of one, two, and 3 months. These features are represented in
Equation 1:

PPT, , Tmax,_i for k=0,1,2,3 (1)

Moving averages and variances were computed for 6- and 9-month
periods to account for longer-term seasonal effects. Equation 2 defines
the rolling mean, and Equation 3 defines the rolling variance:

n-1 n-1

1 1
PPTmeann,t = Z Z PPTt—i: Tmaxmeann,t = ; z Tmaxtfi (2)
i=0 i=0

1 n-1
PPTvarn = ; Z (PPTt—i - PPTmeann,t)za

i=0
n-1

1
Tmaxvarn = ; ; (Tmaxt—i - Tmaxmeann,t)z) (3)

Where n can be any time window considered, such as
6 or 9 months.

Finally, sine and cosine transformations were applied to the
month and the year to account for cyclical seasonal patterns. These
features are represented in Equations 4, 5:
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. [ 2m* month 21 * month
Month;, = sin T , Month,,, = cos T (4)

2m* 2m*
Yearg, = sin(%), Yearcos = cos(%) (5)

Where month takes values from 1 to 12, and year takes values
from 1 to 8.

A key aspect of preprocessing was the normalization of the data,
which is crucial for ensuring that all input variables are on
comparable scales, particularly when working with machine
learning models like LSTMs. To achieve this, the StandardScaler
from scikit-learn (version 1.5.1) was applied (Pedregosa et al., 2011),
transforming the features to have a mean of zero and a standard
deviation of one. This normalization process optimizes model
convergence and ensures that the machine learning algorithm is
not disproportionately influenced by variables with larger scales,
such as precipitation, compared to smaller variables, like
cyclical features.

Although the model predicts a continuous variable (USDM
index values), class balancing was applied to ensure that the
model could make accurate predictions for each drought class, as
represented by the different USDM categories. Given that the dataset
contained more than 5,000 data points, the class balancing was
achieved without creating synthetic data. Instead, a down-sampling
approach was used, where the more common classes were
subsampled to balance the dataset. This method has been
extensively discussed by several authors; among the most
prominent are Ryan Hoens and Chawla (2013), who highlight its
effectiveness in improving performance. This approach ensured that
all levels of drought, from no drought to extreme drought
conditions, were adequately represented in the training data. By
doing so, the model was better able to predict all drought classes,
even the extreme events, without the risk of overfitting to the more
frequent conditions. As part of model validation, the ability of the
model to generalize was rigorously assessed. In addition to training
performance, the model was evaluated for its capacity to accurately
predict extreme drought values, which are less frequent but crucial
for water management decisions. Metrics such as mean squared
error (MSE), R? score, and Pearson correlation were used to verify
that the model was not overfitting and was generalizing well,
particularly in predicting extreme drought events.

2.2.3 Data processing and analysis

The model input data is processed using Google Colab with the
GEE API and Python. Initially, the HUCS8 shapefile is loaded and
simplified. The data is then converted into a collection of Earth
Engine features for spatial analysis. The training data extraction
spans from 2012 to 2019 and focuses on each HUCS region. PPT,
Tmax, and USDM data are filtered and processed for each study
watershed every month within this period. Monthly aggregated
values are computed and then integrated over the HUCS areas to
calculate average values. These results are compiled into a structured
format and exported for further integration into the model.

When preparing input data for future projections, the procedure
is similar to that of historical data, with the main difference being the
use of the CMIP6 models. This model provides future projections for
the SSP5 and SSP1 future climate scenarios. Similar to the historical
data process, average values for PPT and Tmax are estimated for
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integration into the model, which will then be used to make future
predictions. The results are USDM predicted average values in the
HUCS watersheds.

2.2.4 Model architecture

The model’s architecture leverages LSTM networks to predict
future drought conditions. The model starts with a Sequential LSTM
framework consisting of two LSTM layers. The first LSTM layer,
with 64 neurons, is configured to return sequences, allowing it to
process temporal dependencies in the data. This is followed by a
Dropout layer set at 30% to mitigate overfitting.

The second LSTM layer has 32 neurons, followed by another
Dropout layer at 30%. The dropout layers used hyperbolic tangent as
an activation function. The model concludes with two Dense layers:
the first, with 16 neurons and ReLU activation, introduces non-
linearity, and the second, a single neuron, produces the final
prediction. The model is compiled using the Adam optimizer
and mean squared error loss function, with early stopping
implemented to halt training when validation loss ceases to
improve. This architecture, illustrated in Figure 2, is designed to
effectively capture and predict complex temporal patterns in
drought data.

The variables used in the model are shown in Figure 2. These
variables capture information about monthly precipitation,
maximum temperature, and seasonal patterns. They include
current and lagged values, multi-month averages, and variances,
which provide information about recent and historical trends. In
addition, sinusoidal transformations are applied to represent
monthly and annual seasonal cycles, which helps the model
account for recurring patterns.

2.2.5 Model training

In the model training phase, an LSTM network is utilized to
capture the temporal dependencies in the data. The dataset spans
from 2012 to 2019 and includes data from 56 HUC8s in Iowa. The
data were first standardized to ensure uniform scaling of features.
Lagged features and rolling statistics (Figure 2) are incorporated
to provide the model with historical context and temporal trends.
The data is prepared and divided into training and testing sets,
with an 80%-20% split. The LSTM model is built with two layers
of LSTM units, interspersed with dropout layers to mitigate
overfitting. The model is trained over 50 epochs with early
stopping to prevent overfitting by halting training when
validation loss ceases to improve. During training, the model
learns to minimize the Mean Squared Error (MSE) loss function,
aiming to accurately predict drought conditions based on
historical climate data. The training process is monitored
through the loss metrics plotted to visualize the model’s
learning progression.

2.2.6 Model explainability

In order to clarify the functionality of the model, we employ
Explainable Artificial Intelligence (XAI) techniques. XAI refers to a
set of methods and tools designed to make machine learning models
understandable These methods facilitate the
interpretation of models and help identify the variables that

to humans.

contribute most significantly to the predictions (Hanif et al,
2023; Sharma et al., 2024).
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FIGURE 2

LSTM Model architecture and Input features. The first column represents the preprocessing of input data and the generation of temporal features.
The second column details the model's layer structure. The third column, on the right, displays the outputs used for results and performance analysis of
the model. The Input data table shows the features and its descriptions.

The main XAI technique used in this research is SHAP (Shapley
Additive Explanations), one of the most widely used methods for
sequential data (Salih et al., 2023). SHAP is based on game theory

concepts to assign each feature of the model an importance value
based on its contribution to the prediction (Scott Lundberg, 2018).
SHAP breaks down each observation’s prediction into “impact”
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values for each feature, providing a measure of how much each
variable contributes to a specific prediction. Through this approach,
SHAP offers two types of insights:

Local Interpretation: For each individual prediction, SHAP
shows how each variable influences the outcome. This is essential
for understanding the specific causes behind each prediction
of the USDM.

Global Interpretation: By aggregating the SHAP values across
all observations in the sample, we can assess the overall
importance of each variable in the model. This provides
information on which features most affect the USDM
predictions in general.

This study built the drought prediction model using climatic
variables and seasonal features. Predicting drought is a complex
problem influenced by multiple interrelated factors, as discussed in
previous sections of this manuscript. The selection of SHAP is ideal
for this analysis because it enhances transparency (Felsche and
Ludwig, 2021). SHAP allows us to break down the model’s
predictions,

making it possible to understand how each

variable—such as precipitation, seasonal
features—contributes to the risk of drought. This facilitates the
identification of climatic patterns that affect the USDM drought

category. Additionally, SHAP effectively captures the model’s

temperature, and

complexity: since the predictive model includes multiple variables
and non-linear relationships, SHAP is particularly useful for
explaining these interactions and their impact on the final
prediction, which would be challenging to understand with
simpler explanatory methods.

To support and validate the results provided by SHAP,
permutation analysis is applied to the model’s features.
Permutation feature importance (FPI) is a model-agnostic
technique that assesses the importance of each feature by
measuring the decrease in model performance when the
values of that feature are randomly shuffled (Molnar et al,
2024). By permuting the values, the relationship between the
feature and the target variable is disrupted, and any significant
drop in performance indicates the importance of that feature to
the model’s predictive power (Fumagalli et al., 2023; Molnar
et al., 2024). This technique corroborates the findings of SHAP
by providing feature

complementary information on

importance and reinforcing the robustness of the
interpretations.

Furthermore, the results obtained from SHAP and permutation
importance are contrasted with those generated by LIME (Local
Interpretable Model-agnostic Explanations). LIME approximates
the behavior of complex models locally using simpler, more
interpretable models (Salih et al, 2023). This method
demonstrates how small perturbations in input data affect the
output, offering insights into the model’s behavior concerning
specific predictions (Tan et al, 2023). Comparing the local
interpretability results from LIME with the global insights from
SHAP helps identify areas of agreement or divergence.

This approach ensures a comprehensive interpretability
framework by integrating SHAP, permutation importance, and
LIME. This

understanding of model behavior, confirms the influence of key

combination facilitates a more nuanced
variables, and provides a reliable foundation for deriving practical

insights into drought prediction.
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2.3 IDF analysis

The methodology for calculating the IDF curves involves
analyzing the historical drought data to derive relationships
between the intensity, duration, and frequency of drought events.
Specifically, the calculation process is the following:

The intensity of drought is measured using the USDM categories
by taking the average of the maximum annual values. According to
the USDM categories, values range from 0 (Abnormally Dry) to 4
(Exceptional Drought), with 2 indicating Severe Drought and
3 indicating Extreme Drought.

The duration analysis is calculated by counting, on an annual
basis, the consecutive months with droughts having a USDM
category greater than two, corresponding to severe, extreme, and
exceptionally extreme droughts. The annual average duration for the
analyzed period was then calculated.

Finally, for the frequency analysis, drought events with a USDM
category greater than two were examined. Using a 20-year time
window, the number of years in which such droughts occurred
was estimated.

2.4 Future Drought Viewer app

The Future Drought Viewer app employs our advanced LSTM
machine learning model to visualize future drought conditions at the
HUCS level under the SSP5 and SSP1 scenarios. The methodology
includes the following stages:

o Data Import: The application integrates drought predictions
generated by the LSTM model, which are stored in a
GEE project.

o User Interface: An intuitive interface allows users to select the
year and month to view the corresponding drought
conditions. Users interact with dropdown menus to choose
these parameters.

o Map Visualization: The application updates the map based on
user selections, applying color styles to regions according to
USDM categories. Colors represent different levels of drought
severity, ranging from abnormally dry to exceptional drought.

Classification Legend: A legend is included on the map to
provide context for the different levels of drought, aiding in the
interpretation of the visualizations.

Initial Setup: The map is centered on a default view suitable for
displaying HUCS8 regions and is initially loaded with
default values.

3 Results

This section presents the findings from the drought assessment
and prediction model developed for Iowa. The results are organized
into four main sections: model performance, explanation of the
model using XAI, Iowa Drought Projections, and assessment of
future droughts, including IDF analysis.

One of the outcomes of this research is the projection of future
droughts in Iowa, information that is accessible through the
interactive Future Drought Viewer. The app enables users to
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effectively explore future drought projections and supports better
planning and management of water resources. The interface is
shown in Figure 3.

3.1 Model performance

The performance of the LSTM model was evaluated based on its
ability to predict drought conditions. The model was trained on
historical data, and its effectiveness was assessed using various
metrics. The MSE, the Root Mean Squared Error (RMSE), the
Mean Absolute Error (MAE), the Coefficient of Determination
(R?), and the Pearson correlation coefficient were evaluated, and
the results are presented below.

3.1.1 Model validation

The model’s predictions were compared against actual observed
values using several key metrics. The MSE is 0.04, indicating a low
average squared error between predicted and observed values. The
RMSE of 0.19 further confirms that the prediction errors are
relatively small. The MAE of 0.09 reveals that the model’s
The R* Score of
0.91 demonstrates that the model explains approximately 91% of

average prediction error is also minimal

the variance in the target variable, highlighting its effectiveness.
Additionally, the Pearson Correlation coefficient of 0.96 shows a
strong positive linear relationship between predicted and actual
values, suggesting that the model’s predictions are reliable.

In summary, these results highlight the model’s strong
performance, characterized by small errors and a significant
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ability to account for the variance in the target variable. A
comparative analysis with other models is made in Section 4.3,
enabling a clear assessment of the quality of the model’s
performance metrics.

3.1.2 Out-of-sample validation

Out-of-sample validation was conducted using data from
2002 to 2011 to further assess the model’s performance and
generalizability. This external validation aimed to evaluate how
well the trained LSTM network could predict drought conditions
outside the initial training and testing periods.

The results varied across the years, reflecting the challenges
inherent in predicting complex environmental phenomena. For
instance, in 2002, the model yielded an MSE of 0.119 and a
MAE of 0.227, indicating a moderate level of prediction error.
However, performance improved substantially in later years, with
the MSE dropping to as low as 0.0003 in 2010 and the MAE to 0.013,
demonstrating the model’s increasing accuracy. The overall trend
suggests that the LSTM network maintained a strong predictive
capacity even when applied to unseen data. The use of the USDM
scale, which ranges from 0 to 4, helps contextualize these errors as
relatively small. An average MSE of 0.15 and MAE of 0.19 were the
metrics performance for the decade. Specifically, MSE measures the
average squared difference between predicted and observed values,
significantly penalizing larger errors. With a value of 0.15, the error
is small relative to the 0-4 scale of the USDM, meaning that the
predictions are generally close to the actual drought severity.
MAE provides the average of the
differences, giving a clearer view of the average prediction error.

Meanwhile, absolute
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TABLE 2 Model performance accuracy by year.

Model PerformanceYear

Prediction matches target classification

Prediction is off by one class level from the target

2012 72% 28%
2013 80% 20%
2014 89% 11%
2015 99% 1%
2016 99% 1%
2017 95% 5%
2018 93% 7%
2019 99% 1%
Total 93% 7%
With an MAE of 0.19, this suggests that, on average, the model’s  comprehensive view of the model's efficacy throughout

predictions are off by less than 0.2 on the scale. These metrics
indicate that the model performs well, offering reliable predictions
for drought intensity with relatively minor errors.

Based on the USDM categories, the model’s performance over
the decade revealed that 84% of the predictions matched the actual
drought class, 14% deviated by one class, and only 2% were off by
two classes. This external validation further supports the model’s

high performance.
3.1.3 Visual and quantitative model validation

Figure 4 displays observed and simulated values for months with
different levels of droughts from the historical window to provide a
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various periods.

Another result that reflects the model’s performance is shown
in Table 2, which highlights the accuracy of drought class
predictions based on the US Drought Monitor (USDM). The
data were processed and classified according to the USDM
categories, as both the actual and predicted values are
continuous variables representing the averages for each
HUCS region. As presented in the table, this analysis provides
quantitative insights into how well the model predicts these
drought categories by year.

Finally, 12 HUC8s were selected, for which the actual and

predicted USDM values were plotted. Figure 5 presents a graph
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Results for Selected HUCS8. The graph displays two time series of the USDM average for the selected HUC8. The blue line represents the predicted
values, while the orange line shows the historical values from 2012 to 2019.

for each HUC8 along with the corresponding R*> value,
demonstrating the reliability of the model’s results.

3.2 Explanation of the model

As a result of the XAI analysis using the SHAP technique, we
present the SHAP Beeswarm plot based on a representative sample
of 1,000 data points from the model spanning the years 2012-2020.
Variable definitions used in the model are detailed in the Methods
chapter; see Section 2.2.3.

Figure 6 illustrates the importance and impact of each feature
or variable in the model, see feature descriptions in Figure 2.
Each point represents the SHAP value of a specific data point for
each variable involved in the model. The colors indicate the
feature values, with high values shown in magenta and low
values in blue.
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Figure 6 provides information on the global importance of each
feature (climatic or seasonal), with variables ordered from top to
bottom according to their overall impact on the model. Additionally,
it shows the effect of feature values, helping to understand whether
high or low values of a variable increase or decrease the probability
of drought.

Two additional plots explain the result; one uses Permutation
Feature Importance (PFI), and the other uses Local Interpretable
Model Agnostic Explanations (LIME). Figure 7 illustrates the PFI
and shows how model performance changes when feature values are
permuted, highlighting the contribution of each feature to the model
predictions. The permutation analysis measures the change in the
model’s error (in this case, MSE) by randomly permuting the values
of each feature, breaking its relationship with the target. A positive
value indicates that the feature is important, as its permutation
increases the model’s error, while a value close to 0 or negative
suggests it has little or no impact. According to the results obtained,
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XAl Results - SHAP Beeswarm plot of the Model. The plot shows the contribution of each input feature to the model's output, using SHAP values.
Each point represents a SHAP value for a specific feature in one prediction instance. The color scale indicates the original feature value, while the
horizontal position shows the impact of that feature on the prediction. Features are ranked by importance from top to bottom.

the most important features, which should be prioritized in future
analyses, are: TMAX_mean9, the average maximum temperature at
9 months (+0.058), PPT_lagl, the accumulated precipitation from
the previous month (+0.027), PPT_mean6, the average accumulated
precipitation over 6 months (+0.025), PPT_lag2, the accumulated
precipitation from 2 months ago (+0.023), and Month_sin, the
sinusoidal component capturing monthly seasonality (+0.015).

Figure 8 shows the LIME plot, which provides a local
explanation for a specific data point, illustrating the effect of the
feature values on the prediction for that instance. In the local
explanation plots of LIME, the vertical axis represents the
features of the model that have the greatest influence on the
prediction for a specific sample. These features are ordered based
on their relative impact on the prediction. Each bar corresponds to a
feature, and its position on the graph indicates its contribution to the
prediction outcome. The most important features (closer to the top)
have a greater impact on the predicted value for the specific example.
On the other hand, the less important features (closer to the bottom)
have little or no influence on the prediction. The length of each bar
indicates the magnitude of the influence of that feature on the local
prediction (the prediction for the current sample).

These XAI plots help to understand the global influence of the
features and how they affect individual predictions, particularly in
terms of whether high or low values of a variable increase or
decrease the likelihood of drought. A more detailed discussion of
these results can be found in the Discussion section of this
manuscript.
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3.3 lowa Drought Projections

In addition to evaluating overall model performance, we
analyzed the projections from three climate models under the
SSP5 and SSP1 future scenarios. While both scenarios were
considered, the manuscript focuses primarily on SSP5-8.5, given
its representation of the most extreme pathway in terms of
greenhouse gas emissions, land-use intensity, and environmental
pressure. Results for the SSP1-2.6 scenario are provided for
comparative purposes, as they exhibit similar spatial and
temporal patterns in drought projections, though with generally
lower severity. A comparative discussion of the key differences
between the two scenarios is included in the discussion section,
highlighting contrasts in vulnerability and climate response under
divergent development trajectories.

This analysis involved calculating the average of the USDM
values over the decades studied to contrast historical and projected
drought conditions. The historical data spans from 2002 to 2022,
while the projections cover the period from 2030 to 2050. We
examined the time series for these watersheds to understand how
drought conditions are expected to evolve.

The results reveal significant variations in the severity of
droughts across the state of Iowa, with both duration and
frequency projected to increase over the coming decades.
Although the models exhibit differences in their drought
behavior, they generally predict an uptick in the occurrence of
drought events. A detailed analysis comparing historical and
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performance, based on Permutation Feature Importance (PFl) analysis.

future data is presented in the Discussion chapter of this manuscript.
This comparison enables us to examine the temporal dynamics of
droughts and provides valuable insights into how future droughts
may impact the selected watersheds, see Figure 9.

Monthly results for each HUC8 watershed between 2030 and
2050 are available in the interactive application https://icintura.
users.earthengine.app/view/droughtviewer, where users can select
the desired time frame for analysis.

3.4 Assessment of future droughts

Based on the model results for the future period from 2030 to
2050, an evaluation of the intensity, duration, and frequency of
droughts was conducted over these 2 decades under scenarios
SSP5 and SSP1. Figure 10 presents the results.

The intensity analysis (I) results show that the averages within
the decade from 2030 to 2050, vary from 0.5 to 2.8. Extreme
droughts are expected to occur in the northwest region, aligning
with the findings from the three climatic models studied. Severe
droughts are anticipated in the northeast zone, while the southern
and central parts of the state are projected to experience the
least impact.

The duration analysis (D) was conducted, and we found that the
northwest region is the most critical, with droughts expected to last
up to 3.4 consecutive months. In general, the statewide average
duration is 1.15 months. Once again, the results from the three
climate models generally align with the observed patterns.
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The Frequency (F) results are expressed as percentages based on
20 years of analysis. In this context, a rate close to 1 indicates that
droughts are expected every year during the 20-year period, while a
rate of 0.5 suggests that droughts would occur in only half of the
years. In this case, the northwest zone is again particularly critical,
with values reaching up to 0.85, indicating that severe droughts or
worse are expected in 17 out of the 20 years. The state average across
the climate models studied is 0.4, meaning that 8 years in the 20-year
period are projected to experience severe droughts or worse.

Furthermore, a study was conducted on the ten driest
HUCS regions and the ten driest months. The results are
presented in Table 3. This analysis reveals critical information
about future drought trends in Iowa’s HUC8 regions. The data
show that certain areas, such as HUC8 Lower Big Sioux (10170203),
Rock (10170204), and Floyd (10,230,002) located in the northwest
region, consistently rank among the driest regions, with USDM
indices reaching extreme and exceptional USDM values. The fact
that many of the three driest months recur in different HUCSs (such
as September, October, and November) for all the climate models
indicates a pattern in which late summer and early fall months are
particularly vulnerable to severe droughts. Information that
highlights the significant implications for agriculture, particularly
regarding crop loss and water stress during the critical late
growing season.

A key aspect of the assessment involves comparing future trends
with historical data. Figure 11 presents the drought intensity,
frequency, and duration changes, showcasing how conditions
have evolved. Historical data from 2002 to 2022 contrasts with
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XAl Results - LIME Analysis of the Model. Each graph represents a local explanation of the model, corresponding to a specific data point. Each panel
shows a local explanation generated by the LIME method for four individual prediction samples. The bars indicate the contribution (positive or negative) of

specific input features to the model's output for each data point.

future projections for 2030 to 2050 under the SSP5 and
SSP1 scenarios. The results are expressed as percentages, with
indicating  worsening  drought  conditions

higher  values

characterized by increased intensity, duration, and frequency.

4 Discussion

This research focused on multiple aspects. Initially, it aimed
to develop a machine learning model utilizing LSTM networks to
predict USDM drought conditions at the HUCS level for long-
term assessment. Secondly, it sought to create an interactive
application for displaying future drought conditions at the
HUCS level in Iowa based on the predictions generated by
the LSTM model. Thirdly, IDF analysis was applied to
characterize future drought patterns, examining the intensity,
duration, and frequency of potential drought events to better
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understand their impact on water resources and agriculture in
the region.

This detailed analysis presents significant findings into long-
term drought dynamics and their implications for resource
management in the state, offering essential tools for decision-
making and adaptation to future climate challenges. The key
points that support and validate these objectives are discussed in
detail below, highlighting the importance of this research for
enhancing drought projections and management.

4.1 XAl model analysis and evaluation

Figure 6 illustrates how various climatic variables and seasonal
features affect the prediction of the USDM categories or drought
levels. In this context, positive SHAP values indicate a higher
probability of drought or a higher USDM category, while
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Results for Selected HUCS8. The graph displays two time series of the USDM average for the selected HUCS8. The blue line represents the predicted
values from 2036 to 2045, while the green line shows the historical values from 2012 to 2021.

negative values indicate a lower probability of drought or a lower
USDM category.

Among all the input variables in the model, the most important
and influential are the average maximum temperature over a 9-month
period and the average precipitation over a 6-month period. These
two variables capture recent climatic conditions and have a strong
correlation with USDM predictions. As expected, a high average
maximum temperature over the past 9 months increases the
probability of drought, as it tends to dry the soil, increase
evapotranspiration, and reduce water availability. This is reflected
in positive SHAP values, meaning that the probability of drought
increases as this variable rises. Conversely, higher average
precipitation over the last 6 months reduces drought probability.
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High values of this variable show negative SHAP values, indicating
that accumulated moisture from precipitation decreases drought risk.

Secondly, the cyclical variables, Month_cos and Month_sin,
represent and capture seasonality and are fundamental for
modeling the impact of drought variations during specific
periods. Thirdly, lag variables, particularly PPT_lag2, PPT_
lagl and TMAX_lag2, emerge as significant factors, capturing the
influence of prior conditions on current drought levels. According to
the results, lag variables from 1 to 2 months are more relevant, while
lag variables from 3 months are less significant than more recent
ones. However, they still influence current conditions, especially
when precipitation was low or temperatures were high three
periods ago.
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Intensity Duration Frequency (IDF) analysis for drought projections. The figure presents the IDF analysis for droughts classified as severe, extreme, or
exceptional (USDM >2) over the future period 2030-2050. The left panel displays projections under the high-emissions scenario SSP5, while the right
panel shows results under the low-emissions scenario SSP1. Maps include outputs from three CMIP6 models, highlighting spatial patterns of intensity,

duration, and frequency of drought events across lowa.

Finally, the annual seasonality variables reflect cyclical patterns
affecting drought conditions. While these are not as influential as the
monthly seasonal variables, they help adjust the model to represent
recurring dry seasons over a certain number of years.

The results obtained through feature permutation (Figure 7)
reinforce the findings from the SHAP values. The importance of the
variables according to the permutation shows clear support for the
key variables identified in the SHAP analysis. For example, the
variables “TMAX_mean9,” “PPT_lagl,” and “PPT_mean6” stand
out in both analyses as the most relevant for predicting USDM
categories, with importance values of 0.058, 0.027, and 0.025,
respectively.  This that the average
temperature over the past 9 months and precipitation in the

indicates maximum
preceding months are indeed crucial determinants for drought
prediction models. Additionally, variables related to lagged
temperature and precipitation, such as “PPT_lag2” and “TMAX_
lag2,” also appear relevant in both methods, confirming the
influence of prior conditions on current drought levels.

Regarding the local explanations generated by LIME in Figure 8,
it is observed that, in many cases, the most relevant variables
identified by SHAP and feature permutation also emerge as key
determinants in the explanations for specific samples. However,
some variations in the LIME results are due to the nature of the
isolated samples and the model’s ability to adapt to particular local
conditions. For example, while “TMAX_mean9” and “PPT_lagl”
are consistent variables in the global explanations, in specific
samples, their importance levels may change due to the unique
characteristics of each case, such as seasonal fluctuations or
anomalous climatic events. This behavior underscores the
flexibility of the model and the need to consider both global
trends and local effects when interpreting predictions.
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In addition to highlighting the importance of the model’s most
relevant variables, this study helps clarify that drought does not
solely depend on current precipitation and temperature conditions.
For example, it is observed that high precipitation during the studied
month does not necessarily lead to reduced drought severity. This
indicates that other factors are involved; despite high precipitation in
the current month, conditions such as elevated temperatures and
precipitation levels from previous months contribute to increased
drought severity.

4.2 Comparing historical and projected
droughts for water management

A valuable analysis is the comparison of future trends with
historical data. Figure 11 illustrates the drought intensity,
frequency, and duration changes. The historical data from
2002 to 2022 are compared with future projections from
2030 to 2050 under the SSP5 scenario. While both scenarios
were considered, this section focuses primarily on SSP5-8.5,
given its representation of the most extreme pathway in terms
emissions, land-use and

These
percentages, where higher percentages indicate unfavorable

of greenhouse gas intensity,

environmental pressure. results are presented as
changes in drought conditions, specifically, more intense,
longer, and more frequent droughts. This analysis aligns with
the results section, explaining the methodology for estimating each
studied variable.

An increase in the average intensity over the analyzed decades is
expected. The most impacted regions are projected to be primarily in

the northeast and some northwest areas. However, in certain central
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TABLE 3 Top 10 driest HUC8 and Months.

Top 10 driest HUC_8

10.3389/fenvs.2025.1564670

Top 10 driest months

USDM Avg USDM Max Month USDM Avg
10170203 1.18 391 2034 9 2.47
10170204 0.94 3.96 2034 10 2.33
10230002 0.91 3.81 2034 11 2.52
07020009 0.80 3.71 2034 12 2.51
10240001 0.78 3.52 2035 9 2.31
CNRM-ESM2-1
10230004 0.76 3.33 2035 10 2.24
10230001 0.75 3.32 2036 9 2.71
10230003 0.72 3.77 2036 10 2.64
10240004 0.69 3.69 2037 9 2.27
07080203 0.66 3.54 2048 9 2.66
10170203 1.03 3.80 2030 12 3.04
10230002 0.93 3.81 2031 1 3.07
10230001 0.91 391 2031 3 2.78
10230004 0.90 3.81 2044 9 2.73
10170204 0.90 3.80 2045 9 2.75
BCC-CSM2-MR
10240001 0.86 4.01 2046 9 2.97
10230006 0.82 3.92 2047 8 3.00
10230003 0.78 3.77 2047 9 3.50
10240004 0.77 4.03 2047 10 3.14
10240002 0.72 3.72 2048 8 3.05
10170203 1.16 3.83 2031 8 2.65
10170204 0.97 3.81 2031 9 3.35
10230002 0.84 3.76 2031 10 3.39
10230001 0.81 3.94 2031 11 2.05
10230004 0.79 3.78 2040 9 3.39
MPI-ESM1-2-HR
10230006 0.78 3.94 2043 8 291
07020009 0.75 3.59 2043 9 3.39
10240001 0.75 3.98 2043 10 2.96
10230003 0.74 3.63 2043 11 2.47
10240002 0.65 3.79 2049 9 2.12

and southern regions, no significant increase is observed, and some
areas may even experience a reduction in intensity. This analysis was
conducted by averaging the data across the evaluated decades, which
means that extreme values are smoothed out, as years with extreme
droughts are averaged with non-dry years. Historically, the average
drought intensity recorded was around 1.08, indicating moderate
drought conditions. In contrast, the future projections for the
CNRM-ESM2-1, BCC-CSM2-MR, and MPI-ESM1-2-HR show
average intensities of 1.6, 1.8, and 1.6, respectively. This suggests
that, on average, more severe droughts are expected in the future,
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with some watersheds experiencing increases in intensity that are
more than double the current values, exceeding 200% and even
reaching 250% increase.

HUCSs in the northeast and northwest and some basins in the
state’s southeast (West Nishnabotna) are expected to experience more
prolonged droughts. In contrast, more central areas of the state appear
less affected by increased drought duration. According to historical
records, severe droughts lasted between 0.5 and 1 month annually, on
average, over the two-decade period. A 750% increase indicates that in
watersheds where these droughts historically lasted an average of
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FIGURE 11

Intensity Duration Frequency (IDF) analysis for drought projections. Illustrates the IDF percentage change in the USDM category, comparing
historical records from 2002 to 2022 with future projections for 2030 to 2050 under the SSP5 scenario (left panel) and SSP1 scenario (right panel). The
assessment focuses on droughts classified as severe, extreme, or exceptional (USDM >2). Higher positive values indicate a significant increase, suggesting
more intense, frequent, or prolonged drought conditions. Conversely, negative values represent a reduction in these conditions.

0.2 months, they are projected to last 1.6 months in the future. Severe
droughts lasting more than a month on average are expected in the
future. On the other hand, HUCS8s with negative percent change
values represent a reduction in the duration of these events.

There is a notable increase in the east and northwest regions
regarding the frequency of severe droughts. Historically, extreme
droughts were expected once or twice per decade, but in the future,
multiple drought events are anticipated within a single decade,
according to the projections. The future projections for the
CNRM-ESM2-1, BCC-CSM2-MR, and MPI-ESM1-2-HR show
the average rate of occurrence over 20 years of 0.39, 0.47, and
0.35, respectively. This translates to an average of 8 to 9 severe
droughts during the analyzed period, representing a significant
increase. Consequently, some basins exhibit increases of up to
900%, indicating that if there was previously one severe drought
in 20 years, there would be 9 in the same timeframe in the future.

The findings of this study are consistent with previous research
indicating that climate change will likely increase the frequency and
severity of drought events in Iowa. Previous studies suggest that the
Midwest, including Iowa, will face more extreme weather patterns,
with fewer but more intense rainfall events, exacerbating the risk of
prolonged droughts (Xu et al., 2016). Studies of historical climate
patterns from 1981 to 2015 already show a trend toward greater
variability in precipitation, with droughts becoming more common
during critical periods for crops such as corn and soybeans (Igbal
et al, 2018; Lobell et al., 2014). This research reinforces the
expectation that, in the future for the period from 2030 to 2050,
droughts will occur more frequently and for longer durations,
particularly during key stages of crop development. Consistent
with previous thinking, droughts will put Iowa agriculture at
even greater risk (Nowatzke and Arbuckle, 2024).
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Furthermore, the relationship between drought and agricultural
productivity has become increasingly complex over time. While
Towa agricultural systems have historically adapted to variable
moisture conditions, recent data suggest that the sensitivity of
crops, particularly corn and soybeans, to drought stress has
et al, 2014).
moisture availability can lead to significant yield losses, and

intensified (Lobell Even small reductions in
prolonged periods of drought threaten the overall resilience of
Iowa’s agricultural sector. Furthermore, the combination of
drought and declining soil health creates a dangerous feedback
loop where soil desiccation reduces crop yields and contributes to
environmental degradation, including increased greenhouse gas
emissions (Mikhailova et al., 2024; Vahedifard et al., 2024).

In conclusion, increasing frequency, duration, and severity of
droughts present critical challenges for Iowa agriculture, especially
in a changing climate. Analytical tools and modeling approaches,
such as those presented in this study, are essential to developing
effective water management and agricultural planning strategies.
These tools help farmers and policymakers better understand future
risks and take steps to mitigate drought impacts. Iowa can better
protect its agricultural productivity in the face of increasing climate
uncertainty by adopting more adaptive strategies, such as drought-
tolerant crop varieties, improved irrigation techniques, and
sustainable soil management practices.

4.3 Comparative analysis of SSP1 and
SSP5 scenarios

The spatial analysis of future drought conditions under
SSP1 and SSP5 scenarios highlights regional vulnerabilities and
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the potential magnitude of climate-driven hydrological stress.
Figure 10 presents the spatial patterns of drought intensity,
duration, and frequency across Iowa under two contrasting
SSP1
emissions) and SSP5 (fossil-fueled development, high emissions),
based on three CMIP6 models: CNRM-ESM2-1, BCC-CSM2-MR,
and MPI-ESM1-2-HR. Across all models and both scenarios, the
northwestern region of the state consistently emerges as the most

future climate scenarios, (sustainability-oriented, low

vulnerable to drought, particularly in terms of intensity and
frequency. While the spatial of
characteristics remains relatively consistent between SSP1 and

distribution drought
SSP5, the severity is greater under SSP5. This scenario represents
an upper-bound projection associated with higher radiative forcing,
elevated temperatures, and increased evapotranspiration demand,
which collectively intensify drought conditions (Meinshausen et al,,
20205 Song and Chung, 2024). In contrast, SSP1 reflects a lower-
bound trajectory characterized by mitigated warming and more
sustainable land-use practices, resulting in comparatively less severe
drought impacts. Despite inter-model variability, the agreement in
spatial trends across scenarios strengthens confidence in the
identification of northwest Iowa as a drought-prone region, with
SSP1 and SSP5 effectively delineating a plausible range of future
drought risk under divergent emission pathways (Lindenlaub
et al.,, 2025).

Further insights are provided by Figure 11, which illustrates the
percentage change in drought metrics relative to historical
conditions. These maps reveal that even under the SSP5 and
SSP1 scenarios, drought conditions are expected to worsen
significantly in many areas of the state. Duration and frequency
show particularly strong increases in northern and northeastern
Towa, with projected changes exceeding several hundred percent in
some cases. Notably, while central and southeastern Iowa may
experience minor changes or localized reductions in drought
intensity, the overall statewide trend points toward more
frequent, longer-lasting droughts in the future. These findings
underscore that even under a low-emission trajectory, adaptation
efforts will be essential for managing drought-related stress in
vulnerable regions.

Although SSP5 generally projects more severe drought
conditions due to higher greenhouse gas emissions and
stronger warming, certain regions in Iowa show higher drought
intensity or frequency under SSP1 in some models. This behavior
can be attributed to the complex interplay between precipitation
patterns and temperature-induced evapotranspiration at the
regional scale (Song and Chung, 2024). For example, under
SSP1, while overall warming is less intense, certain areas may
experience more pronounced reductions in summer precipitation,
leading to localized soil moisture deficits and enhanced drought
signals. Additionally, SSP1 scenarios often assume land-use
changes and afforestation efforts that, while globally beneficial,
may locally increase evapotranspiration rates and reduce surface
runoff, particularly in agriculturally intensive areas. Model
variability also plays a role; some models may simulate
feedbacks
interactions) differently under SSP1, leading to unexpected

circulation patterns or (e.g., vegetation-climate
hotspots of drought vulnerability. Thus, higher drought metrics
in some regions under SSP1 do not contradict the broader trend of

increasing risk under SSP5, but rather reflect the nuanced, non-
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linear responses of the hydroclimate system to different
mitigation pathways.

4.4 Regional vulnerabilities and
environmental implications

The analysis provides insights into future drought conditions to
develop a deeper understanding of the vulnerabilities associated with
the hydrological regime in Iowa’s agricultural landscapes. These
conditions result from multiple interrelated factors, including a
decrease in annual precipitation and intensive land-use practices
characterized by agricultural production systems that reduce both
soil water retention capacity and overall ecosystem resilience. In
particular, the lack of vegetative cover and the degradation of soil
organic matter further diminish the land’s ability to absorb and
retain moisture. These dynamics are clearly reflected in the projected
spatial patterns of increased drought frequency and duration.

The vulnerability of northern Iowa to droughts can be attributed
to an interplay of climatic, geographic, and anthropogenic factors
(USGCRP, 2023). Climatically, the region lies within a transitional
zone between humid continental and semi-arid regimes, making it
particularly sensitive to large-scale atmospheric oscillations such as
ENSO (El Nifio-Southern Oscillation), which drive significant
2024).
Geographically, the soils, primarily loess and glacial till, are

interannual variability in precipitation (Baule et al,
highly fertile but structurally porous and prone to compaction,
which reduces their effective water retention capacity under
intensive land use (Peters et al., 2025). From an anthropogenic
perspective, the landscape is dominated by monocultures of corn
and soybeans, often supported by extensive subsurface tile drainage
systems that disrupt natural hydrological cycles by accelerating
runoff and limiting infiltration (Kalcic et al., 2018). Additionally,
the scarcity of crop rotations and regenerative practices has led to
declining soil organic matter levels, further diminishing resilience to
hydrological stress (Henzel et al., 2025; Holman et al., 2021). These
structural and systemic conditions create a landscape with high
exposure and low adaptive capacity to prolonged droughts.
Results from the drought projections and IDF analysis suggest
that northern Iowa is particularly vulnerable to future drought
events. From a land management perspective, these findings
provide Northern
watersheds, especially those with extensive corn and soybean

insights for guiding adaptation efforts.
cover and limited conservation practices, may benefit from more
robust drought mitigation strategies, such as the implementation of
cover crops, conservation tillage, and riparian corridor restoration.
These practices can help strengthen resilience by enhancing
infiltration, reducing runoff, and maintaining ecological function
during dry periods. The need for such adaptive strategies has been
highlighted by Bravo and Sarker (2022), who stress the role of
nature-based solutions in mitigating agricultural drought risks
under future climate scenarios.

Moreover, the interactive Future Drought Viewer developed in
this
stakeholders to explore projected drought conditions at the

study supports watershed-scale planning by allowing
HUCS level. This functionality enables local planners, producers,

and decision-makers to make informed, geographically specific
decisions regarding resource allocation and drought preparedness.
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TABLE 4 Deep learning model comparison.

10.3389/fenvs.2025.1564670

Source Model Datasets Drought index Performance metrics
Abbes et al. (2023) LSTM (AVHRR) Instrument on-board the Landsat SPEI LSTM: R? = 0.92, RMSE = 0.03, Bias = 0.00512, MAPE =
series 7 9.246
Lees et al. (2022) LSTM CHIRPS, ERA5, NASA SRTM, MODIS Vegetation Condition LSTM: RMSE = 6.46, R* = 0.95
Index (VCI)
Prodhan et al. DENN GLDAS-02), MODIS, CHIRPS Soil Moisture Deficit Index R* = 52 to 0.94, RMSE = 0.486, MAE = 0.359, MSE =
(2021) (SMDI) 0.237
Brust et al. (2021) LSTM SMAP (Soil Moisture), gridMET. USDM R*=0.87
MSE = 0.15
Current Research LSTM PRISM - CMIP6 USDM R* =091
RMSE = 0.19, MSE = 0.038

Long-term drought projections play a crucial role in guiding
adaptation strategies at local and regional scales, as well as informing
policies related to sustainable agriculture, water allocation, and habitat
conservation amid changing climate conditions. This research
advances watershed planning by integrating hydrologic modeling
to identify high-risk areas and quantify anticipated shifts in
drought intensity, frequency, and duration. Consistent with Singhal
et al. (2024), the study underscores the importance of strategically
locating hydrologic monitoring stations using topographic and
hydrological data to improve early detection and management of
extreme events. Additionally, the findings align with Gao et al. (2022),
who demonstrate how water infrastructure, such as constructed and
planned dams, can substantially impact the environmental integrity
and ecological resilience of river basins. These insights are important
for regions like northwest Iowa, which are already experiencing
heightened hydrologic variability driven by climate change.

4.5 Conrast with other models

The application of LSTM models for drought projections has
garnered increasing attention in recent research. These models have
proven capable of capturing the complex temporal dependencies
within climate data, leading to notable improvements in prediction
accuracy compared to traditional methods. This chapter focuses on
assessing the performance of LSTM models in drought prediction to
compare existing studies with the results presented in this research.

LSTM existing models have been successfully employed to predict
drought indices derived from various meteorological data, such as
precipitation and temperature. For instance (Xu et al, 2022),
developed a hybrid ARIMA-LSTM model, achieving a Nash-Sutcliffe
Efficiency (NSE) value of up to 0.895 over a 24-month time scale,
indicating strong alignment between forecasted and observed drought
conditions. Another study (Dikshit et al., 2021) used a stacked LSTM
model to extend the forecast horizon, demonstrating that the model
outperformed traditional drought prediction techniques by delivering
lower RMSE and MAE scores. Similarly (Zhang et al., 2023), applied a
convolutional LSTM model and found high correlation coefficients
between forecasted results and established drought indices.

Moreover, hybrid approaches integrating LSTM with other
methodologies have improved performance. For example (Ding
et al,, 2022), proposed a CEEMD-LSTM hybrid model, stabilizing
time series data and enhancing accuracy across multiple time scales.
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Such hybrid models consistently outperformed standalone LSTM
models, particularly in long-term drought projections, by leveraging
the strengths of different modeling approaches.

In this context, our work stands out by applying an LSTM model to
project drought conditions in Iowa, focusing on the USDM dataset. The
results reflect high accuracy and reliability, with an RMSE of 0.24 and an
R? score of 0.91. This underscores the model’s ability to capture complex
patterns in climate data and provide precise future projections. Table 4
presents results from various LSTM models reported in the manuscript
(Mérquez-Grajales et al., 2024) and additional studies to compare our
research with previous works.

To support a broader understanding of how LSTM models have
been applied to drought-related forecasting tasks, we include results
from previous studies as reference points, Table 2 4. These models
serve as a basis for general interpretation and comparison with our
own results. However, differences in data configurations (such as
variable selection, temporal resolution, and input window size) limit
their ability to serve as direct performance standards. Instead, they
should be understood as contextual benchmarks that reflect the
broader range of modeling strategies and outcomes in studies using
neural networks to model climate time series and project drought
conditions or related indices.

This research validates the use of LSTM models for drought
projections. It paves the way for the development of interactive tools
that facilitate drought condition visualization and management at
the community level, thus enhancing decision-making for water
resource management in a changing climate.

5 Conclusion

This study explored the future drought conditions in the
HUCS regions using an advanced LSTM machine-learning model.
The model was developed using PPT and Tmax data from 2012 to
2019, and predictions were generated between 2030 and 2050. The
LSTM model demonstrates good performance in predicting drought
conditions. The model validation results show an MSE of 0.038, an R?
of 0.91, and a Pearson correlation coefficient of 0.96, suggesting that
the model predictions are highly reliable.

Intensity, duration, and frequency analyses were performed. It is
evident that drought conditions will increase in the coming decades
under the conditions of the SSP5 and SSP1 climate scenarios and
according to three different evaluated climate models (CNRM-
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ESM2-1, BCC-CSM2-MR, and MPI-ESM1-2-HR). The most
affected region in Iowa by an increase in the duration of
droughts will be the northern zone. An increase in the frequency
of these events will affect the northeast and northwest regions
specifically. Severe, extreme, and exceptionally dry droughts are
expected to occur in the coming decades, averaging a duration of
1.2 months and a frequency of 8-9 times every 20 years.

The model results were integrated into the Future Drought
Viewer app, which is presented as a tool to visualize, study, and
analyze future drought conditions. The interactive interface allows
users to select specific years and months to view detailed drought
conditions. This functionality is essential for planning and decision-
making, providing critical data to water resource managers and
conservation policymakers.

The insights provided by Future Drought Viewer highlight the
need for proactive water resource management. Understanding
future drought conditions can guide the development of more
resilient water supply systems and information policies to reduce
vulnerability to water scarcity. The application supports strategic
planning by offering projections that can be integrated into long-
term water management plans.

While the model provides valuable predictions, the data is
subject to specific future climate models and scenarios. Seasonal
variations and regional differences in weather patterns can affect the
accuracy of drought projections. Continuously refining the model
and incorporating the most accurate climate data is critical to
improving the reliability of future predictions.

Future research should focus on extending the model to include
more comprehensive datasets and exploring other machine-learning
techniques that could further improve prediction capabilities. In
addition, user feedback and field validation studies will be essential
to optimize the application and ensure its effectiveness in real-
world scenarios.
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