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The wellbeing eco-efficiency (WEE) is a core indicator for assessing the quality of
regional ecological environment and the wellbeing of people’s livelihood.
Clarifying its spatial and temporal dynamic evolution and network structure
characteristics is crucial for promoting the ecological protection and high-
quality development in the entire Yellow River Basin (YRB). Based on the panel
data of 99 cities in the YRB from 2010 to 2022, the WEE is measured by
introducing the ecological wellbeing into the evaluation system of eco-
efficiency. The spatial-temporal dynamics, disparities, and their origins, as well
as the structural attributes of the network, are investigated. The results showed
that: First, The WEE in the YRB, upper, middle, and lower reaches have been
improved, showing the stage characteristics of “steady growth-fluctuation
decline-rapid growth,” and technological progress is the main driving force for
efficiency growth. Second, the absolute difference of WEE in the whole and
middle reaches shows an expanding trend, and the upper and lower reaches
show a decreasing trend. The inter-regional differences and hypervariable density
are the main sources of spatial differences. Third, the YRB has broken the
geographical location restrictions and formed a multi-threaded complex
network form. During the sample investigation period, the network scale and
network agglomeration have been continuously enhanced, and the small-world
network correlation effect is significant. Forth, regarding the small group network
characteristics: the upper reaches’ WEE has a “wheeled” structure centered on
Longnan; the middle reaches’WEE forms a “chain” structure with Yulin, Xi’an, and
Ankang as cores; and the lower reaches’ WEE exhibits a “dual-core multi-center
radial” structure with Heze and Zhengzhou at its core, featuring significant two-
way interactions.
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1 Introduction

Against the backdrop of rapid global economic development, issues such as excessive
resource consumption, escalating environmental pollution, and ecosystem degradation
have become increasingly severe, posing significant challenges to sustainable development.
Striking a balance between economic growth and ecological preservation has emerged as a
central topic of concern for governments and academia worldwide. Recently, ecological
efficiency, an indicator system that comprehensively reflects the state of economic
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development and ecological environment, has garnered widespread
attention. It provides theoretical and practical foundations for
achieving high-quality development by considering multiple
dimensions including environmental, economic, ecological, and
social benefits of energy utilization (Peng et al., 2020; Yu et al.,
2021). Building on this, sustainable development theory emphasizes
balanced development across the three pillars of economy, society,
and environment (Zhao et al., 2025). The driving forces-pressure-
state-impact-response (DPSIR) analytical framework highlights the
impacts of human activities, environmental pressures, changes in
ecosystem states, and their consequences on social wellbeing (Yi
et al., 2025). Ecological footprint and carbon footprint theories
reveal the relationship with people’s livelihood and wellbeing by
measuring human resource consumption and carbon emissions
(Jiang et al., 2025). Social-ecological resilience theory emphasizes
the reciprocal interactions between society and ecosystems, while
inclusive green development theory advocates for the parallel
progress of economy, environment, and social equity (Wang and
Ge, 2024). Therefore, based on these theoretical foundations,
“wellbeing” is introduced as an important extension of ecological
efficiency, leading to the concept of wellbeing ecological efficiency
(WEE). WEE strikes a balance between human wellbeing and
ecological preservation, serving as a crucial indicator that
comprehensively assesses the quality of socio-economic
development, the benefits of ecological environmental protection,
and the enhancement of people’s wellbeing.

In the process of sustained economic growth since China’s
reform and opening up, although the traditional quantitative and
extensive development model has created the “Oriental Miracle” of
world economic growth (Chen and Hou, 2024), it has also caused a
sequence of issues like excessive consumption of resources,
substantial emissions of greenhouse gases and deterioration of
the ecological environment. This development model has
aggravated the contradiction between economy, environment and
people‘s wellbeing to a certain extent (Wang and Yang, 2024; Li
et al., 2023; Lee et al., 2023). Especially under the influence of air
pollution, land degradation and ecological space shrinkage, the
national health, social culture and education level have been
significantly impacted (Liu et al., 2021; Pan, 2023). According to
the “2022 China Ecological Environment Bulletin,” about 37.2% of
cities are plagued by air pollution, and the health of water ecology
and marine ecology in key areas is not optimistic. In this context, the
Chinese government has proposed a series of development strategies
at the policy level, such as “promoting green development,”
“improving people’s livelihood and wellbeing,” and “achieving
harmonious coexistence between man and nature.” As an
important indicator to reflect the level of ecological civilization
construction and meet the needs of people’s better life, WEE is
an inevitable choice to promote high-quality development.

As an important ecological security barrier, the birthplace of
Chinese civilization and an important economic zone in China, the
Yellow River Basin (YRB) has significant ecological functions,
cultural values and economic significance (Feng et al., 2023; Li
et al., 2024). However, for a long time, the heavy industry structure
dominated by energy and chemical industry has caused serious
damage to the ecological environment of the basin, resulting in the
wide distribution and serious degree of ecological sensitive areas and
fragile areas. Combined with the frequent occurrence of extreme

climate events in recent years, the ecosystem of the YRB is facing
severe challenges (Zhao et al., 2023). How to enhance eco-efficiency
while safeguarding and promoting residents’ ecological wellbeing
has become a critical issue that urgently needs to be addressed.
However, the urban development patterns in the YRB are diverse,
and there are significant differences in ecological resource
endowments among regions. Traditional assessments of eco-
efficiency struggle to comprehensively reflect the coordinated
development of regional ecology and social wellbeing. Therefore,
this paper innovatively introduces the concept of WEE, aiming to
more comprehensively measure the environmental impact and
contributions to residents’ wellbeing during the economic
development process of cities in the YRB, thereby addressing the
shortcomings of traditional evaluation systems. Simultaneously, the
development strategy of urban agglomerations has gradually
transformed the YRB from a “point-like” model of economic
development of a single city to a “plane-like” and “mesh-like”
model (Hao et al., 2023). However, the research on high-quality
development based on the principle of geographical proximity is
often limited to the limitations of administrative jurisdictions, and
fails to fully reveal that the regional problems of the YRB are actually
rooted in the needs of the overall governance of the entire basin
(Chen et al., 2021). There exist complex economic, social, and
ecological connections among cities in the YRB, forming a tightly
interwoven network structure. By employing social network analysis
(SNA), we can clearly reveal the spatial network characteristics of
WEE in the YRB, such as which cities occupy core positions, which
cities play critical connecting roles. This helps to deeply understand
the intrinsic mechanisms of ecological and social wellbeing
interactions among cities within the basin, providing strong
support for formulating regional coordinated development
strategies.

Given this context, this paper takes 99 cities in the YRB as the
research subjects, integrates multidimensional variables related to
people’s livelihood and wellbeing into the assessment framework of
eco-efficiency, and quantitatively evaluates the level of WEE in each
city. On this basis, the dynamic evolution and spatial differences of
the WEE are analyzed through kernel density estimation and the
Gini coefficient. Furthermore, the SNA method is employed to
dynamically identify the characteristics of the spatial correlation
network structure and the group clustering features of WEE. The
possible marginal contributions are: (1) This paper, adopting a lens
of strong sustainability and high-quality development, embarks on
an analysis from the tripartite dimensions of “economic prosperity,
ecological gains, and social welfare,” amalgamating a spectrum of
variables that encapsulate the ethos of ecological civilization and the
populace’s yearning for an enhanced standard of living (energy
economic growth, ecological environment damage and construction
index, and people’s livelihood and wellbeing) into the assessment
framework of eco-efficiency, enriching and expanding the new
perspective of eco-efficiency research. It recalculates the WEE of
cities in the YRB, promoting the evolution of eco-efficiency from a
“GDP-oriented” approach to one focused on “people’s livelihood
and wellbeing.” The paper also delineates the evolutionary
characteristics of this metric across both temporal and spatial
dimensions, providing a new paradigm for the study of eco-
efficiency. (2) Using cities as research samples, the SNA is
employed to delineate the spatial correlation network structure
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characteristics, group clustering features, and evolutionary trends of
WEE, thereby enriching the connotations of spatial features and
analytical methods of eco-efficiency. This paper, based on the three-
dimensional portrayal of “relational data,” provides a detailed
depiction of the complex, multi-threaded overall network and
group network structure characteristics of WEE. It accurately
identifies the roles that each city plays within the network, laying
a solid foundation for planning the collaborative enhancement
path of WEE.

2 Literature review

The term “eco-efficiency”was initially coined by Schaltegger and
Stum in 1990, defining it as the quotient of economic expansion
against the escalation of environmental strain. Subsequently, the
World Business Council for Sustainable Development (WBCSD) in
1995 further elaborated and honed this concept, asserting that eco-
efficiency is about satisfying the essential needs for human survival
and elevating life quality through the provision of products or
services that offer competitive pricing benefits. The objective is to
mitigate the process’s impact on resource intensity and ecological
health to a level within the Earth’s regenerative capacity. In essence,
eco-efficiency strives for the optimization of economic prosperity
and environmental conservation through the most judicious use of
resources and the least environmental degradation, fully reflecting
the concept of strong sustainable development (Du et al., 2023;
Wang et al., 2023a). Recently, as issues of ecological preservation and
people’s wellbeing have become increasingly urgent, research on
ecological efficiency has gradually expanded from a mere focus on
the relationship between economy and environment to broader
domains. Welfare economics is concerned with maximizing the
overall wellbeing of residents under limited resources, and ecological
efficiency provides an effective framework for assessing whether this
goal can be achieved while safeguarding the environment (Zhang
et al., 2024). Enhancing ecological efficiency not only helps reduce
environmental pollution but also directly improves residents’
wellbeing levels by enhancing living conditions (Zhang et al.,
2021). Therefore, the evaluation of ecological efficiency should
transcend traditional indicators of energy use and economic
growth, and comprehensively consider environmental impacts,
social welfare, and people’s livelihood and wellbeing, thereby
providing a more holistic reflection of regional development
quality and the harmony between ecology and society.

As research continues to deepen, the evaluation system of eco-
efficiency has evolved from a single economic output indicator to a
multidimensional indicator framework. Early studies
predominantly used Gross Domestic Product (GDP) as the sole
output indicator, but this approach overlooked the environmental
pollution and ecological degradation issues arising from energy use
(Zhou et al., 2019). Consequently, scholars have gradually
incorporated ecological factors and pollution as undesirable
outputs into the evaluation system (Yang and Li, 2020; Ren et al.,
2024; Tian and Mu, 2024). However, current eco-efficiency
evaluations still primarily focus on the relationship between the
economy and the environment, with relatively insufficient attention
paid to people’s wellbeing (Liu et al., 2020). Therefore, WEE builds
upon traditional eco-efficiency by further integrating dimensions of

social wellbeing and people’s livelihood, and closely aligns with the
socio-economic conditions of the YRB, ultimately constructing a
more comprehensive evaluation framework.

The assessment techniques for eco-efficiency predominantly
consist of stochastic frontier analysis (SFA) and data
envelopment analysis (DEA), with DEA being the predominant
approach (Li and Long, 2021). The early DEA-CCR model assigned
specific weights to different inputs and subsequently integrated
them. Nonetheless, given the constraints of conventional DEA
models when it comes to managing pollutants and other
unfavorable outputs, researchers developed super-efficiency DEA
models (enabling further comparison and ranking of efficient
decision-making units), SBM models, Super-SBM models
(effectively addressing the issue of slack variables), and EBM
models (accommodating both radial and non-radial features)
(Zhang and Chen, 2022; Pan et al., 2023; Li and Yang, 2023).
There has been additional investigation into the selection and
treatment of indices for undesired outputs, enhancing the
precision of measurement outcomes and their alignment with
actual production processes. Among them, the Super-SBM model
is extensively utilized for eco-efficiency measurement as it accurately
handles slack variables, improves result stability and reliability, and
flexibly processes non-radial data without fixed input-output ratios
(Wu et al., 2022).

From the perspective of the research content of eco-efficiency, it
mainly focuses on the following aspects: First, it involves
investigating the dynamic evolution of eco-efficiency distribution.
Wen et al. (2022) used the Super-SBM model and the spatial
autocorrelation model to analyze the eco-efficiency of cultivated
land use in the Dongting Lake Plain in time and space. The study
found that the eco-efficiency showed the characteristics of “up-
down-up” in time, and there was a spatial agglomeration
phenomenon in spatial eco-efficiency. Lv et al. (2020) used the
three-stage DEA model, local autocorrelation and spatial lag
coefficient regression model to empirically analyse the spatial and
temporal effects of China’s tourism industry eco-efficiency and
found that the provincial tourism eco-efficiency showed
convergent agglomeration characteristics. The second is the study
of spatial differences in eco-efficiency. Sun et al. (2023) used the
Super-SBM model and kernel density function to analyze the eco-
efficiency of China’s provinces in time and space, and deeply studied
the differences in eco-efficiency between China’s provinces through
Gini coefficient, σ-convergence and Markov transition matrix. Wu
et al. (2022) employed the Super-SBM model to assess the eco-
efficiency of Chinese 244 cities from 2005 to 2017 and utilized a
dynamic Durbin model to empirically test the impact of industrial
agglomeration on eco-efficiency and regional heterogeneity. Thirdly,
factors influencing eco-efficiency include economic development
level, industrial structure, technological innovation, environmental
regulation, artificial intelligence, and resource endowment.
Economic development level significantly promotes eco-
efficiency. With the increase in per capita GDP and labor
productivity, regions are more likely to adopt advanced
technologies, thereby enhancing resource utilization efficiency
(Guo et al., 2022). A high proportion of heavy industry reduces
eco-efficiency, while high-tech and circular economy sectors can
improve it (Xu et al., 2022). Technological innovation significantly
enhances eco-efficiency by optimizing production processes and
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reducing resource consumption and pollution emissions (Zhang
et al., 2021). Strict environmental regulations compel enterprises to
increase environmental protection investments, adopt clean
production technologies and processes, and reduce pollutant
emissions, thereby driving industrial transformation and
upgrading (Cui et al., 2022). Artificial intelligence improves eco-
efficiency through intelligent monitoring and data analysis, enabling
precision agriculture, energy management, and supply chain
optimization. It also facilitates real-time monitoring of air and
water pollution and predicts ecological risks, aiding in pollution
control and ecological restoration (Ren et al., 2025). Abundant
natural resource endowments typically provide a foundation for
economic development, but over-reliance on resource exploitation
may lead to resource waste and environmental degradation,
resulting in the resource curse (Gong, 2023).

Researchers have undertaken studies on China’s eco-efficiency at
multiple levels, predominantly focusing on the national, provincial, or
broader regional scales (sub-zones, sub-regions and metropolitan
areas). The examination of urban eco-efficiency, as a more granular
spatial unit, is understudied, particularly regarding its dynamic
evolution and the factors driving such changes. Cities constitute the
fundamental spatial units and the building blocks of provincial
development. Their organizational actions and functions exhibit
distinctive traits that neither provinces nor larger geographical
entities can replicate, revealing a set of unique behavioral dynamics
and operational models (Li, 2022). Because of factors such as economic
growth, urban size, resource allocation, and geographic positioning,
there is a notable spatial disparity and a tendency toward polarization in
the levels of eco-efficiency across various regions (Liu et al., 2022; Quito
et al., 2023). In the context of the new development paradigm where
domestic circulation is predominant, the inter-regional movement of
labor, capital, and energy has become increasingly frequent.
Consequently, the ecological and environmental issues that arise are
transcending geographical boundaries, manifesting as a complex and
multifaceted spatial correlation network. The contradiction between
ecological conservation and the wellbeing of people’s livelihood is
becoming increasingly apparent among different regions. (Xu et al.,
2022). Nevertheless, most of the current research employs exploratory
spatial data analysis (ESDA) along with conventional spatial
econometric techniques to investigate and assess the spatial
distribution patterns and regional disparities of eco-efficiency. The
spatial clustering characteristics of eco-efficiency revealed by ESDA
consider only the geographical aspects of “contiguity” or the
“neighborhood” effect, and it is impossible to further reveal the
spatial correlation characteristics of urban eco-efficiency. Thus, we
use the SNA method to describe the complex and multi-layered
structure characteristics of WEE in the YRB, using “relationship
data,” and precisely locating the role of individual cities in the network.

3 Methods

3.1 Research methods

3.1.1 Super-SBM model and malmquist-
luenberger index

We employ the Super-SBM model, which is based on input-
output categories, to evaluate the WEE. This model represents a

non-radial, non-angular measurement approach within the DEA
framework, capable of comprehensively addressing issues related to
the slackness in inputs and outputs. The Super-SBM model builds
upon this by further differentiating among decision-making units
that have achieved efficiency, thereby addressing the limitations
inherent in the SBM model. The formula is:

minWEE �
1 − 1

n( )∑n
i�1

x−
xik

( )
1 + 1

o1+o2 ∑o1
s�1

yds
yd
sk

( ) +∑o2
p�1

yvp
yv
pk

( )[ ] (1)

s.t.

x−
i ≥ ∑m

j�1,≠ k

xijλj( ) i � 1,/n
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s ≤ ∑m
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yd
ijλj( ) s � 1,/o1

yd
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j�1,≠ k

yd
ijλj( ) s � 1,/o1

λj > 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Where, m is the number of decision making units (DMU), and
each DMU includes n inputs (xik, i � 1,/, n), o1 expected outputs
(yd

sk, s � 1,/o1), o2 unexpected outputs (yv
pk, p � 1,/, o2).

x−, yd
s , y

v
p represent the slack values of inputs, expected outputs

and unexpected outputs, respectively. If WEE> 1, it means that the
assessment unit is efficient; whereas 0<WEE< 1, suggests that there
is a deficiency in efficiency within the assessment unit.

To better examine the dynamic changes of efficiency, the
Malmquist Luenberger (ML) index, which includes a directional
distance function to explain undesirable output, has been proposed.
From the periods t to t+1, the corresponding formula is
presented below:

MLt+1
t � 1 + Dt

c

�→
xt+1, yt+1, zt+1( )

1 + Dt
c

�→
xt, yt, zt( ) ×

1 +Dt+1
c

���→
xt+1, yt+1, zt+1( )

1 +Dt+1
c

���→
xt, yt, zt( )

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦
1
2

(3)
Where, xt, yt and zt represent inputs, desirable outputs, and

undesirable outputs in period t, respectively; Dt
c

�→
denotes the

directional distance function under constant returns to scale
(CRS). The ML index is dissected into the efficiency change
index (EC) and the technological change index (TC). The
pertinent formula is delineated below:

MLt+1
t � ECt+1

t × TCt+1
t (4)

ECt+1
t � 1 +Dt+1

c

���→
xt+1, yt+1, zt+1( )

1 + Dt
c

�→
xt, yt, zt( ) (5)

TCt+1
t � 1 + Dt

c

�→
xt, yt, zt( )

1 +Dt+1
c

���→
xt, yt, zt( ) ×

1 + Dt
c

�→
xt+1, yt+1, zt+1( )

1 +Dt+1
c

���→
xt+1, yt+1, zt+1( )

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ (6)

Where, an ML value greater than 1 signifies an enhancement in
WEE, whereas an ML value less than 1 indicates a
deterioration in WEE.

3.1.2 Kernel density estimation
The kernel density estimation is a type of nonparametric test

method employed to infer the distribution of intensive data. We
select the Gaussian kernel function to study the dynamic evolution
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of WEE in the YRB. f(x) is its probability density function, and its
expression is as follows:

f x( ) � 1
nh

∑n

i�1K
Xi − �X

h
( ) (7)

Here, n denotes the sample size, Xi signifies an independently
and identically distributed observation from the population X, h
indicates the bandwidth.

3.1.3 Dagum Gini coefficient
We employ the Dagum Gini coefficient approach to explore

the temporal dynamics of spatial disparities in WEE within the
YRB, delving into the underlying causes. The total Gini
coefficient G is broken down into three components: the
within-region inequality contribution Gw, the between-region
net value inequality contribution Gnb, and the super variable
density contribution Gt, where the relationship holds: G = Gw +
Gnb + Gt. A lower Gini coefficient typically indicates narrower
regional disparities and a higher degree of regional integration.
Conversely, a higher Gini coefficient suggests a weaker level of
regional collaboration. In accordance with Dagum’s definition
and the scope of this study, the computations are formulated
as follows:

G � ∑k
j�1
∑k
h�1

∑nj
i�1
∑nh
r�1
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∣∣∣∣ ∣∣∣∣/2η2μ (8)
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Gjh � ∑nj
i�1

∑nh
r�1

yji − yhr

∣∣∣∣ ∣∣∣∣/njnh μj + μm( ) (10)

Gw � ∑k
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Gjjpjsj (11)

Gnb � ∑k
j�2

∑j−1
h�1

Gjh pjsh + phsj( )Djh (12)

Gt � ∑k
j�2

∑j−1
h�1

Gjh pjsh + phsj( ) 1 −Djh( ) (13)

Djh � djh − pjh( )/ djh + pjh( ) (14)

djh � ∫∞

0
dFj y( )∫y

0
y − x( )dFh x( ) (15)

pjh � ∫∞

0
dFh y( )∫y

0
y − x( )dFj x( ) (16)

Among them, k represents the number of regions, n represents
the number of all cities, yji (yhr) represents the WEE of city i(r) in
region j(h), nj(nh) represents the number of cities in region j(h), and
μj(μh) is the mean value of WEE in region j(h). In Equation 12,
pj � nj/n, sj � njuj/nμ; In Equation 13, Djh measures the
interactive effect of WEE between regions j and h, djh refers to
the difference of WEE between regions.

3.1.4 Modified gravity model
In this paper, the modified gravity model is applied to calculate

the spatial correlation of WEE among cities. The precise formula is
presented below:

Rij � kij
WEEiWEEj

D2
ij

, kij � WEEi

WEEi +WEEj
( ) (17)

Where, Rij is the spatial correlation between city i and city j;
WEEi and WEEj are the WEE values of cities i and j; Dij is the
geographical distance between city i and city j.

3.1.5 SNA
SNA is a method for studying social relationships, network

structures, and the flow of information. By analyzing the
connections between individuals, it explores the patterns of
formation and evolution of social networks, thereby
understanding social structures and individual behaviors. It
mainly includes overall network structure analysis, centrality
analysis, and cohesive subgroup analysis (Liu et al., 2015; Shao
and Wang, 2021). This paper applies this method to avoid the
limitation of “geographic proximity” in traditional spatial methods
and conducts a holistic study of the network structure of WEE in the
YRB. The principal indicators and analytical techniques are
presented in Table 1.

3.2 Evaluation index system

According to the development demands of environmental welfare
non-decreasing in the theory of strong sustainability, in the process of
promoting ecological civilization construction and improving the
quality of economic growth, it is essential to reduce ecological
environmental damage while continuously transforming and
restoring the environmental system to enhance environmental
construction capacity (Yang and Li, 2020). Based on this, this paper
constructs an environmental construction index and an environmental
damage index, which are incorporated into theWEE evaluation system
as input indicators and undesirable outputs, respectively. Specifically,
the environmental construction index reflects the efforts and
achievements of a region in environmental restoration and
construction, while the environmental damage index measures the
potential environmental destruction caused by economic growth in the
region. These two indices can help comprehensively assess the resource
inputs and environmental pressures faced by a region in promoting
ecological civilization construction. Since the primary aim of economic,
resource, and environmental development is to enhance human
wellbeing, measuring eco-efficiency solely based on economic,
resource, and environmental indicators cannot fully reflect the actual
situation (Wang et al., 2018). Therefore, based on the theories of
sustainable development, ecology, and welfare economics, and
integrating the coordination mechanism between ecosystem services
and people’s wellbeing, we refer to Wang and Shi (2014), Xie et al.
(2024), and Zhang et al. (2018) and develop an evaluation framework
for the people’s wellbeing index, as shown in Table 2. This index covers
two dimensions: the wellbeing of people’s basic needs and the wellbeing
of social harmonious development, aiming to reflect social fairness and
justice, superior ecological environment, openness, and innovation,
among other characteristics, to maintain ecosystem stability and
enhance people’s wellbeing.

Based on the above analysis, the input indicators for WEE
encompass four dimensions: energy consumption, physical capital
stock, human capital stock, and environmental construction index.
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The expected outputs encompass the People’s livelihood and
wellbeing index and GDP, while the undesired output is the
environmental damage index. The detailed indicator system and
the methodology are illustrated in Table 3.

3.3 Research scope and data sources

The YRB is located in northern China, spanning across nine
provinces and covering a vast area from Qinghai Province to Henan
Province. As the second-largest river in China, the YRB holds
significant geographical importance and plays a crucial role in

agriculture, industry, and water resource utilization, both
economically and ecologically. In addition, the YRB is rich in
mineral resources and is one of China’s primary sources of coal,
oil, and natural gas. However, the ecological environment of the
YRB has long faced severe challenges, particularly water scarcity,
ecological degradation, and pollution. These issues not only threaten
the ecological security of the basin but also directly impact the
sustainable development of the economy and the long-term stability
of society. Following the study by Chen et al. (2021) and Wang et al.
(2024), this paper designates 99 cities across nine provinces within
the YRB for the period of 2010–2022 as the subject of study, as
shown in Figure 1. The selection is grounded in the natural

TABLE 1 Network characteristic analysis and calculation method.

Name Formula Explanation

Whole network
analysis

Network density D � L
N × (N−1) L is the actual number of relationships; N is the number of nodes

Network efficiency E � 1 − M
max(M) M is the number of redundant connections and max(M) is its maximum possible value

Network rating H � 1 − K
max(K) K is the symmetric number and max(K) is its maximum possible value

Network correlation B � 1 − m
N(N−1/2) m denotes the number of non-interrelated cities

Centrality analysis Degree centrality De � n
N−1 n is the number directly associated with the node and N is its maximum possible value

Small-world analysis Average path length
h �

∑
i,j ≠ 1

hij

N(N−1)
hij denotes the distance between node j and node i

Average cluster
coefficient C � 1

N∑N
i

2ei
ki(ki−1)

ei represents the number of edges connected to each other between adjacent regions of node i, and
ki is its maximum possible value

Cohesive subgroup
analysis

Clique analysis H � (i, j) |D(i, j)≤ n{ } H represents the point set, and D(i,j) represents the distance

TABLE 2 Evaluation index system of people’s livelihood and wellbeing.

Dimensions Primary indicators Secondary indicators

Wellbeing of people’s basic needs Economic income Per capita GDP (104 yuan)

Healthcare Number of doctors (people)

Number of hospital beds (bed)

Cultural activities Public library collections (thousand copies)

Educational level Per capita education years (years)

Transportation Road mileage (kilometers)

Number of privately owned vehicles (units)

Wellbeing of social harmonious development Urban-rural coordination Ratio of per capita disposable income between urban and rural residents

Ratio of per capita consumption expenditure between urban and rural residents

Green living Proportion of days with air quality meeting standards (%)

Digital Service Number of mobile phone subscribers (104 households)

Number of broadband internet access subscribers (10,000 households)

Social security Number of urban workers participating in basic pension insurance (104 people)

Number of people insured for unemployment insurance (104 people)

Number of urban and rural residents insured for basic medical insurance (104 people)

Employment level Number of registered urban unemployed (people)
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watershed boundaries to ensure the consistency of geographical
entities and the completeness of provincial administrative divisions,
considering the accessibility and completeness of the data.
Concurrently, this study categorizes the YRB into its upper,
middle, and lower reaches, identifying Hekou Town in Inner
Mongolia and Taohuayu in Henan Province as the
demarcation points.

The data are mainly derived from the 2011–2021 China Urban
Statistical Yearbook, and provincial and urban statistical yearbooks.
Among them, the per capita years of education are from the Chinese
census and sample survey database. The PM2.5 concentration is
based on the global ground observation PM2.5 concentration raster
data calibrated by the University of Washington in St. Louis using
geographically weighted regression (GWR). It is calculated using the
zoning statistical tool in ArcGIS software, and the geographical

distance between cities is calculated by ArcGIS software. The
individual missing values in the above data are filled by linear
interpolation.

4 Results and discussion

4.1 Measurement and decomposition of
WEE in the YRB

4.1.1 Measurement of WEE in the YRB
Using the Super-SBM model, this study assesses the WEE of

99 cities in the YRB from 2010 to 2022 from two perspectives: the
entire YRB and its three main sub-regions. As displayed in Figure 2,
the average annual growth rate of WEE in the entire YRB from

TABLE 3 Evaluation index of the WEE.

Index Variables Indicator description

Input Energy consumption Obtained by multiplying the energy consumption per unit GDP with the GDP (104t)

Physical capital stock Calculated based on the perpetual inventory method (104 yuan)

Human capital stock Represented by the year-end employment figure (people)

Environmental construction index Calculated using the indicators of the green coverage rate (%), per capita green space area (m2), the comprehensive
utilization rate of industrial solid waste (%), the total volume of sewage treated (104m3), and the harmless treatment

rate of domestic refuse (%)

Expected output People’s livelihood and wellbeing
index

Composed of two aspects, as illustrated in Table 2

GDP GDP calculated at 2010 constant prices (104 yuan)

Undesirable
output

Environmental damage index Calculated using the indicators of the PM2.5 concentration (µg/m3), CO2 emissions (104 t), SO2 emissions (104t),
industrial wastewater discharge (104t), industrial smoke dust emissions (104t), the rate of fertilizer application

(104t) and sewage discharge (104m3)

FIGURE 1
Study area.
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2010 to 2022 is 2.85%, indicating an upward trend. This suggests
that with the development of society, the state pays more and more
attention to the coordinated improvement of economic
construction, people‘s livelihood wellbeing construction and
ecological governance, and the WEE has been effectively
improved. From an evolutionary perspective, the WEE has
experienced three stages of “steady growth-fluctuation decline-
rapid growth.” From 2010 to 2013, the WEE in the YRB showed
a steady growth trend. This may be because, under the influence of
the financial crisis in 2008, China began to adjust its economic
growth model and industrial layout at an accelerated pace and
continued to push forward the improvement of people’s livelihoods,
so that the economy of the YRB grew rapidly and people’s living
standards improved steadily. At the same time, the 18th National
Congress of the Communist Party of China introduced an array of
ecological conservation initiatives, contributing to a steady
enhancement of the WEE. From 2013 to 2017, the WEE
exhibited a trend of fluctuating decline, with an average annual
reduction of 1.04%. As industrialization progresses, environmental
pressures have been escalating, and the tension between resource
exploitation and environmental conservation has grown more
pronounced. Issues such as severe soil erosion, scarcity of water
resources, and a decrease in biodiversity signal that the YRB’s
ecological environment has reached a pivotal juncture in its
struggle for protection and management, leading to a decline in
the WEE. From 2017 onwards, the introduction of various
environmental conservation strategies, including the
enhancement of spatial planning, the promotion of integrated
water resource management, and the prioritization of ecological
considerations, has led to a gradual amelioration of the YRB’s
ecological environment, and the WEE has also entered a stage of
fast growth.

As shown in Figure 3, the WEE in the YRB exhibits significant
spatial differentiation characteristics. Specifically, the WEE values in
the upper reach range from 0.45 to 0.61, markedly higher than those
in the middle and lower reaches. The possible reason is that, driven
by the “dual carbon” goals, upstream provinces such as Qinghai and
Sichuan have adopted mechanisms to realize the value of ecological
products, converting ecological resources into economic benefits
and forming a virtuous cycle of “protection-appreciation-feedback”.

Factors such as abundant renewable resources, low population
density, and a good living environment have contributed to the
healthy and efficient operation of the ecosystem, thus resulting in a
relatively high WEE value. The WEE values in the middle and lower
reaches are relatively close and exhibit a trend of “convergence-
divergence.” Although the lower reach has higher population
densities and fewer resource reserves, they are at the forefront of
institutional and technological innovation, with developed tertiary
industries, higher levels of economic development, and improved
residents’ living standards, leading to improvements in the WEE.
The middle reach, rich in coal resources, generates significant
amounts of wastewater, sulfur dioxide, nitrogen oxides, and other
waste during coal production and deep processing. Simultaneously,
it releases large amounts of heat and dust, exerting tremendous
pressure on the ecological environment, severely impacting
environmental quality. Faced with the dual negative impacts of
industrial structure adjustment, upgrading, and resource
constraints, the improvement of the WEE is constrained.
Furthermore, an in-depth examination of factors reveals that the
hindered improvement of the WEE in the middle reach is primarily
due to three institutional barriers: First is the inertia of resource-

FIGURE 2
Evolution trend of the WEE.

FIGURE 3
Comparison of the development trend of WEE.
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dependent policies. Taking Shanxi as an example, the long-term
implementation of the “coal supply guarantee” policy has led local
governments to continuously support the coal industry through tax
incentives and land allocation preferences, resulting in a “resource
curse” effect that squeezes policy space for emerging industries.
Second is the absence of regional collaborative governance.
Horizontal ecological compensation mechanisms in the middle
reach have not yet been fully implemented. Compared to the
Yangtze River Delta, the middle reach lacks a market-oriented
mechanism for realizing the value of ecological products, leading
to insufficient governance motivation. Third is the distortion in the
market mechanism. The pithead price of coal in the middle reach
has long been below the full cost. For instance, in 2023, the
internalization rate of coal’s environmental cost in Yulin City
was only 31%. Compared to Germany’s polluter pays principle,
the resource tax rate is relatively low, leading to the continuous
accumulation of negative environmental externalities. This regional
imbalance is essentially a structural mismatch between institutional
supply and transformational needs: the upper reach relies on
institutional innovation to activate ecological capital, the lower
reach leverages market advantages to capture technological
dividends, while the middle reach, under the dual pressures of
the policy implementation funnel and factor price distortion, falls
into a state of inefficiency.

Based on industrial structure characteristics, cities can be
classified into three basic types: industry-dominant, service-
dominant, and balanced types, as presented in Figure 4. The
WEE of service-dominant cities has consistently maintained a
high level and shown an accelerated upward trend since 2014,
with core cities such as Chengdu and Xi’an exhibiting
particularly significant performance, where the efficiency values
exceeded 1 in 2022. The possible reasons lie in the effective
promotion of industrial upgrading and resource optimization
through policy tools such as fiscal transfer payments, tax
incentives, and green finance in these cities. Additionally, these
cities are endowed with abundant renewable resources, low
population density, and favorable living environments, providing
advantageous conditions for the healthy and efficient operation of
ecosystems. In contrast, although the WEE of industry-dominant
cities has shown a steady upward trend, some cities (such as

Shizuishan and Wuzhong) have experienced significant
fluctuations in their WEE, primarily due to stringent
environmental policies such as high emission standards and
environmental entry barriers that have temporarily increased
compliance costs for enterprises. Market failures have led to the
excessive concentration of resources in inefficient heavy and
chemical industrial sectors, and the externalization of
environmental costs has weakened the incentives for enterprises
to reduce emissions. Although the overall WEE of balanced cities is
lower than that of service-dominant cities, it has grown rapidly, with
some cities, such as Bazhong and Longnan, achieving significant
improvements after 2020, thanks to the strengthening of ecological
compensation mechanisms and the preferential policies for green
industries, such as support for ecological agriculture and tourism.
However, the stability of the WEE in some cities is poor, with
declines observed in Guyuan and Zhongwei in 2022.

4.1.2 Decomposition of WEE in the YRB
4.1.2.1 Input-output slack analysis

To explore the relationship between the WEE and other
sustainable development goals, such as economic development,
social equity, resource utilization, environmental damage, etc.,
and to identify the directions for improvement needed to
enhance WEE, this paper employs input redundancy rate and
output deficiency rate to conduct a decomposition analysis of
WEE. A high input redundancy rate indicates excessive input of
relevant indicators, signifying waste of resources, and it is necessary
to reduce unnecessary inputs to improve the efficiency. A high
output deficiency rate, on the other hand, implies that the output of
the indicator is too low, leading to insufficient production efficiency,
and it is necessary to increase the relevant output to enhance the
efficiency. The rate of the input-output slack calculated using the
SBMmodel to the value of the corresponding indicator is defined as
the input redundancy rate and output deficiency rate, as shown
in Table 4.

From an overall watershed perspective, the redundancy rate of
the environmental construction index is the highest (63.08%),
indicating significant waste in investments in environmental
governance projects. This suggests potential issues of
overinvestment or inefficient allocation, necessitating the

FIGURE 4
Evolution of WEE across city types.
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optimization of resource allocation with a focus on quality rather
than quantity. The redundancy rates of human capital stock
(42.57%) and physical capital stock (35.73%) follow, reflecting
that labor and physical resources are not fully converted into
effective outputs. This may be related to inadequate education
and training, delayed technology application, or inefficient capital
allocation. The energy consumption redundancy rate (25.33%) is
relatively lower but still requires the promotion of energy-saving
technology applications. The deficiency rates of GDP (25.15%) and
wellbeing of people’s basic needs (22.54%) are relatively high,
indicating that economic output and social welfare levels are not
optimal. These need to be improved through technological
innovation or policy adjustments to enhance production
efficiency. The deficiency rate of the environmental damage index
(20.35%), being a reverse indicator, implies that a low value signifies
prominent pollution issues. This value indicates that pollutant
emission problems are relatively severe. The deficiency rate of
wellbeing of social harmonious development (0.39%) is extremely
low, suggesting relatively good performance in this area. However,
regional disparities still need to be monitored.

Regionally, the upper reach tops the entire basin with a
redundancy rate of environmental construction index (66.51%),
which may be linked to an excessive concentration of ecological
restoration projects lacking scientific evaluation. Meanwhile, the
deficiency rates of GDP (22.26%) and wellbeing of people’s basic
needs (13.92%) are relatively low, indicating that while economic
development is somewhat lacking, basic livelihood security is
relatively good. Furthermore, the upper reach has the lowest
deficiency rate of environmental damage index (14.51%) in the
entire basin, suggesting that ecological and environmental issues
remain prominent. In the middle reach, both the redundancy rates
of energy consumption (31.86%) and physical capital stock (35.36%)
are at high levels, reflecting the dominance of an extensive growth
model. Additionally, the GDP deficiency rate (29.94%) is the highest
in the basin, indicating a relatively monolithic economic structure
and significant pressure for industrial upgrading. The deficiency rate
of environmental damage index (21.54%) is also high, indicating
severe industrial pollution, particularly in high-pollution industries
such as steel and chemicals. The lower reach has the highest
redundancy rates of energy consumption (34.59%) and physical
capital stock (40.18%) in the entire basin, highlighting issues of
inefficient resource utilization. At the same time, the deficiency rate

of wellbeing of people’s basic needs (30.66%) is significantly higher,
possibly due to inadequate public service provision resulting from
high population density. Overall, the upper reach should prioritize
ecological protection, enhance the efficiency of environmental
construction, and actively cultivate green industries such as
organic agriculture and carbon sink trading. The middle reach
should accelerate the green transformation of traditional
industries, explore an integrated “industry + ecology”
development model, and enhance sustainable development
capabilities. The lower reach needs to improve public service
levels, enhance social equity, and focus on addressing issues of
resource utilization efficiency.

4.1.2.2 ML change decomposition analysis
With the aim of gaining a deeper understanding of the evolving

nature of WEE in the YRB, as well as the fluctuations in the
associated efficiency decomposition indicators, this study utilizes
the ML index for assessing the temporal changes in eco-efficiency
across the cities within this region. The findings of this assessment
are detailed in Table 5.

According to Table 5, from the overall change of WEE in the
YRB, the average annual growth rate of WEE between 2010 and
2022 is 4%. Among them, except for negative growth in 2014–2015,
2016–2017 and 2018–2019, the rest of the years are positive growth,
and in 2017, it reached a growth rate of 24%. It is observable that
2017 is a turning point in the change of WEE in the YRB, aligning
with the change of WEE measured by super-efficiency SBM.
Viewing the matter through the lens of evolving technological
efficiency and progress, it’s clear that the advancement of
technology is the primary engine for the rise in WEE. In
addition, the enhancements in technological efficiency act as a
further accelerator for the expansion of WEE.

From the perspective of regions, the changes of WEE in the
upper, middle and lower reaches from 2010 to 2022 are all greater
than 1, showing an increasing trend. Among them, the increase rate
of WEE in the lower reaches is up to 6%, which is inextricably linked
to the high level of the science and technology development. The
growth rate ofWEE in the middle and upper reaches is 3%. This may
be attributable to difficulties in industrial restructuring, low
technological innovation, and the over-exploitation and abuse of
water and land resources. These factors place pressure on both
economic growth and the ecological environment, thereby impeding

TABLE 4 Input redundancy rate and output deficiency rate of WEE.

Region Upper Middle Lower Overall

Input redundancy rate (%) Energy consumption 9.54 31.86 34.59 25.33

Physical capital stock 31.66 35.36 40.18 35.73

Human capital stock 41.23 46.54 39.94 42.57

Environmental construction index 66.51 65.21 57.54 63.08

Output deficiency rate (%) GDP 22.26 29.94 23.26 25.15

Wellbeing of people’s basic needs 13.92 23.04 30.66 22.54

Wellbeing of social harmonious development 0.13 1.16 0.15 0.39

Environmental damage index 14.51 21.54 25.01 20.35
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the growth of WEE. From the perspective of technical efficiency
changes, except for the negative growth in the middle reach, other
regions are growth. Looking at the lens of the average yearly increase
in technological progress, the lower reach boasts the highest rate at
6%. This underscores the critical role of technological progress as the
principal catalyst for the enhancement of WEE. Generally, the
growth of WEE in the YRB shows a gradient growth trend of
“upper-middle-lower” and the growth differences between
regions are constantly expanding.

4.2 The dynamic evolution and spatial
difference of WEE in the YRB

4.2.1 Dynamic distribution evolution
We employ the kernel density estimation technique to portray

the overall contour and dynamic progression of the absolute
discrepancy distribution of WEE across the YRB, with the
outcomes depicted in Figure 5.

From the perspective of the entire YRB, the WEE in 2010 was
primarily concentrated around 0.3–0.5, with a kernel density peak of
approximately 3.1, indicating that the WEE during this period was
generally low, with no significant regional differences. Compared to
2010, the distribution ofWEE in 2013 showed nomajor changes, but
the kernel density peak increased to 7.9, and the bandwidth
decreased, suggesting a relative reduction in the overall disparity
of WEE. Starting from 2014, the kernel density curve began to shift
to the right, with the peak continuously declining and the bandwidth
widening, indicating a gradual improvement in WEE and a further
expansion of regional disparities. By 2022, WEE was concentrated in
the ranges of 0.4–0.6 and 0.8–1.0, with the kernel density curve
gradually exhibiting a bimodal pattern. This demonstrates that over
time, the WEE in the YRB has increasingly concentrated at higher

levels, with the degree of intra-regional imbalance continuously
rising and the polarization trend becoming more pronounced.

From the perspective of the upper reaches of the YRB, from
2010 to 2022, the overall trend of the kernel density of WEE exhibits
spatial consistency with the entire YRB, showing a rightward shift
accompanied by an evolutionary pattern of bandwidth expansion
from “narrow to wide.” This indicates that regional disparities in
WEE have gradually intensified. However, diverging from the
general trend, the peak value of the kernel density function in
the upper basin demonstrates a fluctuating pattern of “decrease -
increase - decrease - increase” during 2010–2022. Such oscillatory
behavior suggests a weakening extremalization tendency and an
emerging convergence pattern in WEE distribution. Notably, the
abrupt peak elevation observed in 2022 implies an increasing
concentration of high-efficiency values. Geospatial analysis
further reveals those cities with superior welfare ecological
performance form significant agglomerations on the right tail of
the density distribution. Collectively, these findings reveal a dynamic
process of “convergence - polarization - re-convergence” in WEE
development within the upper reaches. While this trajectory signifies
overall improvement in welfare outcomes, it simultaneously
highlights persistent regional disparities and uneven
development patterns.

From the perspective of the middle reaches of the YRB, from
2010 to 2022, the kernel density curve of WEE exhibited significant
fluctuations, especially between 2014 and 2016, during which
substantial changes in WEE occurred. After 2018, the overall
peak value of the kernel density showed an upward trend.
Simultaneously, the kernel density curve experienced a transition
from “unimodal” to “weak bimodal”, indicating that the polarization
trend in WEE is gradually becoming apparent. Unlike the overall
YRB and the upper reaches, the kernel density curve gradually
shifted to the left, suggesting that the WEE in the middle reaches is

TABLE 5 Changes in WEE and decomposition items.

Years ML EC TC

Overall Upper Middle Lower Overall Upper Middle Lower Overall Upper Middle Lower

2010–2011 1.08 1.05 1.13 1.06 0.98 0.97 1.06 0.92 1.11 1.08 1.08 1.17

2011–2012 1.03 1.04 1.03 1.03 1.00 1.00 0.99 1.01 1.04 1.05 1.04 1.02

2012–2013 1.09 1.15 1.06 1.06 0.99 1.00 0.99 0.98 1.12 1.17 1.08 1.09

2013–2014 1.08 1.05 1.00 1.13 1.07 1.07 1.01 1.05 1.02 0.99 0.99 1.08

2014–2015 0.97 0.96 1.01 0.95 1.00 1.01 1.01 0.98 0.97 0.95 0.99 0.97

2015–2016 1.02 1.03 1.03 1.00 1.01 1.03 1.00 1.01 1.01 1.01 1.03 1.00

2016–2017 0.94 0.97 0.87 0.97 1.00 0.96 0.97 1.06 0.94 1.01 0.90 0.92

2017–2018 1.24 1.26 1.18 1.27 1.06 1.12 1.04 1.02 1.17 1.12 1.14 1.27

2018–2019 0.99 0.98 1.01 0.99 0.95 0.97 0.98 0.92 1.05 1.02 1.03 1.09

2019–2020 1.03 0.99 1.00 1.10 1.02 1.01 0.88 1.16 1.07 0.99 1.27 0.96

2020–2021 1.02 0.99 1.04 1.04 1.02 1.06 1.02 0.99 1.00 0.94 1.03 1.05

2021–2022 1.01 0.91 1.05 1.09 0.89 0.78 0.94 0.97 1.14 1.18 1.12 1.12

Mean 1.04 1.03 1.03 1.06 1.00 1.00 0.99 1.01 1.05 1.04 1.05 1.06
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gradually decreasing. In summary, the WEE has undergone a
process of “convergence - polarization.”

From the perspective of the lower reaches of the YRB, from
2010 to 2022, the change trend of the kernel density of WEE was
similar to that of the middle reaches. The kernel density waveform
gradually shifted to the left, and the vertical height of the peak
decreased, but the magnitude of the decrease was more significant
than that in the middle and upper reaches. Unlike the middle and
upper reaches, the kernel density bandwidth experienced an initial
increase followed by a decrease. During the period from 2014 to
2016, the bandwidth expanded significantly, while by 2022, the
bandwidth had noticeably contracted and was slightly lower than in
2010 and 2012. This sugests that the differences inWEE in the lower
reaches are gradually decreasing. Overall, the WEE shows a process
of “polarization - convergence.”

4.2.2 Spatial difference and decomposition
To further reveal the spatial differences and sources of WEE in the

YRB, this study uses the Dagum Gini coefficient method to measure its
overall differences, intra-regional differences, inter-regional differences
and contribution rates in detail, as displayed in Figure 6. As presented in
Figure 6A, the mean value of the overall Gini coefficient is 0.121,
indicating that the imbalance of the WEE is obvious. In terms of trend
analysis, the overall Gini coefficient exhibited a wavy downward
trajectory, decreasing from 0.111 to 0.103 between the years
2010 and 2016. However, in 2017, the coefficient increased rapidly
to 0.119, and then showed a trend of increasing year by year. Further

analysis of the internal WEE in the three major regions reveals
significant regional differences. The lower reaches exhibit the
greatest disparity, with an average Gini coefficient of 0.116,
compared to 0.114 in the upper reaches and 0.094 in the middle
reaches. From the development trend perspective, the Gini coefficients
of internal WEE in the three major regions have risen, suggesting an
increased spatial difference among them. Specifically, the internal Gini
coefficient in the upper reaches fluctuates significantly, showing a
“rising - falling - rising - falling” trend, while those in the middle
and lower reaches are relatively stable.

Figure 6B shows the developmental trajectory of regional
disparities in WEE within the YRB. The inter-regional difference
between the upper and lower reaches is the greatest, with an average
Gini coefficient of 0.135, indicating a significant disparity in WEE
between them. In contrast, the degree of difference between the
middle and upper reaches, the middle and lower reaches decreased
in turn, and the average inter-regional Gini coefficient is 0.131 and
0.108, respectively. From 2010 to 2022, the inter-regional differences
in WEE between the lower and middle reaches, the lower and upper
reaches, and the middle and upper reaches are similar to the overall
differences, showing an upward trend. The average annual growth
rates are 5.74%, 0.66%, and 2.24%, respectively. This indicates that
the spatial differences among regions have further increased and
thus require attention. Considering the evolutionary trajectory, the
Gini coefficient curve between the lower and upper, the middle and
upper staggered and fluctuated, and the difference showed a trend of
“convergence-divergence- convergence-divergence”.

FIGURE 5
Dynamic evolution of WEE in the YRB. (a) Whole area. (b) Upstream. (c) Middle. (d) lower.

Frontiers in Environmental Science frontiersin.org12

Wang et al. 10.3389/fenvs.2025.1565441

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1565441


Figure 6C is the evolution process of the contribution of the
spatial difference source of WEE. The average contribution rate of
inter-regional differences is the highest at 35.09%, followed by that
of hypervariable density at 34.27%, and finally the average intra-
regional contribution rate at 30.64%. This shows that inter-regional
differences and hyper-variation density, that is, the cross-overlap of
different regions, are the main sources of differences in WEE.
Throughout the sampling period, the overall contribution rate
between regions showed a downward trend, and the inter-
regional contribution showed a relatively stable change, while the
hypervariable density fluctuated with an average annual increase of
7.38%, showing a “rise-decline-rise” distribution pattern.

4.3 Network structural characteristics of
WEE in the YRB

4.3.1 Network complexity characteristics
Utilizing the modified gravity model, we employ the previously

calculated WEE of the YR as the foundational data to establish a
spatial correlation network. Taking 2010, 2013, 2017, and 2022 as
examples, Ucinet software was used to construct a 99 ×
99 relationship matrix and ArcGIS software was used to establish
the spatial correlation of WEE in 99 cities.

From the calculation results of the gravity model, the WEE has
broken the geographical location restrictions and flowed among
regions to form a directed spatial correlation complex network
without isolated points. Combined with the statistics of network
complexity characteristics in Table 6, the scale of network continued
to expand from 2010 to 2022. The network relationship flow among
99 cities increased from 1084 in 2010 to 1831 in 2022, and the
network density showed an upward trend. By 2022, the network
density was 0.189, indicating that the correlation between cities was
not close enough and a solid organizational structure had not been
formed. The network correlation degree of each year is higher than
0.9, indicating that the network has obvious spatial spillover effect
and good accessibility. The network hierarchy in each year is very
low, indicating that the symmetry between cities in the network is
low, and more cities are in the marginal position. The network
efficiency is above 0.76, indicating that there are fewer redundant
connections in the network. The average number of cities connected
to a single city increased from 18.222 to 18.495, indicating that the
relationship has gradually become closer in the past 13 years, the
spatial correlation between cities has been strengthened, the network
structure cohesion has gradually increased, and the network
connectivity has been improved. The diameter of the network
was reduced from 9 to 7, and the average path length was
reduced from 2.810 to 2.545, indicating that the accessibility of

FIGURE 6
Spatial difference and contribution rate ofWEE. (a)Overall and intra-regional Gini coefficients. (b) Inter-regional Gini coefficients. (c)Contribution of
spatial difference sources.
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the network was continuously improved. The average clustering
coefficient increased first and then decreased, indicating that the
correlation effect of WEE was widespread among cities, but the
correlation effect was reduced due to the impact of the new
coronavirus epidemic. The larger agglomeration coefficient and
the shorter average path length in the network conform to the
nature of the small-world network. The change of WEE in some
regions can lead to the change of the agglomeration of the
whole network.

4.3.2 Cohesive subgroup analysis
We use Ucinet software to convert the binary matrix of WEE in

the YRB in 2010, 2016 and 2022 into a 0–1 symmetric matrix, and
conduct factional analysis. According to the results of faction
analysis, 99 cities are further divided into four categories: core
cities, bridge cities, major cities and edge cities by using the
natural discontinuity point method.

Table 7 presents the number and classification of urban factions in
the years 2010, 2016, and 2020. In 2010, the urban network along the
YRB began to take shape, with core cities predominantly located in the
central and western regions. Specifically, Zhengzhou, Tianshui,
Qingyang, Xi’ an, Pingliang, and Chengdu appeared in 77, 61, 54,
48, and 47 factions respectively, forming the core of the network. This
indicates a high degree of overlap among these cities across different
factions, placing them in the most crucial core positions and
maintaining exchanges and cooperation with numerous smaller
urban groups. Furthermore, 35 cities including Bazhong, Heze,
Yulin, Yan’an, and Liaocheng appeared in 22–38 factions, suggesting
that they played reliable core member roles within the regional network
and served as bridges to some extent. Meanwhile, 31 cities such as
Guangyuan, Jiaozuo, Dezhou, Tongchuan, Ankang, and others
appeared in 11–21 factions, indicating that their communication
scope was relatively narrow, but they had formed small cooperative
groups and played significant roles within specific regions. Additionally,
27 cities including Ulanqab, Baotou, Nanyang, Xinyang, Hohhot, and
others appeared in 0–10 factions, positioning them at the periphery of
the network with limited exchanges and cooperation with other cities.

In 2016, the urban network was further strengthened, with core
cities expanding towards the midstream. Xinxiang and Heze
emerged as new core cities, reflecting the enhanced synergy
within the Central Plains urban agglomeration. Tianshui and
Pingliang maintained their core positions, while Xi’an
temporarily withdrew, possibly due to the initial allocation of
resources towards inland hubs (such as Zhengzhou) under the
“Belt and Road” initiative. Additionally, resource-based cities
such as Qingyang, Yulin, Changzhi, and Jincheng played crucial
intermediary roles within the network. For example, Changzhi
served as an important regional link connecting the Shanxi
energy belt with the core area of Henan. Meanwhile, the number
of bridge cities decreased, but their frequency of appearance within
the network increased, indicating a concentration of intermediary
functions towards nodes with higher added value. Chengdu’s core
position declined, reflecting a weakening of connectivity among
upstream cities. The roles of some cities also fluctuated, with
Luoyang, for instance, downgrading from a potential core to an
important city. Furthermore, the number of peripheral cities
increased by 10, with remote cities such as Hulunbeir, Jiuquan,
and Tongliao becoming further marginalized, while resource-T
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depleted cities (such as Shizuishan) gradually withdrew from the
main network system due to economic decline.

By 2022, the urban network had taken on a new configuration, with
the spatial distribution of core cities shifting westward and the issue of
marginalization further intensifying. Zhengzhou andXi’an reshaped the
dual-core driving pattern, while Longnan and Ankang emerged as new
core cities, reflecting the impact of the ecological protection strategy in
the YRB. The Qinling-Bashanmountainous region, due to its enhanced
role as an ecological barrier, drove the initial success of the “ecology-
economy” synergetic development policy. The number of bridge cities
significantly decreased, but their frequency of appearance in the
network markedly increased, indicating a worsening differentiation
in network hierarchy, with a few high-value nodes monopolizing
intermediary functions. For example, provincial capitals or regional
centers such as Taiyuan, Jinan, and Qingyang became key
intermediaries. Among them, Taiyuan connected the urban
agglomeration in central Shanxi with the core region of Shaanxi,
promoting cross-provincial synergetic development. However, some
bridge cities (such as Jincheng) were downgraded, indicating that the
direct radiation scope of core cities had further expanded. Notably, the
number of peripheral cities surged to 53, accounting for over 50%,
including some previously relatively important cities (such as Luliang
and Yuncheng), reflecting an aggravation of stratification in the urban
network and increasingly prominent regional development imbalances.

Summarizing the evolution pattern of urban roles in the YRB, it
mainly comprises three aspects: (1) Expansion path of core cities:
Zhengzhou continues to strengthen its hub status, while Xi’an
returns to the core after a brief fluctuation, indicating the
effectiveness of the national central city policy. Furthermore, the rise
of Longnan and Ankang reflects the promoting effect of the “Lucid
waters and lush mountains” strategy on the development of eco-cities.
(2) Functional changes of bridge cities: Bridge cities have shifted from
resource-based cities (in 2016) to regional centers (in 2022). For
example, the formation of the Jinan-Zhengzhou collaboration model
demonstrates that policy guidance can optimize the allocation of
intermediary resources and enhance regional synergy efficiency. (3)
Worsening marginalization crisis: The number of peripheral cities has

doubled in 3 years, necessitating differentiated revitalization strategies
for resource-depleted and remote cities, such as ecological
compensation and investment in digital infrastructure.

Based on the faction analysis results in Table 7, we divided the
overall network of WEE into three sub-group networks and drew the
2022 sub-group network structure characteristic map, as shown in
Figure 7. Zhengzhou, Heze, Xi’ an, Longnan, Yulin, and Ankang have
strong radiation ability and cohesion. They are closely related to the
surrounding cities and have strong driving ability. They are not only the
core of small groups, but also closely related to other cities nationwide.
Taiyuan, Xinxiang, Changzhi, Qingyang, Jinan and other cities are
closely related to the core cities, which can drive the cities that cannot
directly contact with the core members and play an important
intermediary role. Although Guangyuan, Yinchuan, Jincheng, Baoji,
Luoyang and other cities are not deeply connected with each other, they
can still significantly contribute to linkingwith core cities and each other
through intermediary cities.

From the perspective of small-group network structures, in the
upper reaches, there is only one core city, Longnan, which connects
some cities in the middle and lower reaches. Overall, it exhibits a
“wheel-shaped” network characteristic. This structure indicates that the
WEE in the upper reaches is relatively dispersed and the overall
coordination is feeble. Consequently, it is essential to reinforce the
construction of core cities and play the role of intermediary cities to
promotemore cross-regional cooperation and exchanges. In themiddle
reaches, there are three core members, namely, Yulin, Xi’an and
Ankang, presenting a “chain-shaped” network structure. The degree
of two-way interaction among cities is large, which can promote the
common optimization ofWEE. In the lower reaches, there are two core
cities, Heze and Zhengzhou, seven intermediary cities such as
Liaocheng, Xinxiang and Anyang, and several key cities. Overall, it
presents a “double-coremulti-center radial” network characteristic with
these two cities as the cores. The central advantages of core cities should
be utilized to integrate their ecological resources. Overall, cities in each
region form different small groups according to their connectivity and
functional positioning. Among them, the middle and lower reaches are
relatively closely connected, mainly with “five core cities” as the

TABLE 7 Factional analysis of spatial correlation network of WEE.

Year Types Cities Frequency of occurrence

2010 Core Zhengzhou, Tianshui, Qingyang, Xi’ an, Pingliang, Chengdu 39–77

bridge Bazhong, Heze, Yulin, Yan’ an, Liaocheng and other 35 cities 22–38

Major Guangyuan, Jiaozuo, Dezhou, Tongchuan, Ankang and other 31 cities 11–21

Edge Ulanqab, Baotou, Nanyang, Xinyang, Hohhot and other 27 cities 0–10

2016 Core Zhengzhou, Xinxiang, Tianshui, Pingliang, Heze 40–88

bridge Qingyang, Yulin, Changzhi, Longnan, Jincheng and other 33 cities 23–39

Major Luoyang, Yuncheng, Jining, Chengdu, Lvliang and other 24 cities 12–22

Edge Shizuishan, Hulunbuir, Jinchang, Jiuquan, Tongliao and other 37 cities 0–11

2022 Core Zhengzhou, Heze, Xi’ an, Longnan, Yulin, Ankang 56–91

bridge Taiyuan, Xinxiang, Changzhi, Qingyang, Jinan and other 16 cities 28–55

Major Guangyuan, Yinchuan, Jincheng, Baoji, Luoyang and other 24 cities 15–27

Edge Yuncheng, Lvliang, Baiying, Nanyang, Tongliao and other 53 cities 0–14
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radiation centers, with deep radiation and wide range. Due to factors
such as geographical location and economic level, the upper reaches
have fewer direct connections with core cities and need to use
intermediary cities as bridges.

5 Conclusions and policy implications

5.1 Conclusions

This study employs Super-SBM model to measure and
decompose the WEE of 99 cities in the YRB, and then uses
kernel density estimation and Dagum Gini coefficient to analyze
its distribution dynamic evolution law, spatial differences and
sources. Finally, based on the SNA method, the spatial
correlation network structure characteristics of WEE are
described. The principal findings can be summarized as follows.

(1) Throughout the survey period, the overall WEE in the YRB
and the upper, middle and lower reaches has improved, and
has experienced three stages of “steady growth-fluctuation
decline-rapid growth.” From the perspective of regional
comparison, the WEE in the upper reach of the YRB is
the highest, and the middle and lower reaches are relatively
close. The overall spatial distribution pattern is “high in the
west and low in the east.” From the perspective of the
dynamic changes and decomposition indicators of WEE,
the WEE in the YRB as a whole, upper, middle, and lower
reaches have been improved, showing the stage
characteristics of “steady growth-fluctuation decline-rapid
growth,” and technological progress is the main driving
force for WEE growth. From the perspective of city types,
service-dominant cities demonstrate higher efficiency,
industrial cities exhibit significant resource waste, while

balanced-type cities face an imbalance between economic
development and social welfare provision.

(2) From the perspective of dynamic evolution, the WEE of the
whole YRB and the upper reaches are gradually concentrated to a
high level, while the middle and lower reaches are on the
contrary. Among them, the absolute difference of WEE in the
whole basin and the middle reaches is expanding, while that in
the upper and lower reaches is shrinking. The difference within
the middle reach is the highest, and the difference between the
middle and the lower reaches is the most significant. The
hypervariable density and disparities within regions are the
primary drivers of spatial variations in WEE within the YRB.

(3) The WEE in the YRB has broken through the geographical
proximity effect and presented a complex and multi-threaded
spatial correlation network structure. Since 2010–2022, the
scale of the network in the YRB has been expanding, and the
network agglomeration has been increasing. There is a general
correlation effect between cities and changes in the WEE of
some regions can lead to changes in the agglomeration of the
entire network. However, the degree of closeness between
cities is low, and there are more marginal cities. The overall
correlation and stability of the network require enhancement.

(4) From the perspective of the evolution of urban roles, core cities
exhibit a dual characteristic of “dual-core driven” and “ecological
emergence” coexisting. The development pathway of bridge
cities has shifted from traditional resource dependence to
regional collaboration guided by policies. The number of
peripheral cities has grown rapidly, and the issue of regional
development imbalance has become increasingly prominent.
From the perspective of small-group network structures, the
upper reaches exhibit a “wheel - shaped” network structure with
Longnan as the core; the middle reaches present a “chain-
shaped” network structure with Yulin, Xi’an and Ankang as
the three cores; the lower reaches show a “double-core multi-

FIGURE 7
Characteristics of small group network structure in 2022.
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center radial”network structurewithHeze andZhengzhou as the
cores. Overall, the middle and lower reaches are relatively closely
connected, mainly taking “five core cities” as the radiation
centers, with deep radiation and wide range. Due to factors
such as geographical location and economic level, the upper
reaches have relatively few direct connections with the middle
and lower reaches and need to use intermediary cities as bridges.

5.2 Policy implications

This paper argues that to improve the WEE in the YRB and
achieve high-quality development, it is necessary to proceed from a
global perspective, and at the same time, it is necessary to classify
and implement policies according to the advantages and
characteristics of different regions. Drawing from the research
findings, the subsequent recommendations are proposed:

(1) Measures should be tailored to local conditions and categorized
accordingly to enhance regional WEE. The government should
introduce region-specific preferential policies tailored to the
unique conditions of each area. Specifically, the upper reaches,
as an important water supply area and the central region of the
ecological security strategy in China, should strengthen the
economical and intensive use of water resources and ecological
restoration and management, and enhance the self-regulation
ability of the ecosystem. As the main energy production and
supply base, the middle reaches should accelerate the industrial
structure upgrading, limit the access of high-water consumption
and low efficiency industries, give full play to the industrial
agglomeration effect, and form a low-carbon development and
green circulation pattern. As a key region for the construction of
national innovation highlands, the lower reaches needs to
accelerate the development of new productive forces, promote
the research and development and application of green
technologies, and build green industrial clusters.

(2) Efforts should be made to narrow the regional disparities and
achieve the joint construction, sharing and co-governance of the
ecological environment in the upper, middle and lower reaches.
We should resolutely implement the “holistic approach” concept
of the YRB and improve the regional coordinated development
mechanism. We should promote the rational transfer of
industries and technological exchanges, establish cross-
regional industrial cooperation parks, and drive the in-depth
integration of industrial chains in the upper and lower reaches.
We should improve the basin-wide collaborative management
mechanism, carry out water rights trading, carbon sink trading
and pollution discharge rights trading in the basin, and realize
the optimal allocation of ecological resources through market-
based means. We should strengthen the inter-regional
infrastructure interconnection and interoperability, accelerate
the construction of the green transportation corridor in the
YRB, and promote the cross-regional flow of talents,
technologies and resources.

(3) The radiation effect of core cities should be leveraged to construct
an efficient and interconnected network. Full play should be
given to the leading role of core cities: Core cities (such as Xi’an,
Heze, Zhengzhou, etc.) should leverage their advantages in

technological innovation, industrial agglomeration, and
ecological governance to radiate and drive the development of
surrounding cities; intermediary cities (such as Taiyuan,
Xinxiang, etc.) should strengthen their connections with core
cities while providing technical support and resource matching
services to peripheral cities; and peripheral cities (such as
Yuncheng, Luliang, etc.) should enhance their ties with mid-
and downstream core cities, and improve their own WEE by
participating in regional cooperation.

(4) Green innovation should play a pivotal role in enhancing theWEE
of the YRB. A green technology innovation fund for the YRB
should be established to support universities, research institutions,
and enterprises in conducting green technology research, with a
focus on breaking through key technologies in the fields of water
resource conservation, pollution treatment, and ecological
restoration. The application of green technologies should be
promoted, including water-saving irrigation technologies in
agriculture, clean production technologies in industry, and
smart environmental protection technologies in urban
management. Additionally, a green technology cooperation
platform for the YRB should be established to facilitate the
sharing and transformation of technological achievements.
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