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The international community has increasingly focused on reducing carbon
emissions. The transportation sector is one of the key areas of carbon
emissions in China. This study uses the superefficiency EBM-DEA model
considering undesirable outputs to estimate the transportation sector carbon
dioxide emission efficiency (TSCDEE) for 30 provinces in China from 2012 to
2022. The Tobit model is used to analyze the influencing factors of TSCDEE and
the heterogeneous characteristics of the influencing factors across regions. The
results indicate that the mean value of efficiency in Chinese provinces is 0.709.
The overall TSCDEE in China shows a fluctuating upward trend, with the carbon
emission efficiency higher in coastal areas but lower in the Southwest and
Northeast. This study shows that factors such as freight turnover level,
transportation infrastructure level, and technological progress have significant
positive impacts on TSCDEE. In contrast, population mobility has a significant
negative effect on TSCDEE. Based on the above results, this study proposes
specific measures such as optimizing travel modes, improving infrastructure
construction, increasing freight turnover, and promoting technological
progress. This study also considers the differences between eight regions and
offers targeted suggestions. These findings provide a reference for achieving
green and low-carbon development in the transportation sector.
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1 Introduction

Climate warming is the great global challenge of today. The transportation sector is one
of the main sources of energy consumption and also one of the key sectors influencing a
country’s economic growth (Oladunni et al., 2024). The transportation sector is one of the
three major emission sectors globally (Liu et al., 2022). To achieve carbon peaking and
carbon neutrality goals proposed by China in 2020, carbon emissions reduction in the
transportation sector cannot be ignored. With the rapid development of the economy in
China, the carbon emissions generated in the transportation sector are rising at a faster rate.
Now, carbon emissions from the transportation sector account for 10.4% of the total in
China (Wen, 2021). Compared to other sectors, carbon emissions from the transportation
sector have the following characteristics: firstly, they have a high share of direct emissions,
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mainly from the combustion of fossil fuels (Li et al., 2024). Secondly,
they are growing at a faster speed. In recent years, the average annual
growth rate of carbon emissions in the transportation sector has
remained above 5%, making the transportation sector one of the
fastest-growing areas of greenhouse gas emissions. Thirdly, the
growth of demand and emissions in the transportation sector is
more rigid, making it more difficult to reduce emissions. The above
characteristics indicate that the transportation sector faces many
challenges in carbon emissions reduction. Therefore, it is essential to
enhance TSCDEE to promote the green transformation of
transportation and realize the high-quality development in the
transportation sector (Said and Dindar, 2024).

Currently, there are still insufficient studies on the measurement
of carbon emission efficiency and the analysis of influencing factors
in China’s transportation sector. This study enriches the existing
research methods by using the superefficiency EBM-DEA model to
measure TSCDEE. Meanwhile, this study innovatively considers the
influence of freight turnover level and population mobility on
TSCDEE, which fills the research gaps in the related field.
Through deeply analyzing the intrinsic connection between the
influencing factors and TSCDEE, we can well understand how
these factors affect the carbon emission efficiency in the
transportation sector, so as to provide a scientific basis for
policymakers and promote the high-quality development of the
transportation industry. Specifically, the main arrangements of this
study are as follows:

Firstly, we measure the TSCDEE of 30 provinces in China and
analyze the spatiotemporal evolution characteristics of TSCDEE.
Subsequently, the influencing factors of TSCDEE are recognized,
and the heterogeneity of the influencing factors in eight regions is
also analyzed. Finally, the corresponding policy recommendations
are put forward.

2 Literature review

It is important to adopt a suitable methodology to evaluate
TSCDEE. This will help the government to formulate targeted
policies and promote the sustainable development of the
transportation sector. Existing studies employed some methods to
measure carbon emissions and efficiency in the transportation
sector. Li et al. (2025) utilized a composite assessment
framework, namely the extended STIRPAT model and the
STIRPAT-SD model, combined with scenario analysis methods,
to comprehensively evaluate urban passenger transport carbon
emissions. Li et al. (2021a) used the triple exponential smoothing
model and improved gray model to forecast urban transport carbon
dioxide emissions from 2011 to 2017. Montoya-Torres et al. (2023)
predicted carbon emissions from private transport systems using
Life Cycle Assessment (LCA) method. Irfan et al. (2024) employed
the panel stochastic frontier approach (SFA) to estimate the energy
efficiency of different transport modes in India from 2000 to 2014. In
addition to the methods mentioned above, the data envelopment
analysis (DEA) method is normally used to measure TSCDEE,
which evaluates the relative efficiency of decision-making units
(DMUs) with multiple inputs and outputs without requiring a
predefined form of the production function. DEA models are
mainly categorized into radial DEA and non-radial DEA. Radial

DEA models assume that all DMUs change along the same
proportions. Non-radial DEA models, such as SBM-DEA model,
consider the complex relationship between inputs and outputs and
permit trade-offs in different dimensions. Currently, there are more
studies applying the SBM model to evaluate the efficiency of the
transportation industry. Jiang and Li. (2022) measured the total
factor carbon emission efficiency in China’s transportation industry.
Zhang et al. (2022) evaluated the operational and energy efficiency of
urban rail transit in China. Hussain et al. (2023) evaluated the
efficiency of sustainable transportation in 35 OECD countries. Qian
et al. (2021) estimated the efficiency of provincial freight system in
China. Considering carbon dioxide emissions as an undesirable
output and applying the SBM-DEA model, Liu et al. (2024)
evaluated the efficiency of China’s transportation system.
Domagala and Kadlubek. (2023) comprehensively evaluated the
economic, energy, and environmental efficiency of the 27-road
freight transport sector in EU countries in 2019. The EBM model
was proposed in 2010, combining the characteristics of radial and
non-radial DEA models. Some studies measure transportation
carbon emission efficiency using the EBM-DEA model. Zhao
et al. (2022) estimated the TSCDEE using the EBM-DEA model
with undesirable outputs. Du et al. (2021) estimated transportation
carbon efficiency across the Belt and Road Initiative countries
during 2005–2017 using a three-stage EBM model. Li (2023)
applied the improved three-stage EBM-DEA model to measure
the logistics efficiency of provinces in China. Wang and Wang.
(2024) evaluated the ecological efficiency of 20 international
transportation hubs in China using the superefficiency EBM model.

In terms of influencing factors, Zhang et al. (2024) indicated that
dynamic traffic distribution significantly affects traffic carbon
emissions using Monte Carlo method. Wu et al. (2023) revealed
the spatial and temporal heterogeneity of built environment
elements on transportation carbon emissions using a
geographically and temporally weighted regression (GTWR)
model. Tang et al. (2023) concluded that demographic,
economic, and technological factors are the determinants of
transportation carbon emissions using the least absolute
shrinkage and selection operator (LASSO) regression. Zhang
et al. (2023) found that the city size and structure, economic
development and industrial structure, road transportation
facilities construction, public service facilities construction, and
other governance elements play decisive roles in transportation
carbon emissions based on the random forest model. Li et al.
(2021b) discovered that city size has a positive correlation effect
on energy use efficiency and that the population size is negatively
correlated with the efficiency of carbon emissions using the panel
data model. Zhao et al. (2022) found that factors such as
transportation structure, transportation infrastructure level, and
technology significantly positively affect TSCDEE, while
urbanization level and urban population density both
significantly negatively affect TSCDEE based on the spatial
Durbin Model. Lv et al. (2023) found that government
intervention, energy structure, GDP per capita, energy use
efficiency, population size, and technological level influence the
carbon emissions efficiency from transportation using the
GTWR model.

The above literature indicates that numerous comprehensive
studies have been conducted on the measurement and influencing
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factors of TSCDEE. However, there is still room for further
improvement based on existing research. (1) In terms of research
methodology, the superefficiency EBM model considering carbon
emissions as undesirable outputs is seldom applied to the
measurement of TSCDEE, and to further analyze the
spatiotemporal evolution characteristics of TSCDEE. (2)
Regarding influencing factors, freight turnover level and
population mobility factors are often neglected. Therefore, it is
necessary to further analyze the impact of these two factors on
TSCDEE. (3) It is crucial to consider the heterogeneous effects of the
influencing factors on different economic zones to provide targeted
policy recommendations.

The main contributions of this study are as follows: (1) To
enhance the TSCDEE measurement technique, the TSCDEE of
30 Chinese provinces is measured using the superefficiency EBM-
DEA model, which considers undesirable outputs. The
spatiotemporal evolution characteristics of the TSCDEE are then
examined using the ArcGIS software. (2) Considering the key
influencing factors of freight turnover level and population
mobility, the Tobit model is established to conduct further
empirical research. The impacts of other influencing factors on
TSCDEE are also investigated to provide practical guidance for
promoting the green and low-carbon development of the
transportation sector. (3) Through empirical analysis of different
regions, this study reveals the differences in the role of influencing
factors in different economic zones, to provide a scientific basis for
the formulation of differentiated policies.

3 Methodology

3.1 Superefficiency EBM-DEA model
considering undesirable outputs

3.1.1 The principle of the superefficiency
EBM-DEA model

Previous studies have used DEA models to measure
transportation carbon emission efficiency, which provides a
beneficial reference for measuring TSCDEE in this study.
However, these models have some drawbacks. Generally,
traditional DEA models have two common methods, namely
radial and non-radial model. Radial DEA models, such as the
CCR model and the BBC model, assume that all inputs and
outputs are adjusted in the same proportion, do not take into
account the effects of non-radial slack variables and do not allow
for factor decomposition when evaluating efficiency, which can
result in biased measurements. Non-radial DEA models, such as
the SBM-DEA model, where the slack variables are not necessarily
proportional to inputs or outputs, and the DMUs lose
proportionality in the original inputs or outputs (Zeng et al.,
2019). The EBM-DEA model adopted in this study considers
both radial and non-radial information, which can evaluate
TSCDEE accurately.

Under constant returns to scale, the EBM-DEA model is shown
in Equation 1:

β* � min γ − εχ∑m

i�1
w−

i s
−
i

xik
( ) (1)

s.t.∑n
j�1λjxij + s−i � xik, i � 1, 2, ..., m∑n
j�1λjyrj ≥yrk,r � 1, 2, ..., s

λ≥ 0, s−i ≥ 0

where β* denotes the efficiency value of DMUs. w−
i refers to the

weight of input i. Parameter εx can combine the radial programming
parameter γ and the non-radial slacks terms. n, s,m are the numbers
of DMUs, the outputs, and the inputs, respectively. s− refers to the
input slacks, and xij and yij are the i th input and the i th output of
DMUj, respectively. λ denotes the intensity vector.

Although the EBM-DEA model has made improvements, there
are still issues that must be solved to make it more realistic. The
model ignores undesirable outputs and may be biased in evaluating
efficiency. Ren et al. (2020) proposed an improved EBM model to
measure eco-efficiency in China, which achieves the combination of
radial and non-radial DEA models and considers undesirable
outputs. The EBM model considering undesirable outputs is
shown in Equation 2:

θ* � min
γ − εx∑m
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i s

−
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xik
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r�1

w+
r s

+
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yrk
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w−
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−
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bpk

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (2)

s.t.∑n
j�1xijλj + s−i � γxik, i � 1, 2, ..., m∑n

j�1yrjλj − s+r � ϕyrk, r � 1, 2, ..., s∑q
j�1bpjλj + s−pλ � ϕbpk, p � 1, 2, ..., q

λj ≥ 0, s−i ≥ 0, s+r ≥ 0, s−p ≥ 0

where θ* refers to the efficiency value, with a range greater than 0.
There arem inputs, s desirable outputs and q undesirable outputs in
each DMU. s+r and s−p denote the slack of desired output r and
undesired output p, respectively. w+

r and w−
p denote the desired

output weight and the undesired output weight, respectively. bpj
stands for the p th undesirable output of the DMUj. q is the total
number of undesirable outputs. εx is the set of radial γ and non-
radial slacks; εy stands for the set of radial ψφ and non-radial slacks.
The advantages of the model are as follows: It fully combines the
advantages of radial and non-radial to estimate the efficiency value;
the calculated efficiency can be more than 1, and better identify the
differences between DMUs. With the use of MaxDEA 12.1 software,
the superefficiency EBM model considering undesirable outputs is
applied to calculate the provincial TSCDEE.

3.1.2 Input-output indicators
Based on previous studies results (Zeng et al., 2023; Zhao

et al., 2022; Zhao et al., 2024), this study chooses the capital stock,
labor, and energy consumption of the transportation sector as
three input indicators. The value added by the transportation
sector is a desired output. The CO2 emissions of the
transportation sector is an undesired output (Table 1).
Descriptive statistics of the input and output variables are
provided in Table 2. The median values of all variables are
less than the mean values. The standard deviations of all
variables are large, which indicates that the data distribution
is relatively dispersed. In addition, significant differences exist
between the maximum and minimum values. These descriptive
results indicate that significant TSCDEE differences may exist
among different provinces. The transportation sector in this
study includes the transportation, storage, and postal service
industries (Wang and He, 2017).
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The Chinese government does not publish capital stock data on
the transportation sector. This study uses the perpetual inventory
method to calculate the capital stock as follows:
Ci,t � Ii,t + (1 − δ)Ci,t−1. Here C and I denote the capital stock
and fixed capital investment in the transportation sector,
respectively. The subscripts i and t represent province i and year
t, respectively. δ denotes the depreciation rate, which is 8.76% (Li
and Zhang, 2016; Zhang et al., 2004).

National Bureau of Statistics of China (NBSC) has not publish
data on carbon emissions in the transportation sector, so they are
needed to calculate. This study refers to the method in the
Intergovernmental Panel on Climate Change (IPCC) guidelines
and selects eight energy sources: raw coal, gasoline, kerosene,
diesel oil, fuel oil, LPG, natural gas, and other gas (Guan et al.,
2021; Liu et al., 2024; IPCC, 2006). Data are obtained from the China
Energy Statistical Yearbook (CESY). The calculation formula is
shown in Equation 3:

CEi � ∑n
j�1
CEij

CEij � Eij × NCVj × CCj × COFj ×
44
12

(3)

where i and j denote the province i and the energy type j,
respectively. CEi stands for the CO2 emissions of province i.
CEij denotes the CO2 emissions of province i by energy type j.
Eij represents the consumption of energy type j in province i.
NCVj denotes the average low calorific value of energy type j.
CCj denotes the carbon content of energy type j. COFj stands
for the carbon oxidation factor of energy type j. The ratio 44

12

represents the molecular weight ratio of carbon dioxide
to carbon.

3.2 Tobit model

3.2.1 The principle of the tobit model
Tobin (1958) proposed the Tobit linear regression model for

dealing with situations where the dependent variable is truncated.
When truncated data are present, the Tobit model can deal with
continuous variables restricted to specific intervals. Compared to the
OLS, the Tobit model provides unbiased estimation results and
ensures consistency in parameter estimation. The dependent
variable in this study is the truncated efficiency value between
0 and 1.1 obtained from the superefficiency EBM-DEA model,
which is suitable for the Tobit model. Therefore, the Tobit model
is chosen in this study for analyzing the impact of influencing factors
on TSCDEE. It is shown in Equation 4:

Yi � β0 + βTXi + ε i � 1, 2, ..., m( ) (4)
where Yi stands for the dependent variable, namely, TSCDEE; Xi is
the explanatory variables; βT denotes the parameter vector; ε is a
random error vector.

3.2.2 Influencing factors variables
Considering the availability and consistency of the data, this

study focuses on analyzing the influencing factors of TSCDEE from
four aspects: economy, population, infrastructure, and technology.
Based on existing studies, this study selects population mobility

TABLE 1 Meaning of the input‒output variables.

Primary indices Secondary-class indices Third-class indices

Inputs Capital Capital stock of transportation sector (unit: 100 million yuan)

Labour Total number of employees in the transportation sector (unit: 10,000)

Energy Total electricity consumption in the transportation sector (unit:billion kW hours)

Outputs Desirable outputs Added value of the transportation sector (unit: 100 million yuan)

Undesirable outputs CO2 emissions from the transportation sector (unit: 104 tons)

TABLE 2 Descriptive statistics of the input and output variables.

Descriptive
statistics

Input indicators Output indicators

Capital
(100 million yuan)

Labour
(10,000)

Energy (billion
kW hours)

Desirable outputs
(100 million yuan)

Undesirable outputs
(104 tons)

Max 42119.970 86.409 179.760 4721.500 512219.100

Min 1152.751 3.400 3.388 85.500 9618.957

Median 10359.700 23.459 43.995 981.700 64929.240

Average 12466.170 27.082 49.103 1229.948 85820.820

Std. Dev 7579.983 16.622 32.406 906.526 75464.570

Observation 330 330 330 330 330
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(PM), freight turnover level (FTL), technological progress (TP), and
transportation infrastructure level (TIL) as independent
variables (Table 3).

3.2.2.1 Population mobility (PM)
Existing studies show that energy consumption in the

transportation sector is one of the major sources of carbon
emissions. Energy consumption increases carbon emissions and
thus reduces TSCDEE (Tang et al., 2023). Population mobility
and regional development are interactive processes. Under the
current unbalanced regional development and population
distribution in China, a large number of people migrate between
different regions every year (Fang et al., 2021). According to the
study on the impact of urban transportation travel modes on energy
and the environment, population mobility is one of the main drivers
of urban transportation demand, which leads to an increase in
transportation demand. With the increase in population mobility,
the demand for road passenger transportation services also rises.
Then it is directly reflected in the volume of road passenger traffic. It
is necessary to optimize and adjust the transport structure according
to the Chinese Ministry of Ecology and Environment. Specifically, it
is important to promote the conversion of roads to railroads and
roads to waterways for the transportation of bulk and medium-long
distance goods (The State Council, 2018). This reflects that road
transportation is the main source of carbon emissions in the
transportation industry, and its carbon emission intensity ranks
high among all modes of transportation. Since road transportation
mainly relies on fossil fuels, the increase in this energy consumption
will reduce TSCDEE. This study applies the ratio of road passenger
transport volume to the year-end resident population to measure
population mobility (Fang et al., 2023).

Hypothesis 1: Population mobility will reduce TSCDEE.

3.2.2.2 Freight turnover level (FTL)
There is an interactive causal relationship between regional

freight turnover and GDP, which is important for coordinating
the balance between freight transportation and regional economic
development. Economic development is usually accompanied by an
increased demand for the movement of goods and services, which
directly contributes to higher freight turnover levels. With economic
activity expanding, the demand for transportation and freight
turnover also increase. Freight turnover is a key indicator of the
development in the transportation sector and is closely related to
economic development. The increased freight turnover can satisfy
the logistics needs of regional development and promote regional
economic development (Ma et al., 2020). In summary, freight
turnover has a positive effect on economic development. The

improvement of the economic development level is conducive to
optimizing energy consumption structure and industrial structure.
This contributes to the creation of a clean and effective traffic
management system and traffic carbon emissions reduction. In
this study, the product of the weight of the freight and the
distance transported is used to represent the freight turnover level.

Hypothesis 2: High freight turnover will promote TSCDEE.

3.2.2.3 Traffic infrastructure level (TIL)
A high-quality transportation infrastructure system plays a

significant role in reducing energy consumption and curbing
carbon emissions. The transportation infrastructure level can be
reflected through the transportation road resources allocation,
including the rational layout of the transportation network and
the alleviation of traffic congestion. Some studies have shown that
the expansion of per capita road area and the optimization of the
transportation network can effectively reduce traffic congestion and
improve the overall operational efficiency of the transportation
system. Per capita road area is used to represent the traffic
infrastructure level in this study (Zhao et al., 2022).

Hypothesis 3: The improvement of transportation infrastructure
will enhance TSCDEE.

3.2.2.4 Technological progress (TP)
Technological progress is a key driver for CO2 emissions

reduction. Energy intensity is the amount of energy consumed
per unit of GDP. Low energy intensity represents less energy
consumption for the same economic output, which helps to
reduce greenhouse gas emissions and improve TSCDEE.
Technological progress can improve energy efficiency, reduce
energy intensity, and decrease carbon emissions from the
transportation sector (Oladunni and Olanrewaju, 2022). This
study uses the ratio of electricity consumption to value added in
the transportation sector to represent energy intensity.

Hypothesis 4: Technological progress will increase TSCDEE.

3.3 Research area and data sources

Considering the availability of data, this study selects the panel
data of 30 provinces in China (excluding Tibet) as the research
object, with a sample interval of 2012–2022. Based on the Research
Report of the State Council, these Chinese provinces are divided into
eight economic zones (Zhao et al., 2019). These are the Northern
coast (Beijing, Tianjin, Hebei, Shandong), the Eastern coast

TABLE 3 Meaning of the influencing variables.

Explanatory variables Definitions of variables Predicted effect

Population mobility (PM) Ratio of road passenger traffic to year-end resident population (%) Negative

Freight turnover level (FTL) Freight turnover (billion tons kilometers) Positive

Traffic infrastructure level (TIL) Per capita road area (m2) Positive

Technological progress (TP) Ratio of electricity consumption to GDP in the transportation sector (kWh/104 Yuan) Positive
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(Shanghai, Jiangsu, Zhejiang), the Southern coast (Fujian,
Guangdong, Hainan), the Northeast (Liaoning, Jilin,
Heilongjiang), the Middle Yellow River (Shanxi, Inner Mongolia,
Henan, Shaanxi), the Middle Yangtze River (Jiangxi, Anhui, Hubei,
Hunan), the Southwest (Guangxi, Chongqing, Sichuan, Guizhou,
Yunnan) and the Northwest (Gansu, Qinghai, Ningxia, Xinjiang).

Data on fixed capital investment, employment, and GDP in the
transportation sector are obtained from CSY. Date on electricity
consumption in the transportation sector are taken from CESY. The

data for the independent variables are obtained from CSY, CESY,
and provincial statistical Yearbook.

4 Results

With the use of MaxDEA 12.1 software, the TSCDEEs of
30 provinces in China between 2012 and 2022 are calculated as
seen in Table 4. The spatiotemporal evolution maps for TSCDEE

TABLE 4 The values of TSCDEE for 30 provinces in China (2012–2022).

Regions Provinces 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Mean

Northern coast Beijing 0.516 0.575 0.609 0.619 0.653 0.750 0.807 0.805 0.803 0.801 0.848 0.708

Tianjin 0.682 0.695 0.694 0.653 0.680 0.726 0.755 0.760 0.777 0.872 1.001 0.754

Hebei 0.871 0.836 0.820 0.822 0.812 0.971 0.980 0.959 0.924 1.000 1.000 0.909

Shandong 0.725 0.655 0.711 0.712 0.732 0.821 0.813 0.818 0.736 0.935 1.008 0.788

Eastern coast Shanghai 0.741 0.746 0.823 0.825 0.824 0.834 0.897 0.872 0.834 1.002 1.009 0.855

Jiangsu 1.007 0.958 1.000 0.857 0.834 0.826 0.848 0.864 0.852 1.001 0.942 0.908

Zhejiang 0.705 0.671 0.672 0.674 0.648 0.657 0.667 0.694 0.631 0.700 0.691 0.674

Southern coast Fujian 0.841 0.822 0.810 0.844 0.847 0.835 0.778 0.775 0.803 0.902 1.011 0.843

Guangdong 0.703 0.710 0.765 0.773 1.017 0.804 0.843 0.918 0.842 0.945 1.007 0.848

Hainan 1.031 0.978 0.973 0.960 0.970 0.907 0.907 0.958 1.002 0.949 1.019 0.969

Northeast Liaoning 0.436 0.427 0.457 0.491 0.540 0.560 0.606 0.625 0.611 0.681 0.723 0.560

Jilin 0.572 0.530 0.524 0.508 0.497 0.493 0.510 0.466 0.472 0.526 0.508 0.510

Heilongjiang 0.536 0.469 0.513 0.541 0.464 0.436 0.375 0.349 0.349 0.356 0.383 0.434

Middle Yellow River Shanxi 0.385 0.344 0.344 0.387 0.401 0.461 0.553 0.583 0.571 0.649 0.632 0.483

Inner Mongolia 0.696 0.612 0.634 0.665 0.638 0.655 0.591 0.618 0.597 0.659 0.691 0.641

Henan 0.707 0.696 0.783 0.788 0.802 0.811 0.962 0.962 0.882 0.939 1.012 0.849

Shaanxi 0.483 0.420 0.432 0.440 0.448 0.461 0.471 0.477 0.456 0.503 0.499 0.463

Middle Yangtze River Jiangxi 0.798 0.730 0.723 0.693 0.721 0.761 0.863 0.911 0.826 0.952 1.002 0.816

Anhui 1.002 1.000 1.005 0.945 0.920 0.915 1.001 0.991 0.923 0.978 0.898 0.962

Hubei 0.708 0.766 0.814 0.817 0.810 0.842 0.839 0.893 0.738 0.891 0.943 0.824

Hunan 0.631 0.675 0.700 0.706 0.677 0.705 0.787 0.766 0.733 0.785 0.817 0.726

Southwest Guangxi 0.632 0.632 0.610 0.604 0.583 0.570 0.580 0.566 0.554 0.631 0.693 0.605

Chongqing 0.745 0.726 0.713 0.712 0.728 0.700 0.689 0.709 0.697 0.765 0.782 0.724

Sichuan 0.352 0.314 0.446 0.488 0.535 0.542 0.550 0.550 0.512 0.556 0.591 0.494

Guizhou 0.479 0.455 0.480 0.495 0.509 0.530 0.602 0.583 0.583 0.651 0.697 0.551

Yunnan 0.476 0.497 0.503 0.543 0.567 0.657 0.689 0.736 0.706 0.829 0.888 0.645

Northwest Gansu 0.633 0.587 0.533 0.493 0.447 0.446 0.440 0.465 0.428 0.464 0.526 0.497

Qinghai 1.019 0.702 0.834 1.001 0.849 0.788 0.812 0.723 0.797 0.768 0.840 0.830

Ningxia 1.004 1.008 0.997 1.004 1.004 0.938 0.866 0.876 0.902 0.869 0.889 0.942

Xinjiang 0.509 0.403 0.424 0.429 0.438 0.455 0.549 0.542 0.412 0.456 0.538 0.469

Average efficiency in Chinese provinces 0.687 0.655 0.678 0.683 0.687 0.695 0.721 0.727 0.698 0.767 0.803 0.709
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levels in 2012, 2017 and 2022 are drawn using ArcGIS
10.8 software.

4.1 Efficiency evaluation analysis

4.1.1 Overall analysis
During the 2012–2022 period, the TSCDEE in China generally

increases, but the overall efficiency remains low. As seen in Figure 1,
the efficiency reaches 0.687 in 2012, 0.695 in 2017, and 0.803 in 2022.
The mean value of efficiency in Chinese provinces is 0.709, which
indicates that TSCDEE in China has much room for improvement.

The overall TSCDEE in China shows a fluctuating upward trend.
This indicates that with the development of society and
technological advances, the transportation sector is gradually
realizing green and sustainable development. Notably, the
national average TSCDEE in 2020 shows a downward trend,
which is likely due to the outbreak of the COVID-19 pandemic
in January 2020. The pandemic has led to a decrease in labor
participation due to labor casualties and the control of
population movement and concentration. This epidemic leads to
labor shortages and a significant drop in demand in the
transportation sector, which affects the capital accumulation and
GDP contribution of the transportation sector (Tan et al., 2022).
Although the decrease in energy consumption and CO2 emissions
during the epidemic (Zhang et al., 2021), the significant reduction in
GDP in the transportation sector results in a relative increase in
energy consumption and CO2 emissions per unit of GDP.
Ultimately, the efficiency reduces. The Chinese government
proposed carbon peaking and carbon neutrality goals in
September 2020. The Ministry of Transport issued a Green
Transport Development Plan for the 14th Five-Year Plan in
2021. Subsequently, local governments should actively implement
this policy. They can optimize the transport structure, build green
transport infrastructure, and construct a low-carbon transport
system, which has led to a more significant increase in
TSCDEE after 2020.

4.1.2 Regional analysis
With the analysis of the 11-year average efficiency values of the

eight regions, as seen in Table 5, it can be seen that the Southern
coast has the highest efficiency value, followed by the Middle

Yangtze River, the Eastern coast, the Northern coast, the
Northwest, the Middle Yellow River, the Southwest, and the
Northeast. Over time, these regions show the same change trend
as the national efficiency values. The reasons are as follows:

(1) Coastal regions have a relatively developed transportation
industry due to location advantages and the first-mover
advantage of reform and opening. These areas have
advanced industrial structures and levels of industrial
agglomeration, which can improve energy utilization
efficiency and TSCDEE. For example, Beijing promotes
integrated railway and transportation systems. Guangdong
shifts to electric buses. Owing to their geographical location,
coastal provinces have a high level of opening up to the
outside world. They can attract more foreign investment and
technology. Their management concepts and energy-saving
and emission-reduction technologies are advanced. Coastal
provinces have achieved great results in promoting green
transformation and low-carbon development. For example,
Beijing has promoted the “integration of the two networks” of
rail and transit to enhance the overall efficiency of the public
transportation system and the travel experience of passengers.
Yancheng has become the first “city of 10 million kilowatts of
new energy power generation” in the Yangtze River Delta
region, actively promoting the construction of a zero-carbon
industrial park. The electrification rate of buses in Guangdong
Province reaches 98.88%, and the scale of the new energy
operating vehicles and vessels ranks first in China.

(2) The TSCDEE in the Middle Yangtze River, the Middle Yellow
River, and the Northwest are closer to that in the coastal
regions. The Middle Yangtze River and Middle Yellow River
regions have rich natural resources and population
advantages. Industrial factor endowments allow them to
develop new quality productivity according to local
conditions. Their industrial structure is constantly
optimized and adjusted, and the transportation
infrastructure is continuously improved. Therefore, the
TSCDEE in these two regions closely follows that in the
coastal regions. The Northwest has a huge potential for
wind power generation, which can reduce greenhouse gas
emissions and strengthen the use of clean energy.

(3) Because of their geographic limitations, the Southwest and the
Northeast have difficulties in absorbing advanced
technologies. And following the reform and opening, many
people moved to the coastal provinces, causing a serious brain
drain in the two regions, which has affected the technological
progress of the local transportation industry. Furthermore,
these two regions also face greater challenges in attracting
foreign investment and high-tech enterprises, which restricts
their TSCDEE level.

4.1.3 Provincial-level analysis
The annual average TSCDEE of 30 provinces can be divided into

four intervals, and the 30 provinces can be divided into four spatial
regions, including the high TSCDEE (>0.85), relatively high
TSCDEE (0.674–0.849), medium TSCDEE (0.51–0.645), and low
TSCDEE (<0.5). (1) For Hebei, Anhui, Jiangsu, Ningxia, Hainan,
and Shanghai, TSCDEEs are greater than 0.85. Notably, Ningxia is a

FIGURE 1
The evolutionary trend of TSCDEE value in China (2012–2022).
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western province with a high efficiency value. The reasons are that
Ningxia has conditions for the large-scale development of renewable
energy and is rich in wind and solar energy resources. As a result,
Ningxia has a greater TSCDEE than other western provinces. (2) For
Beijing, Tianjin, Shandong, Zhejiang, Chongqing, Hunan, Henan,
Hubei, Jiangxi, Fujian, Guangdong, and Qinghai, TSCDEEs range
from 0.674 to 0.849 and belong to a relatively high category. (3) For
Jilin, Liaoning, Guizhou, Inner Mongolia, Yunnan, and Guangxi,
TSCDEEs range from 0.51 to 0.645, which are all in the medium
TSCDEE level region. (4) Heilongjiang, Shanxi, Shaanxi, Gansu,
Sichuan, and Xinjiang are all in the low TSCDEE level region (<0.5).

The spatiotemporal evolution trend of provincial TSCDEE in
major years is shown in Figure 2. Trend analysis shows that: (1)
Hebei, Shanghai, and Hainan have consistently maintained the
highest efficiency values, indicating that coastal provinces have
notable advantages in TSCDEE. This may be related to the
economic development level, the improvement of transportation
infrastructure, and the large investment in environmental protection

technology. (2) Beijing, Tianjin, Shanxi, Liaoning, Henan,
Guangdong, Sichuan, Guizhou, and Yunnan show an overall
increasing trend in efficiency, indicating that these provinces are
gradually improving TSCDEE. (3) Heilongjiang, Gansu, Qinghai,
and Ningxia show a decreasing trend in TSCDEE, which may be
related to the irrational allocation of transportation resources. (4)
The TSCDEE of the remaining provinces shows the same trend as
the change of the country, with fluctuating upward and
downward trends.

4.2 Influencing factors analysis for TSCDEE

4.2.1 Hausman test
Before conducting the regression analysis, the Hausman Test is

used with Stata 18.0 software to determine the form of the panel data
model in this study. The null hypothesis (Ho) of the Hausman Test
is that a random effects model is more appropriate, and if the Ho can
be rejected at the significance level, it means that fixed effects are
more appropriate. Conversely, a random effects model is used.

In this study, the parameters of the fixed and random effects
models are first estimated using ordinary least squares (OLS). The
p-value of the test result is 0.4874, which is not significant at the
commonly used significance levels (1%, 5%, 10%) and therefore the
null hypothesis cannot be rejected. Thus, the random effects model
is chosen for the subsequent Tobit regression analysis.

4.2.2 Regression result analysis
In this study, the Tobit random effects model is estimated using

Stata 18.0 software to assess the factors affecting TSCDEE in China.
The regression results are presented in Table 6. Results show that the
regression coefficient of PM is −0.503, significant at a 1% level. The
regression coefficient of lnFTL is 0.035, significant at a 10% level.
The regression coefficient of lnTIL is 0.172, significant at a 1% level.
The regression coefficient of lnTP is −0.323, also significant at a 1%
level. Through coefficient analysis, it is found that the freight
turnover level, the transportation infrastructure level, and
technological progress have significant positive effects on
TSCDEE, while population mobility has a significant negative
impact on TSCDEE. The results are consistent with the previous
hypothesis.

TABLE 5 TSCDEE values for eight Chinese regions (2012–2022).

Regions 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Mean

Northern coast 0.699 0.690 0.709 0.702 0.719 0.817 0.839 0.836 0.810 0.902 0.964 0.790

Eastern coast 0.818 0.792 0.832 0.785 0.769 0.772 0.804 0.810 0.772 0.901 0.881 0.812

Southern coast 0.858 0.837 0.849 0.859 0.945 0.849 0.843 0.884 0.882 0.932 1.012 0.886

Northeast 0.515 0.475 0.498 0.513 0.500 0.496 0.497 0.480 0.477 0.521 0.538 0.501

Middle Yellow River 0.568 0.518 0.548 0.570 0.572 0.597 0.644 0.660 0.627 0.688 0.709 0.609

Middle Yangtze River 0.785 0.793 0.811 0.790 0.782 0.806 0.873 0.890 0.805 0.902 0.915 0.832

Southwest 0.537 0.525 0.550 0.568 0.584 0.600 0.622 0.629 0.610 0.686 0.730 0.604

Northwest 0.791 0.675 0.697 0.732 0.685 0.657 0.667 0.652 0.635 0.639 0.698 0.684

Mean 0.696 0.663 0.687 0.690 0.695 0.699 0.724 0.730 0.702 0.771 0.806 0.715

FIGURE 2
Provincial TSCDEE in 2012, 2017, and 2022. (a) Provincial
TSCDEE in 2012 (b) provincial TSCDEE in 2017 (c) provincial TSCDEE
in 2022.
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4.2.3 Robustness analysis
4.2.3.1 Subsample regression

Considering that time trends or other external factors may
impact the results of the study. This study adopts the strategy of
excluding part of the sample when conducting the robustness test.
Specifically, we exclude the last 3 years of data adopted by the Tobit
regression analysis based on this subsample. The results are seen in
Table 6, which show that the coefficients and significance are
unchanged, proving the robustness of the baseline regression.

4.2.3.2 Endogenous test
This study constructs a multiperiod difference-in-difference

(DID) model for endogenous test. The concept is as follows: the
samples are divided into two groups, experimental and control,
according to the level of population mobility. Then take its mean as
the dividing line; those above the sample mean are set as the
experimental group, and those below the mean are set as the
control group. The regression results are shown in Table 6, and
the conclusion remains valid.

4.3 Heterogeneity analysis of
influencing factors

For the heterogeneity analysis, this study considers the possible
impact of the COVID-19 epidemic on the economic development of
the regions, especially in the transportation sector. To ensure the
accuracy and reliability of the results, this study excludes data from

the year 2020 in conducting the analysis. The results of the
heterogeneous regression are shown in Table 7.

(1) Population mobility has a significant negative impact on the
TSCDEE in the Northern coast and Southwest, while it shows
a significant positive impact in the Middle Yellow River. This
result is related to the stage of urbanization, economic
development level, and industrial structure of each region.
There is slow urbanization process, backward economic
development, and high population outflow in the
Southwest. The loss of talent in the Southwest is
detrimental to the optimization and upgrading of
industrial structure, such as the transition to higher value-
added and more environmentally friendly industries, which
reduces TSCDEE. Urbanization in the Middle Yellow River is
in a high-speed development stage. It can utilize the benefits
of resource endowment and continuously optimize the
industrial structure in the development. With the
population inflow, professional and technical talents
increase and bring more advanced energy-saving and
emission-reduction technologies, then improve TSCDEE. A
comparative analysis of the coefficients reveals that
population mobility has a most significant negative impact
on the Northern coast. The reasons are that Beijing, as the
capital of China, is also the center of politics, economy, and
culture, attracting a large number of migrant and skilled
workers; Tianjin is a megacity with a huge population size;
The transportation network extends in all directions in Hebei,

TABLE 6 Tobit regression results.

lntscdee (1) Tobit regression (2) Subsample regression (3) Multi-period DID

PM −0.503*** (0.108) −0.271** (0.110) −0.255*** (0.085)

lnFTL 0.035* (0.021) 0.081*** (0.029) 0.049** (0.021)

lnTIL 0.172*** (0.044) 0.095* (0.054) 0.246*** (0.041)

lnTP −0.323*** (0.035) −0.322*** (0.039) −0.291*** (0.035)

_cons 5.458*** (0.320) 5.248*** (0.371) 4.912*** (0.289)

N 330 240 330

Note: Standard errors in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.

TABLE 7 Heterogeneity analysis results for the factors influencing TSCDEE in eight Chinese regions.

Northern
coast

Eastern
coast

Southern
coast

Northeast Middle
Yellow River

Middle
Yangtze River

Southwest Northwest

PM −1.719*** (0.338) −0.202 (0.223) −0.219 (0.157) 0.153 (0.682) 0.669** (0.275) 0.136 (0.280) −0.441* (0.242) −0.211 (0.410)

lnFTL 0.128*** (0.038) 0.216*** (0.048) −0.004 (0.024) 0.119*** (0.039) 0.668*** (0.049) 0.042 (0.045) 0.351*** (0.120) 0.283** (0.113)

lnTIL −0.373*** (0.105) 0.046 (0.058) 0.160 (0.106) 1.131*** (0.261) 0.325*** (0.087) 0.571*** (0.120) 0.200** (0.083) −0.132 (0.130)

lnTP −0.077 (0.112) −0.361***
(0.093)

−0.092 (0.089) −0.802***
(0.096)

−0.146*** (0.040) −0.144* (0.083) −0.464***
(0.087)

−0.284**
(0.121)

_cons 4.951*** (0.972) 4.332*** (0.943) 4.611*** (0.600) 4.793*** (0.913) −1.686** (0.804) 3.204*** (0.955) 3.643*** (0.997) 4.425***
(1.028)

N 40 30 30 30 40 40 50 40

Note: Standard errors in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.
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and Hebei is an important transportation hub connecting
population flows in North China, Northeast, and Northwest;
Shandong is a large population province in China. The
improvement of TSCDEE in the Northern coast is
hindered by the growing population, the pressure on
transportation demand, and the increase in energy
consumption. Therefore, for the Northern coast, it is
necessary to optimize residents’ transportation methods,
alleviate traffic congestion, and promote green travel or
shared transportation modes to reduce energy consumption.

(2) The freight turnover level has a significant positive impact on
TSCDEE in the Northern coast, Eastern coast, Northeast,
Middle Yellow River, Southwest, and Northwest regions. This
is because the improvement in the freight turnover level
reflects an increase in the volume of freight turnover,
which is conducive to the promotion of advanced
transportation equipment and the introduction of cutting-
edge technology. This will increase the investment in
transportation facilities, improve the economic
development level, and ultimately enhance TSCDEE (Tang
et al., 2023). Through the coefficient comparison analysis, it is
found that the freight turnover level promotes TSCDEE most
significantly in the Middle Yellow River, followed by the
Southwest and Northwest. The reasons are that the
geographic location and transportation advantages of the
Middle Yellow River make it an important hub connecting
east and west, and communicating north and south. It has a
high freight turnover and a higher demand for advanced
transportation equipment, which increases its economic
development potential and better utilizes advanced
technology. They have difficulties in absorbing advanced
technologies due to geographic constraints, which lead to
the backwardness of production technologies in the
Northwest and Southwest, especially in the field of
transportation. To improve TSCDEE, it is important to
increase investment in transportation facilities to enhance
the freight turnover level.

(3) The transportation infrastructure level has a significant
positive effect on TSCDEE in the Northeast, Middle
Yellow River, Middle Yangtze River, and Southwest
regions, while it shows the opposite effect in the Northern
coast. Through the coefficient comparison analysis, it is found
that the transportation infrastructure level contributes most
significantly to TSCDEE in the Northeast. This is because the
Northeast is sparsely populated, with a relatively low
population concentration. There has the backward
transportation network and weakest infrastructure. The
natural low-temperature environment has become a major
obstacle to the promotion of new energy vehicles in the
Northeast. The transportation structure needs to be
optimized there. Therefore, it is essential to improve the
construction of transportation infrastructure, especially
promoting the use scenarios of new energy vehicles in the
Northeast. The urbanization level of the Middle Yellow River,
Middle Yangtze River, and Southwest is still in the
development stage, strengthening infrastructure
construction is conducive to improving TSCDEE. Over the
years, the Northern coast has had a good foundation for the

development of transportation infrastructure construction,
structural transformation, and technological innovation. The
Northern coast owns the most complete transportation
system in China. If it continues to expand infrastructure in
a unordered manner, resources and energy will be wasted. It is
necessary to explore other ways besides infrastructure
development to improve TSCDEE in the Northern coast.

(4) Technological progress has a significant contribution to
TSCDEE in the Eastern coast, Northeast, Middle Yellow
River, Middle Yangtze River, Southwest, and Northwest.
Technological progress is an important driver in the
energy utilization process that reduces carbon emissions.
Lower energy intensity represents less energy consumption
for the same economic output, which improves economic
efficiency and promotes transportation carbon emission
efficiency. The coefficient comparison analysis reveals that
technological progress has the most significant contribution
to TSCDEE in the Northeast. The Northeast is the largest
heavy industry base in China. There is the backward
economic development, serious brain drain, and
insufficient development of high-tech industries in the
Northeast. If the Northeast can improve the industrial
structure, promote the transformation and upgrading of
industries, and realize the dual goals of low-energy
consumption and high-output value, it will have an
extremely significant positive impact on the TSCDEE.
Notably, the impact of technological progress on the
Northern and Southern coasts is not strong enough. There
are the best education resources, the top higher education
institutions, numerous research institutes, and a significant
potential for technological innovation in the Northern coast.
The Southern coast has formed several high-tech industry
clusters based on its geographical location and policy support.
The vigorous development of high-tech industries promotes
technological innovation and industrial upgrading and helps
to alleviate environmental pressure and reduce pollution.
Therefore, technological progress is already an advantage
for the Northern and Southern coasts, there is limited
room to enhance their TSCDEE solely on
technological progress.

5 Discussion

(1) The TSCDEE overall shows a fluctuating upward trend in
China. The efficiency exhibits an unbalanced regional
distribution and significant differences between provinces.
The above conclusions are consistent with the findings of
previous studies. In addition, this study also finds that
TSCDEE is higher in coastal regions and lower in the
Southwest and Northeast. This suggests that coastal regions
should take more responsibility for the green transition in
transportation, while the Southwest and Northeast should
focus on retaining and attracting talent, improving
transportation infrastructure, and promoting
technological progress.

(2) In terms of the influencing factors, this study finds that the
improvement in the transportation infrastructure will
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enhance TSCDEE, which supports the view of Zhao et al.
(2022). Technological progress can improve TSCDEE, which
is consistent with the findings of Lin and Jiang. (2022). In
addition, this study further finds that population mobility has
a significant negative effect on TSCDEE, which validates the
previous hypothesis. The increase in population mobility
leads to a rise in transportation demand, which increases
energy consumption and carbon emissions and reduces
TSCDEE. Meanwhile, this study also finds that the increase
in freight turnover can improve TSCDEE, which is consistent
with the previous hypothesis. The increase in freight turnover
is conducive to meeting the transportation demand,
improving economic development, and ultimately
increasing TSCDEE.

(3) In terms of heterogeneity analysis, this study finds that the
influencing factors show significant differences across
different regions. The main manifestations are as
follows: the regression coefficients of population
mobility have obvious spatial heterogeneity. Population
mobility has the most significant negative effect on the
Northern coast; the regression coefficients of freight
turnover show positive correlation effect in most
regions. Freight turnover has the most significant
positive effect on the Middle Yellow River; In all
regions, the coefficients of the transportation
infrastructure level are either positively or negatively
distributed. Transportation infrastructure has the most
significant positive effect on the Northeast. This study
further finds that the transportation infrastructure level
has a significant negative effect on TSCDEE in the
Northern coast, which suggests that the Northern coast
should optimize its existing transportation network to
alleviate traffic congestion; the regression coefficients of
technological progress show a positive correlation effect
throughout the country. The high values are distributed in
the Northeast and Southwest. At the same time, this study
also finds that technological progress does not play a
significant role in the Northern and Southern coasts,
because these two regions already have the advantages
of technological progress, and the marginal benefits of
further technological investment are relatively low.

6 Policy implications

(1) The Chinese government should strengthen the policy
guarantee for green and low-carbon transportation to
promote the low-carbon transformation of the
transportation sector. It is important to narrow the
development gap and improve TSCDEE. On the one
hand, policy synergy should be strengthened. The
country should create a unified accounting method for
transportation carbon emissions and clarify the emission
targets and sources. The statistical database should be
improved to implement transportation carbon emissions
management and control. On the other hand, the regional
linkage should be strengthened. Regions should establish a
cross-regional transportation technology cooperation

platform. They should promote resource sharing and
talent exchange, break down administrative division
barriers, and realize complementary advantages.
Regional development differences should also be
considered. Coastal provinces need to take advantage of
their economic and geographical strengths. The backward
regions should be given financial subsidies and talent
introduction policies. The transportation projects in the
backward regions need priority support. It is necessary to
improve the construction of transportation infrastructure
and enhance TSCDEE in the backward regions.

(2) To improve TSCDEE, it is necessary to utilize the
synergistic effect among the influencing factors. On the
one hand, local governments should actively respond to the
national policy orientation of expanding domestic
demand. They should boost consumption and improve
investment efficiency to raise the demand for
transportation freight, which will increase freight
turnover. Infrastructure is an important support for the
development of new-quality productive forces. It is
necessary to strengthen transportation infrastructure
investment to promote economic growth (Oladunni
et al., 2022). It is necessary to promote the construction
of green transportation infrastructure and optimize the
layout, structure, function, and development mode of
infrastructure. It is important to optimize the energy
structure, improve the efficiency of energy use, and
promote technological progress in the transportation
sector. To achieve sustainable economic development, a
new mechanism for the comprehensive transition from
dual control of total energy consumption and intensity to
dual control of total carbon emissions and intensity should
be promoted. On the other hand, the government should
advocate that residents adopt a moderate, green, and low-
carbon lifestyle, and guide them to give priority to the
green modes of travel. The large-scale application of new
energy sources and clean energy vehicles should be
achieved to mitigate the negative impacts of
population mobility.

(3) Local governments should consider regional differences when
formulating policies. In coastal areas with large population
mobility, emphasis should be placed on enhancing public
awareness of green travel and advocating green travel modes.
At the same time, it is essential to upgrade the supply capacity
of public transportation, optimize and adjust the layout of
urban bus lines and stations to improve the public travel
experience. In the Northeast, emphasis should be placed on
the implementation of financial subsidies and tax incentives,
including subsidies for investment in clean energy projects,
energy-saving and emission-reduction technologies. At the
same time, it is important to implement talent introduction
policies and encourage high-tech industries to land in the
Northeast, and provide career development and research
opportunities for technical talents. The Middle Yellow
River should utilize its strategic transportation position to
improve freight turnover. It can strengthen regional linkages,
establish a multimodal transport system, and realize the
connection between different modes of transportation.
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7 Conclusion

This study uses the EBM-DEA model to calculate the TSCDEE
in China and analyzes the spatiotemporal evolution pattern of the
TSCDEE. The Tobit model is used to analyze the influencing factors
as well as the heterogeneity in different regions. The main
conclusions are as follows:

(1) The TSCDEE in most provinces shows a fluctuating upward
trend, which is consistent with the overall TSCDEE trend in
China. In addition, there is an imbalance in the spatial
distribution of efficiency values, which is manifested in
higher efficiency values in coastal regions and lower
efficiency values in the Southwest and Northeast.

(2) The Tobit regression result shows that TSCDEE is influenced
by factors such as population mobility, freight turnover level,
transportation infrastructure level, and technological
progress. Notably, only population mobility plays a
negative influence on TSCDEE. For this result, it is
recommended that the government actively promotes
green travel policies and calls on provinces to adopt
specific traffic management measures to cope with the
negative impact of population mobility.

(3) The Tobit model is used for heterogeneity analysis of the
influencing factors. The results show that regions differ in
urbanization level, economic development level, resource
endowment, and industrial structure. As a result, the same
influencing factor can have varying strengths and directions
of influence on different regions. Based on this result, it is
suggested that local governments should consider regional
heterogeneity and make targeted policy recommendations.
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