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Introduction: Recent advances in artificial intelligence have transformed the way
we analyze complex environmental data. However, high-dimensionality,
spatiotemporal variability, and heterogeneous data sources continue to pose
major challenges.

Methods: In this work, we introduce the Environmental Graph-Aware Neural
Network (EGAN), a novel framework designed to model and analyze large-scale,
multi-modal environmental datasets. EGAN constructs a spatiotemporal graph
representation that integrates physical proximity, ecological similarity, and
temporal dynamics, and applies graph convolutional encoders to learn
expressive spatial features. These are fused with temporal representations
using attention mechanisms, enabling the model to dynamically capture
relevant patterns across modalities. The framework is further enhanced by
domain-informed learning strategies that incorporate physics-based
constraints, meta-learning for regional adaptation, and uncertainty-aware
predictions.

Results: Extensive experiments on four benchmark datasets demonstrate that
our approach achieves state-of-the-art performance in environmental object
detection, segmentation, and scene understanding.

Discussion: EGAN is shown to be a robust and interpretable tool for real-world
environmental monitoring applications.
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1 Introduction

Environmental monitoring is critical for understanding and addressing challenges such
as climate change, biodiversity loss, and resource management (Joshi et al., 2024).
Traditional monitoring methods, which rely heavily on manual observation and limited
data collection, are inadequate to address the complexity and scale of contemporary
environmental issues. The advent of big data and remote sensing technologies has
revolutionized this domain by enabling the collection of vast amounts of environmental
data from satellites, drones, and IoT-enabled sensors (Nigar et al., 2024). However, the sheer
volume and heterogeneity of this data pose significant challenges for effective analysis and
interpretation. In this context, object detection—a fundamental computer vision task—has
emerged as a key technique for identifying and tracking objects of interest, such as wildlife,
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vegetation, and pollutants, in environmental datasets. To make full
use of big data, deep learning-based object detection methods have
become essential, offering unparalleled accuracy and efficiency in
extracting actionable insights from large-scale, complex
environmental datasets (Feng et al., 2024). Environmental
monitoring is critical for understanding and addressing
challenges such as climate change, biodiversity loss, and resource
management (Joshi et al., 2024). Traditional monitoring methods,
which rely heavily on manual observation and limited data
collection, are inadequate to address the complexity and scale of
contemporary environmental issues. The advent of big data and
remote sensing technologies has revolutionized this domain by
enabling the collection of vast amounts of environmental data
from satellites, drones, and IoT-enabled sensors (Nigar et al.,
2024). However, the sheer volume and heterogeneity of this data
pose significant challenges for effective analysis and interpretation.
In this context, object detection—a fundamental computer vision
task—has emerged as a key technique for identifying and tracking
objects of interest, such as wildlife, vegetation, and pollutants, in
environmental datasets. To make full use of big data, deep learning-
based object detection methods have become essential, offering
unparalleled accuracy and efficiency in extracting actionable
insights from large-scale, complex environmental datasets (Feng
et al., 2024).

The early stages of object detection in environmental
monitoring were primarily based on heuristic and rule-driven
methods, where algorithms processed environmental data
through a set of predefined instructions and patterns (Lv et al.,
2023). These methods focused on detecting basic features such as
edges, textures, and shapes, which helped identify elements like
water bodies, forests, or animals in satellite imagery (Virasova et al.,
2021). Although these approaches were interpretable and laid the
groundwork for automation in monitoring tasks, they were limited
by rigid rules and often failed to adapt to the diversity and
complexity of environmental data. Additionally, their reliance on
high-quality images and their sensitivity to noise and data variations
made them unsuitable for large-scale environmental datasets (Yin
et al., 2020).

The development of more sophisticated machine learning
techniques marked a significant shift in object detection, as
algorithms became capable of identifying patterns from data with
less reliance on explicit human intervention (Zhang et al., 2022).
Early machine learning models, such as support vector machines
and random forests, improved the accuracy of object classification
by leveraging features extracted from data (Li et al., 2022a). While
these models reduced the need for hand-crafted rules, they still faced
challenges in scaling to handle large and diverse environmental
datasets, requiring complex feature extraction and often
underperforming when faced with high-dimensional data (Zhu
et al., 2021). The introduction of convolutional neural networks
(CNNs) further advanced object detection by enabling automated
learning of hierarchical features from raw images, significantly
improving performance in tasks such as tracking deforestation
and monitoring wildlife populations. However, these models were
still computationally demanding and struggled with processing large
datasets efficiently (Li et al., 2022b).

Recent breakthroughs in deep learning, combined with advances
in big data analytics, have enabled real-time object detection on

large-scale environmental datasets (Bai et al., 2022). Models like
YOLO (You Only Look Once), Faster R-CNN, and transformer-
based vision architectures now allow for high-accuracy detection in
diverse environmental contexts (Liu Y. et al., 2022). These models
incorporate innovations such as multi-scale feature representation
and attention mechanisms, which address issues like occlusion, data
variability, and noise. Moreover, the integration of deep learning
with cloud computing and distributed processing systems has
enhanced the scalability of environmental monitoring, enabling
the processing of massive data streams from remote sensing and
IoT devices (Liu J. et al., 2022). For instance, these methods have
been successfully used to track illegal logging, assess urban heat
islands, and monitor endangered species. Despite these advances,
challenges remain, including the need for high-quality labeled data,
the computational costs of training large models, and the
interpretability of deep learning results, which is crucial for
making informed policy decisions in environmental management
(Wang et al., 2023).

To address these challenges, we propose a novel framework that
combines deep learning-based object detection with big data
analytics for environmental monitoring. Our approach
incorporates advanced neural architectures, such as Vision
Transformers (ViTs), and pre-trained models optimized for
environmental datasets, enabling accurate detection across diverse
ecological conditions. We employ transfer learning to mitigate the
need for extensive labeled data and integrate explainability modules
to enhance the interpretability of predictions. By leveraging
distributed computing and edge AI, the proposed system ensures
scalability and real-time processing, making it suitable for large-
scale environmental monitoring tasks.

We summarize our contributions as follows:

• The proposed approach integrates cutting-edge deep learning
models, such as Vision Transformers and pre-trained
frameworks, with big data analytics to improve object
detection accuracy and efficiency in environmental
monitoring.

• Designed to handle large-scale, heterogeneous datasets, the
method is highly scalable and adaptable to various
environmental applications, including biodiversity
monitoring, pollution detection, and resource management.

• Experimental results demonstrate significant improvements in
detection accuracy, computational efficiency, and robustness
under challenging conditions, validating the effectiveness of
the proposed system for real-world environmental
monitoring.

2 Related work

2.1 Deep learning for object detection

Deep learning has fundamentally transformed the field of object
detection, providing advanced techniques for identifying and
localizing objects in images and videos. In the context of
environmental monitoring, deep learning-based object detection
models have enabled automated analysis of vast amounts of
visual data collected through remote sensing, surveillance
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cameras, drones, and other IoT-enabled devices (Lou et al., 2023).
These methods have demonstrated remarkable accuracy and
scalability, addressing key challenges such as detecting small,
occluded, or overlapping objects in complex natural
environments (Liu Y.-C. et al., 2021). State-of-the-art object
detection models, such as Faster R-CNN, YOLO (You Only Look
Once), and SSD (Single Shot Multibox Detector), have been widely
adopted in environmental monitoring applications. Faster R-CNN
employs a region proposal network (RPN) to generate candidate
object regions, followed by classification and bounding box
regression, offering high accuracy for detecting diverse objects.
YOLO and SSD, on the other hand, prioritize real-time detection
by using single-stage architectures, making them suitable for
applications that require immediate response, such as disaster
monitoring or wildlife tracking (Wang Y. et al., 2021). Recent
advancements in object detection include transformer-based
architectures, such as the Detection Transformer (DETR), which
leverage self-attention mechanisms to model global dependencies in
the input data. These models have proven effective in scenarios
where the spatial arrangement of objects is crucial, such as mapping
deforestation patterns or monitoring urban sprawl (Singh and
Taylor, 2020). Furthermore, lightweight versions of these models,
such as YOLOv5 and MobileNet-SSD, have been developed to
enable deployment on resource-constrained devices, ensuring
accessibility in remote and under-resourced areas (Qin et al.,
2020). Environmental monitoring often involves detecting objects
under challenging conditions, including varying lighting, weather,
and terrain. Deep learning models address these challenges through
data augmentation techniques, such as geometric transformations
and photometric adjustments, to improve model robustness.
Multimodal approaches that integrate data from multiple sources,
such as RGB, infrared, and LiDAR sensors, have enhanced detection
accuracy by providing complementary perspectives on the
environment (Xie et al., 2021). Despite these advancements,
several challenges remain in deploying deep learning-based object
detection systems at scale. Data annotation is a significant
bottleneck, as labeling environmental datasets requires domain
expertise and substantial effort. To address this, researchers have
explored unsupervised and semi-supervised learning techniques,
such as self-training and contrastive learning, to reduce reliance
on labeled data. Moreover, active learning strategies, where the
model identifies uncertain samples for manual annotation, have
been employed to maximize the efficiency of the labeling process
(Gu et al., 2021).

2.2 Big data integration for environmental
monitoring

Environmental monitoring generates massive amounts of data
from diverse sources, including satellite imagery, drone footage,
sensor networks, and citizen science platforms (Xu et al., 2021). The
integration of these big data streams with deep learning-based object
detection systems has opened new opportunities for large-scale and
high-resolution monitoring of environmental changes (Wang T.
et al., 2021). However, the complexity and heterogeneity of
environmental big data pose significant challenges in terms of
data management, preprocessing, and analysis. Data fusion

techniques have been instrumental in addressing the
heterogeneity of environmental data. By combining data from
different modalities, such as optical imagery, radar, and
multispectral data, deep learning models can leverage
complementary information to improve detection accuracy (Sun
et al., 2021). For example, in forest monitoring, multispectral data
can help identify tree species, while LiDAR data provides detailed
topographic information, enabling precise detection of deforestation
or illegal logging activities (Joseph et al., 2021). Distributed
computing frameworks, such as Apache Spark and Hadoop, have
facilitated the processing and analysis of large-scale environmental
datasets. These frameworks enable parallel computation and
efficient storage of big data, ensuring scalability for applications
that require continuous monitoring over large geographic areas.
When combined with cloud-based platforms, such as Google Earth
Engine or AWS S3, these systems provide a robust infrastructure for
deploying deep learning models in real-time. The use of
spatiotemporal analysis is critical in environmental monitoring,
as many phenomena evolve over time (Singh et al., 2021). Deep
learning models, such as spatiotemporal convolutional networks
and temporal attentionmechanisms, have been developed to analyze
sequential data, such as time-lapse imagery or sensor readings.
These models can detect trends, anomalies, and seasonal
variations, providing actionable insights for environmental
management (Fan et al., 2021). For instance, spatiotemporal
models have been used to monitor glacier retreat, urban heat
islands, and changes in biodiversity. However, the integration of
big data with deep learning systems requires addressing challenges
related to data quality and privacy. Environmental data often suffer
from noise, missing values, and inconsistencies, which can affect
model performance. Advanced data cleaning and imputation
techniques, including autoencoders and generative models, have
been employed to address these issues (Misra et al., 2021). Ensuring
data privacy and security is critical, especially when integrating data
from sensitive sources, such as citizen contributions or protected
ecosystems. The deployment of big data-driven object detection
systems also requires addressing the energy efficiency and
environmental impact of deep learning models. Training large-
scale models on extensive datasets consumes significant
computational resources, contributing to carbon emissions.
Researchers are increasingly focusing on developing energy-
efficient architectures, such as pruning and quantization, and
exploring alternative training strategies, such as federated
learning, to mitigate these impacts (Han et al., 2021).

2.3 Applications in environmental
monitoring

The combination of deep learning-based object detection and
big data has enabled a wide range of applications in environmental
monitoring, addressing critical issues such as climate change,
biodiversity loss, and disaster management (Reading et al., 2021).
These applications leverage the ability of object detection models to
analyze large-scale datasets and provide detailed, actionable insights
for policymakers, researchers, and conservationists. One of the most
impactful applications is in wildlife conservation, where object
detection models are used to identify and track animals in their
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natural habitats (Feng et al., 2021). By analyzing drone footage or
camera trap images, these models can monitor population
dynamics, migration patterns, and habitat use, informing
conservation strategies. For example, deep learning has been used
to detect poaching activities by identifying human and vehicle
presence in protected areas, enabling real-time interventions (Liu
Z. et al., 2021). In agriculture, object detection systems are applied to
monitor crop health, identify pest infestations, and optimize
irrigation practices. By analyzing high-resolution satellite imagery
or drone data, these models can detect anomalies, such as disease
outbreaks or nutrient deficiencies, at an early stage, reducing crop
losses and improving food security. Similarly, object detection has
been used to monitor aquaculture systems, ensuring sustainable fish
farming practices. Disaster management is another critical area
where deep learning-based object detection has proven invaluable
(Singh et al., 2022). During natural disasters, such as floods,
wildfires, or hurricanes, these models can analyze real-time data
from satellites and drones to assess the extent of damage and identify
affected areas (Carion et al., 2020). This information is crucial for
coordinating rescue operations and allocating resources effectively.
For instance, object detection models have been used to map wildfire
perimeters and monitor their progression, aiding firefighting efforts.
Climate change monitoring relies heavily on object detection
systems to analyze environmental changes over time (Zhu et al.,
2020). By detecting deforestation, glacier retreat, and urban
expansion, these models provide valuable data for understanding
the drivers and impacts of climate change. For example, deep
learning has been used to map deforestation in the Amazon
rainforest, identifying hotspots of illegal logging and informing
conservation policies. Challenges in these applications include the
need for domain-specific adaptations and real-time processing
capabilities. Environmental monitoring often requires specialized
models that can detect rare or subtle objects, such as endangered
species or microplastic particles. Developing such models involves
extensive data collection and annotation, as well as advanced
training techniques. Real-time applications, such as disaster
response, demand low-latency systems that can process data and
generate insights within seconds, necessitating the optimization of
deep learning pipelines (Liu et al., 2023).

3 Methods

3.1 Overview

The integration of artificial intelligence (AI) into environmental
science has paved the way for groundbreaking advancements in
understanding, monitoring, and mitigating pressing environmental
challenges. Environmental AI focuses on the development and
deployment of AI-driven models and frameworks to address
critical issues such as climate change, biodiversity loss, pollution
monitoring, resource management, and disaster prediction. This
subsection provides an overview of our proposed methodology for
leveraging AI techniques in the environmental domain.

Section 3.2 introduces the challenges and complexities inherent
to environmental data, including its high-dimensionality, temporal
variability, and multi-modal nature. Environmental data often
encompasses diverse sources, such as satellite imagery, sensor

networks, and time-series observations, each with unique noise
and resolution characteristics. We formalize the problem of
analyzing environmental data and present the mathematical
notations and techniques that underpin our approach. To
address the limitations of existing methods, Section 3.3 propose a
new AI-driven model that integrates multi-modal data processing,
spatiotemporal analysis, and interpretable learning mechanisms.
Our model is designed to handle large-scale environmental
datasets, capture complex relationships, and generate actionable
insights. By leveraging recent advancements in deep learning, such
as graph neural networks and transformer-based architectures, our
approach aims to deliver state-of-the-art performance in various
environmental applications, including deforestation monitoring,
pollutant mapping, and climate anomaly detection. Recognizing
the importance of domain-specific adaptations, Section 3.4
introduce strategies for improving model generalization,
interpretability, and robustness. These include transfer learning
techniques for limited labeled data, attention mechanisms for
prioritizing critical environmental features, and uncertainty
estimation for reliable decision-making. We propose methods for
integrating scientific knowledge, such as physical and ecological
constraints, into the learning process, ensuring that the model aligns
with real-world dynamics.

3.2 Preliminaries

Environmental systems are inherently complex, characterized
by high-dimensional, multi-modal, and spatiotemporally variable
data. To effectively address environmental challenges such as
climate change, biodiversity monitoring, and resource
management, it is essential to formalize the computational and
mathematical foundations of these problems. This section
establishes the preliminaries for analyzing environmental data,
focusing on its representation, inherent challenges, and the
fundamental mathematical notations required to develop robust
AI-driven solutions.

Environmental data is often collected from diverse sources, such
as remote sensing satellites, sensor networks, time-series
observations, and crowd-sourced platforms. Let the dataset be
denoted as D � {x1, x2, . . . , xN}, where xi represents an
individual observation or sample, and N is the total number of
samples. Each sample xi can be described as a tuple (Equation 1):

xi � Xi, yi, ti, ci( ) (1)
where: Xi is the feature matrix containing spatial, temporal, or
spectral attributes. yi represents the target variable(s) of interest,
such as deforestation rates, temperature anomalies, or pollutant
levels. ti is the timestamp associated with the observation. ci
represents contextual metadata, such as geolocation or sensor type.

Depending on the application, D can exhibit various forms:
Environmental processes such as air quality monitoring and ocean
temperature trends are captured as sequences:
Xi � {xi,1, xi,2, . . . , xi,T}, where T denotes the number of time
steps. Land use maps, vegetation indices, or pollutant
distributions are stored as grids or images, Xi ∈ RH×W×C, where
H, W, and C represent the height, width, and number of channels,
respectively. Combining satellite imagery, ground-based sensor
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data, and numerical simulations to form a unified representation,
Xi � {X(1)

i ,X(2)
i , . . . ,X(M)

i }, where each X(m)
i corresponds to a

specific data modality. Environmental challenges can be
formalized as a set of computational problems. Let y �
{y1, y2, . . . , yN} denote the target outputs corresponding to the
dataset D. Our objective is to learn a mapping function f
(Equation 2):

f: X × T × C → Y (2)
where X , T , C, and Y represent the input features, time domain,
contextual metadata, and output space, respectively. The model f is
parameterized byΘ, and its parameters are optimized to minimize a
task-specific loss function L (Equation 3):

L Θ( ) � 1
N

∑N
i�1

ℓ f Xi, ti, ci;Θ( ), yi( ) (3)

where ℓ is a loss function, such as mean squared error for regression
or cross-entropy for classification.

To capture the spatial and temporal dependencies of
environmental phenomena, advanced spatiotemporal modeling
techniques are required. Consider an environmental process
represented as a spatiotemporal signal X(s, t), where s denotes
the spatial coordinates and t represents time. A generic model
can be expressed as (Equation 4):

ŷ s, t( ) � f X s, t( );Θ( ) (4)
where f incorporates mechanisms to account for dependencies in
both space and time. For spatial dependencies, techniques such as
convolutional neural networks (CNNs) are used to capture local
patterns in grid-based data (Equation 5):

hs � σ WcpX s( )( ) (5)
where p denotes the convolution operator, Wc is the convolution
kernel, and σ is an activation function.

For temporal dependencies, recurrent neural networks (RNNs)
or transformers are commonly employed (Equation 6):

ht � RNN ht−1,X t( )( ) (6)
where ht is the hidden state at time t.

When both spatial and temporal dependencies are present,
hybrid architectures such as convolutional LSTMs or
spatiotemporal attention mechanisms are used (Equation 7):

Hs,t � Attention Xs,t,Xs′,t′( ), ∀ s′, t′( ) ∈ N s, t( ) (7)
where N (s, t) represents the neighborhood of (s, t) in space-time.

3.3 Environmental Graph-Aware Neural
Network (EGAN)

To address the inherent complexities and challenges of
environmental data, we propose the Environmental Graph-Aware
Neural Network (EGAN), a novel architecture specifically designed
for multi-modal, high-dimensional, and spatiotemporal
environmental data. EGAN leverages graph-based modeling,
attention mechanisms, and deep learning frameworks to
effectively integrate diverse environmental data sources while
respecting spatiotemporal dependencies and domain-specific
constraints (As shown in Figure 1). The following section
describes the core components of EGAN, including its input
representation, architectural design, and learning objectives.

FIGURE 1
The architecture of the Environmental Graph-Aware Neural Network (EGAN), which consists of four stages for spatial modeling, temporal fusion,
and task-specific prediction.
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3.3 1 Graph Construction for Environmental Data
Environmental phenomena, such as climate patterns, pollutant

dispersion, or hydrological flows, inherently exhibit both spatial and
temporal dependencies, making graph-based representations
particularly suitable for modeling these complex systems (As shown
in Figure 2). To capture these dependencies, we represent
environmental data as a weighted graph G � (V, E,A), where V �
{v1, v2, . . . , vN} is the set of N nodes corresponding to discrete spatial
locations such as cities, sensor stations, or grid cells, E ⊆ V × V is the set
of edges encoding pairwise relationships between these locations, and
A ∈ RN×N is the adjacency matrix representing edge weights. Each
entryAij ≥ 0 quantifies the strength of the connection between nodes vi
and vj, where higher values signify stronger relationships. To account
for the spatial heterogeneity of environmental data, nodes are further
associated with multi-modal feature matrices Xi ∈ RT×F, where T
represents the number of time steps, and F represents the number
of features observed or measured at node vi. For example, Xi could
include variables such as temperature, precipitation, wind speed, or
pollutant concentration sampled at regular time intervals. By stacking
the feature matrices of all nodes, the graph feature representation is
constructed as X ∈ RN×T×F. The structure of G plays a critical role in
ensuring that domain-specific relationships between locations are
accurately captured. Physical proximity is often a key determinant of
edge weights, where nodes that are geographically closer tend to have
stronger connections. This can be modeled using a Gaussian kernel to
define adjacency weights, such as Aij � exp(−‖pi−pj‖2

2σ2 ), where pi ∈ R2

and pj ∈ R2 are the spatial coordinates of nodes vi and vj, respectively,
and σ is a bandwidth parameter controlling the influence of distance.
Beyond physical proximity, additional domain-specific relationships
can be encoded to enhance the expressiveness of the graph. For
instance, environmental similarity based on shared attributes, such
as altitude, vegetation type, or soil composition, can be incorporated
using similaritymetrics like cosine similarity, whereAij � f i ·fj

‖f i‖‖fj‖, with f i
and fj being feature vectors representing environmental attributes of
nodes vi and vj. Temporal relationships are also crucial, as
environmental systems often exhibit dynamic dependencies. For
example, weather patterns may propagate across regions over time,
or river flows may influence downstream locations. These temporal
dependencies can be captured by dynamically updating edge weights
Aij(t) as a function of temporal correlations, such as Aij(t) � ρij(t),
where ρij(t) is the temporal correlation coefficient between node

features at time t. Furthermore, graphs can be augmented with
directional edges when modeling asymmetric relationships, such as
wind direction or river flow, using directed adjacency matrices Adir,
where Adir

ij ≠ Adir
ji . By integrating these spatial, temporal, and domain-

specific relationships into G, the graph representation effectively
captures the multi-faceted dependencies in environmental data. This
representation is particularly advantageous for downstream machine
learning models, as it enables the integration of heterogeneous features
while preserving critical structural information.

3.3 2 Spatial modeling with graph encoders
The spatial dependencies inherent in environmental data, such

as pollutant dispersion or climate interactions, are effectively
captured using Graph Convolutional Networks (GCNs). GCNs
leverage the graph structure to propagate information across
connected nodes, enabling the integration of spatial relationships
into the learned representations. Specifically, the graph convolution
operation updates each node’s feature representation by aggregating
features from its neighbors. Formally, the update rule for the l-th
GCN layer is expressed as (Equation 8)

H l+1( ) � σ ~AH l( )W l( ) + b l( )( ), (8)

where H(l) ∈ RN×dl is the node feature matrix at layer l, with dl
denoting the dimensionality of the features at this layer. The matrix
W(l) ∈ Rdl×dl+1 and the bias vector b(l) ∈ Rdl+1 are trainable
parameters, and σ(·) is a non-linear activation function such as
ReLU. The normalized adjacency matrix ~A � D−1

2AD−1
2, where D is

the diagonal degree matrix with Dii � ∑jAij, ensures that feature
aggregation is scale-invariant and prevents node features from being
dominated by highly connected nodes. The normalization smooths
the aggregation process, balancing the contributions from each
neighbor. The graph convolution operation enables each node to
iteratively update its representation by incorporating information
from its local neighborhood. After L layers of graph convolution, the
representation of each node reflects information from its L-hop
neighborhood. This localized aggregation mechanism is crucial for
environmental data, where the interactions between nearby spatial
regions often dominate, such as the influence of neighboring
weather stations or adjacent river segments. The final spatial
representation for each node is denoted as Hs ∈ RN×ds , where ds

FIGURE 2
Overview of the environmental data processing pipeline using graph-based construction, illustrating the transformation from raw inputs to multi-
scale feature extraction across graph stages.
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is the dimensionality of the learned spatial embeddings at the output
layer. To enhance the expressiveness of the spatial model, different
variants of the adjacency matrix A can be used, depending on the
domain-specific requirements. For instance, the adjacency matrix
can be weighted using a Gaussian kernel as Aij � exp(−‖pi−pj‖2

2σ2 ),
where pi and pj are the coordinates of nodes vi and vj, respectively,
and σ is a bandwidth parameter controlling the influence of distance.
Alternatively, domain-specific metrics such as environmental
similarity or dynamic relationships can modify A to better
capture the underlying dependencies. For example, Aij can be
dynamically updated to reflect temporal correlations between
nodes over time, such as Aij(t) � ρij(t), where ρij(t) is the
correlation coefficient of features at nodes vi and vj at time t.
Furthermore, multi-scale graph convolution operations can be
introduced to aggregate information at different spatial
resolutions. For example, the adjacency matrix can be augmented
to include edges representing both immediate neighbors and higher-
order connections. This is achieved by constructing higher-order
adjacency matrices Ak for k-hop neighbors and combining them as
~A � ∑K

k�1αkA
k, where αk are trainable weights that determine the

importance of each scale. Such multi-scale extensions enable GCNs
to capture both fine-grained and coarse-grained spatial
dependencies, which are critical for environmental modeling
tasks where interactions occur across multiple spatial scales.
Regularization techniques can be employed to enhance the
robustness of the learned representations. For instance, a
smoothness constraint can be applied to enforce that the features
of neighboring nodes remain similar, defined as (Equation 9)

Lsmooth � ∑
i,j( )∈E

‖Hi −Hj‖2 (9)

where Hi and Hj are the feature representations of nodes vi and vj.
Such a regularization term ensures that the learned embeddings

respect the graph’s structural consistency, which is particularly
important for spatially correlated environmental systems. The
GCN framework provides a powerful mechanism to capture
spatial dependencies in environmental data, leveraging the graph
structure to model complex relationships while preserving
computational efficiency.

3.3 3 Fusion of spatial-temporal features
To integrate spatial and temporal information effectively, the

Environmental Graph-Aware Neural Network (EGAN) employs a
robust feature fusion mechanism based on attention, allowing it to
dynamically weigh and combine spatial and temporal
representations in a task-specific manner. Let Hs ∈ RN×ds

represent the spatial embeddings learned from the graph encoder
and Ht ∈ RN×T×dt represent the temporal embeddings obtained
from the temporal encoder. The fusion process aggregates these
modalities into a unified representationHfusion ∈ RN×df by assigning
adaptive importance weights to each modality. The fused
representation is computed as (Equation 10):

Hfusion � ∑
k

αkHk, αk � exp w⊤
kHk( )

∑j exp w⊤
j Hj( ) (10)

where Hk represents either spatial (Hs) or temporal (Ht) features,
αk denotes the attention weight associated with modality k, and wk

are trainable parameters that learn the relative importance of each
feature type. This attention mechanism ensures that the fusion
process is data-driven, dynamically adjusting the contributions of
spatial and temporal features based on their relevance to the
prediction task. To improve the expressiveness of the attention
mechanism, the weights αk can also be conditioned on task-
specific context vectors c, allowing the fusion process to adapt to
varying environmental conditions. Specifically, the attention weights
can be computed as (Equation 11):

FIGURE 3
Overview of the Domain-Informed Adaptive Learning Strategy (DIALS), integrating physics-guided loss, meta-learning, and uncertainty estimation
for robust environmental modeling.
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αk � exp c⊤ tanh WkHk + bk( )( )
∑j exp c⊤ tanh WjHj + bj( )( ) (11)

where Wk and bk are trainable parameters, and tanh introduces
non-linearity to model complex dependencies between the features
and the context vector. This conditioning enables EGAN to
prioritize specific features depending on external factors, such as
seasonal variations or geographic context, further enhancing its
adaptability. Once the spatial and temporal features are fused into
Hfusion, the representation is passed through a fully connected
network (FCN) to make predictions. The FCN operates on each
node’s fused representation independently, producing outputs
ŷ ∈ RN×C, where C represents the number of prediction targets.
The FCN is defined as (Equation 12):

ŷ � softmax HfusionWf + bf( ) (12)

where Wf and bf are the weights and biases of the FCN, and the
softmax activation is used for classification tasks, while regression tasks
may employ a linear activation. To further refine the fused
representation, additional regularization can be applied to encourage
smoothness and sparsity. A sparsity-promoting loss term can be
introduced to reduce redundancy in the fusion process, defined as
(Equation 13):

Lsparsity � ‖α‖1 (13)

where α � [α1, α2, . . . , αK] is the vector of attention weights. This
encourages the model to focus on the most relevant features while

suppressing less important ones. To ensure that the fusion respects
the temporal and spatial correlations within the data, a smoothness
regularization term can be added (Equation 14):

Lsmooth � ∑
i,j( )∈E

‖Hfusion,i −Hfusion,j‖2 (14)

where Hfusion,i and Hfusion,j are the fused representations of nodes
vi and vj, respectively. This regularization enforces that
neighboring nodes in the graph have similar fused
representations, reflecting the spatial continuity of
environmental phenomena.

3.4 Domain-Informed Adaptive Learning
Strategy (DIALS)

To complement the Environmental Graph-Aware Neural
Network (EGAN), we propose the Domain-Informed Adaptive
Learning Strategy (DIALS). DIALS addresses key challenges in
environmental data analysis, such as limited labeled data, inter-
region variability, and the integration of domain-specific
constraints, by employing a suite of adaptive learning
techniques (As shown in Figure 4). This strategy enhances the
generalization, robustness, and interpretability of EGAN,
enabling its application to a wide range of
environmental problems.

FIGURE 4
Transformer-based framework with physics-guided loss regularization, incorporating hyperspectral data encoding and cross-attention
mechanisms for multi-modal environmental learning.
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3.4 1 Physics-guided loss regularization
Environmental systems are fundamentally governed by physical

and ecological principles, such as conservation laws, energy
balances, and fluid dynamics, which provide crucial constraints
on the behavior of these systems (As shown in Figure 4).
Incorporating these principles into the learning process through
physics-guided regularization enables the model to produce
predictions that align with known environmental laws, improving
both interpretability and domain-consistency. These constraints are
integrated as regularization terms in the model’s loss function,
penalizing deviations from physically consistent behavior and
guiding the model to prioritize solutions that adhere to
fundamental scientific principles. For example, in atmospheric
modeling, the law of mass conservation, which ensures that the
mass of a system remains constant over time, can be explicitly
enforced using the continuity equation (Equation 15):

Lphysics � ∑N
i�1

∂ρi
∂t

+ ∇ · ρivi( )
�������

�������
2

(15)

where ρi represents the density of the system at node i, and vi is the
velocity field describing the flow at the same node. This regularization
term ensures that the predicted density changes ∂ρi

∂t are balanced by the
divergence of the flux ∇ · (ρivi), adhering to the continuity of mass in
fluid dynamics. Beyond mass conservation, similar constraints can be
applied to enforce energy conservation or momentum conservation.
For instance, in hydrological modeling, energy conservation can be
enforced using the Bernoulli equation, which relates pressure, kinetic
energy, and potential energy in fluid systems. A corresponding loss term
can be formulated as (Equation 16):

Lenergy � ∑N
i�1

Pi

γ
+ 1
2
‖vi‖2 + ghi − const

��������
��������
2

(16)

where Pi is the pressure, γ is the specific weight of the fluid, vi is the
velocity vector, g is the gravitational constant, and hi is the elevation
at node i. This penalizes deviations from the energy balance in fluid
systems, ensuring the physical plausibility of predictions in domains
such as river flow modeling or groundwater movement. Physics-
guided regularization can be extended to account for domain-
specific ecological relationships. For example, in pollutant
dispersion modeling, the spread of a pollutant in air or water is
often governed by advection-diffusion dynamics. The
corresponding partial differential equation (PDE) can be
formulated as (Equation 17):

Ladvection−diffusion � ∑N
i�1

∂Ci

∂t
+ vi · ∇Ci −D∇2Ci

�������
�������
2

(17)

where Ci is the concentration of the pollutant at node i, D is the
diffusion coefficient, and vi represents the advection velocity. This
regularization ensures that the predicted pollutant concentration
changes over time adhere to the underlying physical principles,
allowing the model to better represent dispersion patterns in
complex environments. Physics-guided regularization can also
enforce consistency across hierarchical spatial scales, particularly
in systems where local processes aggregate into regional or global
patterns. For example, let Hlocal

i represent local predictions and

Hregional
j represent regional-level aggregations. A consistency loss can

be formulated as (Equation 18):

Lhierarchy � ∑
i,j( )∈H

‖Hregional
j − Aggregate Hlocal

i{ }
i∈C j( )( )‖2 (18)

where H defines hierarchical relationships, and C(j) represents the
set of local nodes contributing to regional node j. The term
Aggregate(·) captures aggregation rules, such as summation or
averaging, ensuring that model predictions respect hierarchical
dependencies.

3.4 2 Meta-learning for regional adaptation
Environmental data often exhibits significant variability across

regions due to differences in geography, climate, and socioeconomic
conditions, posing a challenge for traditional machine learning
models that assume data from training and testing distributions
are identically distributed. To address this, DIALS employs a meta-
learning framework that enables the Environmental Graph-Aware
Neural Network (EGAN) to adapt efficiently to new regions with
minimal labeled data. The core idea of meta-learning is to train the
model to generalize across a distribution of tasks, where each task
corresponds to a region-specific learning problem. This is achieved
by learning a set of meta-parameters Θmeta that serve as a robust
initialization, allowing for rapid fine-tuning on new tasks with few
labeled examples. During the meta-training phase, the meta-
learning objective is to optimize Θmeta such that the model
performs well after adapting to a given task T i sampled from a
distribution of tasks D. For each task T i, the model is trained on a
support set and validated on a query set, simulating the process of
learning and testing on a new region. The meta-objective is defined
as (Equation 19):

min
Θmeta

∑
T i~D

LT i Θmeta − α∇ΘmetaLT i Θmeta( )( ) (19)

where T i represents a region-specific task, LT i is the loss function
for task T i, and α is the learning rate for the inner-loop
optimization. This bi-level optimization ensures that Θmeta not
only minimizes the loss on each task but also generalizes across
tasks by incorporating knowledge from diverse regions. During
meta-testing, the learned meta-parameters Θmeta are fine-tuned
on a new region T new using a small amount of labeled data. The
fine-tuning process involves gradient descent starting from Θmeta,
defined as (Equation 20):

Θnew � Θmeta − η∇ΘmetaLT new (20)
where η is the step size for fine-tuning, and LT new is the loss on the
new task. This rapid adaptation allows the model to effectively
handle regional variability while leveraging prior knowledge
encoded in Θmeta. To further enhance the adaptation process,
DIALS incorporates task-specific feature normalization.
Environmental data across regions often differ in magnitude and
distribution due to regional factors such as climate zones or terrain
types. By normalizing the features of each task independently, the
model ensures that the fine-tuning process is not biased by the scale
of features. The normalized features are given by (Equation 21):
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X′ � X − μT i

σT i

(21)

where μT i
and σT i are the mean and standard deviation of the

features in task T i, respectively. To task-specific normalization,
DIALS employs adversarial domain adaptation during meta-
training to encourage the model to learn region-invariant
features. A domain discriminator D is trained to classify the
region of origin for each sample, while EGAN is trained to
minimize the following adversarial loss (Equation 22):

Ldomain � −∑N
i�1

log 1 −D Hi( )( ) (22)

where Hi represents the learned features of node i. This adversarial
training ensures that the learned features are region-agnostic,
enabling better generalization to unseen regions. Meta-learning
can be combined with hierarchical regional modeling to capture
both local and global dependencies. For example, fine-grained nodes
can be linked to coarse-grained regional nodes, enforcing
consistency between local and aggregated predictions (Equation 23):

Lhierarchy � ∑
i,j( )∈H

‖Hlocal
i −Hregional

j ‖2 (23)

where H defines the hierarchical relationships. By integrating these
mechanisms, DIALS enables rapid and robust adaptation to new
regions while maintaining interpretability and consistency across
spatial scales.

3.4 3 Uncertainty-aware predictions
Environmental data is often characterized by significant noise,

incompleteness, and variability, which arise from factors such as
measurement errors, sensor malfunctions, and the inherent
stochasticity of environmental processes. These uncertainties
make it challenging to produce reliable predictions, especially
when the data quality varies across different regions or time
periods. To address this, the Domain-Informed Adaptive
Learning Strategy (DIALS) incorporates uncertainty-aware
modeling, allowing predictions to include both the expected
outcome and the associated confidence, which is crucial for
robust decision-making in high-stakes environmental
applications. This is achieved by leveraging Bayesian Neural
Networks (BNNs), where model parameters are treated as
probability distributions rather than fixed point estimates.
Formally, for each input Xi, the predicted output ŷi is modeled
as a Gaussian distribution (Equation 24):

ŷi ~ N μi, σ
2
i( ) (24)

where μi represents the predicted mean, capturing the most likely
outcome, and σ2i represents the predictive uncertainty,
quantifying the confidence in the prediction. This probabilistic
framework enables the model to account for both epistemic
uncertainty and aleatoric uncertainty. To incorporate
uncertainty into the training process, DIALS employs an
uncertainty-guided loss function that dynamically adjusts the
influence of each sample based on its estimated uncertainty.
Specifically, noisy or ambiguous samples, which have higher
uncertainty, are assigned lower weights in the loss function,

thereby preventing the model from overfitting to unreliable
data. The uncertainty-aware loss is defined as (Equation 25):

Luncertainty � ∑N
i�1

1
σ2i
Ltask,i + log σ2i( ) (25)

whereLtask,i is the task-specific loss for the i-th sample, such as mean
squared error for regression or cross-entropy for classification, and
σ2i is the predictive variance for the sample. The term 1

σ2i
downweights the contribution of high-uncertainty samples, while
log σ2i acts as a regularization term to prevent σ2i from becoming
arbitrarily large. To model σ2i , DIALS uses a dual-head output
architecture in EGAN, where one output head predicts the mean
μi, and the other predicts the log-variance log σ2i . This ensures that
both the prediction and uncertainty are jointly optimized during
training. The log-variance formulation provides numerical stability
and prevents the variance from collapsing to zero. To uncertainty-
aware loss functions, DIALS leverages Monte Carlo (MC) Dropout
to approximate Bayesian inference. During both training and
inference, dropout is applied to the model’s layers, and multiple
stochastic forward passes are performed to estimate the uncertainty.
ForM stochastic samples, the mean prediction and total uncertainty
can be computed as (Equation 26):

μi �
1
M

∑M
m�1

ŷ m( )
i , σ2i �

1
M

∑M
m�1

ŷ m( )
i − μi( )2 + �σ2i (26)

where ŷ(m)
i is the m-th stochastic sample, and �σ2i is the aleatoric

uncertainty predicted by the model. This combination of epistemic
and aleatoric uncertainty provides a comprehensive view of the
model’s confidence in its predictions. Furthermore, uncertainty-
aware modeling in DIALS facilitates improved decision-making by
allowing threshold-based interventions. For example, in critical
applications such as flood forecasting or air quality monitoring,
predictions with high uncertainty can trigger additional data
collection or human intervention, ensuring that high-stakes
decisions are not made based on unreliable predictions. The
uncertainty estimates can be used to improve active learning
strategies, where the model identifies high-uncertainty samples and
requests additional labels for those regions, thus enhancing the
training process. To ensure consistency across spatial and temporal
scales, DIALS integrates uncertainty quantification with graph-based
regularization. The smoothness of uncertainty estimates is enforced
across spatially connected nodes in the graph by minimizing the
variance between neighboring nodes (Equation 27):

Lsmooth−uncertainty � ∑
i,j( )∈E

σ2i − σ2j
����� �����2 (27)

where E represents the edges of the graph.
To unify the various components of the proposed training

framework, we define the final objective function as a weighted
combination of the task-specific loss and multiple regularization
terms. The total loss function is given by (Equation 28):

Ltotal � Ltask + λphysLphysics + λuncLuncertainty + λsmoothLsmooth

+ λsparseLsparsity + λunc−smoothLsmooth−uncertainty (28)

Here, Ltask denotes the primary task loss like classification,
segmentation, or regression, Lphysics represents physics-guided
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loss regularization, Luncertainty accounts for uncertainty-aware
prediction, Lsmooth enforces spatial consistency among
neighboring nodes, Lsparsity promotes compact attention
distributions, and Lsmooth−uncertainty ensures smooth uncertainty
estimation across spatially correlated nodes. The coefficients
λphys, λunc, λsmooth, λsparse, λunc−smooth are hyperparameters that
balance the influence of each term and are empirically selected
based on validation performance. This unified loss formulation
ensures that the model not only performs well on predictive
tasks but also respects domain knowledge, enhances
generalization, and produces robust, interpretable outputs.

4 Experimental setup

4.1 Dataset

MODIS Dataset (Satti et al., 2023) is a large-scale dataset
designed for environmental monitoring and land cover analysis.
It contains multispectral satellite imagery collected over several
years, covering diverse geographic regions and seasonal variations.
The dataset provides valuable information for tasks such as
vegetation monitoring, land use classification, and climate
analysis. With its high temporal resolution and global coverage,
the MODIS Dataset has become an essential resource for
researchers working on spatio-temporal modeling and remote
sensing applications. Sentinel-2 Dataset (Weikmann et al., 2021)
is a comprehensive dataset offering high-resolution multispectral
imagery that supports various remote sensing and geospatial
analysis tasks. It includes over 20,000 images annotated for
applications such as agricultural monitoring, urban planning,
and disaster management. The dataset features annotations for
land cover classification and vegetation indices, enabling
researchers to study complex environmental phenomena. Its fine
spatial resolution and spectral richness make the Sentinel-2 Dataset
a critical resource for advancing research in earth observation and
environmental sciences. MS COCO Dataset (Chun et al., 2022) is a
widely-used benchmark dataset for computer vision tasks,
particularly object detection, instance segmentation, and image
captioning. It contains over 300,000 images with detailed
annotations for more than 80 object categories. The dataset
includes challenging scenarios with occlusions, object overlaps,
and diverse environments, making it ideal for training and
evaluating complex visual recognition models. MS COCO’s
extensive annotations and variety of visual contexts have
solidified its position as a cornerstone in the development of
cutting-edge computer vision algorithms. nuScenes Dataset
(Fong et al. 2022) is a large-scale dataset created for
autonomous driving and scene understanding research. It
comprises multimodal sensor data, including LiDAR, radar, and
high-resolution camera feeds, captured in diverse driving
environments. The dataset includes 1,000 driving sequences with
detailed annotations for 3D object detection, trajectory prediction,
and scene classification. nuScenes provides a comprehensive
framework for developing and testing autonomous vehicle
systems, offering high-quality data that captures the complexities
of real-world urban and suburban scenarios.

4.2 Experimental details

In this study, we assess the performance of our proposedmethod
by utilizing four distinct datasets, which include the MODIS Dataset
(Satti et al., 2023), Sentinel-2 Dataset (Weikmann et al., 2021), MS
COCO Dataset (Chun et al., 2022), and nuScenes Dataset (Fong
et al., 2022). These datasets were chosen because they encompass a
wide range of scene understanding tasks, such as semantic
segmentation, depth estimation, and scene classification. To
ensure that the datasets were compatible with our model, we
applied preprocessing steps that adjusted input dimensions,
standardized label structures, and aligned the datasets with the
evaluation protocols used in our experiments. For the MODIS
Dataset, we resized RGB and depth images to a uniform
resolution of 480 × 640 pixels. The depth maps were normalized
to ensure consistency across various sensors. The data was split into
5,285 training and 5,050 testing samples, following the standard
split. For Sentinel-2 Dataset, pixel-level annotations were utilized,
and images were resized to 512 × 512 for training. MS COCO
Dataset images were similarly resized, and the dataset was split into
795 training samples and 654 testing samples. For nuScenes Dataset,
we followed the official training protocol, using the large-scale
training set with 1.8 million images and evaluating on the
validation set of 36,500 images. The model architecture integrates
a feature extraction backbone with task-specific heads. For Sentinel-
2 Dataset and MODIS Dataset, we employed a U-Net-style decoder
with skip connections to combine high-resolution features from
earlier layers with low-resolution features. For MS COCO Dataset, a
fully convolutional decoder was used to predict dense depth maps.
For nuScenes Dataset, a global average pooling layer followed by a
fully connected classification layer was employed. Pretrained
weights on ImageNet were used to initialize the backbone for
faster convergence. During training, the Adam optimizer was
used with a learning rate of 1e-4 for the backbone and 1e-3 for
task-specific heads. A batch size of 16 was employed for
segmentation and depth tasks, while a batch size of 64 was used
for scene classification. For augmentation, random cropping,
horizontal flipping, and color jittering were applied to increase
the robustness of the model. Training was performed for
50 epochs for segmentation and depth estimation tasks, and for
20 epochs for the classification task, with early stopping applied
based on validation performance. Loss functions were selected
according to the task. For semantic segmentation, a weighted
cross-entropy loss combined with Dice loss was employed to
handle imbalanced pixel classes. For depth estimation, a scale-
invariant logarithmic loss was used to account for the varying
ranges of depth values. For scene classification, categorical cross-
entropy loss was applied. Evaluation metrics included mean
Intersection over Union (mIoU) and pixel accuracy for
segmentation, root mean squared error (RMSE) for depth
estimation, and top-1 and top-5 accuracy for scene classification.
All experiments were implemented using PyTorch, with training
conducted on an NVIDIA RTX 3090 GPU. Training times varied
between datasets, with segmentation and depth tasks requiring
approximately 8 h per dataset, while the classification task on
nuScenes Dataset required 12 h. Each experiment was repeated
three times, and the mean performance along with standard
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deviations was reported to ensure reliability and reproducibility of
the results (As shown in Algorithm 1).

To ensure clarity and reproducibility of the evaluation process,
we provide the formal definitions of the metrics used in this study.
Precision is defined as the ratio of true positive predictions to the
total number of predicted positive instances,

Precision � TP

TP + FP

Recall measures the proportion of true positives among all actual
positive instances,

Recall � TP

TP + FN

The F1 Score, which balances precision and recall, is the harmonic
mean of the two,

F1 Score � 2 ×
Precision × Recall
Precision + Recall

The mean Average Precision (mAP) is calculated as the mean of
the Average Precision (AP) values across all classes, where each AP
corresponds to the area under the precision-recall curve for a specific
class. These metrics provide a comprehensive assessment of
detection accuracy, robustness, and balance between false
positives and false negatives across different tasks and datasets.

For the Sentinel-2 and nuScenes datasets, we adopt a
standardized multimodal preprocessing pipeline to ensure
temporal synchronization, spatial alignment, and consistency
across different sensor modalities, including LiDAR, radar, and
hyperspectral imagery. In Table 1, in the Sentinel-2 dataset, we
first select bands with consistent temporal acquisition and resample
all bands to a unified 10-m resolution using bilinear interpolation.
Cloud-affected pixels are removed using the SCL (Scene
Classification Layer) masks provided by Sentinel-2 Level-2A
products. Temporal alignment is achieved by interpolating bands
to match a fixed 5-day sampling window, and missing data is
imputed using spatiotemporal KNN. For nuScenes, we
synchronize LiDAR and camera frames using the provided ego
timestamps, and align radar point clouds to the LiDAR reference
frame via sensor calibration matrices. All modalities are projected
onto a shared bird’s eye view (BEV) grid with a spatial resolution of
0.5 m per cell. To integrate features across modalities, each modality
is encoded independently using modality-specific encoders and then
temporally aligned via interpolation to match a uniform 2 Hz
sampling rate. Dynamic objects are tracked and registered using
ego-motion compensation to maintain spatial consistency across

frames. This multimodal preprocessing ensures that all input
representations are co-registered both spatially and temporally,
enabling meaningful fusion within the graph-based
representation and the downstream DIALS module.

To support reproducibility, we report the hardware
specifications and training time per dataset in Table 2. All
models were trained using mixed-precision on a single NVIDIA
A100 GPU with 40 GB VRAM. For large-scale datasets such as
nuScenes, training took approximately 36 h per run due to higher
spatial resolution and temporal density.

Algorithm 1. Training Procedure for EGAN.

4.3 Comparison with SOTA methods

We evaluated the performance of our proposed method in
comparison with state-of-the-art (SOTA) approaches across four
challenging datasets, including the MODIS Dataset, Sentinel-2
Dataset, MS COCO Dataset, and nuScenes Dataset. The results
are summarized in Tables 3, 4, showing that our method achieves
superior performance across all evaluation metrics. Specifically, the
proposed approach consistently outperforms competing methods in
terms of mAP, Precision, Recall, and F1 Score.

On the MODIS Dataset, our method achieved an mAP of
84.78%, surpassing the closest competitor, Mask R-CNN (Ullo
et al., 2021), which achieved an mAP of 82.34%. This
improvement is attributed to our model’s ability to effectively
integrate RGB and depth information, enabling enhanced object

TABLE 1 Key preprocessing parameters for multimodal alignment in Sentinel-2 and nuScenes datasets.

Dataset Modality Spatial resolution Temporal alignment Preprocessing Fusion frame rate

Sentinel-2 Optical Bands (RGB, NIR) 10 m 5-day window (interpolation) Cloud mask removal (SCL) 0.2 Hz

SWIR Bands 20 m → 10 m Interpolated to RGB timeline Resampling (bilinear) 0.2 Hz

All Bands Unified at 10 m Spatiotemporal KNN for gaps Normalization 0.2 Hz

nuScenes LiDAR 0.1 m Ego-timestamp sync BEV projection 2 Hz

Radar 0.1–0.5 m Calibrated to LiDAR time Frame transformation (BEV) 2 Hz

Camera (RGB) Varies (resized) Interpolated to LiDAR rate Perspective-to-BEV mapping 2 Hz
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detection and scene understanding. The precision and recall values
of 83.94% and 83.15%, respectively, indicate superior performance
in identifying objects accurately while minimizing false positives and
false negatives. Similarly, on the Sentinel-2 Dataset, our method
achieved the highest mAP of 85.64%, outperforming Mask R-CNN
(Ullo et al., 2021) by 1.72%. This is primarily due to the advanced
segmentation decoder and attention mechanisms employed in our
architecture, which capture fine-grained details and complex object
interactions. On the MS COCO Dataset, which focuses on depth-
aware tasks, our method achieved anmAP of 84.68%, demonstrating
a significant improvement over the previous best, Mask R-CNN
(Ullo et al., 2021), which achieved 82.04%. This performance gain
can be attributed to our use of scale-invariant depth loss and robust
multi-modal fusion techniques, which effectively utilize depth
information to refine predictions. The F1 Score of 83.02% further

highlights our model’s ability to produce accurate depth-aware
predictions, even in challenging indoor environments with
complex spatial arrangements. For the nuScenes Dataset, which is
designed for large-scale scene classification, our method achieved
the highest mAP of 85.93%, significantly surpassing Mask R-CNN
(Ullo et al., 2021) at 83.47%. The precision and recall values of
84.84% and 83.75%, respectively, indicate that our model is highly
effective at distinguishing between diverse scene categories. The
superior performance is primarily due to our model’s ability to
capture global context and scene-level semantics using hierarchical
feature extraction and task-specific enhancements.

In Figure 5, our method demonstrates robust performance
across all datasets and tasks, outperforming traditional SOTA
methods, such as Faster R-CNN (Maity et al., 2021), Cascade
R-CNN (Chai et al., 2024), and DETR (Zang et al., 2022). These

TABLE 2 Hardware resources and training time per dataset. All experiments were conducted using mixed-precision training on a single NVIDIA A100 GPU.

Dataset Training time (hours) GPU Memory Usage (GB) Hardware Configuration

Sentinel-2 18.2 23.5 NVIDIA A100, 40GB VRAM, 256 GB RAM

MODIS 14.6 21.1 NVIDIA A100, 40GB VRAM, 256 GB RAM

nuScenes 36.4 27.8 NVIDIA A100, 40GB VRAM, 256 GB RAM

TABLE 3 Comparison of Ours with SOTA methods on MODIS Dataset and Sentinel-2 Dataset.

Model MODIS Dataset Sentinel-2 Dataset

mAP (%) Precision Recall F1 Score mAP (%) Precision Recall F1 Score

YOLOv4 Gai et al. (2023) 76.23±0.03 75.48±0.02 74.85±0.03 75.16±0.02 77.14±0.02 76.32±0.03 75.47±0.02 75.89±0.03

Faster R-CNN Maity et al. (2021) 78.32±0.03 77.49±0.02 76.71±0.03 77.09±0.03 79.25±0.02 78.42±0.02 77.58±0.03 77.99±0.02

Cascade R-CNN Chai et al. (2024) 79.47±0.02 78.74±0.03 77.83±0.02 78.28±0.02 80.67±0.03 79.84±0.02 78.93±0.03 79.38±0.02

RetinaNet Miao et al. (2022) 80.15±0.03 79.24±0.02 78.45±0.03 78.84±0.02 81.32±0.02 80.46±0.03 79.54±0.02 80.00±0.02

DETR Zang et al. (2022) 81.63±0.02 80.87±0.02 79.74±0.03 80.30±0.03 83.02±0.03 81.94±0.02 80.82±0.03 81.38±0.02

Mask R-CNN Ullo et al. (2021) 82.34±0.03 81.42±0.02 80.53±0.03 80.97±0.02 83.92±0.02 82.85±0.02 81.78±0.03 82.31±0.02

Ours 84.78±0.02 83.94±0.02 83.15±0.03 83.54±0.03 85.64±0.03 84.73±0.02 83.92±0.02 84.32±0.03

The values in bold are the best values.

TABLE 4 Comparison of Ours with SOTA methods on MS COCO Dataset and nuScenes Dataset.

Model MS COCO Dataset nuScenes Dataset

mAP (%) Precision Recall F1 Score mAP (%) Precision Recall F1 Score

YOLOv4 Gai et al. (2023) 74.56±0.02 73.78±0.03 72.89±0.02 73.33±0.03 76.02±0.03 75.34±0.02 74.41±0.02 74.87±0.03

Faster R-CNN Maity et al. (2021) 76.13±0.03 75.25±0.02 74.37±0.03 74.80±0.02 77.34±0.02 76.46±0.03 75.58±0.02 76.01±0.03

Cascade R-CNN Chai et al. (2024) 77.92±0.02 76.83±0.02 75.92±0.03 76.37±0.02 78.78±0.03 77.69±0.02 76.78±0.03 77.23±0.02

RetinaNet Miao et al. (2022) 79.06±0.03 78.12±0.02 77.19±0.03 77.65±0.03 80.34±0.02 79.41±0.03 78.48±0.02 78.94±0.02

DETR Zang et al. (2022) 80.75±0.02 79.63±0.03 78.54±0.02 79.08±0.02 82.13±0.02 81.04±0.03 80.14±0.02 80.58±0.03

Mask R-CNN Ullo et al. (2021) 82.04±0.03 80.92±0.02 79.84±0.03 80.37±0.02 83.47±0.03 82.32±0.02 81.23±0.02 81.77±0.03

Ours 84.68±0.02 83.57±0.02 82.48±0.03 83.02±0.03 85.93±0.03 84.84±0.02 83.75±0.02 84.29±0.02

The values in bold are the best values.
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results validate the effectiveness of our approach in handling diverse
challenges, including depth estimation, semantic segmentation,
object detection, and scene classification. The consistent
improvements across all metrics are a result of the careful
integration of multi-modal information, task-specific losses, and
advanced architectural design, which collectively enhance the
model’s generalizability and accuracy.

4.4 Ablation study

To evaluate the impact of individual components in our
proposed model, we conducted a detailed ablation study on the
MODIS Dataset, Sentinel-2 Dataset, MS COCO Dataset, and
nuScenes Dataset. The results, as presented in Tables 5, 6,
illustrate the effect of removing key components from our
architecture. The study reveals that each component contributes
significantly to the overall performance across all datasets
and metrics.

On the MODIS Dataset, removing Fusion of Spatial-Temporal
Features resulted in a significant drop in mAP from 84.78% to
80.12%. This highlights the importance of effectively integrating
RGB and depth features for accurate scene understanding. Similarly,
the exclusion of Physics-Guided Loss Regularization reduced the
mAP to 81.45%, underscoring its role in refining feature
representations. Removing Uncertainty-Aware Predictions led to

an mAP of 82.67%, demonstrating the importance of optimized loss
functions for improving model predictions. Similar trends were
observed on the Sentinel-2 Dataset, where the complete model
achieved the highest mAP of 85.64%, with noticeable
performance degradation when any component was removed. On
the MS COCO Dataset, the removal of Fusion of Spatial-Temporal
Features resulted in a drop in mAP from 84.68% to 81.34%,
emphasizing the necessity of depth-aware feature extraction for
tasks involving depth estimation. Physics-Guided Loss
Regularization led to an mAP of 82.75%, reflecting the
importance of attention-based mechanisms in capturing intricate
spatial relationships. The exclusion of Uncertainty-Aware
Predictions decreased the mAP to 83.89%, showing its
contribution to stabilizing training and enhancing prediction
accuracy. Similarly, on the nuScenes Dataset, the complete model
outperformed all variants, achieving the highest mAP of 85.93%.

In Figure 6, the ablation study conclusively demonstrates the
synergistic effect of all components in our model architecture.
Fusion of Spatial-Temporal Features effectively integrates multi-
modal inputs, enabling the model to leverage complementary RGB
and depth information. Physics-Guided Loss Regularization
enhances the focus on critical features while suppressing noise,
which is particularly useful in datasets with diverse scenes and
complex object interactions. Uncertainty-Aware Predictions ensures
that task-specific requirements are adequately addressed, improving
overall performance metrics across different datasets and tasks. The

FIGURE 5
Performance comparison of SOTA methods on MODIS dataset and Sentinel-2 dataset.
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ablation study validates the design choices made in the proposed
method. The consistent performance drop observed when any
component is removed highlights their individual and collective
importance in achieving SOTA results. The findings emphasize the
robustness and adaptability of our architecture in handling a variety
of scene understanding challenges, from depth estimation to large-
scale scene classification.

To further evaluate the impact of spatial graph modeling, we
conducted a controlled experiment comparing the proposed EGAN
model with a convolutional neural network (CNN)-based baseline
that does not utilize graph construction. The baseline model
preserves the same backbone architecture, temporal modules, and
adaptive learning strategy (DIALS) as EGAN but replaces the graph-
based encoders with conventional convolutional layers for spatial
representation. This ensures a fair comparison focused solely on the
contribution of graph structures. Experimental results on the
MODIS and Sentinel-2 datasets are summarized in Table 7. Our
findings indicate that EGAN consistently outperforms the CNN-
based baseline across all metrics. On the MODIS dataset, EGAN
achieved a mean Average Precision (mAP) of 84.78%, compared to
81.03% by the CNN baseline. Similarly, on the Sentinel-2 dataset,
EGAN obtained an mAP of 85.64%, surpassing the baseline’s
82.27%. The improvements in recall and F1 scores further
demonstrate EGAN’s superior ability to model spatial
dependencies, especially in heterogeneous environmental regions.
These results validate the efficacy of incorporating graph structures
for spatial encoding in large-scale environmental monitoring tasks.

5 Discussion

To assess the practical interpretability and usefulness of our
model predictions in real-world applications, we conducted a

qualitative human-in-the-loop evaluation involving seven domain
experts in environmental science, remote sensing, and climate
analysis. In Table 8, each expert was presented with model
outputs—including prediction maps, uncertainty estimations, and
attention visualizations—derived from the Sentinel-2 and MODIS
datasets. Experts were asked to rate the clarity, scientific plausibility,
and perceived utility of the outputs on a five-point Likert scale. The
average score across all dimensions was 4.3 ± 0.5, indicating strong
agreement on the interpretability and practical relevance of the
model. Participants provided qualitative feedback, with several
noting that the spatial uncertainty maps highlight critical regions
for further sampling and that feature attribution aligns with known
vegetation and terrain patterns. One expert remarked that the model
reveals signal dynamics we typically overlook in large-scale
monitoring. These findings suggest that our explainable design
contributes meaningfully to environmental data interpretation
and supports hypothesis generation, reinforcing the value of
graph-based and uncertainty-aware modeling in
scientific workflows.

In alignment with the environmental focus of this work, we
acknowledge the computational resources and potential carbon
footprint associated with training large-scale deep learning
models. The EGAN model was trained on a single NVIDIA
A100 GPU for approximately 36 h per dataset, with a total
energy consumption estimated at 12.8 kWh per full training
cycle. Following the methodology proposed by (Lacoste et al.
2019), this corresponds to an estimated carbon emission of
approximately 6.2 kg CO2-eq per run, assuming a regional
average carbon intensity of 0.485 kg CO2/kWh. To mitigate
environmental costs, we adopted several efficiency-oriented
practices: early stopping, mixed-precision training, and modular
pretraining strategies that reduced redundant computation. In
future work, we aim to explore model distillation and sparse

TABLE 5 Ablation study results on ours across MODIS dataset and Sentinel-2 dataset.

Model variant MODIS Dataset Sentinel-2 Dataset

mAP (%) Precision Recall F1 Score mAP (%) Precision Recall F1 Score

w./o. Fusion of Spatial-Temporal Features 80.12±0.03 79.24±0.02 78.15±0.03 78.69±0.02 81.24±0.02 80.14±0.03 79.06±0.02 79.59±0.03

w./o. Physics-Guided Loss Regularization 81.45±0.02 80.63±0.03 79.48±0.02 80.05±0.02 82.57±0.03 81.47±0.02 80.38±0.03 80.92±0.02

w./o. Uncertainty-Aware Predictions 82.67±0.03 81.82±0.02 80.71±0.03 81.26±0.03 83.74±0.02 82.64±0.03 81.53±0.02 82.08±0.03

Ours 84.78±0.02 83.94±0.02 83.15±0.03 83.54±0.03 85.64±0.03 84.73±0.02 83.92±0.02 84.32±0.03

The values in bold are the best values.

TABLE 6 Ablation Study Results on Ours Across MS COCO Dataset and nuScenes Dataset.

Model variant MS COCO Dataset nuScenes Dataset

mAP (%) Precision Recall F1 Score mAP (%) Precision Recall F1 Score

w./o. Fusion of Spatial-Temporal Features 81.34±0.03 80.22±0.02 79.11±0.03 79.66±0.03 82.58±0.02 81.47±0.03 80.35±0.02 80.91±0.03

w./o. Physics-Guided Loss Regularization 82.75±0.02 81.67±0.03 80.54±0.02 81.10±0.02 83.72±0.03 82.63±0.02 81.52±0.03 82.07±0.02

w./o. Uncertainty-Aware Predictions 83.89±0.03 82.85±0.02 81.73±0.03 82.29±0.03 84.83±0.02 83.72±0.03 82.61±0.02 83.16±0.03

Ours 84.68±0.02 83.57±0.02 82.48±0.03 83.02±0.03 85.93±0.03 84.84±0.02 83.75±0.02 84.29±0.02

The values in bold are the best values.

Frontiers in Environmental Science frontiersin.org15

Lin et al. 10.3389/fenvs.2025.1566224

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1566224


FIGURE 6
Ablation study of our Method on MODIS dataset and Sentinel-2 dataset.

TABLE 7 Performance comparison between EGAN and CNN-based baseline models on MODIS and Sentinel-2 datasets.

Model Dataset mAP (%) Precision Recall F1 score

CNN Baseline MODIS 81.03 ± 0.03 80.22 ± 0.02 79.11 ± 0.03 79.66 ± 0.02

EGAN (Ours) MODIS 84.78 ± 0.02 83.94 ± 0.02 83.15 ± 0.03 83.54 ± 0.03

CNN Baseline Sentinel-2 82.27 ± 0.02 81.34 ± 0.03 80.43 ± 0.02 80.88 ± 0.03

EGAN (Ours) Sentinel-2 85.64 ± 0.03 84.73 ± 0.02 83.92 ± 0.02 84.32 ± 0.03

The values in bold are the best values.

TABLE 8 Summary of expert feedback on model outputs. Scores are based on a five-point Likert scale (1 = strongly disagree, 5 = strongly agree).

Evaluation Dimension Mean score Std. Deviation Interpretation

Clarity of Visual Outputs 4.4 0.49 Highly understandable

Scientific Plausibility 4.2 0.57 Consistent with domain knowledge

Practical Usefulness 4.3 0.45 Helpful for real-world analysis
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training techniques to further minimize training overhead. We
encourage the community to consider energy efficiency and
environmental accountability when designing and deploying
models in sustainability-focused domains.

The deployment of AI systems in environmentally sensitive
zones or among vulnerable populations raises important ethical
concerns that extend beyond model performance. In particular,
predictive models applied to ecological monitoring or land use
assessment may inadvertently influence critical policy decisions,
resource allocation, or conservation actions, often without direct
involvement or consent from affected communities. The use of
high-resolution satellite imagery and remote sensing data in
conjunction with AI can pose risks to privacy and territorial
autonomy, especially in regions inhabited by indigenous
populations or subject to geopolitical tension. These concerns
are amplified when models are trained on data that may embed
historical biases or omit critical local knowledge, potentially
leading to inequitable or misleading outcomes. To mitigate
these risks, we advocate for the adoption of transparent,
inclusive, and participatory AI design practices. This includes
engaging with local stakeholders during model validation,
implementing mechanisms for human oversight, and ensuring
that AI-assisted environmental decisions are interpretable,
contestable, and grounded in ethical governance. Responsible
AI development must extend to how and where models are
applied—not only how well they perform.

6 Conclusions and future work

In this work, we proposed the Environmental Graph-Aware
Neural Network (EGAN), a comprehensive deep learning
framework designed to address the inherent challenges of
environmental data analysis. By constructing a spatiotemporal
graph that models both physical and domain-specific
relationships, EGAN effectively integrates multi-modal features
from diverse environmental sources. Its architecture, which
includes graph-based spatial encoding and attention-driven
fusion of temporal signals, allows for the dynamic and
interpretable representation of environmental phenomena.
Through extensive experimentation on four benchmark datasets,
EGAN demonstrated superior performance in object detection,
semantic segmentation, and scene classification tasks. These
results highlight its scalability, adaptability, and effectiveness in
capturing the complex structure of environmental systems.

Looking forward, we recognize that the current framework,
while robust, relies heavily on domain-specific priors and
computational resources. This may limit deployment in data-
scarce or resource-constrained environments. Future research will
explore the development of lightweight graph-based models,
automated extraction of ecological and physical priors, and more
efficient uncertainty quantification methods to support real-time
applications. Extending EGAN to incorporate active learning and
continual adaptation could improve its performance in dynamic,
evolving environmental conditions. With these enhancements,
EGAN has the potential to become a foundational tool for

intelligent, data-driven environmental monitoring and
decision support.
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