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Extreme climatic events, such as floods, are becoming increasingly frequent and
severe worldwide, including in Pakistan. The Swat River Catchment (SRC), located
in the eastern Hindukush region of Pakistan, is highly susceptible to flooding due
to its unique geographical and climatic conditions. However, despite the region’s
susceptibility, comprehensive flood risk assessments that integrate hazard,
vulnerability, and exposure components remain limited. To address this gap,
this study assesses flood risk in the SRC using 22 indicators distributed across the
three core dimensions of flood risk: hazard, vulnerability, and exposure. Flood
hazard was modeled using 11 indicators, broadly categorized into environmental,
hydrological, and geographical aspects, while vulnerability was evaluated through
socio-economic factors, geographical proximity, and land use characteristics.
Exposure was analyzed based on populationmetrics and critical infrastructure. All
data were converted into thematic layers in GIS, systematically weighted using
the Analytical Hierarchy Process (AHP) and combined to produce hazard,
vulnerability, and exposure maps respectively. These maps were then
integrated through a risk equation to generate the final flood risk map. The
results reveal that 31% of the study area is in a high flood risk zone, 27% in
moderate risk zones, 23% in low risk, and 19% are safe areas. The results were
validated using the Area Under the Curve (AUC) technique, yielding a value of
0.92, which indicates high reliability. By presenting the first integrated flood risk
assessment for the SRC, this study provides valuable insights into flood-prone
areas and risk distribution. These results highlight the urgent need for enhanced
flood risk management, especially in urban areas. The developed methodology
serves as a valuable tool for disaster management authorities and planners,
helping them make risk-informed decisions, allocate resources efficiently, and
implement targeted flood mitigation strategies.
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1 Introduction

Flooding is widely recognized as a major global natural disaster,
posing significant risks to human life, economic stability, property,
and culture heritage (Billa et al., 2006; Samanta et al., 2018b; Zou
et al., 2013). Every year, floods cause more than 2000 fatalities,
affecting over 75 million people globally (Billa et al., 2006; Calil et al.,
2015). Floods result from a combination of natural and
anthropogenic factors. Recent research indicates that the
frequency and intensity of flooding events are increasing, largely
due to the effects of climate change (Scheuer et al., 2017; Khosravi
et al., 2016b; Ullah et al., 2023; Syed et al., 2022). Additionally, land
use changes, such as the expansion of impermeable surfaces and
increased river velocities, significantly impact flood frequency and
severity in specific regions (Charlton et al., 2006; Abbas et al., 2022).
While floods cannot be entirely prevented, a comprehensive flood
risk assessment can help mitigate their impacts by identifying flood-
prone areas and enabling policymakers to allocate resources more
effectively (Guo et al., 2014; Zhang and Chen, 2019). The
Intergovernmental Panel on Climate Change (IPCC) emphasizes
that flood risk is determined by three key factors: hazard,
vulnerability, and exposure (Allan et al., 2023).

During the monsoon season, South Asian nations face
significant challenges due to flooding, causing widespread
devastation to lives and livelihoods (Hussain et al., 2023a). This
region bears a disproportionate burden of flood-related impacts
when compared to other geographical areas (Rahman et al., 2019).
Over the past 2 decades, flood events have affected more than
1 billion individuals in South Asia (Waseem et al., 2023). The
frequency of extreme flooding events is rising, and future
projections indicate that such occurrences will become even more
common as a result of climate change (Rahman et al., 2023).

Pakistan, due to its geographical location and designation as a
climate change hotspot, frequently experiences severe floods that
devastate communities and infrastructure. The catastrophic flood of
August 2022 inflicted particularly severe damage on the country’s
southern provinces (Ibrahim et al., 2024). Several factors have been
identified as potential triggers for this disaster, including intense
rainfall, glacial melting, and the formation of a powerful low-
pressure system over the region (Rahman et al., 2023). Moreover,
Pakistan is ranked among the top ten countries in the global climate
risk index, reflecting the severity of climate-related disasters that
occurred between 2000 and 2019. This underscores the nation’s
susceptibility to extreme weather events exacerbated by climate
change (Ullah et al., 2023).

Various studies have been conducted around the world to assess
and map flood risk assessment (Charlton et al., 2006; Hong et al.,
2018; Kia et al., 2012; Toosi et al., 2019). Traditional approaches,
such as rainfall-runoff modeling and numerical simulations, often
require extensive hydrological and topographical data, which can be
costly and unavailable in data-scarce regions like Pakistan (Cremen
et al., 2022). These models require detailed hydrological and
topographical data, which are time-consuming and costly and
often not available in developing countries, like Pakistan. The
advancement of Geographic Information Systems (GIS) and
remote sensing has expanded data availability for flood risk
assessment, prediction, and mitigation (Khosravi et al., 2016b;
Dandapat et al., 2017; Vojtek and Vojteková, 2019; Hossain and

Paul, 2018). GIS is a decision support system that merges an
information repository with analytical tools and has become
increasingly popular in vulnerability and risk assessment studies
(Chakraborty and Mukhopadhyay, 2019; Rahman et al., 2023; Ullah
and Zhang, 2020; Hussain et al., 2021).

In recent years, researchers have developed various approaches
to analyze flood risk. Some prominent approaches include the
analytical hierarchy process (AHP) (Dou et al., 2018; Vojtek and
Vojteková, 2019), fuzzy logic, and genetic algorithms (Hong et al.,
2018), variable fuzzy theory (Guo et al., 2014) hydrological
forecasting systems (Abbaszadeh, 2016; Mehr and Nourani,
2017), random forest (Wang et al., 2015), artificial neural
networks (ANNs) (Kia et al., 2012; Wang et al., 2015), adaptive
neuro-fuzzy interface systems (Mukerji et al., 2009), logistic
regression (Nandi et al., 2016), the weight of evidence (Khosravi
et al., 2016a; Rahmati et al., 2016b), analytic network process (ANP)
(Dano et al., 2019), statistical index (Cao et al., 2016), Shannon’s
entropy (Haghizadeh et al., 2017), Copula-Based Bayesian Network
[30], and frequency ratio models (Rahmati et al., 2016b). Among
these methods, many researchers preferred AHP because it provides
a structured framework for decision-making, allowing researchers to
systematically compare and prioritize criteria or alternatives
(Hussain et al., 2021). Moreover, AHP can handle complex
decision scenarios, incorporating both quantitative and qualitative
factors. The flexibility of AHP coupled with its mathematical
foundation for credible results makes it a trusted method in
flood risk assessment (Saaty, 1989; Saaty, 1980; Tayyab et al.,
2021). Despite the extensive use of AHP in disaster studies,
limited research has applied GIS-enabled AHP for flood hazard,
vulnerability, and exposure mapping in Pakistan, particularly in the
Swat River Catchment (SRC), a highly flood-prone region in the
eastern Hindukush.

This study aims to assess flood risk in SRC, Pakistan. The region
has experienced several devastating floods in recent years, including
2010, 2016, and 2022 floods (Rahman et al., 2023; Waseem et al.,
2023). Despite higher vulnerability, there is a noticeable lack of
research on flood risk assessment in this region. This study proposed
three important main factors for the first time in the study area
(flood hazard, vulnerability, and exposure), which are essential for
assessing flood risk. Additionally, the application of an advanced
methodology, specifically an integrated approach that combines GIS
with the AHP, is vital for enhancing the effectiveness of flood risk
mapping in the SRC, Pakistan. The results provide valuable insights
for stakeholders to effectively manage flood risks and promote
sustainable development in the SRC, Pakistan.

2 Materials and methods

2.1 Study area

SRC is located in Pakistan’s eastern Hindukush region, at
34°35′60″ to 35°43′52″ N latitude and 72°08′53″ to 72°30′50″ E
longitude with a total population of 2,309,570 as per the 2017 census.
The region has a total geographical area of 5215 km2, out of which
980 km2 is cultivated land and 4,200 km2 is uncultivated land
(Figure 1). The northern regions of the valley have tall and
snow-capped mountains with rugged terrain. The Swat River,
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originating in the Hindu Kush mountains, flows from the northern
highlands to the southern plains (Khan et al., 2021b), and is formed
when the Ushu and Gabral Rivers meet at Kalam. The Swat River
flows through the entire Swat District, converging with the
Panjkora River in District Dir Lower before discharging into
the Kabul River near Nisatta in District Charsadda. The elevation
of the basin in the northern region is approximately 5,800 m and
it gradually descends to 710 m downstream in the
Shamozai Valley.

The Swat River serves as a natural habitat for fish and birds,
while also providing a source of irrigation and electricity. The study
region exhibits a heightened susceptibility to flooding due to a
confluence of factors, such as climate change, complex
topography, and socioeconomic fragility (Ullah et al., 2021b; Rebi
et al., 2023). The SRC in Pakistan is known to be one of the areas that
is frequently affected by floods (Nasir et al., 2020). Devastating
floods have historically plagued the area, causing significant physical
and socioeconomic harm (Khan et al., 2021a). Monsoon rains in
2010, 2020 & 2022 caused floods in river Swat’s tributaries (Hussain
et al., 2021; Hussain et al., 2023b). The water surge devastated the
hilly areas and destroyed buildings, roads, bridges, agriculture,
irrigation networks, infrastructure, and communication (Rahman

et al., 2019; Islam et al., 2022). It has been reported that the
2010 floods resulted in the complete or partial destruction of
26 water channels, 988 houses, and the displacement of
2,751 households (Hussain et al., 2023b).

3 Methods overview

Flood risk assessment and mapping constitute indispensable
components of disaster risk management, forecasting,
prevention, and mitigation (Kelly et al., 2023). In the present
study, parameters for assessing flood risk were selected across
three components hazard, vulnerability, and exposure based on
an extensive review of existing literature (Ibrahim et al., 2024;
Rahman et al., 2023; Sun et al., 2023; Giurea et al., 2024; Nasir
et al., 2020). Both primary and secondary data sources were
utilized and the data were thoroughly analyzed to reflect the
current conditions in the study area (Table 1).

The 22 indicators were carefully selected through a systematic
process that involved analyzing established flood risk assessment
techniques, incorporating expert input, and considering data
accessibility and geographical relevance. The literature review

FIGURE 1
The study area of district Swat Pakistan, with digital elevation model (DEM).
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confirmed that the chosen indicators align with commonly used
frameworks for assessing flood risk, particularly those utilizing GIS
and AHP. Consultations with hydrologists and catastrophe risk
specialists further refined the selection by prioritizing the
indicators based on their significance in evaluating flood hazard,
vulnerability, and exposure.

For the hazard component, environmental parameters such as
elevation, slope, rainfall, topographic wetness index (TWI),
normalized difference vegetation index (NDVI), drainage density,
soil types, geology, sediment power index (SPI), sediment transport
index (STI), and curvature were included. A 30-m resolution digital
elevation model (DEM) was used for slope analysis, elevation
extraction, and stream ordering. Precipitation data were obtained
from the Center for Hydrometeorology and Remote Sensing
(CHRS) and analyzed for rainfall variability in the region
(Data, 2021).

Vulnerability was assessed by incorporating socio-economic and
infrastructural factors such as literacy rate, distance to roads,
distance to streams, access to healthcare and educational
facilities, and land use/land cover (LULC). For the exposure
component, demographic and infrastructural indicators such as
population density, dependent population, housing types, and
number of bridges were considered.

A multi-criteria evaluation approach was applied using AHP to
assign weights to the selected indicators, reflecting their relative
significance in contributing to flood risk. These weights were used to
prepare thematic layers in a GIS environment (Arc Map v10.8),
resulting in three individual maps representing hazard,
vulnerability, and exposure based on a weighted linear
combination approach.

The flood risk map was then derived by integrating the weighted
hazard, vulnerability, and exposure layers using the
following Equation:

Risk � Hazard × Vulnerability × Exposure (1)

IPCC has provided valuable guidance for this research
through its definitions. To suit the scope of this study, in terms
of climate change, the risks are a result of the dynamic interaction
between climate-related hazards, vulnerability, and exposure of
the affected ecosystem or human population to such hazards
(Allan et al., 2023).

The accuracy and reliability of the final flood risk map were
validated through receiver operating characteristic (ROC) analysis,
providing a quantitative evaluation of the model’s performance in
identifying flood-prone areas. This methodology, supported by
existing literature, enables a comprehensive assessment of flood
risk by combining multi-criteria decision-making and GIS-based
spatial analysis (Figure 2). represents the methodological framework
employed in this study.

3.1 Flood hazard

A flood hazard can be generally defined as an event that has the
potential to harm people and damage property, infrastructure, or the
environment (Tsakiris, 2007). It generally involves the probability of
a particular flood extent in an area that could be predetermined
through various factors such as topography, hydrology, geology, and
environment of a specific area (Ullah and Zhang, 2020; Waseem
et al., 2023). The study area falls within a temperate climatic zone,
receiving heavy monsoon rainfall in summer and snowfall in winter,
which further increases the flood risk in the lower catchment areas.
Apart from this, the study region is highly vulnerable due to the built
and degraded environment, low socioeconomic status, unplanned
urbanization, lack of an early warning system, and scientific risk
assessment studies (Merz et al., 2014).

TABLE 1 List of data types and their sources used in this work.

No. Data type Source Period Mapping output

1 ALOSPALSAR
(DEM/30 m)

Alaska Satellite Facility (ASF) https://search.asf.alaska.
edu (accessed on 21 May 2023)

2023 Elevation, Slope, Curvature, SPI, STI, DD, TWI, D-roads, and
D-rivers

2 Sentinel 2 (10 m) Copernicus Open Access Hub
https://scihub.copernicus.eu (accessed on 19 July 2022)

2023 NDVI map

3 Land use/Land
cover (10 m)

ESRI
https://liv.ingatlas.arcgis.com/landcover (accessed on
6 September 2023)

2022 LU/LC map

4 Rainfall data CHRS DATA
https://chrsdata.eng.uci.edu

2010–2021 Rainfall map

5 Soil data Soil Conservation Department, Government of Khyber
Pakhtunkhwa, Pakistan
https://soilconservation.kp.gov.pk/

2023 Soil type

6 Geology World Geological Maps
https://www.usgs.gov/products/maps
(accessed on 10 September 2023)

2023 Geology Map

7 Social Data Pakistan Bureau of Statistics
and District Health, and Education Departments
https://kpbos.gov.pk

2024 Total Population, Dependent Population, Population Density,
Literacy Ratio, Types of Houses, Education and Health Facilities

8 Lat-long Points Data Google Earth Pro
https://www.google.com/earth/versions/#earth-pro

2024 No. of Bridges

Frontiers in Environmental Science frontiersin.org04

Khan et al. 10.3389/fenvs.2025.1567796

https://search.asf.alaska.edu/
https://search.asf.alaska.edu/
https://scihub.copernicus.eu
https://liv.ingatlas.arcgis.com/landcove
https://chrsdata.eng.uci.edu
https://soilconservation.kp.gov.pk/
https://www.usgs.gov/products/maps
https://kpbos.gov.pk/
https://www.google.com/earth/versions/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1567796


Several factors can influence the occurrence of flood hazards in a
given area, emphasizing the importance of considering proper flood
conditioning factors (Rahman et al., 2023). As a result, most of the
researchers are conducting extensive studies on the relationship
between prior hazard sites and local geo-environmental features
(Ullah and Zhang, 2020). Based on the review of extensive relevant

research (Rahman et al., 2019; Chakraborty and Mukhopadhyay,
2019; Rahman et al., 2023), this study considers 11 causative factors
to assess flood hazard. These factors include elevation, rainfall, slope,
TWI, NDVI, drainage density, soil properties, SPI, STI, geology of
the area, and curvature. Each factor plays a distant role in the
occurrence of floods in the study region, as described below.

FIGURE 2
Flow chart of the adopted methodology for flood risk assessment in the SRC, Pakistan.
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Elevation is an important factor in flood hazard assessment,
as low-lying areas are prone to flood and may inundate quickly
because water often flows from high-altitude areas toward low-
lying areas (Rahmati et al., 2016a). In comparison to high-
elevated places, low-elevated areas have a higher likelihood of
flooding (Elkhrachy, 2022). The elevation map was derived
from the Advanced Space Borne Thermal Emission and
Reflection Radiometer (ASTER) DEM. The map was divided
into five categories and was based on the ASTER
DEM (Figure 3a).

Rainfall is another important variable that has a direct
relationship with floods. The rainfall map was created from
CHRS rainfall annual data from 2011 to 2022 (Figure 3b),
which was classified into five classes using natural breaks.
The slope is also an important variable in hydrological
research since it regulates the strength of surface runoff and
water flow, which can cause soil erosion and vertical infiltration
(Khosravi et al., 2016b). We have observed that areas with higher
slope gradients are less prone to flooding compared to areas with
lower slope gradients. The slope map was created from ASTER
DEM and classified into five classes, ranging from 0 to
78.7 (Figure 3c).

TWI is another essential element in mapping flood susceptibility
(Rahman et al., 2023; Ullah and Zhang, 2020). This means that areas

with high TWI are more likely to experience flooding, while those
with low TWI are less likely to do so (Paul et al., 2019). Five classes
were identified in the final TWI map, with sizes ranging from 2.01 to
20.5 (Figure 3d). TWI was calculated from the ASTER DEM using
(Equation 2).

TWI � ln
As

tan β( )( ) (2)

The symbol β denotes the gradient of the slope, whileAs refers to
the area upstream that contributes to the flow.

NDVI is a crucial factor in assessing the susceptibility of an
area to flooding (Rahman et al., 2023). The NDVI’s values fall
between −1 and +1 (Sun et al., 2023). Positive values on the
index denote locations with active plant cover, such as dense
forests. Moreover, the numbers close to zero indicate dry areas,
whereas negative values are usually connected to the sources of
water. The NDVI Studies have shown that there is a negative
correlation between floods and NDVI, which means that higher
NDVI values indicate a lower probability of flooding (Ullah and
Zhang, 2020) while lower NDVI values indicate a higher
probability of flooding. The NDVI was calculated by using
(Equation 3).

NDVI � B8 − B4( )/ B8 + B4( ) (3)

FIGURE 3
Causative factors of flood hazards used in this study; (a) elevation, (b) rainfall, (c) slope, (d) TWI, (e) NDVI, (f) drainage density, (g) soil, (h) STI, (i)
Geology, (j) SPI, and (k) curvature.
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where, B8 means near-infrared band while B4 means red band. As
shown in (Figure 3e), the results reveal a high probability of flooding
in the studied area.

The drainage density measures how well or poorly streams
empty a basin. Drainage density in watersheds is crucial for
understanding runoff. Higher density is linked to larger peak
flows and sediment loads. Spatial variations in density affect both
surface and subsurface runoff. The drainage density positively
correlates with flood risk (Das and Environment, 2019). Regions
characterized by higher drainage densities exhibit a greater
propensity for flooding, whereas areas with lower drainage
densities are less likely to encounter flood events (Paul et al.,
2019). The drainage of the SRC was calculated from ASTER
DEM using (Equation 4).

Dd � Σn
1( )L
A

(4)

Where drainage density is denoted by Dd, L is the sum of all
stream lengths in the basin and A is the total area of the drainage
basin (km). (Figure 3F)

Flooding is significantly influenced by the type of soil in an area.
Sandy soil has less drainage capacity, which leads to rapid water
absorption and increases the likelihood of flooding (Waseem et al.,
2023). As sandy soils contain more pore space between their
particles, they have higher saturated hydraulic conductivities
compared to finer-surfaced soils, resulting in slower infiltration
rates for clayey soils (Robinson and Ward, 1990). The type of
soil in a region is very important because it determines how
much water can be stored and how much can be used for
agriculture or other purposes (Giertz et al., 2005). The
composition and infiltration capacity of soil are critical factors in
agricultural and urban growth, as they determine the availability of
water for crops and other needs. As shown in (Figure 3g), the soil
type in the study area is clay loam, glacier, and loam.

The method used to determine erosion and sedimentation
rates is known as STI (Rahman et al., 2021). When evaluating
landslides, debris flows, and flash floods in regions undergoing
erosion and depositional processes, it is crucial to consider STI
(Rahman et al., 2021). The following (Equation 5) has been
used in calculating the class ranges from 0 to
1,880 m (Figure 3h).

STI � As/ 22.13( )0.6 × sin β/ 0.0896( )1.3 (5)
where As means flow accumulation and sinβ is the slope.

Lithological units are essential to define the debris flows and soil
erosion in each location (Pourghasemi and Kerle, 2016). Geological
hazards in the study area include subsidence, landslides, debris flow,
and floods. The lithological map and fault lines were digitized from
the 1:100,000 scale geological map of Khyber Pakhtunkhwa
Province obtained from the Geological Survey of Pakistan, as
shown in (Figure 3i).

SPI quantifies the erosive force of water flows within a
catchment region (Wang et al., 2023; Tehrany et al., 2014). The
SPI map for the case study was generated using the ArcGIS
environment and was subsequently divided into five classes as
shown in (Figure 3j). The SPI was computed using followed
Equation 6.

SPI � As × tan β (6)
Where “As” denotes the specific catchment area in meters and β

denotes the slope in degrees.
The curvature refers to the rate of change of slopes in a

particular direction, and the values it produces provide
information about the shape of the land (Rahman et al.,
2023). The curvature map created using the ASTER DEM has
three classes: concave, flat, and convex (Figure 3k). A positive
value indicates a convex curvature, a negative value indicates an
upward concave curvature and a zero value indicates a flat surface
(Ullah and Zhang, 2020). Areas with zero values (flat surface) are
more vulnerable to floods than those with convex and concave
curvatures (Al Kuisi et al., 2024).

3.1.1 Flood vulnerability
Flood vulnerability can be defined as the propensity of a

community, region, or ecosystem to adverse flood impacts
(Hussain et al., 2021). Flood vulnerability is a multifaceted issue
influenced by various factors such as socioeconomic conditions,
geographic locations, infrastructure quality, and environmental
factors (Ibrahim et al., 2024). Based on previous literature (Ullah
et al., 2021a; Dandapat et al., 2017; Giurea et al., 2024), in this study,
we considered several key factors such as LULC, distance to the
streams and roads, availability of health and education facilities, and
literacy ratio of the subject locality. Together, these factors create a
comprehensive picture of flood vulnerability, highlighting the
importance of integrating socio-economic considerations with
environmental assessments to develop effective flood
management strategies. These indicators data were collected from
different sources and mapped as detailed below.

The primary indicator for vulnerability assessment is LULC,
which reveals how people and natural processes use the land,
influencing water runoff and flooding in catchment areas (Das
and Environment, 2019; Khosravi et al., 2016b). LULC is very
important in flood vulnerability assessment since it determines
the state of the land and its infiltration capacity that affects the
runoff and flood (Hussain et al., 2021; Samanta et al., 2018a). The
Environmental Systems Research Institute (ESRI) 2022 data was
used to create the LULC map of the study area (Karra et al., 2021;
Tariq et al., 2023). The LULCmap was further categorized into eight
classes, namely, water, trees, crops, built-up areas, rangeland, snow,
flooded vegetation, and barren land (Figure 4a).

Moreover, the distance to streams is another indicator in
determining a community’s vulnerability to floods (Das and
Environment, 2019). The areas that are close to active water
channels may face higher flood risk as compared to those areas
that are far away. To create proximity to the water map, the
Euclidean distance tool was used in ArcGIS to compute the
distance to the stream as shown in (Figure 4b). Furthermore,
distance to roads becomes an important determinant in
establishing the extent of exposure of infrastructure to
floodwaters and how the latter interferes with the natural
patterns of drainage (Ullah et al., 2022). Areas closer to roads are
usually more vulnerable because of increased development and
interference in the way that water flows, whereas regions farther
away may encounter complications in evacuation and emergency
response (Hussain et al., 2021). The Euclidean distance tool of
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ArcGIS was employed to generate the distance to the road map, as
depicted in (Figure 4c).

In addition, the availability of health and education facilities
further contributes to community resilience; well-equipped
healthcare services are vital for responding to flood-related health
issues, while educational institutions can promote awareness and
preparedness among residents and vice versa (Zhran et al., 2024).
Therefore, having access to health facilities is crucial in mitigating
the negative effects of disasters (Hoque et al., 2019). Health facilities
data was gathered from the district health department and mapped
as shown in (Figure 4d).

On the other hand, the presence of educational facilities
within a community can function as shelters or evacuation
centers during disaster events, contributing to minimizing
flood risk (Hoque et al., 2019). For example, school buildings
are used as shelters, showcasing the community’s resilience while
health services ensure that supplies and rescue personnel are
easily accessible in the aftermath of a disaster (Shah et al.,
2017; Hussain et al., 2021). The data on educational facilities
was obtained from the Pakistan Bureau of Statistics and was
subsequently mapped, as illustrated in (Figure 4e). Finally, the
literacy ratio is another important factor that indicates how well-
prepared people are to anticipate and cope with the disruptions
caused by natural disasters (Zhran et al., 2024). A higher level of
literacy generally means increased “access to information” for

example, knowledge of early warning systems, knowledge of
evacuation plans, and performance of necessary precautions to
reduce overall vulnerability. While highly literate regions would
thus have the capacity to gain and use information on the actions
required in the event of disasters, less literate areas may hardly
comprehend or put into proper practice the information related to
disasters and hence be more vulnerable to flooding and slower in
recovery processes. The necessary data for each tehsil was
acquired from the Pakistan Bureau of Statistics, and a spatial
layer was subsequently constructed within the GIS environment,
as depicted in (Figure 4f).

3.1.2 Flood exposure
Flood exposure refers to the degree to which a community is

subjected to catastrophic environmental stressors, such as floods
(Poussard et al., 2021). To quantify flood exposure in the research
area, the following characteristics are employed. The initial indicator
of exposure in flood risk assessment is often population density
(Cremen et al., 2022; Ming et al., 2022), so the population density of
an area can be calculated by dividing its land area by the estimated
number of residents living there, which is usually obtained from
census data. Flood exposure is strongly associated with population
density, with higher population densities leading to more people
being impacted by catastrophic floods (Giurea et al., 2024). We
generated information in the study area by focusing further on the

FIGURE 4
Flood vulnerability indicators used in this study; (a) LULC, (b) distance to stream, (c) distance to roads, (d) health facilities, (e) education facilities, and
(f) literacy ratio.
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tehsils level (Figure 5a). It is crucial to understand that floods can
impact different groups of people in different ways.

Vulnerable populations, including children, the elderly, and
women, may be disproportionately at-risk during flooding events.
Physically, children, the elderly, and women may not be as equipped
to handle the risk of flooding. Children may be too small and
inexperienced to navigate flood waters safely, while the elderly may
struggle with mobility issues (Hoque et al., 2019). Children also may
not have the knowledge or resources to protect themselves, while the
elderly may be socially isolated and lack support systems (Hussain
et al., 2021). Women may be physically weaker and therefore less
able to deal with the challenges posed by flooding. Furthermore, they
may face cultural or social barriers that prevent them from accessing
resources or information that could help them cope with flooding. In
addition to physical challenges, these groups may also face social
obstacles during floods (Figure 5b). It’s important to take these
exposures seriously and to ensure that everyone is prepared for the
impact of floods. By understanding the unique challenges faced by
exposed groups, we can take steps to minimize their risk and protect
their safety.

The third significant indicator that has been identified is the total
population of the entire study area. This information is presented in
(Figure 5c), highlighting the number of people living in the study
area focusing further on each tehsil and the overall number of males
and females (Hussain et al., 2021). Housing types are another

important indicator for assessing flood exposure, the study area
has several housing types, including pacca, semi-pacca, and kacha
houses (Ullah et al., 2021a; Giurea et al., 2024). However, it depends
on how the house is constructed, as pacca houses will be less
exposed, semi-pacca will be at moderate risk but kaccha houses
in the study area are always at high risk during heavy rainfall and
flooding (Hussain et al., 2023c). The data was collected from the
Pakistan Bureau of Statistics census, subsequently analyzed using
Microsoft Excel, and ultimately classified using ArcGIS (Figure 5d).

The final and most significant indicator for flood exposure in the
research region is the number of bridges. Several bridges were lost in
the 2010 flash flooding, mainly due to the debris in the rapid waters
(Bazai et al., 2024). The debris was primarily composed of uprooted
trees of various sizes, tree branches, and lumber logs. The
destabilization of the sloping portions of the plant and subsoil
layer caused the accumulation of debris (Farooq et al., 2019).
The mountainous watershed systems in Northern Pakistan work
together to transfer water to rivers, which then flow downstream.
There is a significant concern about the number of bridges in the
research region that are highly exposed to flooding. This concern is
based on past events, such as the 2010 flash flooding that resulted in
the loss of several homes and bridges (Shah et al., 2020). Recently, on
29 August 2020, a flash flood caused by heavy rainfall in the Shagram
torrent of the SRC, destroyed over six bridges, 45 dwellings, and
14 fatalities (Nasir et al., 2020). This has raised concerns about the

FIGURE 5
Flood exposure indicators used in this study; (a) population density, (b) dependent population, (c) total population, (d) housing types, and (e) number
of bridges.
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safety of the bridges in Khohistan (Nasir et al., 2020). The data was
manually gathered from Google Earth Pro with precise latitude and
longitude points and then converted in ArcGIS for additional
mapping and displaying on a map, as shown in (Figure 5e).

3.2 Data standardization and index creation

3.2.1 Analytical hierarchy process
AHP is a multi-criteria decision-making method used to assess

and rank choices. Created by Saaty in the 1970s, it serves as a
framework for evaluating both tangible and intangible criteria
(Saaty, 1987). The approach employs pairwise comparison
matrices and algorithms to establish the relative importance of
various criteria (Saaty, 1989). The criteria weighting process in
AHP involved experts from diverse fields, including hydrology,
disaster management, and GIS, who conducted pairwise
comparisons of indicators to assess their relative importance. To
ensure the reliability of expert judgments, the CR was calculated for
each response. Comparisons with a CR exceeding the 0.1 threshold
were flagged, and experts were asked to revise their inputs to
improve consistency. The final weights were aggregated using the
geometric mean method, which minimizes the influence of extreme
values and ensures a balanced representation of expert opinions.
Numerous disciplines, including the fields of hydrology, economics,
education, transport, resource allocation, and management, heavily
rely on this approach (Busico et al., 2019; Ejaz et al., 2024), Apart
from this, several flood risk assessment studies have recently utilized
it (Ha et al., 2023; Ibrahim et al., 2024; Al Kuisi et al., 2024; Sun et al.,
2023). The core principle of this method is to transform subjective
assessments into quantitative data by assigning scores to different
criteria and sub-criteria, leveraging the insights of experts (Le
Cozannet et al., 2013; Tayyab et al., 2021). In this study, we took
experts from the relevant fields, i.e., hydrology and disaster
management purely based on their basic knowledge of the
subject matter. This method is based on five steps; identifying
criteria, structuring the hierarchy, pairwise comparisons,
aggregating scores, and decision making (Supplementary Figure
S1). To follow these steps, in the first stage, we identified criteria
for each component of risk, i.e., flood hazard, vulnerability, and
exposure. After doing this step, then we made a hierarchy structure,
with broader categories at the top and specific factors at the bottom
to make it fit expert comparison based on Saaty 1 to 9 point scale of
importance, as shown in (Supplementary Table S1).

Numerical weights have been assigned to each criterion based on
comparisons, indicating their relative significance in evaluating
flood risk (Table 2). To prevent biases or inconsistencies in these
comparisons, the consistency index (CI) and CR are calculated using
Equations 7, 8, respectively.

CI � ʎmax − n( )
n − 1( ) (7)

Where ʎmax is the order of the matrix, the variable ʎmax
represents the aggregate summation of each column in the
matrix employed for pairwise comparison and the
corresponding average value derived from the
normalized matrix.

CR � CI

RI
(8)

The variable “CI” represents the consistency index, while “RI”
denotes the random index. CR is deemed acceptable if it falls below
or is equal to 0.10. The CR is calculated by dividing the CI by the RI,
with the RI values referenced in (Table 2).

The CR values for hazard, vulnerability, and exposure are
0.0868, 0.0564, and 0.00578, respectively, based on the number of
criteria used in various research studies. These values are
acceptable, indicating the validity of the evaluation. In this
study, AHP was utilized to generate weighting factors (wi),
and subsequently, each dimension map was created using
Equations 9–11.

FHaz � ∑n
i�1
Wis× Ris (9)

FVul � ∑n
i�1
Wis× Ris (10)

FExp � ∑n
i�1
Wis× Ris (11)

Where, FHaz, FVul, and FExp represent flood hazard, flood
vulnerability, and flood exposure respectively, while Wis represents
the weight for each parameter and Ris represents the rank of
each parameter.

Following the calculation of each risk component, the respective
scores were spatially distributed through overlay analysis within
ArcGIS to generate maps representing hazard, vulnerability, and
exposure. These maps were subsequently reclassified into four
distinct categories (very low, low, moderate, and high) utilizing
the “Reclass” tool within the Spatial Analyst extension, employing
the natural breaks (Jenks) method. The flood risk map was
constructed using (Equation 1), leveraging the raster calculator in
ArcGIS, and was subsequently reclassified into four categories: very
low, low, moderate, and high.

3.2.2 Index validation
The primary objective of risk mapping is to delineate locations,

which are susceptible to flooding. Researchers employ a variety of
models to study flood risk, but it is critical to validate the accuracy of
the flood risk assessment model (Shafizadeh-Moghadam et al., 2018;
Ullah and Zhang, 2020). The ROC approach is commonly used to
validate prediction maps (Tehrany et al., 2013). Furthermore, this
method is uncomplicated and produces unambiguous and reliable
results (Tayyab et al., 2021). This technique has been used in

TABLE 2 Consistency indexes for randomly generated matrix.

No. of criteria (n) 2 3 4 5 6 7 8 9 10 11 12

RI 0 0.52 0.59 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48
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numerous studies to validate the results (Ullah et al., 2022; Hossain
and Mumu, 2024).

4 Results

4.1 Flood hazard assessment

For flood hazard assessment, we used eleven indicators
(Figure 6a). The results show that elevation is the most
important factor while assessing flood hazard risk with an
importance value of (0.21), followed by rainfall (0.16), slope
(0.14), TWI (0.09), NDVI (0.09), drainage density (0.07), soil
(0.060), STI and geology (0.04), SPI (0.03) and curvature (0.020),
respectively.

The flood hazard map was categorized into four distinct classes,
as illustrated in (Figure 6b). The results show that 25% of the study
area is safe from flood hazards, while 45% of the region exhibits low
susceptibility to flood hazards. The very low to low susceptible areas
mostly spread over north, northeast, and some central areas, which
are far away from the active channels, and thus have no or low risk of
flooding. It is noteworthy that the majority of the local population
resides in elevated mountainous regions and depends upon the
plains to fulfill their daily needs. As a result, the indirect effects of
flooding cannot be ignored in these locations. On the other hand,
30% of the study area shows moderate to high susceptibility to flood.
The moderate to high flood-susceptible areas stretch over the south,
southeast, and southwest, which exhibit low slopes and low
elevations with dense populations. The increased flooding
susceptibility in these areas is due to factors, such as low
elevation, heavy rainfall, and proximity to water bodies and roads
(Sun et al., 2023). Typically, the SRC experiences substantial rainfall

during both the summer and winter seasons (Ullah et al., 2021b;
Khan et al., 2020; Abbas et al., 2023; Hussain et al., 2023a), resulting
in snowmelting and flash floods with high intensity in low-lying and
adjacent areas.

These results are consistent with previous studies (Ullah and
Zhang, 2020; Hussain et al., 2023c; Rahman et al., 2023), which
found that flooding is more likely in flat areas with high flow
accumulation and minimal runoff. Heavy rains have significantly
increased flow and sediment in the river catchment, raising the flood
risk in those regions (Tehrany et al., 2014; Ullah et al., 2022). The
findings also indicate that areas with gentle slopes and close-to-
water bodies are especially prone to flooding, while high-elevation
regions with substantial rainfall are less directly affected.

4.2 Flood vulnerability assessment

Beyond the evaluation of flood hazards, we conducted a
comprehensive assessment of the study area’s vulnerability to
flooding by employing six key indicators: land use and land
cover (LULC), distance to streams, distance to roads, health
facilities, educational facilities, and literacy ratio. As illustrated in
(Figure 7a), LULC emerged as the most critical factor in assessing
flood vulnerability, with an importance value of (0.29) followed by
distance to streams (0.25), distance to roads (0.19), health facilities
(0.11), educational facilities (0.08) and literacy ratio (0.04). The flood
vulnerability map shows that 39% of the study area has very low
flood vulnerability, while 15% falls into a low vulnerability category.
Most of these lower vulnerability areas are located along the eastern
and western edges of the study area (Figure 7b). The reasons behind
the very low to low flood vulnerability of these areas could be densely
vegetated and far away from active water channels (Figures 4a, b).

FIGURE 6
Flood hazard assessment in SRC, Pakistan; (a) AHP weights for flood causative factors and (b) flood distribution map with different flood
hazard zones.
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Conversely, 46% of the study area is categorized as having moderate
to high flood vulnerability. Predominantly, these regions are situated
on the southeast and southwest sides of the area (Figure 7b). These
areas are at high flood risk due to their proximity to active water
channels and dense human settlements with low access to basic
facilities, like hospitals and schools.

It should be noted that the most important factors for
moderate to high vulnerability in the study area are LULC,
distance to streams and roads as well as non-availability of
basic facilities, like no schools and hospitals. Our results are
consistent with other studies (Ibrahim et al., 2024; Ali et al., 2023;
Hussain et al., 2021; Sun et al., 2023), implying that certain land
uses, such as urban areas with impervious surfaces, like concrete
and asphalt, can increase runoff during heavy rainfall, increasing
the vulnerability of flooding. Similarly, agricultural practices that
remove natural vegetation can reduce soil’s absorption capacity,
hence exacerbating flooding risk (Hussain et al., 2021).
Moreover, combining the above-mentioned factors amplifies
the vulnerability to flooding, especially in areas where
urbanization and poor land management practices intersect
with proximity to roads and water channels (Ibrahim et al., 2024).

4.3 Flood exposure assessment

The flood exposure mapping and assessment provided
valuable insights into how flood risk is distributed and its
extent within the study area. Exposure in this study is assessed
using various indicators, including population density,
dependent population, total population, housing types, and the
number of bridges. The AHP results shows that population
density is the most crucial factor in evaluating flood exposure,
with an importance value of 0.34 (Figure 8a). It is followed by

dependent population (0.28), total population (0.17), housing
types (0.11), and the number of bridges (0.07). The flood
exposure mapping reveals that 40% of the target region is
lying on very low to low exposure to flooding, which stretches
from north to northwest and east sides of the study area. The
study findings indicate that the north side of the study area has a
very low population density and is less exposed to potential risks.
However, the dependent population in this area is exposed, with
additional indicators such as 8% of ten-year-old children, 20% of
elderly people, 8% of disabled people, and 50% of the female
population (Figure 5b).

The study area has 23.08 million of the total population while
the housing styles in the area are 39% pacca, 18% semi-pakka, and
43% kacha. On the other hand, the bridges in the region are
located in the path of water flow, making them highly exposed to
floods. When floods occur in this area, both the population and
bridges are at risk of significant disruption, which can lead to
difficulties in accessing critical resources and services. Further
examination in the area revealed that certain groups, such as
children, the elderly, and women, may lack specialized
information on how to respond effectively in such
circumstances (Hossain, 2015). This lack of knowledge further
increases their exposure.

(Figure 8b) shows the significant flood exposure observed in
the eastern-southern, eastern-western, and western-southern
directions. It highlights the population density, total
population, dependent population, housing types, and number
of bridges in each tehsil within the research area. During
community visits and surveys, it was discovered that educated
people having knowledge of flood early warming, were less
exposed as compared to uneducated people who had no idea
about early warning and were highly exposed to flooding Besides,
the housing types in the study area, which were constructed as

FIGURE 7
Flood vulnerability assessment in the SRC, Pakistan; (a) AHPweight for vulnerability intensifying factors and (b) flood vulnerability map with different
vulnerable zones.
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pakka were less exposed while those which were semi-pakka were
highly exposed. Furthermore, during surveys, it was also found
that bridges in the study area were highly exposed during
flooding. The findings of this study align with previous
research (Hussain et al., 2023c), which identified high
population density, low flood risk awareness, a high
proportion of the dependent population, total population, type
of houses, and the number of bridges as significant factors that
exacerbate a community’s exposure to floods.

4.4 Flood risk map

The final flood risk map was generated by overlaying the three
main weighted maps hazard, vulnerability, and exposure using
the raster overlay technique. The map was then reclassified into
four categories using the natural breaks (Jenks) method within
the Spatial Analyst tool. The results indicate that 42% of the area
is classified within very low to low flood-risk zones
(Supplementary Table S2), which are mostly located in the
north, northwest, and northeast parts of the SRC (Figure 9).
Moreover, 27% of the region falls within the moderate flood risk
category, primarily situated along the river and within
mountainous terrain. Notably, the high velocity of streams in
these mountainous areas heightens the risk of flood
susceptibility, vulnerability, and exposure for nearby
communities. This area is adjacent to active water channels,
mainly located in the northern, northwestern, and
northeastern parts of the study region. Additionally, it is
important to highlight that approximately 31% of the area, is
identified with significant flood risk (Supplementary Table S2).
Most of the settlements in this area are situated along river banks,
which make them highly vulnerable to flooding. This area is
prone to hazard, high vulnerability, and high exposure, as shown
in (Figures 6B, 7B, 8B). The high flood risk area extends from
west to east, west to south, and east to south.

4.5 Flood risk assessment validation

To validate the performance of our model, we used Receiver
Operating Characteristic (ROC) curve analysis and the Area Under
the Curve (AUC) as evaluation metrics. ROC curves are commonly
employed to assess a model’s ability to distinguish between different
classes, while AUC provides a single value that summarizes the
model’s overall discriminative ability. This approach has been used
in several studies to ensure the robustness of flood prediction models
(Kelly et al., 2023; Hossain and Mumu, 2024). In our study, a total of
300 locations were used, consisting of 150 flooded and 150 non-
flooded sites. The AUC value of 0.92 was derived by comparing the
model’s predictions with actual flood occurrences in the validation
dataset, indicating excellent predictive accuracy (Figure 10). The
high AUC value reflects strong agreement between the predicted
flood locations and the observed flood events.

5 Discussion

Climate change is driving an increase in the frequency and
intensity of hydro-meteorological events, significantly impacting
human wellbeing (Quesada-Román and Campos-Durán, 2023;
Hussain et al., 2023a; Zhang et al., 2023; Zhang et al., 2024).
Among these events, flooding is one of the most prevalent and
destructive natural disasters, inflicting severe environmental damage
and resulting in hundreds of fatalities globally each year. A thorough
flood risk assessment is crucial for identifying areas vulnerable to
flooding (Ullah and Zhang, 2020).

In this study, we evaluated flood risk in the SRC, Pakistan by
integrating three critical components: flood hazard, vulnerability,
and exposure, utilizing a GIS-based AHP. Our findings indicate that
factors such as elevation, rainfall, and slope are the most important
factors, influence flood hazard in the study area. This aligns with
previous studies (Rahman et al., 2023; Hossain and Mumu, 2024;
Mshelia et al., 2024), emphasizing the importance of meteorological

FIGURE 8
Flood exposure assessment in the SRC, Pakistan; (a) AHP weights for exposure factors and (b) flood exposure map with different exposure zones.
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and topographical factors in assessing flood hazards. The high flood
zones are characterized by low altitudes, high rainfall, and steep
slopes. The interplay of these factors heightens the risk, as lower
altitudes tend to collect water from surrounding higher elevations.

When combined with significant rainfall, this accumulation leads to
increased water volume. Additionally, the steep slopes facilitate
rapid runoff, further exacerbating flood risk in these areas (Ullah
et al., 2019a; Ullah et al., 2019b). Conversely, areas with moderate to

FIGURE 9
Flood risk map with different risk zones of the SRC, Pakistan.
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high flood susceptibility are predominantly located in flatter, densely
populated regions, whereas those with very low to low susceptibility
are mainly found at higher elevations with lower population
densities. This observation reflects a typical pattern wherein low-
elevation, high-density areas are more vulnerable to flooding due to
runoff accumulation. This aligns with a common scenario in which
areas with low elevation and high population density are more
susceptible to flooding due to the accumulation of runoff (Tehrany
et al., 2014).

The assessment of flood vulnerability revealed that LULC,
proximity to streams and roads, and access to basic amenities are
critical determinants of vulnerability in the study region
(Hossain and Paul, 2018). Our findings indicate that regions
situated near water bodies, characterized by high LULC
vulnerability and limited access to essential services, are
particularly susceptible to flooding and its impacts. This is
consistent with prior research (Dandapat et al., 2017; Hussain
et al., 2021; Aslam et al., 2020; Kelly et al., 2023), which
emphasizes that the interplay among LULC characteristics,
proximity to water sources, and availability of infrastructure
significantly shapes flood vulnerability.

Furthermore, the flood exposure assessment highlighted
population density and the presence of dependent populations
as the most influential factors affecting exposure to flood risks.
These findings align with earlier studies (Tayyab et al., 2021;
Kelly et al., 2023), emphasizing that areas with high population
densities and larger numbers of dependent populations, such as
children and the elderly, are more exposed to flooding. The study
underscores that communities with dense populations and a high
number of dependents are at greater risk of flooding, particularly
in regions lacking adequate flood response and preparation
systems. This highlights the necessity of incorporating
demographic information into flood risk assessments
and planning.

A flood risk map was developed by combining flood hazard,
vulnerability, and exposure data. Using the natural breaks (Jenks)
approach, the map was categorized into four levels: very low, low,
moderate, and high, with expert judgment applied for refinement.
The results showed that 31% of the study area is at high flood risk,
mainly in densely populated areas near active water channels. This

finding supports previous research and aligns with historical flood
records from 2010 to 2022. In contrast to previous studies that
examined a limited number of characteristics usually around nine
(Waseem et al., 2023; Rahman et al., 2023), this study takes into
account 22 parameters, which makes the study findings more robust
and reliable. This broader approach enables a more thorough and
precise evaluation of flood risk. By improving forecast accuracy and
enhancing disaster management plans, this methodology is
consistent with recent advancements in flood risk analysis.

To mitigate flood risk, it is essential to improve LULC
management through sustainable urban planning, reforestation,
and eco-friendly agricultural practices. Establishing buffer zones
along water bodies and enhancing road designs for better drainage
can effectively reduce flood vulnerability associated with proximity.
Additionally, upgrading infrastructure through improved drainage
systems, flood control structures, and emergency services is crucial.
Public education campaigns and community engagement initiatives
can enhance awareness and preparedness, while leveraging
technology for early warning systems and geospatial monitoring,
along with enforcing building codes and offering financial incentives
can further bolster flood resilience in these regions (Khan et al.,
2022; Khosravi et al., 2016a; Das, 2018). The study is comprehensive
but still needs additional research. Future investigations that
incorporate climate change forecasts can provide valuable
insights into how evolving scenarios such as altered precipitation
patterns, increased rainfall intensity, and rapid snowmelt may
heighten flood vulnerability by disrupting the hydrological cycle
(Rahman et al., 2024; Ibrahim et al., 2025).

Furthermore, more research is essential to understand how
deforestation, urbanization, and changes in land use affect
natural water flow and contribute to increased surface runoff.
Lastly, engaging the community and integrating indigenous
knowledge into flood risk assessments could enhance the
effectiveness of flood management strategies.

6 Conclusion

This study utilizes a GIS-based AHP framework to assess flood
risk in the SRC, Pakistan, by examining exposure, vulnerability, and
hazard through 22 indicators. Our comprehensive analysis spans an
area of 5,215 km2, revealing a significant level of flood risk, unlike
previous studies that concentrated on smaller areas or focused
exclusively on hazard variables. According to the validated flood
risk map, 31% of the study area is classified as high-risk, 27% as
moderate risk zones, and 23% as low-risk. Within the high-risk
zones, 32% of this risk arises from exposure and 32% from
vulnerability. Our results underscore the importance of adopting
a more holistic approach that integrates both structural and non-
structural interventions. These include check dams, drainage
enhancements, flood protection embankments, enforcement of
strict zoning regulations to control settlement patterns, the
modernization of critical infrastructure with flood-resistant
designs, and the adoption of nature-based solutions, like
upstream reforestation and wetland restoration. Moreover,
disaster preparedness should focus on enhancing early warning
systems, providing targeted alerts for high-risk urban areas
(i.e., Mingora and Barikot), and deploying real-time hydrological

FIGURE 10
Validation of themodel performance in flood risk mapping based
on receiver operating characteristics (ROC) curve and area under
curve (AUC).
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sensors along the Swat River. The flood risk map should be
integrated into land-use planning by local governments to
facilitate the evacuation of residents from floodplains and guide
urban growth toward safer areas.
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