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Gas pipeline leaks contribute to one-third of methane emissions annually, posing
environmental damage and safety risks. However, accurate and timely detection
of the leak presents several challenges, including remote and inaccessible
environments, low accuracy and efficiency, and high hardware and labor
costs. To address these challenges, we propose a gas pipeline leakage
detection architecture based on multiple multimodal deep feature selections
and the optimized Improved Deep Forest Classifier (IDFC). First, the multimodal
data, thermal images and gas sensor data, are pre-processed. Then a deep feature
pool is constructed using the selected Convolutional Neural Network (CNN)
models, including AlexNet, ResNet-50, MobileNet, VggNet, and EfficientNet, as
well as their inner layers. Aided by the heatmaps created using Gradient-weighted
Class Activation Mapping (Grad-CAM), a visualization-based primary feature
selection is applied to determine the best features to form an initial CNN
pool. The output of the flattened features from this CNN pool is then fed into
the IDFC for classification. Hyperparameters of the base learners are then
selected for an explainable and enhanced diversity tree-structured deep forest
classifier, using the selected multimodal features as inputs. Finally, the Accuracy-
Size Comprehensive Indicator (ASCI) is introduced for the secondary feature
selection and the optimized deep forest classifier construction, which balances
themodel accuracy and size and reduces hardware resource requirements. Using
the simulated testing dataset created for this research, our architecture
demonstrated superior accuracy (98.9%) and deployability with its lower
model size (115 MB). This lightweight AI architecture is successfully deployed
on a soft robotic system for real-time gas leak detection. Our proposed
architecture is also extensible to other environmental hazard detection
situations, such as liquid leaks in the pipelines.
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1 Introduction

Natural gas is becoming increasingly prevalent in the world’s energy usage, with most of
it being transported through pipelines (Feijoo et al., 2018). However, statistics reveal that
pipeline leaks are alarmingly frequent, occurring every 40 h in the United States alone, with
many smaller leaks going unnoticed (Dutzik, 2022). These failures result in billions of
dollars in damage, severe environmental contamination, and sometimes even loss of life

OPEN ACCESS

EDITED BY

Simone Arena,
University of Cagliari, Italy

REVIEWED BY

Mariam Abdellatif,
Canadian International College, Egypt
Saif Ullah,
University of Ulsan, Republic of Korea

*CORRESPONDENCE

Eddie Zhang,
26eddiez@students.harker.org

RECEIVED 01 February 2025
ACCEPTED 09 April 2025
PUBLISHED 01 May 2025

CITATION

Zhang E and Zhang E (2025) Gas pipeline
leakage detection based on multiple
multimodal deep feature selections and
optimized deep forest classifier.
Front. Environ. Sci. 13:1569621.
doi: 10.3389/fenvs.2025.1569621

COPYRIGHT

© 2025 Zhang and Zhang. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 01 May 2025
DOI 10.3389/fenvs.2025.1569621

https://www.frontiersin.org/articles/10.3389/fenvs.2025.1569621/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1569621/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1569621/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1569621/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2025.1569621&domain=pdf&date_stamp=2025-05-01
mailto:26eddiez@students.harker.org
mailto:26eddiez@students.harker.org
https://doi.org/10.3389/fenvs.2025.1569621
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2025.1569621


(Williams and Glasmeier, 2022). Furthermore, pipeline leaks release
nearly six million tons of methane annually (Sherwin et al., 2024), a
gas which is 30 times more potent than carbon dioxide and accounts
for a third of the world’s global warming due to greenhouse
emissions (Environmental Protection Agency, 2023). Therefore,
early detection of gas infrastructure leaks is an efficient and
effective way to reduce emissions (Olczak et al., 2023).

Traditional industrial gas leak detection methods, such as
hydrostatic testing and camera inspection, are often unreliable,
inaccurate, costly, and labor-intensive (Fahimipirehgalin et al.,
2021). External conditions, such as weather also significantly
affect gas leak detection accuracy, making autonomous detection
evenmore challenging (Zimmerle et al., 2020). As a result, there is an
urgent need for a reliable system capable of inspecting gas leaks in
real-time with high accuracy.

Multimodal Artificial Intelligence (AI) has been applied in gas
leak detection research. Different types of data inputs, such as
Acoustic Emissions (AEs) and chemical composition data, etc.,
are used as training inputs to create more robust Machine
Learning (ML) models that withstand external disturbance for a
more accurate gas leak detection result (Ullah N. et al., 2024).
Recently, thermal imaging has emerged as an additional source
of data for building a more robust ML architecture. Intuitively,
thermal images are less prone to be affected by weather conditions
such as wind, providing a data source orthogonal to the sensor data.
CNNs have been the de facto ML model for image analysis since
their inception (LeCun et al., 1998; Alzubaidi et al., 2021). Models
such as the AlexNet (Krizhevsky et al., 2017), ResNet (He et al.,
2016), MobileNet (Howard et al., 2017), and EfficientNet (Tan and
Le, 2019) have been optimized for either accuracy or efficiency. Each
CNN extracts different deep features, and the contribution of these
features to the model’s overall performance varies. Combining these
features intelligently could enhance the model’s ability to identify
key areas of an image that may indicate the presence of a gas leak.

On the other hand, tree-based models and ensembles of decision
trees, such as Random Forests (RFs), have been developed to
improve the accuracy of predictions on numerical data (Breiman,
2001). RF, an ensemble learning algorithm, constructs multiple
decision trees through bootstrap aggregation and feature
randomization. The workflow comprises four key phases: (1)
bootstrapped data sampling, (2) random feature selection, (3)
parallel tree construction, and (4) majority-vote prediction.
Specifically, during node splitting in each decision tree of the
feature selection phase, the algorithm dynamically selects a
random subset of features to determine optimal split criteria,
thereby ensuring model diversity and mitigating overfitting. RF’s
variations like the Completely Random Forest (CRF), which utilizes
completely random splitting in the feature selection phase, and
Mondrian Forest (MF), which partitions data space into smaller
regions in the data sampling phase, aim to address challenges such as
overfitting and efficiency that RFs face (Geurts et al., 2006;
Lakshminarayanan et al., 2014). Additionally, boosting algorithms
such as AdaBoost and eXtreme Gradient Boosting (XGBoost), which
sequentially minimize error, have also been used in a wide range of
applications with comparable accuracy to bagging methods (Freund
et al., 1999; Chen and Guestrin, 2016). More recently, Zhou et al.
proposed the Deep Forest Classifier (DFC), an ensemble learning
algorithm that combines the strengths of deep learning with

traditional ensemble techniques by creating a multilayer network
of RFs instead of neurons or perceptrons (Zhou and Feng, 2019).
However, improving the diversity of the DFC base learners to
enhance model performance remains an ongoing area of research
(Pan et al., 2023).

Zhang et al. introduced SPIRo (Soft Pipe Inspection Robot), a
soft robot designed to adhere to and navigate pipeline surfaces, as
well as a multimodal data and DFC-based AI system for gas leakage
detection (Zhang and Zhang, 2024a). However, this work has several
limits and disadvantages in terms of the gas leak detection model
that can be improved. In this conference article, only three CNNs,
specifically AlexNet, ResNet-50, and MobileNet, were employed,
without adequately determining the multi-scale deep features each
model extracts or exploring the performance of other possible
combinations with visualization-based knowledge. Additionally,
the standard DFC can be improved in terms of accuracy and
efficiency by incorporating a more diverse set of base learners.
Moreover, the effectiveness of the gas leak detection model has
so far only been evaluated based on accuracy, but efficiency and
model size are also key factors in deploying an algorithm in real-time
environments.

Motivated by the issues outlined above, we propose a gas
pipeline leakage detection architecture based on multiple
multimodal deep feature selections and an optimized Improved
DFC. First, the multimodal inputs undergo preprocessing. These
inputs are then passed through the deep feature primary selection
module, which selects deep features from a pool of CNNs based on
feature visualization and prior knowledge. Next, the primary deep
features, along with gas sensor data, are fed into the hyperparameter
selection module, where the optimal hyperparameters for IDFC base
learners are determined through an exhaustive grid search. Finally,
using a newly defined Accuracy Size Comprehensive Indicator
(ASCI), a lightweight optimized classifier is constructed with the
secondary selected multimodal features and the previously obtained
IDFC hyperparameters. This AI model is successfully deployed on a
soft robotic system for real-time gas leak detection. The key
innovations of this work are as follows: (1) A two-step deep
feature selection process is developed to identify the most
optimal deep features, extracted from different layers across
various CNN architectures; (2) A new performance metric, the
ASCI, is introduced to evaluate the trade-off between accuracy
and model size for deployment on real-time embedded targets;
(3) An improved deep forest classifier, incorporating a more
diverse set of estimators, is proposed, demonstrating superior
performance compared to other ensemble learning methods.

The structure of this article is organized as follows: Section 2
reviews the related works. Sections 3, 4 detail the algorithm
development and implementation, followed by an analysis of the
results. Section 5 concludes the article and suggests directions for
future research.

2 Related works

2.1 Leak detection methods

Common methods of gas leak detection include chemical
composition data, acoustic emissions data, and optical gas
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imaging (Lu et al., 2020). Chemical composition data is the most
traditional and reliable method, detecting changes in the gas
composition of the environment surrounding a pipeline (Lu
et al., 2020). Da Cruz et al., Xiao et al., and Chi et al.
implemented the acoustic method for leak detection by
identifying abnormalities in sound waves produced by gas
pipelines (Da Cruz et al., 2020; Xiao et al., 2019; Chi et al.,
2021). Ullah, N et al. proposed a time-series-based framework
leveraging AE data for pipeline leak detection (Ullah N. et al.,
2024). Follow-up research employs a hybrid convolutional neural
network–long short-termmemory (CNN-LSTM)model for pipeline
leak detection that uses AE signals as well, which achieved superior
performance in higher validation accuracy and lower validation loss
(Ullah S. et al., 2024). These studies experimented with various
machine learning and deep learning methods, demonstrating that
Support Vector Machines (SVM) and RFs achieved 99% accuracy in
binary classification of simulated testing data, determining the
presence of leaks. Ning et al. used a similar method to develop a
status indicator for gas pipeline health (Ning et al., 2021). While
both the acoustic method and chemical composition data are
extensively tested, they are primarily effective when sensors are
located near the leak (Lu et al., 2020).

Optical gas imaging is a relatively new field in gas leak detection
that involves imaging gas plumes emitted from pipe leaks, making it
more effective at sensing from a distance (Lu et al., 2020). Shi et al.
and Wang et al. have tested the infrared imaging method on videos
and images of field gas leaks, demonstrating the capabilities of
cameras at longer distances and ranges (Shi et al., 2020; Wang
et al., 2022).

Multimodal data analysis and fusion have become increasingly
prevalent because they offer a more reliable method compared to
previous single-modal methods. Narkhede et al., Atallah, and
Azizian et al. propose a setup combining chemical composition
and infrared imaging, achieving accuracies above 95% (Narkhede
et al., 2021; Attallah, 2023; Azizian et al., 2024). These two data
modes complement each other well in detecting gas leaks, as gas
sensor data is reliable at close range while thermal imaging is
versatile in various situations. However, one shortcoming of these
approaches is their inefficiency in both training and inference time,
making them unsuitable for real-time leak detection.

Finally, Yan et al. proposed a multisource method for detecting
small gas leaks in pipeline infrastructure using pressure waves, flow,
and acoustic waves. However, this method, like other acoustic sensor
networks, is not successful in real field pipeline environments due to
the difficulty in setup and the inability to adapt to various pipeline
shapes (Yan et al., 2024).

2.2 Image feature visualization and selection

Feature extraction and visualization in CNNs and other machine
learning models have long been considered a ‘black box’ due to the
difficulty in understanding the basis for the models’ predictions.
Saliency maps were the first widely used form of eXplainable AI
(XAI) applied to image data. They determine the influence of each
pixel on the final prediction by calculating the gradient of the label
with respect to the input image (Simonyan et al., 2013). Since then,
more XAI techniques for images have been developed, including

gradient-based class activation methods. One example of such
methods is Gradient-weighted Class Activation Mapping, which
utilizes the gradients of the classification score with respect to the
final convolutional feature map to identify the parts of an input
image that most impact the classification score. These techniques
use a global average pooling layer followed by the softmax function
to identify the most important features for a CNN model (Selvaraju
et al., 2017).

However, simply visualizing these extracted features is not
sufficient to evaluate model performance. It is also necessary to
select the most important features, and by extension, the most
effective CNNs (Simonyan et al., 2013). The feature maps
generated by different models vary because each model uses a
different combination of deep layers (Oh et al., 2009). One
method for selecting the feature maps to be concatenated into a
final model involves visualizing these features and identifying
unique ones across different models (Qian et al., 2016). This
approach has proven effective because, instead of relying on an
arbitrary combination of random features, it selects a diverse set of
features that can each identify key focus points in an image. This
reduces the impact of redundant or irrelevant features on model
performance (Naheed et al., 2020). As a result, fusing different
feature maps can enhance accuracy by providing a broader range of
identified features from the input data (Turab et al., 2022).

2.3 Tree-based ensemble classifier

Tree-based ensemble classifiers can be categorized into twomain
types: bagging and boosting (Sutton, 2005). Bagging methods, such
as RFs, reduce variance in ensemble tree classifiers by training each
tree on a different subset of the initial dataset (Breiman, 1996). These
methods offer the advantage of improved stability and the ability to
handle noisy data (Breiman, 2001). On the other hand, boosting
methods iteratively create predictors by focusing on correcting
errors from previous iterations, thereby enhancing overall model
performance (Freund et al., 1999). A key advantage of boosting is
that these models are less prone to overfitting compared to bagging
models because new learners are introduced with an increased
degree of randomness (Freund et al., 1999).

In the field of gas leak detection, Akinsete et al. compared the
effectiveness of various ensemble algorithms, including RFs, and
found that ensemble decision trees were the most accurate for
analyzing acoustic data (Akinsete and Oshingbesan, 2019). Zhou
et al. explored the use of ensemble learning with multiple base
learners in CNNs for gas leak detection and localization (Zhou et al.,
2019). Kopbayev et al. further developed a spatio-temporal model
that fused imaging techniques with acoustic data for inspecting gas
pipes, enhancing gas leak detection (Kopbayev et al., 2022).
Additionally, Wang et al. improved pipeline leakage detection
accuracy by integrating a sparse autoencoder with an enhanced
SVM (Wang et al., 2020).

Ensemble learning methods, such as decision trees, have been
experimented with alongside deep learning approaches, including
DFC, which is the chosen ensemble algorithm for this work (Zhou
and Feng, 2019). The key advantage of the deep forest lies in its
cascade forest structure, where other tree-based ensemble methods
serve as estimators in each layer (Zhou and Feng, 2019). This
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structure allows the deep forest to combine the strengths of deep
learning and ensemble learning, creating a more accurate alternative
to traditional ensemble methods and a more efficient approach
compared to conventional deep learning fusion techniques. To
determine the optimal number of layers in the cascade forest,
k-fold validation is employed.

However, there is still room for improvement in the accuracy
and robustness of the deep forest classifier (DFC). For instance, the
default base learner in the DFC is the RF, which has several
disadvantages compared to more diverse methods. Primarily, the
RF is more prone to overfitting than other tree-based methods.
Additionally, it is relatively computationally complex, leading to
longer training and prediction times. A more diverse set of base
learners could be utilized to further enhance accuracy. This
limitation was evident in our previous work (Zhang and Zhang,
2024b), where the unmodified DFC achieved only 88% accuracy on a
simulated testing dataset due to the lack of diverse learners and the
impact of overfitting on a smaller dataset.

Moreover, there remains a significant research gap in deep
feature extraction and visualization within the field of gas leak
detection. Current research has primarily focused on developing
accurate localization and detection systems for gas leaks but has
not adequately addressed the extraction of deep features used in
these models. There is still a lack of understanding regarding how
certain deep learning models and gas leak detection systems can be
improved by optimally selecting layers and models based on the
features they extract. Furthermore, it remains unclear which
features are most important to each model, underscoring the
need for the development of effective feature extraction
methods. Ideally, these deep features should be extracted based
on both model accuracy and size to ensure real-time leak detection
capabilities. Finally, as demonstrated by the performance of
multimodal data-based algorithms, fusing these deep features is
necessary to develop the most accurate deep learning-based gas
leak detection models.

3 Algorithm architecture

3.1 Algorithm framework

Based on the above analysis, a new gas pipeline leakage detection
algorithm framework leveraging multiple multimodal deep feature
selections and the IDFC, is proposed. It consists of four modules: the
data preprocessing module, the deep feature primary selection
module, the hyperparameter selection module for the IDFC, and
the optimized classifier module, which incorporates secondary
feature selection and comprehensive indicator. The structure of
the framework is shown in Figure 1.

The functions of the different modules illustrated in Figure 1 are
described below.

(1) Data preprocessing module. The data is first pre-processed by
normalization based on the same scale to remove bias among
input features in different data elements. The thermal images
are also unblurred to create a clearer contrast between warmer
regions which indicate the presence of a gas leak and cooler
regions which do not.

(2) Deep feature primary selection module. This module is
responsible for developing and identifying the most
optimal combination of CNNs for gas leak detection. This
is achieved by generating the features of each layer of the
CNNs using heatmaps and then visually determining the best
deep feature layers to identify the gas leaks in the
thermal images.

(3) Hyperparameter selection module for IDFC. The output from
the above CNNs’ layers is applied with different tree-based
IDFC to improve layer diversity. The gas sensor data is fed
directly into this layer as well. The optimal hyperparameters
for each base model are determined using the grid
search method.

(4) Optimized classifier module based on secondary feature
selection and comprehensive indicator: This module is
responsible for identifying the impact of the different
combinations of CNNs and their respective features, using
the novel ASCI, as well as tuning hyperparameters through an
exhaustive grid search, based on the leak detection accuracy of
the proposed system.

3.2 Algorithm implementation

3.2.1 Data preprocessing module
The thermal images are first resized to a size of 224 × 224 × 3,

reducing the computational time of the model. Then, both thermal
images and gas sensor data are scaled using min-max normalization,
which reduces the effects of outliers and ensures the consistency of
data being passed to the machine learning model while maintaining
the differences in colors for thermal images.

3.2.2 Deep feature primary selection module
3.2.2.1 Deep feature pool

CNNs are a popular machine learning model for images
processing and analysis. Different CNN models were developed
to extract and generate image feature maps for various use cases.
Hence, leveraging the optimal models for gas leak detection can be
crucial to improving the leak detection accuracy.

Each layer of each CNN generates different feature maps, as they
tend to be sensitive to different areas of a RGB or grayscale image
because they are built with different layers with filters. Since filters
can be specialized to detect different areas of an image, each layer
and filter generates different features. Thus, with more feature maps,
the diversity of an ensemble model in terms of input features
increases, in turn increasing model performance. Additionally, it
is also important to consider the feature maps generated by the
intermediate layers of each CNN. This is because most CNN
architectures are built around larger datasets like ImageNet, and
often, using fewer layers could provide more accurate results,
especially in cases with smaller datasets, such as in the field of
gas leak detection. These intermediate layers are determined
through the quality of the visualized feature maps.

We propose to create a CNN feature pool and select the most
effective multi-scale deep features out of the pool to build the final
leak detection model. These CNNs and their features must be
selected based on which combination will not only provide the
most diverse and representative combination of features, but also
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their accuracy when it comes to leak detection through
thermal image data.

In this research, we have picked five CNNs, the VggNet, ResNet-
50, Mobilenet, AlexNet, and MobileNet to form the CNN pool. The
pool can be extended to add more CNNs.

3.2.2.1.1 VggNet. The VggNet, or Vgg-16, is the first selected
CNN used for thermal image processing. It contains 16 deep layers,
uses a variety of small convolutional filters to transform the input
image into a linear feature map and is one of the most commonly
used CNN architectures (Alzubaidi et al., 2021). Due to the nature of
each filter, the VggNet is capable of picking up on small differences
in the thermal image that indicate the presence of a gas leak, allowing
it to achieve high performance on image classification tasks.

3.2.2.1.2 ResNet-50. The ResNet-50 is another commonly used
CNN in image classification tasks (Alzubaidi et al., 2021). ResNet-50

is a 50-layer deep CNN and can maintain the capability of
generalizing data as the number of layers increases. It solves this
issue through skip connections, which allows the network to skip
certain layers and advance the output of a previous layer to a further
layer (He et al., 2016). This allows the ResNet-50 to identify more
complex features in an image and is more efficient than other
similarly deep architectures.

3.2.2.1.3 EfficientNet. The EfficientNet-B3 is the third CNN
added to the pool. The key difference between the EfficientNet and
previous CNN architectures is the compound coefficients (Tan and
Le, 2019). This allows the EfficientNet to scale layers proportionally
instead of randomly as in other previous models. Finally, the
EfficientNet also utilizes depth-wise convolution blocks to further
enhance its efficiency over previous models. This allows the network
to be capable of achieving high state of the art accuracies while
simultaneously being much more efficient.

FIGURE 1
Algorithm framework.
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3.2.2.1.4 AlexNet. The AlexNet is another CNN added in this
research, and it can extract complex features from images. It
consists of a total of five convolutional max pooling layers
followed by three fully connected layers, forming an 8-layer
deep neural network (Krizhevsky et al., 2017). The advantages
of the AlexNet lie in its ability to analyze and achieve high
performance on large and diverse datasets using ReLU
activation and Dropout layers. Due to its robustness, it is one
of the most used CNNs in a wide range of applications, including
gas leakage detection (Melo et al., 2020).

3.2.2.1.5 MobileNet. The MobileNet is the final CNN
architecture that is tested in this research, with it targeting an
improvement in efficiency rather than accuracy. Instead of using
standard 2D convolutional layers, it uses depth-wise separable
convolutions, where filters are applied to each input channel.
Then, pointwise convolution is used, where the results of the
previous depth-wise convolutions are combined to make a new
feature (Howard et al., 2017). This allows the MobileNet to have
much fewer parameters while being able to achieve similar
accuracies to previous architectures.

3.2.2.2 Deep feature visualization and selection
Selecting the most optimal CNNs and their features is another

crucial part of devising themost effective leak detecting system. Each
CNN emphasizes different features to identify the presence of a gas
leak, and selecting which features to include in the final model is
essential. To visualize the features extracted by each layer of a CNN
architecture, Gradient-weighted Class Activation Mapping is
utilized (Selvaraju et al., 2017). Grad-CAM works by first
calculating the gradient of each pixel in an image given a certain
class in Equation 1:

ack �
1
Z

∑
i

∑
j

∂yc

∂Aij
k (1)

where ack are the importance weights, Axij
k are the original feature

map activations derived from a convolutional layer, Z is the size of
the feature map, and yc is the score for the predicted class c.

Then, to retrieve a class discriminative visualization of a CNN
network, a heat map Lc is generated from a weighted average of the
different activation maps, which is defined in Equation 2:

Lc
Grad−CAM � ReLU ∑

k

ackAk
⎛⎝ ⎞⎠ (2)

where Ak are the activation maps, ack are the importance weights,
and a ReLU is applied to eliminate features which may have a
negative influence on the final prediction output.

This heatmap shows which areas of the image and which
features are more important for the final prediction of a certain
class. We conduct a preliminary selection of CNN features for
different layers based on the visualization of these heatmaps and
then select the optimal feature combination based on model
accuracy when using these different features.

3.2.3 Hyperparameter selection module for IDFC
The proposed improved deep forest classifier architecture is

illustrated in Figure 2.

Figure 2 illustrates that the IDFC algorithm follows a cascade
forest architecture, where each layer is built upon the previous one. It
functions as a deep learning network, but instead of using neurons as
in a standard unit, the IDFC employs a more diverse set of base
learners. The inputs to the IDFC consist of the concatenated, flattened
feature maps from each CNN selected in the deep feature primary
selection module, along with the gas sensor data. The data from the
input layer first enters a data binner, which reduces the number of
splits a decision tree must consider. The first layer of the IDFC is
constructed using this binned data. Subsequently, training data for the
next layers is generated by concatenating the binned predictions from
the previous cascade layer with the original training samples. The
performance of this new layer is then evaluated using out-of-bag
samples from the original dataset. If the new layer performs better
than the previous ones, another layer is added. Otherwise, the IDFC
training process is terminated.

Selecting appropriate hyperparameters for different characteristic
data and determining the number of layers in IDFC for various base
learners is essential for enhancing model performance. The following
section provides a detailed description of the principles behind these
base learners and the strategy for determining the optimal number of
IDFC layers.

FIGURE 2
Improved deep forest classifier architecture.
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3.2.3.1 Base learners
The base learners for the IDFC include the completely

random forest, Adaboost, XGBoost, and mondrian forests. The
selection criteria include the learner’s individual advantages, the
diversity of the implemented base learners, as well as their tested
accuracies.

3.2.3.1.1 Completely random forest. CRF is an algorithm
similar to RF, which does not determine the best split for a
decision tree but instead selects a random subset of split points
and determines the best split among those points in the subset. The
score for determining the best split is defined in Equation 3:

ScoreC s, S( ) � 2Ics S( )
Hs S( ) +Hc S( ) (3)

where S is a sample,Hc is the log of the classification,Hs is the split
entropy, and IcS is the mutual information of the split outcome.

The advantage of the CRF is that it introduces randomness into
the RF, making it faster to train and more flexible.

3.2.3.1.2 Adaboost. The Adaboost, or adaptive boosting,
algorithm is a boosting ensemble that combines multiple weak
learners to create a strong ensemble algorithm. Initially,
Adaboost assigns equal weight to all input features for a weak
learner, such as a one-level decision tree. Then, the weak learner
is trained on the data with the current weights. This error can be
defined in Equation 4.

∈t � Pri~Dt ht xi( ) ≠ yi[ ] � ∑
i: ht xi( )≠y+i

Dt i( ) (4)

where Dt(i) is the weight distribution on training sample i at
iteration t, ht is a weak hypothesis of a value between −1 and
1 for an instance of data, xi one sample of data from the training set,
and yi is a label or result for the training data.

After training, new weights are updated based on the errors
made by the weak learner, and the process is repeated iteratively. The
final prediction is obtained from a majority vote of all weak learners
in the model.

3.2.3.1.3 XGBoost. The XGBoost algorithm is another
commonly used boosting method. Decision trees are used as the
base learners, and it employs regularization techniques to improve
model generalization. However, unlike the RF’s decision trees,
XGBoost uses far fewer splits, resulting in shallower trees and
more efficient computation. Trees are added iteratively to the
model using Equation 5

Fm X( ) � Fm−1 X( ) + bmhm X, rm−1( ) (5)
where X is the training data, Fm is the i th tree in the algorithm, bm
and rm are the regularization parameters, and hm is a function used
to predict residuals.

The formula used to predict bi is defined in Equation 6

argmin � ∑ L Yi, Fi−1 Xi( ) + αhi Xi, ri−1( )( ) (6)

where ri is the residuals computed, Y is the labels for the training
data X, L is a differentiable loss function, and α is a
regularization parameter.

3.2.3.1.4 Mondrian forests. The Mondrian Forest follows a
similar structure to the RF in that it is an ensemble of tree
algorithms. The key difference between the MF and RF lies in
how the trees are constructed. The MF generates trees using the
Mondrian process, which creates splits to minimize impurity in the
child nodes of a decision tree, similar to other decision trees, but
without relying on labels. Mathematically, this concept can be
represented Equation 7:

C � NparentImpparent −NleftImpleft −NrightImpright (7)

where N represents the number of samples in the parent node and
two child nodes, and Imp is the impurity. The split is determined by
drawing splits from a uniform split distribution within bounds for
different feature indices rather than iterating through every
possibility as with standard decision trees. This, in turn, also
improves randomness and efficiency in the trees. The timing of
the split in the MF is represented in Equation 8:

∑D
f�1

ub f[ ] − lb f[ ]( ) (8)

where D is the training data, ub and lb are the upper and lower
bounds of all features in the particular node, and f is the
feature index.

The MF is constructed sequentially from multiple Mondrian
trees. Compared to RFs, the MF offers the advantages of greater
efficiency and the ability to operate in online environments while
achieving similar accuracy. However, they are dependent on the
quality of data, making them prone to overfitting on
imbalanced datasets.

3.2.3.2 IDFC layer selection
The top four algorithms, based on accuracy, are selected as the

four different base learners for each layer of the cascade forest, as
shown in Figure 2, with every layer consisting of these four types of
base learners. This approach enables the identification of the best-
performing models on gas leak data and is an effective method for
selecting these estimators. There are two key advantages to using
these four base learners instead of relying solely on the RF. First, the
efficiency of the new model is greater than that of the original DFC,
which is crucial in real-time systems. Second, having more
estimators in each layer improves diversity, a key factor in
determining the accuracy of an ensemble model. These two
factors allow the new architecture of the DFC to achieve
improved performance.

3.2.3.3 Hyperparameters selection
The hyperparameters selected are based on which parameters

are the most impactful to the performance of the model. To
minimize the complexity of the grid search, not all parameters in
these models are tested as some may have a negligible impact on the
model’s final performance. In the CRF, we select the most important
parameters to tune, which are the number of estimators and the
number of samples needed to split a node (Geurts et al., 2006). In the
Adaboost, we select all three tunable parameters, while fewer tunable
parameters are chosen in the XGBoost and Mondrian Forest since
these models are inherently more resistant to hyperparameter
changes (Chen and Guestrin, 2016; Lakshminarayanan et al.,
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2014). The ranges of these parameters are estimated based on past
works to reasonable bounds, where numbers too large or too small
may cause overfitting and underfitting independent of what the
other parameters being tuned are.

A decision tree is a non-differentiable component with
significant interpretability. Ensemble-based learners, such as CRF,
Adaboost, XGBoost, andMondrian Forests, utilize multiple decision
trees for prediction, which are then combined through voting
decision-making. As a result, these base learners have clear and
interpretable decision paths. The IDFCmakes predictions through a
cascade of layers, each consisting of these base learners. The output
of each layer consists of a list of class probabilities from each learner,
which are concatenated with the original features and passed into
the next layer of the DFC. This process enables layer-by-layer
learning, allowing the model to progressively refine its
understanding of the data. At each layer, the full model is
evaluated on a validation dataset, and the IDFC stops adding
layers when validation accuracy no longer improves after a
predetermined number of layers, based on the stopping
criterion. In other words, the IDFC uses discrete tree splits,
which allow for traceable feature importance scores.
Additionally, each IDFC layer processes input features and
generates new representations with explicit decision paths.
Thus, the interpretability of the IDFC is derived from its
unique architecture and decision-making mechanisms, offering
advantages over traditional Deep Neural Networks (DNNs) in
terms of transparency and feature analysis.

3.2.4 Optimized classifier module based on
secondary feature selection and comprehensive
indicators

The standard performance metrics for classification tasks of
accuracy, precision, recall, and F1Score are utilized in this work.
They are defined as in Equations 9–12:

Accuracy � TP + TN

TP + TN + FP + FN
(9)

Precision � TP

TP + FP
(10)

Recall � TP

TP + FN
(11)

F1 � 2 · Precision · Recall
Precision + Recall

(12)

where TP is the number of True Positives, TN is the number of True
Negatives, FP is the number of False Positives, and FN is the
number of False Negatives.

In addition to the standard metrics, we also propose a
performance metric, the ASCI, which can be defined as:

J � W1 *Accuracy +W2 * 1 −Norm ln P( )( )( ) (13)
with W1 +W2 � 1, 0<W2<W1< 1, Norm representing a min-
max normalization function between 0 and 1

3, and P being the
number of parameters in the model.

ASCI defines the tradeoff between the accuracy and size for a
given model. A higher J value indicates a better balance between
accuracy and size, since the accuracy would be penalized more by
models with more parameters and a larger size. A normalization
function is required to ensure that the final P value is not too large.

Different values of W1 and W2 are tested to determine the most
optimal setup. Finally, to prevent significantly smaller models with
lower accuracies from becoming dominant, a lower bound of the
value J is set based on the different values ofW1 andW2, and ASCI
values above this lower bound for any weights are then compared
based on their accuracies, with the highest accuracy combination
being the best combination. This is because each of these CNN
groups has already demonstrated a relatively small size, leading to
accuracy becoming the sole most important factor. The lower bound
in this work is described in the results section.

3.2.5 Algorithm flow chart
The flow chart of the gas pipeline leakage detection architecture

based on multiple multimodal deep feature selections and the
optimized IDFC is illustrated in Figure 3.

In this research, we used two major indicators for the selection
of CNNs from the final deep feature pool. For the CNNs, the
feature maps were analyzed to determine which CNN architectures
had a stronger emphasis on the warmer region of an image itself,
which would indicate the presence of a gas leak as well as the focus
on the border between the warmer and cooler regions. The second
major factor in deciding which CNNs to choose is the accuracy and
ASCI that each can achieve on a simulated dataset. This approach
allows us to select a set of accurate CNNs that each focus on a wide
variety of features, increasing the probability of detecting a leak,
while ensuring that the cost of this group of CNNs remains
manageable.

4 Experimental results

The performance of the proposed architecture is evaluated. First,
the differences between the deep feature visualizations were
examined, and the model accuracy and ASCI using different
weights of each CNN and different combinations of CNNs were
also determined as an additional and secondary method of finding
the best feature combinations. To find the optimal parameters for
the IDFC and its four base learners, an exhaustive grid search was
conducted to experiment with a wide range of parameters. The
capabilities of the leak detection system were verified through
deployment on a soft robotic system.

4.1 Soft robot integration

A compact, out of pipe soft robot is designed for transporting the
apparatus necessary for facilitating gas leak detection, and further
details regarding design and characterization can be found in
reported work by Zhang and Zhang (2024a). The design chosen
leverages the characteristics of soft robots, which have recently
garnered increased attention for their deformability, adaptiveness,
durability, compactness, and low cost. In contrast to rigid robots,
which are suited for operation in a well-defined environment such as
a factory assembly line, soft robots are able to operate in
unstructured scenarios, such as gas leak detection on a pipe
which may traverse different types of terrain in varying weather
conditions. Thus, a soft robot is well-suited to overcome these
challenges. The robot design is depicted in Figure 4a.
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The robot’s main body and structure are composed of a compliant
scissor linkage mechanism, which is labeled in Figure 4a. The scissor
linkage is able to extend forward and then contract to allow the robot
to locomote in an inchworm-like motion. Its material is thermoplastic
polyurethane, which is flexible and allows the robot to bend itself
using its actuators. It has mounting points on the front and back for
straightforward switching of sensors and cameras. The robot moves
through its McKibben muscle-inspired pneumatic actuators; they are
placed in the locations depicted in Figure 4a, which allows their
expansion to be transformed into both an extension and contraction
motion. The McKibben muscles themselves are compact in size but
strong when actuated and can propel the robot along both horizontal
and vertical surfaces as well as maneuver the robot in tight locations.
This maneuverability is also assisted by the controllability of an array
of actuators; the more actuators there are, the more independent
locations that can be controlled to precisely move the robot. Actuators
are mounted on two positions on the robot - horizontally where they

expand the body and serve as extensional actuators, and vertically
where they contract the body and serve as contractional actuators for
increased controllability. To attach to pipelines, the robot uses
magnetic grippers, depicted in Figure 4a. The curved frame of the
grippers adapts around the curvature of the pipeline to grip it, and the
robot can adapt to varying diameters of piping by replacing the foot to
adapt to larger or smaller diameters. The origami-inspired pouch
motors are responsible for lifting and reengaging the magnets of the
foot, which allows the attraction between the foot and pipe to be cut
off and restarted. The pouch motors feature an origami-inspired
design as seen on the gripper in Figure 4a, where the crease of the
pouchmotor allows the available deformation distance to be increased
while the footprint of the pouch motors is kept at a minimum.

The robot has a payload capacity of 161 g, which is crucial for
accommodating the sensors and apparatus necessary for gas leak
detection. Specifically, for this work, three sensors are chosen for
multimodal data analysis to improve the redundancy and robustness

FIGURE 3
Flow chart of gas pipeline leakage detection architecture based on multiple multimodal deep feature selections and the optimized IDFC.
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of the leak detection system and mitigate the effects of
environmental disturbance. The gas composition sensors chosen
are the MQ2 and MQ7 metal oxide sensors. The MQ2 sensor
specifically senses for methane with a range of 100–10,000 parts
per million (ppm), while the MQ7 sensor senses for carbon
monoxide with a range of 20–2000 ppm. These two specific
sensors were selected as they detect the two most common
chemicals carried in gas pipelines.

The thermal camera utilized is capable of detecting a
temperature range between −40°F to 626°F with a field of view of
46° and a resolution of 206 by 106 pixels. One significant advantage
of utilizing a thermal camera is that it can penetrate smoke and dust
while simultaneously detecting the heat that is emitted off them,
since gas pipelines are often heated to high temperatures.

The complete system and integration of the soft robot are shown
in Figure 4b. Real-time leak detection and data collection is
implemented through the MyRIO microcontroller and its WIFI
capabilities. Thermal images and gas sensor data are collected at
60 Hz to ensure a constant flow of up-to-date data.

4.2 Datasets

Three datasets are utilized and developed for the training and
validation of the proposed algorithm framework. All three datasets
either have perfect balance at 50%–50% or close to perfect balance at
45%–55% in terms of leak vs no-leak instances. Details are
as follows.

The MultiModalGasData dataset was used as the initial training
database andmodel development (Narkhede et al., 2021). It contains
3,200 instances of thermal images and their corresponding gas
sensor readings for leak and no leak situations, with 1,600 of
them representing the presence of a gas leak and the remaining
1,600 representing the absence of a gas leak, meaning a 50%–50%
split. The data was collected using various gas chemicals commonly
found in pipelines which were sprayed onto a network of sensors
and a thermal camera.

The simulated testing dataset is collected by our soft robot system
in a simulated pipeline leak environment designed to resemble a small
section of an industrial pipeline. The environment is constructed
using two sections of a metal pipe with a slight opening in between to
allow the flow of air from inside the pipe to the outside environment.
To simulate a no leak circumstance, data was collected purely based
on atmospheric conditions. Then, a calibration gas containing
10,000 PPM of methane was passed through the pipeline with
heated air to simulate the contents of the gas pipeline itself and
the concentration of methane in the leak. Different amounts of gas
were released through each test to simulate gas leaks of different
magnitudes. This dataset contains various instances of leak and no
leak situations with thermal images and their corresponding gas
sensor data readings. 176 total samples were collected, with the
ratio of leak to no leak data samples being 46%–54%, and the
dataset was used for testing the performance of the proposed leak
detection framework.

The third dataset is collected in a field environment at the
Methane Emissions Technology Evaluation Center (METEC) at

FIGURE 4
(a) The components and functions of the soft robot. (b) A system diagram of the soft robot and its integration in the machine learning system.
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Colorado State University. The METEC center contains multiple
pieces of retired gas infrastructure. Controlled methane emissions
can be released from various points across each piece of
infrastructure to simulate a gas leak. To collect data, a similar
approach was utilized as in the simulated testing dataset where
the soft robot and sensors were positioned on a pipeline and leaks of
various magnitudes were started. Overall, data from four different
leak locations on four different pieces of infrastructure were
collected, amounting over 30,000 data points of gas sensor data
and thermal images, with the ratio of leak to no leak data samples
being 45%–55%, which were used for both training and testing in an
80:20 split.

Overall, the datasets used in this study consist of 3,200, 176, and
30,000 instances, respectively, with a class distribution of 50%–50%,
46%–54%, and 45%–55% between lean and no-lean instances. Given
the requirements for modeling sample size and the balance of
samples in the IDFC algorithm used in this study, we chose not
to apply data augmentation to enhance model robustness. However,
in future research, we plan to explore the use of this technique.

The data splitting of the various datasets are as follows. The
MultiModalGasData dataset is divided into 80%:20% splits for
training and testing. The simulated testing dataset is used for
model testing and comparison between different architectures and
layers, and the METEC data are used for evaluating the final model.

4.3 Results and discussion

4.3.1 Deep feature primary selection results
Different CNNs can extract different features from the images.

In this research, five CNNs are tested to identify which features they
would extract: AlexNet, ResNet-50, MobileNet-V3, VggNet, and
EfficientNet-B3. We then use Grad-CAM (Selvaraju et al., 2017) to
generate a visual representation of the feature maps of each CNN
and its inner layers. Three sample images, representing small,
medium, and large gas leaks situations respectively, are selected
from the simulated testing dataset. Grad-CAM heatmaps are
generated for each CNN model and its inner convolutional
layers. Figure 5a shows the heatmaps for the selected layers as
well as the whole CNN model tested for the sample images.

As illustrated in Figure 5a, the Grad-CAM heatmaps for the
selected convolutional layers of each CNN model are extracted and
visualized. The color-coded bar in Figure 5a shows the relevance of
the heatmap areas with 1.0 (in red) being the most relevant. Since
CNNs are mostly developed to analyze regular images such as the
ones from the ImageNet dataset, it is important to test and compare
multiple layers from each CNN architecture because smaller
subsections of a CNN’s full architecture can be more successful
in gas leak detection tasks, which uses the thermal images. From the
Grad-CAM heatmaps, a diverse set of features is generated for
selection into the final deep feature pool. These features can be split
into two main categories: (1) emphasis on the warmer part of a
thermal image and (2) emphasis on the border between the warmer
and cooler sections. The more accurate and representative deep
features visualized from different layers of each CNN in comparison
to the original image are selected for the secondary feature selection
process. To determine which features would fit the best, the
visualized feature maps are compared with the original image,

and a manual visual comparison is conducted to identify how
well the visualized feature maps correlate with the original image.
Additionally, greater emphasis on a section that is indicative of a gas
leak also means a more accurate feature representation because that
layer then places larger emphasis on possible leak areas, leading to a
higher probability of detection. For example, layer 12 of VggNet is
preferred over layer 10 because it highlights areas indicative of a leak
more effectively, as evidenced by the redder gradient of the heatmap.

FIGURE 5
(a) Grad-CAM Heatmaps for Each Selected Convolutional Layer
of Each CNN Model Tested for Simulated Testing Data (b) Module
Accuracy of Individual CNN and it Selected Inner Layers.
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A similar process is conducted for all architectures to determine
the top two or three layers in each architecture. To maintain a
diverse set of features, both models which emphasize the warmer
area of the image and the border between the warmer and cooler
areas are selected.

We further compare the accuracies of different layers across
various CNN models and the most accurate layer from each CNN
should be used in the secondary feature selection process. Figure 5b
depicts the accuracy for the CNNs and selected convolutional layers
tested using the simulated testing dataset. It reinforces our claim that
the inner convolutional layers for a given CNN can perform better in
terms of accuracy than that of the complete architecture when
analyzing the thermal images. Additionally, a second sub-block
from the EfficientNet is also chosen since it is one of the most
accurate networks and because the visualized feature maps from two
different blocks of the EfficientNet differ slightly more than other
layers in other architectures.

As part of this selection process, the selected deep features
include the first four layers of the AlexNet (AlexNet L4), the first
three blocks of the ResNet-50 (ResNet B3), the first 12 layers of the
VggNet (VggNet L12), the entire MobileNet architecture, and the
first three and seven blocks of the EfficientNet (EfficientNet B3 and
B7). These selections are highlighted using the pink color bonding
boxes in Figures 5a,b. These six layers form the final deep feature
pool, where different deep features are selected for final testing to
determine the most optimal CNN block.

In summary, the ResNet and EfficientNet were themost accurate
individual CNN architectures. However, it is important to note that
a deeper CNN architecture, rather than sub-layers, did not always
result in higher performance, partly due to the different nature of the
gas thermal image dataset compared to the standard ImageNet
dataset. This further demonstrates that sub-layers of CNN
architectures need to be examined to determine which model fits
best with thermal image data, as datasets available for gas leak
detection are considerably smaller and less diverse. Additionally, the
individual accuracy of each CNN is quite low, indicating the need for
multimodal data analysis using both thermal images and gas
sensor data.

In order to show how well the deep features are separated from
each other, the t-SNE visualization is employed to the extracted
features of the selected EfficientNet ResNet and VggNet algorithms.
The features extracted by each layer are abbreviated by the first letter
of the model’s name and the layer number (e.g., the features from the
first layer of the EfficientNet would be E1). Figure 6 plots similarity
of extracted features based on t-SNE visualization.

Figure 6 shows that the features extracted by each layer of
different models differ significantly, with only a few obvious clusters
of similar features. Thus, extracting as much information as possible
from the multi-scale deep feature pool is important to maintaining
diversity and accuracy in our final gas detection model. The layers
that we chose are abbreviated as E7 (EfficientNet B7), R3 (ResNet
B3), and V12 (VggNet L12), which represent relatively diverse areas.
That is to say, they represent deep features with differences.

4.3.2 Hyperparameter selection and IDFC results
An exhaustive grid search is performed on the IDFC using the

multimodal data including the selected deep feature pool and the gas
sensor data. The grid search was run for a total of 25 iterations using

all six top deep features determined above in the final deep feature
pool. The grid search has allowed us to identify the most optimal
setup for each of the base layers to fully assess the potential of the
proposed leak detection architecture. The best values from this grid
search were then used in the final CNN selection process and for
evaluating the IDFC on field data.

Table 1 lists the tunable parameters from each learner, namely,
CRF, Adaboost, XGboost and MF, the range of the grid search and
its best value obtained from the search.

The selection process of the grid search occurs in four steps:
defining the parameter bound, generating parameter combinations,
performing cross-validation, and selecting the best parameters.
Details are as follows.

Step (1): Defining the parameter bound: These ranges and the
parameters selected have been determined based on a
review of past literature. For the CRF, the parameter
range for the number of estimators is [10,200], the
parameter range for min_samples_split is [2,10], and
the parameter range for min_samples_leaf is [2,20]. For
the Adaboost, the range of the number of estimators is

FIGURE 6
t-SNE Visualization of Similarity of Extracted Feature.

TABLE 1 Base learners’ hyperparameters and their ranges and the selected
best values with the grid search.

Number Hyperparameter Range Best value

1 N_estimators_crf [10,200] 107

2 Min_samples_split_crf [2,10] 7

3 Min_samples_leaf_crf [2,20] 13

4 N_estimators_adaboost [10,100] 90

5 Learning_rate_adaboost (0,1) 0.417

6 Eta_xgboost (0,1) 1.0

7 Max_depth_xgboost [4,20] 11

8 N_tree_mf [1,5] 2
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[10,100] and the learning_rate is in range (0,1). For the
XGBoost, the ETA is in range (0,1) and the max depth is
in the range [4,20]. Finally, the number of trees in the
Mondrian Forest is in the range [1,5].

Step (2): Generating parameter combinations: The grid search
algorithm randomly selects a value in each of the ranges
for each parameter. Because 25 iterations of this grid
search are completed, 25 different combinations
are created.

Step (3): Cross-validation for each combination: Each
combination of hyperparameters for the IDFC is
evaluated on the simulated testing dataset with the six
features from the initial feature pool. The IDFC module
receives both the feature maps from the six CNNs from
the initial feature pool and the gas sensor data.

Step (4): Select the best parameters: The parameter combination
which yields the best performance is selected.

The final selected value, or best value, for the selected
parameter is listed in Table 1. These parameters for the base
learners of the IDFC remain consistent throughout the
remainder of this study.

Figure 7 depicts the accuracy of the IDFC for each additional
cascade layer fitted to the model. The peak accuracy for the model
occurs at four layers. Beyond this point, the accuracy will
decrease for each additional layer fitted until it stabilizes
around 96%. This result demonstrates that fitting more layers
does not lead to higher accuracy. Hence, the standard of four
layers in the IDFC method is used for the remainder of
the testing.

Using all six deep features from the final deep feature pool and
the parameters listed above in Table 1, we achieved an accuracy,
precision, recall and F1Score of 0.986, 0.990, 0.991 and 0.991,
respectively. This method is also more efficient than previous
approaches, as it does not require powerful hardware for
training and predictions. Additionally, using all six deep
features results in the fusion of redundant features from
different CNN architectures, with some layers extracting
overlapping features. By eliminating these redundancies, it is
possible to achieve even higher accuracy and further improve
the algorithm’s efficiency.

4.3.3 Optimized classifier module based on
secondary feature selection results

In order to determine the final selected CNN features, further
comparisons of every possible combination of three CNNs is
conducted, which forms 20 different CNN combinations. The
combination of three CNNs is also concatenated with the
MQ2 and MQ7 gas sensor data. For each of these combinations,
the standard four binary classification metrics of accuracy, precision,
recall, and F1Score are evaluated. On top of these performance
metrics, the proposed ASCI with different weights is also evaluated
to determine how efficient the method is compared to the other
combinations of CNNs.

Figure 8a plots accuracies and sizes of the models under
consideration. It is worth noting that there is no strong
correlation between model accuracy and size. The smallest
combination ResNet + EfficientNetB3+B7 in size is 48 MB, but
still achieves a relatively high accuracy of 0.956, while the largest
combination AlexNet L4+MobileNet + VggNet L12 in size (200MB,
4x of the smallest one) only achieved an accuracy of 0.966, 1% better
than the small size model. We can further conclude from this
observation that when we prioritize a model for accuracy, such
as in the gas leak detection use case, it is still possible to find a small
size model that can meet the requirement and vice versa. The ASCI
metric is proposed based on this finding.

We further leverage the ASCI as the secondary selection metric
to further determine the best model for the gas leak detection. As
mentioned earlier, ASCI is an indicator that provides guidance in
trading off model accuracy and size. That is, a higher W1 in
Equation 13 gives more weights on accuracy while a higher
W2 puts more focus on model size. Therefore, when using the
ASCI, one should determine the priority between accuracy and size
based on the use case. Model size often matters when deploying the
model on an embedded system where memory resource can be a
constraint.

An exhaustive comparison of the ASCI values of all CNN
combinations in the final deep feature pool on thermal images
and gas sensor data from the simulated testing dataset is shown
Figure 8b. Different weights for the ASCI metric are evaluated, but
the weight of accuracy should always be greater than or equal to the
weight for size, as size should not out-weight accuracy in most use
cases. Once the balance of accuracy (W1) and size (W2) is
determined., a higher ASCI indicates the model is preferred for
such a balance. Tuning different weight values is important based on
the requirements of the real-time system. We can also see that
different weights have a significant effect on which models are the
best in terms of the ASCI, meaning that these weights can be
successfully adjusted depending on the use case.

We set the lower bound for ASCI as 0.95. For different weights,
whenever the ASCI value exceeds the determined lower bound
threshold, these combinations are then compared for their
accuracy. The threshold of 0.95 is chosen as it filters out a
significant number of models that are not efficient or accurate
enough, while still retaining the top choices in terms of both
accuracy and model size. Each of these unique architectures
demonstrates its efficiency through relatively small penalizations
in accuracy due to the model’s size.

We prioritize accuracy when picking the optimal combination
for gas leak detection. Among all the combinations presented in

FIGURE 7
Accuracy for each layer in the IDFC.
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Figure 8b, the largest memory footprint is less than 200 MB
(AlexNet L4 + MobileNet + VggNet L12). Our soft robot
controller, MyRIO, has 8 GB memory. Hence, it is not necessary
to optimize for the model size, which allows us to pickW1 = 0.9 and
W2 = 0.1 as the weights. With this decision, the combination of the
first three blocks of the ResNet-50 (Resnet B3), the first seven blocks
of the EfficientNet (EfficientNet B7), and the first 12 layers of the
VggNet (VggNet L12) achieves the highest ASCI. Hence, this
combination is determined to be the final and most optimal
CNN configuration for thermal image processing.

If the model were to be deployed on hardware with less memory
capacity, it is possible that more weight would need to be given to the
model size. For example,W1 = 0.5 andW2 = 0.5 should be selected for
hardware withmemory limitations. In this case, the highest ASCI value
is this weight choice for the ResNet B3, EfficientNet_B7 EfficientNet_
B3 combination, which has a small model size but reasonable accuracy.

Figure 9 presents the final architecture of the proposed gas leak
detection method. The complete architectures of each CNN are
depicted, with arrows indicating the end of each selected
convolutional layer. This architecture achieves 98.9% accuracy on

simulated testing data while remaining lightweight enough to be
deployable in real-time systems such as soft robots.

4.3.4 Leak detection model results based on
METEC dataset

The proposed leak detection method has also been tested on the
METEC field dataset. Figure 10 illustrates the confusion matrices of
the proposed method as well as three tops performing IDFC
combinations discussed above.

Figure 10 shows that our model outperforms the other three in
all four categories in terms of TP, TN, FP, and FN. The proposed
model achieves a gas leak detection accuracy of 0.954.

The overall memory consumed is 115 MB, and the latency or
inference time is 0.91 s. These were evaluated on a Windows 11 CPU
with an Intel I9 core processor. Thus, the relatively small memory
consumption of the proposedmodel makes it suitable for deployment
on a less powerful microcontroller device. Even though the processing
speed of a microcontroller will be lower than that of a CPU, most
microcontroller models, such as the MyRIO, would have sufficient
processing power to run the proposed method in real-time.

FIGURE 8
(a) Graph of the relationship between size and accuracy in different models (b) ASCI comparison of CNNs with different weights distribution.
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The feature importance of the IDFC prediction model based on
the SHapely Additive exPlanations (SHAP) technique is shown in
Figure 11 (Lundberg and Lee, 2017).

As shown in Figure 11, the thermal images provide greater weights
over the gas sensor data. Among the CNN features selected for the
proposed model, the EfficientNet has the greatest influence on the final
gas leak detection result in terms of IDFC predictionmodel, followed by
theMQ2 gas sensor, theVggNet, and theMQ7 gas sensor. The ResNet’s
influence is almost neglectable, which could indicate that its features are
not as distinctive or important to the IDFC prediction model. Overall,
the thermal images and gas sensor data support each other well when
improving accuracy in multimodal data analysis.

4.4 Comparison and analysis based on
simulated testing datasets

4.4.1 Different methods
The comparison results of our proposed model with previous

models tested with simulated testing datasets and the
MultiModalGasData dataset are shown in Table 2.

In Table 2, a comparison with previous gas leak detection
modules based on simulated testing datasets and the
MultiModalGasData dataset proves that the proposed method is
able to reach a state-of-the-art accuracy. Note that not all simulated
testing datasets were identical, as each was collected by the authors
of their respective algorithm. Although the accuracy achieved in this
work may be slightly less than that of other previous works, the data
collected at METEC in our research was collected using a soft
robotic system to simulate real-time operation, causing increased
variation and less consistency in our dataset and increasing the
difficulty of making accurate predictions. Moreover, previous neural
network-based architectures are also larger and more complex,
which may also result in a slight improvement in accuracy.
However, the interpretability of these deep neural network-based
methods also needs to be improved. The model of the method
proposed in this article is determined by a newly defined
comprehensive indicator that considers both model accuracy and
model size, indicating that the constructed model is more applicable.
Thus, the model requires less training time with the capability to be
deployed in real-time embedded systems. Most previous works
require the need for extensive hardware to be effectively
deployed, while the proposed method is more lightweight than
previous methods because of the use of the IDFC as a result of
the comparison using the ASCI indicator. Thus, this allows it to be
deployed on remote or low-cost systems equipped with basic
hardware and microcontrollers, advancing the field of gas leak
prevention and reducing the impact of methane emissions on the
environment.

Table 2 also shows the comparison results with more recent
state-of-the-art methods based on MultiModalGasData dataset.
Our model achieved the highest accuracy with 0.997, along with
the results from Sharma et al. (2024) However, the model of the
latter is constructed with Bi-LSTM, which lacks interpretability.
Moreover, many methods in these literatures only use datasets for
model accuracy validation and do not consider hardware
implementation. This demonstrates that our model is both
accurate and efficient.

4.4.2 Model performance with different DFC
variations

Table 3 demonstrates the performance of different combinations
of estimators in each layer of the DFC.

In Table 3, Changing the estimators utilized in the IDFC
module has several advantages, but the most optimal
combination again needs to be determined, as the original DFC
using only RFs and CRFs achieves the second lowest accuracy of
0.940. This is due to the high likelihood of overfitting in the
random forest on relatively smaller datasets. Therefore, the
proposed method must be both efficient for real-time leak
detection and accurate by preventing overfitting and creating a
more diverse ensemble of learners. Table 3 also shows that using
two boosting estimators along with the random forest achieves a
significantly higher accuracy of 0.96–0.97. A similar level of
accuracy is achieved with MF and CRF. Thus, as CRF, MF,
Adaboost, and XGBoost achieve the highest accuracy among
themselves and the random forest, they are combined in one
layer of the DFC, further demonstrating the success of the
proposed IDFC.

FIGURE 9
Final architecture of proposed gas leak detection model.
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4.4.3 Training and inference time with different
DFC variations

The training and inference times of different DFC variations are
shown in Table 4.

From Table 4, it is evident that the proposed alternative to the
DFC, with a training time of 1,039 s, is more efficient than the original

standard DFC but not as efficient as other DFC variations. This
reduced efficiency is due to the need for more computations with four
different learners. However, this slight decrease in efficiency is offset
by an improvement in accuracy. The proposed method achieves a 1%
higher accuracy on the simulated testing dataset, and this
improvement will only be compounded in field environments.

FIGURE 10
Confusion Matrices for (a) Proposed Method, (b) Adaboost + CRF Combination, (c) Adaboost + RF Combination, (d) Adaboost + MF Combination.

FIGURE 11
Feature importance of IDFC prediction model determined by SHAP analysis.

Frontiers in Environmental Science frontiersin.org16

Zhang and Zhang 10.3389/fenvs.2025.1569621

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1569621


TABLE 2 Comparison with different methods.

Model Accuracy Precision Recall F1Score Algorithm Datasets

Xiao et al. (2019) 0.994 N/A N/A N/A SVM + Wavelet Transform Author’s Dataset

Da Cruz et al. (2020) 0.970 0.996 1.000 0.998 Random Forest Author’s Dataset

Shi et al. (2020) 1.000 N/A N/A N/A R-CNN Author’s Dataset

Chi et al. (2021) 0.883 N/A N/A N/A Random Forest Author’s Dataset

Wang et al. (2022) 1.000 N/A N/A N/A 3D CNN Author’s Dataset

Attallah (2023) 0.992 0.992 0.992 0.992 3 CNNs + BiLSTM Author’s Dataset

Narkhede et al. (2021) 0.970 0.960 0.960 0.960 CNN + LSTM Author’s Dataset

Ning et al. (2021) 0.6169 0.614 0.617 0.612 SE-CNN Author’s Dataset

Faleh and Kachouri (2023) 0.93 N/A N/A N/A LDA-CNN MultiModalGasData

Sharma et al. (2024) 0.997 N/A N/A N/A Bi-LSTM MultiModalGasData

Lalithadevi and Krishnaveni (2025) 0.958 N/A N/A N/A Random Forest MultiModalGasData

El Barkani et al. (2024) 0.917 N/A N/A N/A EfficientNetB0 MultiModalGasData

This Research 0.997 N/A N/A N/A IDFC MultiModalGasData

0.989 0.996 0.989 0.993 IDFC Simulated Testing Dataset

The bold values indicate the results from the method proposed in the paper.

TABLE 3 Comparison of different DFC Variations.

DFC variations Accuracy Precision Recall F1Score

Standard DFC 0.940 0.960 0.960 0.960

2 Adaboost + 2RF 0.971 0.981 0.980 0.980

2 MondrianF +2 RF 0.965 0.973 0.981 0.977

2 XgBoost +2 RF 0.961 0.981 0.968 0.974

2 CRF +2 RF 0.960 0.978 0.969 0.973

2 RotF +2 RF 0.936 0.967 0.945 0.956

2 CRF +2 Adaboost 0.975 0.977 0.988 0.983

2 MondrianF + AdaBoost 0.975 0.977 0.988 0.983

2 CRF +2 XgBoost 0.968 0.984 0.973 0.979

2 MondrianF +2 XgBoost 0.948 0.963 0.969 0.966

CRF + Adaboost + XgBoost + MF (Final Model) 0.989 0.996 0.989 0.993

The bold values indicate the model combinations which achieve an accuracy of at least 0.960.

TABLE 4 Training times of each cascade forest with modified layers.

Model Training time (s) Inference time (s)

Standard DFC 1,317 0.3

Adaboost +2 RF 1,078 0.2

CRF +2 RF 856 0.1

XGBoost + 2RF 917 0.1

MF + 2 RF 1,113 0.2

CRF + Adaboost + XgBoost + MF (Final Model) 1,039 0.2
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4.5 Comprehensive analysis

As mentioned earlier, around six million tons of methane is
released into the earth’s atmosphere annually due to gas pipeline
leaks, accounting for⅓ of greenhouse gases that contribute to global
warming. On the other hand, gas pipelines traverse remote
landscapes or complex environments that are not easily
accessible, making leak detection even more challenging. Our
proposed architecture, which can be deployed on a soft robot due
to its lightness both in compute power and memory footprint, has the
potential of enabling early detection of methane leaks and eliminating
⅓ of the greenhouse gas if actions are taken timely.

Additionally, our proposed framework of constructing the optimal
model for gas leak detection is generic and extensible to other types of
environmental hazard detection scenarios. By building different images
and sensor datasets for a given scenario, different optimal CNN features
pool can be selected. Furthermore, a different set of the base learners can
be determined using the same proposed approach to form the IDFC.
After that, ASCI can guide the user to determine the bestmodel to fit the
accuracy and deployment constraints.

As an example, consider we need to detect the liquid pipeline leaks.
We can change the thermal imaging camera to a regular RGB image
camera with a different set of sensors that can capture the leaked liquid
characteristics. Once a dataset is built with these images and sensor data,
the same analysis can be applied to detect liquid pipeline leaks and the
final model can be deployed on the soft robot described earlier.

5 Conclusion

This article proposes a lightweight multimodal machine learning
architecture based on CNNs and deep forest classifiers for gas pipeline
leak detection systems using thermal image and gas sensor data. The
architecture consists of an optimal CNN features pool, an improved
deep forest classifier with four base learners, and a secondary CNN
feature selection module for the final model. This novel framework
not only considers the model accuracy but also the model
deployability on the gas leak detecting platform, a soft robot,
which has limited computer power and memory capacity. To our
knowledge, this is the first proposed end-to-end methodology with
such consideration in the area of gas leak detections. Our
contributions in this research can be summarized as follows:

• The deep features of the multiple convolutional layers, as well as
the full architecture of CNNs, including AlexNet, ResNet,
VggNet, MobileNe,t and EfficientNet, are examined using
heatmaps. Our results demonstrated that the inner layers with
different scale can be more effective in detecting the thermal
images for gas leak. This leads to creating a CNN feature pool that
consists of multi-scale deep features of the selected CNNs.

• An improved deep forest classifier with a more diverse set of
base learners, including CRF, Adaboost, XGBoost, and
MondrianF, is proposed. An exhaustive search for the
optimal parameters for each base learner is performed. We
showed that the combination of the four base learners in the
IDFC achieved higher accuracy than the standard DFC.

• We employed a secondary selection mechanism to avoid
feature overlaps in the selected CNN feature, hence further

trimming down the model size without loss of the model
accuracy. This makes the model more suitable to be deployed
on an embedded system like the soft robot.

• The novel ASCI indicator is proposed to determine the multi-
scale deep feature from the CNN pool that best fit the gas leak
detection use case, balancing the model accuracy and size.
Depending on the deployment requirements, a different
combination of models can be selected based on the
ASCI indicator.

Our results demonstrate the robustness of the proposed method,
with the algorithm achieving an accuracy of 98.9% on the simulated
testing dataset, matching the performance capabilities of previous works
with only⅓ of themodel size reported from that work. However, we are
also able to maintain an ASCI score of above 0.95 on multiple models,
demonstrating the smaller size of our algorithm and its ability to be
deployed on real-time systems. The method is tested in a field
environment and can still attain accuracies of over 95.4%.

Future directions of this research include (1) constructing a large
gas leak dataset including thermal images and gas sensor data from the
gas pipeline field to improve the accuracy of the trained model; (2)
extend the proposed multi-scale deep feature CNN pool to include
more CNN architecture; and (3) update the IDFC to include more base
learners to allow the architecture to deal with more diverse dataset.
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