
Simulation and assessment of the
risk of carbon sink loss in Hubei
Province, China

Jiang Li1,2, Baomiao Ning1, Rui Shu3,4, Yixiong Xia5,
Guobin Yuan1*, Yun Shen2, Yanping Yu2 and Xun Liang1

1School of Geography and Information Engineering, China University of Geosciences, Wuhan, China,
2Information Center, Department of Natural Resources of Hubei Province, Wuhan, China, 3School of
Public Administration, China University of Geosciences, Wuhan, China, 4National Land Survey
Department, Ningxia Natural Resources Survey and Investigation Institute, Yinchuan, China, 5Foshan
Surveying Mapping and Geoinformation Research Institute Co., Ltd., Foshan, China

Introduction: Predicting future land use/cover changes and their impact on
carbon storage is crucial for achieving China’s “Dual Carbon” goals. Current
studies face challenges of low resolution and difficulties in fine-scale simulations.

Method: This study developed a novel large-scale, high-resolution approach for
estimating and simulating carbon sinks and storage changes based on the PLUS
model, incorporating cropland and grassland management practices’ effects on
soil organic carbon, and utilizing block parallel computing.

Results and discussion: Results show that from 2020 to 2030 and 2060, Hubei
Province’s croplands and construction lands are the main land types undergoing
transitionwhile forestlands steadily increase. Croplandmanagement carbon sinks
are highest under the natural development scenario. Grassland management
carbon sinks are highest in the ecological priority scenario. Forest management
carbon emissions peak under ecological priority. Based on simulation results,
early warnings were issued to counties with high carbon sequestration and
emission risks. The study proposes a high-resolution carbon stock estimation
method and implementing large-scale risk warning systems. These findings
provide crucial evidence for land policy formulation and achieving “Dual
Carbon” goals, offering valuable data support for illegal land use regulation.
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1 Introduction

In the context of the rapidly advancing global initiatives towards carbon neutrality and
sustainable development, the attainment of carbon neutrality has surfaced as a significant
systemic transformation within economic and social frameworks (Friedlingstein et al., 2020;
De La Peña et al., 2022). Numerous nations are actively promoting their major urban
centers and industrial sectors to reach carbon neutrality by 2050, with the objective of
reducing greenhouse gas emissions by 80%–100% (Arshad Ahmad et al., 2022). Within this
landscape, China has committed to peaking carbon emissions before 2030 and aims to
achieve carbon neutrality by 2060 (Liu et al., 2022). The fundamental pathways to achieve
carbon neutrality involve both emission reduction and carbon sequestration (“emission
reduction” and “enhanced sinks”) (Guo R. et al., 2021; Guo S. et al., 2021; Hu, 2021). The
carbon stock in terrestrial ecosystems plays a crucial role in the global carbon cycle and
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climate change (Liu et al., 2018; Yang et al., 2022). Land use and land
cover change (LUCC) are among the primary factors influencing
carbon stock variation, as they affect the carbon stock in vegetation
and soil, consequently influencing the overall regional carbon stock
dynamics (Deng et al., 2016; Lu et al., 2018; Liu et al., 2019). Changes
in vegetation types directly alter carbon sequestration capacity:
deforestation leads to a sharp decrease in aboveground biomass,
while afforestation and restoration can enhance photosynthetic
carbon uptake. Agricultural reclamation accelerates the loss of
soil organic carbon, whereas the Grain for Green Program
promotes soil carbon accumulation. Anthropogenic management
can also strengthen carbon sink functions in vegetation through
agricultural intensification and ecological restoration measures (Zhu
et al., 2025). LUCC is a key driver of changes in terrestrial ecosystem
carbon stock, ultimately leading to a transition of terrestrial
ecosystems into significant carbon sources (Ge et al., 2008;
Stocker et al., 2010; Kaplan et al., 2011; Stocker et al., 2017).

On the other hand, measures such as forestation, grassland
management, wetland conservation, mangrove protection, and
seagrass restoration, which primarily constitute biological carbon
sequestration, continuously enhance the capacity of ecological
carbon sinks, playing a vital role in mitigating global climate
change (Zhang et al., 2015; Lai et al., 2016). It is evident that
LUCC serves not only as a significant carbon source but also as a
major carbon sink (Piao et al., 2009). Against this backdrop,
predicting future land use/cover changes and their impacts on
carbon sinks is of paramount importance for understanding
regional terrestrial ecosystem dynamics (Zhao et al., 2019).

The evaluation of carbon stock spatiotemporal dynamics based
on LUCC has gradually become a classic method widely used for
assessing carbon stock (Chang et al., 2012; Etemadi et al., 2018; Tang
et al., 2020; Liang et al., 2024a). This method enables the spatial
mapping of carbon stock distribution and dynamic changes, clearly
reflecting the relationship between LUCC and carbon stock (Zhu
et al., 2022; Song et al., 2024). Building upon this, in combination
with predicted land use/cover results, assessments of carbon stock
under different LUCC scenarios can be conducted, providing
effective bases for optimizing land use structures (Liu et al.,
2019). Cellular Automata (CA) models have proven to be
effective tools for predicting land use and land cover changes
(Newland et al., 2018; Xuecao et al., 2021; Simkin et al., 2022;
Liang et al., 2024b). By coupling human activities and natural
elements, CA can simulate future land use changes, effectively
integrating top-down system dynamics and bottom-up cellular
automata, thus enabling fine-scale simulation of large-scale future
land use changes (Chen et al., 2020). For example, Wu et al. (2016)
simulated the impact of urban expansion on carbon stock in
Guangdong Province at a resolution of 1,000 m using a
combination of cellular automata and InVEST models. However,
this study was limited to regional scales and only considered urban
expansion, rather than transitions between multiple land use types.
Liu et al. (2019) simulated the carbon stock of terrestrial ecosystems
in China in 2,100 at a resolution of 1,000 m using the FLUS-InVEST
model and explored its spatial heterogeneity integrated a system
dynamics model, FLUS model, and InVEST model to investigate the
indirect effects of climate change and socioeconomic development
on carbon stock through urbanization at a resolution of 1,000 m.
Shao et al. (2022) simulated the spatiotemporal evolution of carbon

stock in Beijing’s ecosystem using the FLUS-InVEST model at a 30-
m resolution; however, the study area was relatively limited. Chen
et al. (2025) integrated the FLUS and InVEST models to
systematically study the relationship between land use change
and habitat quality in China from 1980 to 2020 at a 1000 m
resolution, and predicted the impact of land use change on
habitat quality by 2050. While this method is adaptable to large-
scale simulations and assessments, its low resolution and lack of
diverse scenario settings hinder its ability to support differentiated
policy scenario analyses. The FLUS model incorporates multi-factor
drivers and effectively reflects the carbon stock loss induced by
urbanization in China, though the resolution of the study remains
relatively low (Liu et al., 2019; Yang H. et al., 2020). Carbon stock
Zhang et al. (2020) simulated the low-carbon development mode of
Wuhan City in 2025 under various scenarios based on the spatial
distribution of carbon sinks using the Markov-CA model at a
resolution of 100 m. Yang et al. (2021) similarly integrated the
CA_Markov model with the InVEST model to assess the impact of
future land use changes on regional carbon stocks in the Yellow
River Basin at a 1000-m resolution. The CA_Markov model predicts
land use changes based on historical transition probabilities, making
it suitable for short-term trend simulations at high resolutions but
prone to accumulating significant errors in long-term simulations.

Based on the aforementioned research status, current studies
utilizing LUCC simulations to predict terrestrial carbon sinks
primarily employ models such as InVEST, FLUS, CA_Markov,
and their coupled combinations. In addition, Lin et al. (2023)
proposed the LP-CA model, which incorporates landscape
metrics to improve the precision of urban expansion patch
generation, aiding in the accurate prediction of carbon loss
caused by urban expansion. However, the model has yet to
validate its accuracy across multiple land types, higher
resolutions, and larger-scale regions. In summary, these models
struggle to balance high efficiency, high precision, multiple land use,
and large-scale regional coverage in carbon sink prediction. Most
models can only utilize low-resolution data for large-scale regions or
conduct high-resolution carbon sink prediction studies in relatively
smaller areas. Achieving the “dual carbon” goals requires
comprehensive coordination and consideration of carbon
emissions and carbon sinks on a large scale. Therefore,
conducting fine-scale simulations of land use changes in large-
scale regions is particularly important for achieving regional
“dual carbon” goals (Sun et al., 2022). Existing land use change
simulation models struggle to perform high-resolution, detailed
simulations across large-scale regions. This limitation renders
them unable to meet the demands of regional carbon stock
precision conservation, carbon emission source traceability, land
use planning, and regional environmental governance.

In response to this challenge, the Patch Land Use Change
Simulation (PLUS) model (Liang et al., 2021) provides a new
approach by innovating driving mechanism mining methods
through its LEAS and CARS modules, achieving improved accuracy;
it supports parallel computing and high-resolution data input,
effectively reducing computation time for high-resolution, multi-
category, large-scale regional simulations, thereby offering new
possibilities for simulating changes in carbon stock and carbon
sinks. In terms of models for estimating land use carbon stock and
land use carbon emissions changes, Lai et al. (2016) proposed a method
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for estimating carbon stock changes caused by cropland and grassland
management. This method can estimate the carbon stock and changes
in land use/cover at a regional level without being affected by the
resolution of land use data. These two studies provide new insights for
high-resolution simulation of carbon stock and carbon emissions under
various scenarios of future land use changes.

A synthesis of current research reveals that existing methods for
predicting terrestrial carbon sinks through LUCC simulations face
challenges in conducting high-resolution, detailed simulations across
large-scale regions. Therefore, based on the PLUS model, this study
proposes a high-resolution simulation method for changes in land use
carbon stock, carbon sink loss, and carbon emissions risk, aiming to
provide fine-scale estimates of land use/cover carbon stock and changes
for regional environmental governance and the implementation of
carbon neutrality goals. By leveraging this method, we can establish
a multi-factor coupled carbon stock assessment system using high-
resolution LUCC data and construct a county-level carbon sink risk
early warning system.

2 Methods

This study integrates soil organic carbon, as well as changes in
carbon stock due to the management of croplands, forest land and
grasslands, to jointly estimate the carbon emissions caused by
historical land use. Furthermore, based on the land use change
simulation model, simulations are conducted to explore the future
distribution and changes of carbon sinks, carbon stock, and carbon
emissions due to land use changes under various national territorial
spatial planning policy scenarios in Hubei Province at a fine scale.
The research framework is illustrated in Figure 1.

2.1 Vegetation carbon sinks: distribution and
loss estimation methods

By integrating the land use data with tables of carbon density
and carbon sequestration capacity, high-resolution carbon stock and
carbon density data for the region over multiple years are acquired.
The formulas are as follows:

Bi � Di × Ai

where Bi is the carbon stock or sink of the ith land use (vegetation) type
i; Di is the carbon intensity or sink capacity of the ith land use
(vegetation) type; andAi is the area of the ith land use (vegetation) type.

ΔC � ∑ Baf teri − Bbef orei( ) ×ΔAtoother i

where ΔC is the change in biomass carbon stock or sink after
conversion to another land type; Bafteri is the carbon stock or
sink after conversion; Bbeforei is the carbon stock or sink before
conversion; and ΔAto otheri is the area converted.

2.2 Soil carbon accounting in agriculture,
grassland, and forest management

According to Lai et al. (2016), this study utilized the Chinese soil
type map, referred to the Second National Soil Survey of China and
related literature studies on soil carbon density, which are
applicability proved in Hubei researches (Hu et al., 2012; Wang
et al., 2015; He et al., 2018). It’s also referred to multi-year vegetation
carbon sinks and carbon stock distribution and loss estimation
methods to determine the carbon stock of the soil through the

FIGURE 1
The framework of the study.
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two formulas above in Section 2.1 based on the multiplication of the
cell area corresponding to the soil type and the corresponding soil
carbon density.

Forest management carbon emissions are defined as the total
amount of trees harvested within the region, converted into carbon
equivalent emissions. Since the logging proportion remains
constant, a linear relationship exists between the total tree stock
and the logged quantity. Based on the data from the fifth and seventh
national forest inventory (1994–1998 and 2004–2008), the formula
for calculating emissions from forest land management is as follows:

ΔC � V × CR − AT × DV( ) × SVD × BEF × 0.5

where ΔC represents carbon loss due to forest depletion; V represents
living wood growing stock; CR represents the rate of forest depletion;
V × CR represents the actual harvested timber volume; AT represents
the area of deforestation; DV represents the number of livestock per
hectare; AT × DV represents the intensity of land use conversion; SVD
represents the average trunk volume density for a given province;
(V × CR − AT × DV) × SVD represents standing tree biomass loss;
BEF represents the biomass expansion factor, defined as the average
rate of biomass expansion; 0.5 is the default value for the carbon content
of the biomass.

In addition, this study assessed the carbon stock changes due to
cropland and grassland management using the empirical model
recommended by the IPCCGuidelines for National Greenhouse Gas
Inventories (2006). In this assessment, the coefficients of change in
relative stocks for different management activities on cropland and
grassland were taken from the studies of Jin et al. (2008) and Ipcc
(2006), and the SOC values were taken from the Second National
Soil Survey Report (Shi and Song, 2016). The formula equation for
calculating the change in carbon stock was as follows:

ΔSOC � ∑
C

SOCREFC × FLUC × FMGC × FIC × AC( )

where ΔSOC represents changes in SOC reserves; SOCREFC

represents SOC density; FLUC represents influences on land use;
FMGC represents influences on land management; FIC represents
influences on nutrient inputs; C represents climatic zones; and AC

represents land area of strata.

2.3 Scenario setting based on
planning policy

The PLUS model was chosen to simulate the land use changes in
Hubei Province under different scenarios in 2030 and 2060. Markov
chain model is selected to predict the future land use demand in
Hubei Province. Three scenarios are designed, the natural
development scenario, the ecological priority scenario and the
economic development scenario, and the neighborhood weights
and cost matrices were established under the three scenarios with
reference to the existing studies and the actual situation in Hubei
Province. The settings of the three scenarios are as follows:

(1) Natural development scenario: The scenario is simulated
without considering any land use constraints and
according to the land use conversion law of Hubei
Province from 2010 to 2020.

(2) Ecological Priority Scenario: Hubei Province, as the core of
the Yangtze River Economic Belt, includes key ecological
zones like the four major mountainous regions with
ecological functions like water conservation, biodiversity,
and soil protection. The Jianghan Plain also hosts over
700 lakes with critical roles in biodiversity maintenance
and flood storage. This scenario emphasizes a balanced
approach to land use planning across ecological,
agricultural, and urban land, prioritizing ecological
protection. Guided by this objective, the scenario setting
methodology for this study was developed based on Hubei
Province’s ecological and environmental zoning regulation
policies (Hubei_Daily, 2020), with reference to research by
Peng et al. (2021) and Li et al. (2022), among others. Transfer
rules restrict forest, grassland, and water areas from
converting to construction land, while construction land
can convert to forest and grassland. The transfer
probability of forest and grassland to construction land is
reduced by 50%, cropland by 30%, and conversions from
cropland and grassland to forest land are increased by 30%.

(3) Economic Development Scenario: Aligned with Hubei’s 14th
Five-Year Plan for urbanization quality, this study integrates
the scenario setting methodologies for urban development
and economic development scenarios from the research of
Zhang et al. (2022), Yang H. et al. (2020), and Liu and Yu
(2023), enhances expansion potential for construction land
and cropland, with stricter limits on construction land
transfers. Towns and rural areas remain within their land
types, with increased transfer probabilities from cropland,
forest, and grassland to construction land by 30%, and
reduced conversion probability of construction land to
other types (except cropland) by 40%.

2.4 Multi-scenario extrapolation of land
cover change based on PLUS modeling

Driven by future land use demand, this study utilizes the PLUS
model to simulate and predict land use changes by setting up three
different scenarios. With the support of GDAL chunking technology
and OpenMP parallel technology, the PLUS model first uses the
random forest algorithm to mine the mapping relationship between
the developmental changes of urban functional land use type k and
the driving factors. Taking the development change of each type of
land use components in the metric as the dependent variable and
multiple driving factors as the independent variables, the random
forest algorithm is used to mine the mapping relationship between
the dependent variable and the independent variables:

Pd
i,k x( ) �

∑M
n�1

I hn x( ) � d( )
M

RFCk is a binary classifier, so the value of d is either 0 or 1. A value of
1 indicates that there was a shift from other land use types to land
use type k during the historical period at the same site, while
0 represents other shifts; x is a vector consisting of multiple
drivers; I(·) is an indicator function for the set of decision trees;
hn(x) is the prediction type of the nth decision tree for vector; and
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M is the number of decision trees. Obtain the development
probability for each type of land use.

Based on the development probabilities of each type of
functional land, the PLUS model (Figure 2) can simulate the
competition and transformation of multiple types of land. The
total development probability of each type of land is composed first:

OPt
i,k � P1

i,k × r × µk( ) × Dt
k if Ωt

i,k � 0 and r <P1

i,k

P1
i,k × Ωt

i,k × Dt
k all others

{
where OPt

i,k is the total development probability of land use type k on
cell i at iteration time t; Pi,k is the development probability of land use
type k on cell i as output by Random Forest; Ωt

i,k denotes the
neighborhood effect of land use type k on cell i, i.e., the ratio of the
area of land use types in the neighborhood to the total area of the
neighborhood, at iteration time t. r is a random number between 0 and
1; µk denotes the threshold of generating patches of land use type k, as
set by the user. The PLUS model is designed with a multi-class random
seed mechanism in the simulation, when Ωt

i,k � 0 and r<Pi,k, the
model generates a random seed of land use type k; Dt

k is the adaptive
coefficient of PLUS, and its adaptive adjustment is given by:

Dt
k �

Dt−1
k if

∣∣∣∣Gt−1
k

∣∣∣∣≤ Gt−2
k

∣∣∣∣ ∣∣∣∣
Dt−1

k ×
Gt−2

k

Gt−1
k

if 0>Gt−2
k >Gt−1

k

Dt−1
k ×

Gt−1
k

Gt−2
k

if Gt−1
k >Gt−2

k > 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
Dt−1

k and Dt−2
k are the distances of land type k from the target at the

t − 1 and t − 2 iterations. During the simulation of PLUS, the various

functional land types compete via a roulette wheel. If type k wins the
roulette wheel selection, the model determines that a transformation
from other land use to land type k occurs within that cell. To better
simulate the generation of multi-type patches, the PLUS model
proposes a decreasing threshold mechanism: when a new land use
type wins a round of competition, τ is used to determine whether a
transformation occurs or not, and the judgment rule is as follows:

∑N
k�1

G| t−1
c | −∑N

k�1
G| t

c <| Step Then, d � d + 1

Change P1
i,c > τ and TMk,c � 1

Unchange P1
i,c ≤ τ or TMk,c � 0

{ τ � δd × r

where δ is the decay coefficient of the decreasing threshold τ, ranging
from 0 to 1, set according to the expert’s opinion; r is a random value
obeying a normal distribution with a mean of 1 and a variance set to
0.0001 (very small), which makes the decreasing threshold τ an
uncertain value obeying the decay rule; d is the number of times of
decay; and Step is the step size of the decreasing step. TMk,c is the
transformation matrix defining whether the land-use type k is
permitted to be converted to type c or not. The PLUS model is
simulated and iterated to output the final pattern of land use change.

3 Study area and datasets

3.1 Study area

Hubei Province, situated in the central part of China, covers a
total area of 185,900 square kilometers, accounting for

FIGURE 2
Simulation flow of the PLUS model.
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approximately 1.94% of the country’s total land area. The province
has a population of around 57.75 million people (Yu et al., 2024).
Geographically, Hubei Province occupies a transitional zone from
the second to the third terraced step of China’s terrain, featuring the
convergence of major rivers, large lakes, mountains, and reservoirs.
Since 2000, the built-up land area in Hubei Province has grown at an
average annual rate of 3.9%, increasing its total share to 7.7% by
2023. This expansion has primarily concentrated in the Wuhan
Metropolitan Area, the Yichang-Jingzhou Riverside Economic Belt
along the Yangtze River, and the contiguous urban zone of “Wuhan-
Ezhou-Huanggang-Huangshi.” Meanwhile, cropland area exhibited
a fluctuating trend of “initial decline followed by a rebound”:
decreasing from 28.5% in 2000 to 24.8% in 2020, before
achieving its first net growth since the “Third National Land
Survey” in 2023, reaching 71.2805 million mu (25.6% of total
land area). However, its spatial distribution demonstrates a
corridor-style contraction pattern characterized by “clustering
along the Yangtze River and loss in hinterlands.” Driven by the
Grain for Green Program and ecological restoration initiatives,
forest land area increased cumulatively by 12.7% between
2000 and 2020 (Wei et al., 2020; Zhang et al., 2022). In 2011,
Hubei was approved as one of the seven pilot provinces for carbon
emissions trading in China. By 2020, the cumulative quota
transactions in the Hubei carbon market reached 356 million
tons, representing 50.8% of the total for the country. The
transaction value reached 8.351 billion yuan (RMB), representing
54.4% of the total for the country (Cao and Zhong, 2023). Therefore,
studying the carbon reserves, emissions, and sinks in Hubei
Province is of great significance for achieving carbon
neutrality goals.

3.2 Data source and processing

The data required for this study on land use in Hubei Province
for the years 2010 and 2020 was sourced from the Institute of
Geographic Sciences and Natural Resources Research, Chinese
Academy of Sciences, with an initial resolution of 30 m and an
over-all accuracy of 95% (Kuang et al., 2016). Land use was
classified into 19 categories, including paddy fields, dry land,
closed forest land, shrubland, sparse woodland, other forest
lands, grasslands with high, medium, and low cover, rivers,
lakes, reservoirs and ponds, beaches, urban areas, rural
residential areas, other construction lands, marshlands, bare
soil, and bare rock and gravel areas. The driving factors of land
use considered in this study encompass socio-economic factors,
transportation, topography, soil, and climate aspects (Table 1). The
importance assessment of these driving factors, expressed as
contribution values, is displayed in a bar chart (Figure 3) using
closed forest land and high cover grassland as examples. Among
these, the original data for population, GDP, and soil conditions
have a 1000-m resolution, which is lower than that of the land use
data. Their applicability after resampling has been widely validated
(Yang et al., 2018; Yang J. et al., 2020; Wu et al., 2021). All the data
were uniformly resampled to a grid resolution of 30 m to facilitate
subsequent simulation experiments. In the CARS module of the
PLUS model, the number of decision trees in the random forest
algorithm is set to 20.

As shown in Table 2, the carbon data for cropland management
are based on revised values from studies by Jin et al. (2008) and Lai
et al. (2016), while the reference values for grassland management
carbon are derived from the organic carbon density data from
China’s Second National Soil Survey. In the table, the “Dry” and
“Wet” soil moisture statuses correspond to the “dry land” and
“paddy field” cropland types in the land use data. The factors for
grassland carbon stock management changes follow the default
values specified in the IPCC report and the “Good Practice
Guidance for Land Use, Land-Use Change, and Forestry” (Ipcc,
2000; Penman et al., 2003). All grasslands were assigned a land-use
factor and classified into four categories of grassland management
conditions (non-degraded, moderately degraded, severely degraded,
and improved) (Table 3). Forest management carbon data, including
the total consumption of forest resources, is derived from the China
Forest Resources Report (2014–2018), with data on per hectare
living tree volume, average tree trunk volume density, and biomass
expansion factors for the Hubei province coming from the study by
Lai et al. (2016).

4 Results

4.1 Model accuracy verification

The land use pattern in 2020 were simulated based on the land
expansion data of Hubei Province from 2010 to 2020 and the
development potential of each land use type, and the land use
simulation data in 2020 were validated by using the “Confusion
Matrix and Fom”module of the PLUSmodel. The validation process
involves comparing the 2020 actual land use data with the
2020 simulated data in the module, which will automatically
generate the Kappa coefficient and overall accuracy by calculating
the confusion matrix, and it will calculate the Figure of Merit (Fom)
result. The results showed that the Kappa coefficient was 0.89, the
overall accuracy was 0.91, and the Fom was 0.20. The accuracy
validation results showed that the PLUS model has good
generalization and high accuracy, and can be applied to the land
use data in Hubei Province under the future scenario (Figure 4).

4.2 Results of multi-scenario simulations of
land-use change

Under different scenario constraints, the results of land use
simulation in Hubei Province in 2030 and 2060 are different, as
shown in Figures 5, 6. The areas of cropland, forest land, and
grassland under different scenarios in 2030 and 2060 have been
statistically analyzed, as shown in Tables 4, 5. Under the economic
development scenario in 2030, the areas of urban land and rural
settlements show an increasing trend, and the area of urban land
changes most significantly, increasing by 374.24 km2, and the areas
of urban land, rural settlements, and other construction land are
collectively referred to as construction land, and the total area of
construction land is the highest among the three scenarios, at
6,812.54 km2. To avoid errors arising from rough categorization,
cropland and forest land were classified according to subcategories
in the original data, with differences in their carbon density
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considered during calculations. This consideration has also been
exemplified in other studies. For instance, research by Zhu et al.
(2025) incorporated the differences in carbon density among
subdivided vegetation types. Cropland is divided into paddy
fields and dry land. The total area of cropland decreases the most
under three scenarios. The significant shift of dry land to other types
of land use has led to the reduction in the total area of cropland.
Forest land is divided into closed forest land, shrubland, sparse
woodland and other forest land, and while the area of closed forest
land and other forest land is decreasing, the increase in the area of
shrubland and sparse woodland results in an increasing trend in the
total area of forest land. Under the natural development scenario,
dry land still shows the trend of transferring to other land use types,
but due to the change in its area is small, the change in the overall
surface value of cropland is also small. The cropland under the
natural development scenario as a whole shows the smallest change
in area among the three scenarios, with a decrease of only
244.49 km2. The total area of grassland under this scenario
shows the smallest change in area when compared with that of
the 2020 scenario, and the total area of forest land is higher than that

of the economic development scenario, while the area of
construction land is higher than that of the economic
development scenario. The total area of forest land is higher than
that of the economic development scenario, while the total area of
construction land is lower than that of the economic development
scenario. In contrast, under the ecological priority scenario, a larger
area of shrub forest and open forest land is transferred, making the
total area occupied by forest land the highest among the three
scenarios (92,911.65 km2), which is an increase of 627.87 km2

compared with the area of forest land in 2020, while the area
occupied by construction land is the lowest under the three
scenarios, and therefore the area of construction land transfer to
other land types is the highest under the ecological priority scenario.
By comparing the three scenarios, it is found that mainly cropland is
being transferred.

The 2060 economic development scenario has the smallest total
cropland area of the three scenarios due to a larger area of dryland
shifting, and the total cropland area decreases by 265.60 km2

compared to 2020. The decrease in the area of high-coverage and
medium-coverage grassland results in a decrease in the area of

TABLE 1 Driving factor data for land-use modeling.

Name of data Abbreviations Year Original resolution Source of data

Population POP 2010 1,000 m http://www.geodoi.ac.cn/WebCn/Default.aspx

GDP GDP 2010 1,000 m http://www.geodoi.ac.cn/WebCn/Default.aspx

Distance to all levels of roads D_HW; D_PR; D_SR; D_RW; D_TW 2015 30 m OpenStreetMap (https://www.openstreetmap.
org/)

Distance to high-speed railway station D_HS 2013 30 m http://lbsyun.baidu.com/

Distance to towns D_IT 2013 30 m http://lbsyun.baidu.com/

Soil conditions STP 1995 1,000 m HWSD v 1.2 (http://www.fao.org)

Mean annual temperature MAT 2013 30 arc-sec WorldClim v2.0 (http://www.worldclim.org/)

Mean annual precipitation MAP 2010 30 arc-sec WorldClim v2.0 (http://www.worldclim.org/)

Elevation DEM 2016 30 m NASA SRTM1 v3.0

Slope SLP 2016 30 m NASA SRTM1 v3.0

FIGURE 3
Contribution of driving factors (e.g., closed forest land, high cover grassland).
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grassland, and the decrease in the area of high-coverage and
medium-cover grassland results in a decrease in the area of
grassland. Although the area of grassland is also reduced
compared to 2020, the reduction is smaller. The area of urban
land and rural settlements increases by 375.23 km2, which makes the
construction land under this scenario cover the largest area among
all scenarios, with an area of 6,810.57 km2. Under the natural
development scenario, the area of cropland is increasing
compared with 2020, with an area of 67,355.63 km2, and the area
of grassland is decreasing, but the decrease is the lowest among the
three scenarios. In the eco-priority scenario, the area of shrub forests
and open forests increases by 666.97 km2, which is larger than the
decrease in the area of closed forest land and other forest land, so the
area of total forest land increases, and the area of total forest land is
the highest among the three scenarios, with an increase of
589.17 km2 compared with the year 2020. Compared with the
other two scenarios, this scenario has the smallest area of

construction land, with an area of 6,802.45 km2, and the area of
cropland and forest land is still increasing under this scenario.

4.3 Carbon sinks of land management in
various ecosystems

4.3.1 Cropland carbon sequestration
From 2020 to 2030, under the economic scenario, the increase in

soil organic carbon stock in cropland management in Hubei
Province is approximately 5.9496 × 105 MgCyr−1. Under the
ecological scenario, it is approximately 5.9498 × 105 MgCyr−1,
and under the natural scenario, it is approximately 5.9535 ×
105 MgCyr−1. From 2030 to 2060, under the economic scenario,
the increase is approximately 5.9519 × 105 MgCyr−1, under the
ecological scenario, it is approximately 6.0141 × 105 MgCyr−1, and
under the natural scenario, it is approximately 6.0111 ×

TABLE 2 SOC impact factors for Chinese cropland management.

Factor Level Moisture regime Cold temperate Warm temperate Tropical

Land use (FLU) Long term cultivated (>20 years) Dry 0.80 0.80 0.58

Wet 0.69 0.69 0.48

Tillage (FMG) Full Dry 1.00 1.00 1.00

Wet 1.00 1.00 1.00

No-till Dry 1.10 1.10 1.17

Wet 1.15 1.15 1.12

Nutrient inputs (FI) Fertilizer Dry 0.95 0.95 0.95

Wet 0.92 0.92 0.92

Organic fertilizer Dry 1.00 1.00 1.00

Wet 1.00 1.00 1.00

Straw returning with manure Dry 1.04 1.04 1.04

Wet 1.11 1.11 1.11

TABLE 3 SOC impact factors for Chinese grassland management.

Factor Level Climatic
regime

Default values as amended in “Good Practice
Guidance”

Land-use (FLU) All All 1.0

Management (FMG) Non-degraded All 1.0

Moderately
degraded

Temperate/boreal 0.95

Tropical 0.97

Severely degraded All 0.7

Improved Temperate/boreal 1.14

Tropical 1.17

Inputs (FI) applied to improved grassland Nominal All 1.0

High Temperate/boreal 1.11

Tropical 1.11
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FIGURE 4
Comparison between the current land use situation in Hubei Province and PLUS simulation in 2020: (a) Original land use in 2020; (b) Simulation
result of land use in 2020.

FIGURE 5
Simulation results of land use in Hubei Province under different scenarios in 2030: (a) Economic development scenarios; (b) Natural development
scenarios; (c) Ecological priority scenarios.
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105 MgCyr−1. The spatial distribution of agricultural carbon
sequestration in Hubei Province is similar under the six
scenarios, mainly distributed in the central and western regions
where cropland is more extensive. This aligns with findings from
some scholars: He and Jiang (2023) demonstrate that central Hubei
Province was the most concentrated area for cropland carbon sinks

from 2000 to 2020, while the mountainous western Hubei exhibited
minimal carbon stock loss. The Jianghan Plain in central Hubei,
characterized by flat terrain and deep soil layers, features a
contiguous concentration of cropland suitable for large-scale
intensive agricultural production, making it a high-value
agricultural carbon sink zone. In contrast, the western

FIGURE 6
Simulation results of land use in Hubei Province under different scenarios in 2060: (a) Economic development scenarios; (b) Natural development
scenarios; (c) Ecological priority scenarios.

TABLE 4 The areas of cropland, forest land, and grassland under different scenarios in 2030 (Unit: km2).

Land use Classified land use Natural Ecological Economic 2020

Classified Total Classified Total Classified Total Total

Cropland Paddy field 39019.552 66706.997 38990.741 66666.270 38989.346 66664.093 66951.487

Dry land 27687.444 27675.529 27674.746

Forest land Closed forest land 40957.138 92810.466 40994.713 92911.649 40938.287 92764.996 92283.779

Shrubland 21412.454 21421.988 21407.370

Sparse woodland 29625.548 29672.031 29605.813

Other forest lands 815.327 822.917 813.525

Grassland High cover 4039.115 6,929.529 4039.007 6,929.339 4036.650 6,926.675 6,978.370

Medium cover 2,733.167 2,733.085 2,732.781

Low cover 157.248 157.248 157.244
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mountainous regions of Hubei supplement cropland carbon sinks
through ecological compensation measures and specialized
agricultural practices (Zhang et al., 2025). There are 11 counties
with significantly increased soil organic carbon stock in cropland
management, including Zhongxiang City, Jianli County, Zaoyang
City, Xiangzhou District, Tianmen City, Shayang County, Gong’an
County, Jingshan City, and Xiantao City. Among the three
scenarios, the natural scenario has the largest cropland
management carbon sink, while the economic scenario has the
smallest (Figure 7).

4.3.2 Grassland carbon sequestration
From 2020 to 2030, under the economic scenario, the increase

in soil organic carbon stock in grassland management in Hubei
Province is approximately 4502.057 MgCyr−1. Under the ecological
scenario, it is approximately 4503.789 MgCyr−1, and under the
natural scenario, it is approximately 4503.913 MgCyr−1. From
2030 to 2060, under the economic scenario, the increase is
approximately 4507.592 MgCyr−1, under the ecological scenario,
it is approximately 4507.788 MgCyr−1, and under the natural
scenario, it is approximately 4509.680 MgCyr−1. The spatial
distribution of grassland carbon sequestration is generally
consistent under the six scenarios. Counties with significantly
increased soil organic carbon stock in grassland management
include Lichuan City, Yunyang District, Yunxi County,
Macheng City, and Badong County. The range of changes
under the three scenarios is different: from 2020 to 2030, the
range of significant increases in grassland management carbon
sinks is 265.007–428.494 MgCyr−1 under the economic scenario,
265.006–428.493 MgCyr−1 under the ecological scenario, and
265.022–428.490 MgCyr−1 under the natural scenario; from
2030 to 2060, the range of significant increases in grassland
management carbon sinks is 265.161–428.501 MgCyr−1 under
the economic scenario, 265.152–428.600 MgCyr−1 under the
ecological scenario, and 265.288–428.592 MgCyr−1 under the
natural scenario. The spatial distribution of grassland carbon
sinks is strongly linearly related to grassland area, so the spatial
distribution of grassland under the three scenarios is
similar (Figure 8).

4.3.3 Changes in forest carbon stock under
different scenarios

In this study, we reflect the changing trends in the overall forest
carbon stock by calculating forest management carbon emissions
and issue early warnings for forest degradation risks based on these
emissions. From 2020 to 2030, under the economic scenario, forest
management carbon decreased by about 6.015 TgCyr−1 in Hubei
Province. Under the ecological scenario, it decreased by about
6.025 TgCyr−1, and under the natural scenario, it decreased by
about 6.018 TgCyr−1. From 2030 to 2060, under the economic
scenario, forest management carbon decreased by about
6.015 TgCyr−1, under the ecological scenario, it decreased by
about 6.023 TgCyr−1, and under the natural scenario, it decreased
by about 6.022 TgCyr−1. Areas with fewer emissions included
Jianghan District, Qiaokou District, Jiang’an District, Qingshan
District, Hanyang District, Shashi District, Wuchang District,
Hannan District. However, the range of changes varied: from
2020 to 2030, the range of forest management carbon emissions
under the economic scenario was 0.182–0.278 TgCyr−1, under the
ecological scenario it was 0.184–0.278 TgCyr−1, and under the
natural scenario it was 0.183–0.278 TgCyr−1. From 2030 to 2060,
the range under the economic scenario was 0.184–0.278 TgCyr−1,
under the ecological scenario it was 0.184–0.278 TgCyr−1, and under
the natural scenario it was 0.184–0.278 TgCyr−1. In all three
scenarios, ecological development had the highest forest
management carbon emissions, followed by natural development
and then economic development, which also reflects the ranking of
total forest stock across the three scenarios (Figure 9).

5 Discussion

The land use simulation in Hubei Province shows large changes
in cropland and construction land in 2030 and 2060 under the three
scenarios of economy, nature and ecology. Compared with 2020, the
area of cropland decreases in all three scenarios in 2030, while forest
land and waters increase, indicating that the ecological space
occupies an elevated area. This aligns with the requirements
outlined in the study by Hu et al. (2012) regarding enhancing

TABLE 5 The areas of cropland, forest land, and grassland under different scenarios in 2060 (Unit: km2).

Land use Classified land use Natural Ecological Economic 2020

Classified Total Classified Total Classified Total Total

Cropland Paddy field 39420.543 67355.633 39387.486 67388.072 39003.599 66685.893 66951.487

Dry land 27935.090 28000.587 27682.295

Forest land Closed forest land 40983.677 92862.401 40999.705 92872.850 40936.898 92762.458 92283.779

Shrubland 21415.257 21415.551 21407.377

Sparse woodland 29645.573 29640.795 29604.795

Other forest lands 817.894 816.798 813.389

Grassland High cover 4045.487 6,938.430 4043.465 6,935.568 4043.516 6,935.171 6,978.370

Medium cover 2,735.699 2,734.860 2,734.407

Low cover 157.244 157.244 157.247

Frontiers in Environmental Science frontiersin.org11

Li et al. 10.3389/fenvs.2025.1573145

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1573145


forestry carbon sink capacity to assist China in achieving its “dual
carbon” goals. By 2060, the area of cropland decreases only in the
economic development scenario, increases in the other scenarios,
forest land continues to increase, and waters vary. Future land
changes in Hubei Province are concentrated in cropland and
construction land, while forest land shows an increasing trend.
The study by Tang et al. (2020) emphasizes the potential future
carbon loss in Hubei Province caused by the encroachment of forest
land due to farmland expansion. The expansion of forest land

observed in the results of this study demonstrates a certain
degree of compensation for such carbon loss. As an important
grain producing area in China, Hubei Province must safeguard
the amount of cropland to ensure the stable development of
agriculture. In this process, the regional development pattern of
“one main and two wings” in Hubei Province emphasizes the
radiation role of Wuhan City Circle, which promotes the
improvement of the province’s economic contribution to carbon
emissions, and at the same time, it needs to coordinate the ecological

FIGURE 7
Cropland management carbon sinks by county in Hubei Province from 2020 to 2030: (a1) cropland management carbon sinks for the economic
development scenario; (b1) cropland management carbon sinks for the natural development scenario; (c1) cropland management carbon sinks for the
eco-priority scenario; and croplandmanagement carbon sinks by county in Hubei Province from 2030 to 2060: (a2) croplandmanagement carbon sinks
for the economic development scenario; (b2) cropland management carbon sinks for the natural development scenario; and (c2) cropland
management carbon sinks for the eco-priority scenario.
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compensation between central and western Hubei to promote the
complementarity of advantages and to realize the dislocation
development. This aligns with He et al. (2018)’s findings on
ecological compensation measures in Hubei Province and the
global significance of ecological compensation for carbon
stock changes.

The results of this study indicate that the carbon stock of forest
land is significantly larger than that of cropland and grassland, and
changes in forest land area play a decisive role in managing carbon

sinks in Hubei Province, which has been corroborated by multiple
studies (Sohl and Sayler, 2008; Etemadi et al., 2018; Sun et al., 2022;
Tian et al., 2022). Therefore, it is necessary to protect the ecological
balance while developing and focus on carbon sinks mainly from
forest land. Meanwhile, through rational planning of construction
land and cropland, it will promote smart growth and rational
transfer of construction land in the Wuhan City Circle to
enhance carbon sinks and reduce the total amount of carbon
emissions and the occupation of forest land, thus increasing the

FIGURE 8
Grassland management carbon sinks by county in Hubei Province from 2020 to 2030: (a1) grassland management carbon sinks for the economic
development scenario; (b1) grassland management carbon sinks for the natural development scenario; (c1) grassland management carbon sinks for the
ecological priority scenario; and grassland management carbon sinks by county in Hubei Province from 2030 to 2060: (a2) grassland management
carbon sinks for the economic development scenario; (b2) grassland management carbon sinks for the natural development scenario; (c2)
grassland management carbon sinks for the ecological priority scenario.
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total amount of carbon sinks in Hubei Province (Wei et al., 2020;
Tan et al., 2024).

Based on the analysis of the carbon sink data of Hubei Province
under the three scenarios in 2020, 2030, and 2060, the following
conclusions were drawn: in terms of carbon sinks for grassland
management, the ecological development scenario has the highest
carbon sink, followed by the natural development scenario, and the
lowest is the economic development scenario; In terms of carbon

sinks for cropland management, the ecological scenario has a higher
carbon sink than the economic scenario, while the natural scenario
exceeds the ecological scenario. This conclusion differs from the
findings of He et al. (2018) and He and Jiang (2023), whose study
estimated that under natural scenarios, cropland carbon sink loss in
Hubei Province was higher than under ecological priority scenarios.
This may be due to the fact that in the ecological scenario, carbon
sinks are primarily concentrated in forest areas, resulting in a

FIGURE 9
Carbon sources for forest management in counties in Hubei Province from 2020 to 2030: (a1) Carbon sources for forest management in the
economic development scenario; (b1) Carbon sources for forest management in the natural development scenario; (c1) Carbon sources for forest
management in the ecological priority scenario; and carbon sources for forest management in counties in Hubei Province from 2030 to 2060: (a2)
Carbon sources for forest management in the economic development scenario; (b2) Carbon sources for forest management in the natural
development scenario; (c2) Carbon sources for forest management in the ecological priority scenario.
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minimal difference in cropland carbon sinks between the ecological
and natural scenarios. The ecological priority scenario in this study
increased the probability of land use conversion from cropland and
grassland to forest land, which is also one of the reasons contributing
to this outcome. The research by Tang et al. (2020) revealed that
cropland expansion encroaching on forest land and other ecological
can also lead to significant carbon loss, further demonstrating that
this disparity in cropland carbon sink characteristics aligns with
ecological priority objectives.

Under three different development scenarios, the areas at risk
for various types of carbon sinks differ. Under the economic
scenario, from 2020 to 2030, cropland carbon sinks in Xiangzhou
District and Zhushan County are the most severely degraded, with a
higher risk of degradation. From 2030 to 2060, cropland carbon
sinks in Xiangzhou District and Wuxue City continue to decrease
significantly, with a higher risk of degradation, and need to be
emphasized. The study by Zhang et al. (2025) indicates that the
spatial center of gravity of the cropland carbon flow ecological
network in Hubei Province is located in central Hubei and is
gradually shifting eastward, which aligns with the warned
regional change trends highlighted in this study. This imposes
requirements on the warned counties to maintain cropland area
and uphold the “cropland protection redline” while pursuing
economic development. In terms of grassland management, from
2020 to 2030, grassland carbon sinks in places such as Yingshan
County and Huangmei County are at risk of declining, while
grassland carbon sinks in Xiangcheng District and Jingzhou
District have limited increases, and this trend continues until
2060, so it is recommended that attention be paid to these areas.
In terms of forest management, from 2020 to 2030, forest carbon
emissions in Qingshan District and Jiangan District will increase by
a relatively small amount. This distribution characteristic is further
corroborated by the conclusion in the study by Peng et al. (2021) that
the ecosystem service value is lowest in the city center of Wuhan and
its surrounding urban areas. From 2030 to 2060, forest carbon
emissions in Zhushan County and Suizhou County will decrease
significantly, meanwhile the strong linear relationship between
forest carbon emissions and the total amount of forests, there
may be a risk of forest degradation in these areas, which is
recommended to be paid attention to. The study by Liu and Yu
(2023) indicates that prior to 2020, forests in the central areas of
major cities in Hubei Province experienced severe degradation,
while mountainous areas exhibited extensive but mild forest
degradation. This aligns with the pre-2020 LUCC trends used as
the basis for the simulations in this study. Therefore, the forest
degradation areas warned in this study require heightened attention
to the risk of forest carbon sink loss. In particular, mountainous
regions, as primary carbon sink zones, need to prevent the
accumulation of substantial carbon sink losses resulting from
prolonged mild degradation.

Under the ecological scenario, in 2020–2030, the cropland
carbon sinks of Zhushan County, Yunyang District, and Xiantao
City decrease, and this trend continues until 2060, with a higher risk.
In 2020–2030, the grassland carbon sinks of Yingshan County,
Jichun County, and Huangmei County have a higher risk of
decreasing, and the grassland carbon sinks of Shashi District, and
Jingzhou District have a limited increase, and this trend continues
until 2060. In 2020–2030, the Qingshan District and Jiangan District

have a small increase in forest management carbon emissions; from
2030 to 2060, Zigui County, Jiangxia District and Badong County
have a significant decrease in forest management carbon emissions
and a high risk of degradation. The aforementioned districts and
counties still face a high risk of carbon sink loss in ecological land
under ecological scenarios, and this trend is projected to persist
long-term, which necessitates focused attention. This study needs to
address the following points in future research:

1) Failure to account for drastic vegetation changes under
significant climatic shifts or breakthroughs affecting carbon
sink capacity (Wu et al., 2025). Future work should enhance
the capability to estimate carbon sink variation risks under
uncertainty scenarios.

2) Room for improvement in LUCC prediction methods. While
this study conducted large-scale, high-resolution provincial-
level terrestrial carbon sink change simulations using the
advanced PLUS model, future efforts will refine land use
simulation models to predict carbon stock and sink changes
more accurately across broader regions. Additionally,
improving model efficiency will enable timelier carbon sink
risk warnings.

3) Regional variability in carbon sink capacity within the same
land use type was not considered. Lyu et al. (2023)
demonstrated in their carbon sink assessments in
Guangdong Province that carbon sinks may differ across
regions even for identical land use types, a factor omitted in
this study. Future research will incorporate more granular
environmental factors influencing carbon sinks, coupling land
use types with other surface-level drivers to simulate and
predict carbon stock and sink changes with greater precision.

6 Conclusion

This paper provides a high-resolution method for simulating
changes in carbon stock, carbon sink loss, and carbon emission
risks associated with land use changes. Supported by block
parallel technology, this project employs high-resolution land
cover simulation products generated by the Patch-Generated
Land Use Scenario Simulation Model (PLUS), combined with
changes in soil organic carbon and carbon stock due to the
management of croplands and grasslands. Based on the
aforementioned methodology, the primary achievements of
this study lie in estimating historical carbon emissions caused
by land use, simulating large-scale, high-resolution carbon stock
in Hubei Province, and providing district-level early warnings for
carbon sink loss risks. This addresses the issue of low resolution
in current studies on carbon stock change extrapolation, which
makes it challenging to conduct fine simulations and loss risk
warnings for carbon stock and sink patterns on a large scale.

According to the high-resolution method proposed for
estimating and simulating variations in carbon sinks and
carbon stock, land use simulation results for Hubei Province
under natural development, ecological priority, and economic
development scenarios were obtained. These results demonstrate
that from 2020 to 2030 and 2060, croplands and construction
lands are the main land types undergoing transition, while forest
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lands have shown a steadily increasing trend. This indicates that
promoting smart growth of the Wuhan city cluster and
reasonable transition of construction land to enhance the
carbon sink capacity of eastern Hubei Province and reduce the
region’s total carbon emissions is crucial for maintaining
ecological balance, protecting the main carbon sinks, and
ensuring the collaborative development of various land types
in Hubei Province while promoting an increase in total
carbon sinks.

Based on the managed carbon sink data for Hubei Province in
2020 and projections for 2030 and 2060 under the three scenarios,
we find that grassland management carbon sinks are highest under
the ecological priority scenario, followed by the natural development
scenario, and lowest under the economic development scenario.
Cropland management carbon sinks are highest under the natural
development scenario, followed by the ecological priority scenario,
and lowest under the economic development scenario. Forest
management carbon emissions are highest under the ecological
priority scenario, followed by the natural development scenario,
and lowest under the economic development scenario. Additionally,
between 2020 to 2030, and 2060, we identified several districts and
counties that are at greater risk in terms of cropland management
carbon sinks, grassland management carbon sinks, and forest
management carbon emissions under different scenarios, which
are specifically listed in the paper.

Based on the forest management carbon sink results predicted
by the study and the identified risk areas in Hubei Province, the
following policy recommendations are proposed: In terms of
optimizing ecological spaces, establish an intelligent carbon sink
monitoring platform, strengthen zoning control of ecological
spaces in Hubei Province in accordance with the Outline of the
Hubei Provincial Basin Comprehensive Management and
Integrated Development Plan, and strictly monitor ecological
conservation redlines. In line with the Hubei Provincial High-
Standard Farmland Construction Plan, create carbon
sequestration demonstration zones in high-risk areas. For
promoting regional collaborative development, implement the
ecological community requirements of the Yangtze River
Economic Belt Development Plan Outline, jointly build a clean
energy corridor by effectively utilizing hydropower resources in
western Hubei and photovoltaic resources in the central plains,
and establish a carbon market alliance for urban clusters in the
middle reaches of the Yangtze River to facilitate cross-provincial
trading of carbon emission rights and energy usage quotas.

In summary, the method proposed in this paper enables
large-scale, high-resolution simulation of carbon stock and
carbon sink loss, and precise risk early warning. It allows for
the fine simulation of carbon sink patterns under different land
space planning scenarios, enabling precise risk warning. The
results obtained through this method underscore the
importance of protecting cropland, optimizing ecological
space, and promoting regional collaborative development to
ensure the coordinated development of various land types in
Hubei Province and promote total carbon sink growth. Future
development in Hubei Province should focus on enhancing
carbon sink functions and ecological protection to promote
low-carbon development and green growth.
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