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Purpose:Urban forests play a key role in mitigating global warming and achieving
carbon neutrality. This study aims to analyze and evaluate the spatial
heterogeneity of forest carbon stocks in the Xiangjiang River Basin urban
agglomeration. By constructing and comparing the ordinary least squares
model (OLS) and four geographically weighted regression (GWR) models, it is
hoped to provide a more reliable method for accurately estimating the spatial
distribution of large-scale forest carbon stocks and provide a scientific basis for
the construction of the Xiangjiang River Basin forest urban agglomeration.

Method: Based on the data of the 10th continuous forest resource inventory and
climate data in Hunan Province, this study identified five key variables, including
average breast diameter of the stand, stand density, average age of the stand,
average tree height of the stand, and average annual precipitation. Utilizing SPSS
V27 software andMGWR2.2 software, theOLSmodel and four GWRmodels were
constructed. By comparing the model fit and the results of the independent
samples test, the optimal model, the MGWR (Gaussian) model, was selected to
estimate the spatial distribution of forest carbon stocks in the Xiangjiang
River Basin.

Results: The results show that the four GWR models outperform the OLS model
in terms of model fit and independent samples test, particularly in estimating the
spatial distribution of forest carbon stocks. The results of the spatial non-
stationarity test indicate that the MGWR model better captures the spatial
heterogeneity of variables. The estimated carbon stock per unit area of forest
in the Xiangjiang River Basin using the MGWR (Gaussian) model is 31.162 t/hm2,
exhibiting an overall pattern of high central values and low peripheral values. This
finding provides a crucial scientific basis for the management and ecological
protection of forest resources in the Xiangjiang River Basin.

Conclusion: This study effectively reflects the spatial relationship between forest
carbon stocks and variables through the geographically weighted regression
method and the selection of appropriate spatial kernel functions, enhances the
estimation accuracy of the spatial distribution of large-scale forest carbon stocks,
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and accurately reveals the spatial distribution pattern of forest carbon stocks in the
Xiangjiang River Basin. The study on forest carbon stocks in the urban
agglomeration of the Xiangjiang River Basin holds significant implications for
regional ecological security and climate change mitigation. It offers a scientific
basis for the management and ecological protection of regional forest resources.

KEYWORDS

Xiangjiang river Basin, urban agglomeration, GWR model, MGWR model, forest carbon
storage, spatial heterogeneity

1 Introduction

With the acceleration of global climate change and urbanization,
research on carbon storage in urban forests has received increasing
attention (Guo et al., 2024; Zhao et al., 2023). As an important part
of the terrestrial ecosystem, urban forests play an important role in
sequestering carbon, releasing oxygen, and responding to climate
change (Pati et al., 2024). During the urbanization process, large
amounts of carbon dioxide emissions have a significant impact on
global climate change. Urban forests serve as carbon sinks,
absorbing atmospheric carbon dioxide through photosynthesis,
converting it into biomass and storing it for long periods of time,
thereby slowing down the rate of global warming (Mandal et al.,
2022). Therefore, studies of carbon stocks in urban forests are
critical to assess the climate change mitigation role of urban
ecosystems. In addition, with the global pursuit of carbon
neutrality goals, carbon storage management in urban forests has
become one of the important ways to achieve this goal. Research on
urban forest carbon storage not only helps us understand the service
functions of urban ecosystems, but is also the key to achieving the
goals of sustainable urban development and carbon neutrality
(Pregitzer et al., 2022). Although cities emit large amounts of
carbon dioxide to maintain rapid socio-economic development,
urban green spaces also fix large amounts of carbon dioxide
through plant photosynthesis and other pathways. Therefore,
urban forests are an important component of the carbon sink in
terrestrial ecosystems and their contribution to achieving carbon
neutrality cannot be underestimated. Contributions (Gülçin and van
Den Bosch, 2021; Singkran, 2022). The investigation of urban
carbon sequestration represents a pivotal concern within the
realms of global climate change and sustainable development.
The precise quantification of carbon storage in urban forests has
emerged as a prominent research focus both domestically and
internationally, and serves as the fundamental basis for informed
urban planning and managerial decision-making.

The rapid pace of urbanization, marked by the diminution of
ecological land and a concomitant surge in carbon emissions, is
poised to exacerbate global warming, thereby posing a grave threat
to human survival and development. As one of the world’s
preeminent carbon emitters, China’s commitment to addressing
climate change and striving for carbon neutrality constitutes a
momentous strategic decision (Zhao et al., 2022; Zhuo et al.,
2022). In 2020, President Xi Jinping proposed that China will
achieve carbon peak by 2030 and strive to achieve carbon
neutrality by 2060. Forest ecosystems play an important role in
absorbing and fixing atmospheric carbon dioxide. Their carbon
sequestration accounts for two-thirds of the total carbon

sequestration of terrestrial ecosystems and is considered one of
the most effective ways to offset carbon dioxide emissions (Chen
et al., 2022).

From the perspective of the Intergovernmental Panel on Climate
Change (IPCC) reports, the world is facing severe climate challenges.
The IPCC’s Sixth Assessment Report emphasizes the urgency of
limiting global temperature rise to 1.5°C above pre - industrial levels
to avoid the most catastrophic impacts of climate change. To achieve
this goal, significant reduction in carbon dioxide emissions and
enhancement of carbon sinks are essential. Urban forests, with their
ability to sequester carbon, are crucial components in this global
effort. For example, every additional ton of carbon stored in urban
forests contributes to reducing the overall carbon load in the
atmosphere, moving us closer to the IPCC’s target.

In relation to the United Nations Sustainable Development
Goals (SDGs), specifically SDG 13 on Climate Action, which calls
for urgent measures to combat climate change and its impacts.
Understanding the spatial heterogeneity of forest carbon stocks in
urban agglomerations, like the Xiangjiang River Basin, is directly
relevant. It can provide scientific support for formulating effective
urban forest management strategies, thereby enhancing the carbon
sequestration capacity of urban forests and promoting the
realization of SDG 13. This also aligns with other related SDGs,
such as SDG 11 on Sustainable Cities and Communities, as well -
managed urban forests can improve urban environmental quality
and promote sustainable urban development.

As an important part of terrestrial ecosystems, forests effectively
mitigate global warming by absorbing and storing carbon dioxide.
This is mainly achieved by converting atmospheric carbon dioxide
into organic matter through vegetation and soil in forests, and
storing it in organisms and soil, thereby achieving carbon
sequestration (Shi et al., 2022). As areas with concentrated
populations and intense human activities, cities can emit 70% of
the world’s total carbon dioxide emissions. Currently, urban carbon
dioxide emissions have become the focus of global carbon reduction
and low-carbon development, and forest carbon storage, as an
important indicator for assessing ecosystem quality, can
effectively reflect the CO2 absorption capacity of urban forests
(Chen et al., 2024; Wang X. et al., 2021). Therefore, studying the
aboveground carbon storage and spatial distribution of urban forests
is of great significance to improving climate warming and achieving
the dual carbon strategy.

Urban forests, as a vital carbon sink, exert a significant influence
on the mitigation of global warming and the attainment of carbon
neutrality objectives. The Changsha-Zhuzhou-Xiangtan urban
agglomeration, situated within the Xiangjiang River Basin—one
of China’s key river basins—holds considerable importance. The
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spatial distribution of forest carbon storage within this region is of
paramount significance for comprehending and effectively
responding to regional climate change. Research on forest carbon
storage in the Xiangjiang River Basin urban agglomeration is urgent
for regional ecological security and climate change response. With
the acceleration of urbanization, urban forests, as important carbon
sinks, play an important role in mitigating urban heat island effects,
improving air quality, and reducing greenhouse gas emissions.

As one of the fastest-growing regions in China, Changsha-
Zhuzhou-Xiangjiang River Basin Urban Agglomeration has rich
forest resources, but it also faces challenges brought by rapid
urbanization and economic development. Research on forest
carbon storage in Xiangjiang River Basin Urban Agglomeration
focuses on overall carbon storage and carbon storage per unit area,
but ignores the spatial variability and distribution characteristics of
forest carbon storage. Based on this, this study takes the Xiangjiang
River Basin in Hunan Province as the study area, uses the data of the
10th continuous forest resource inventory in Hunan Province,
constructs an ordinary least squares model and four
geographically weighted regression models, and compares and
selects the optimal estimation model to estimate the spatial
distribution of forest carbon storage in the Xiangjiang River
Basin, in order to provide a more reliable method for the
accurate estimation of the spatial distribution of large-scale forest
carbon storage, better measure the forest carbon absorption and
storage capacity in the region, and provide a basis for guiding the
construction of the Xiangjiang River Basin Forest Urban
Agglomeration. In addition, the study of forest carbon storage in
the Xiangjiang River Basin is of great significance for achieving
China’s carbon neutrality goals, promoting ecological civilization
construction and green development.

2 Literature review

As the “lungs of the city”, urban forests are an important part of
urban greening and play an important carbon sink function. The
carbon cycle and carbon storage of urban forests have become one of
the important hotspots in urban ecological research in recent years.

At present, the carbon sink estimation of natural forests generally
adopts: plot survey, estimating carbon storage by calculating biomass
(Raihan et al., 2021); using remote sensing technology and model
simulation to estimate forest carbon sink on a larger scale (Duarte
et al., 2022; Odebiri et al., 2022). The above methods are also applied
to the observation of urban forests, but each of the above methods has
its own advantages and limitations. The plot inventory method has
high accuracy, but the workload is large and it is limited by time and
space; the eddy inventory method can achieve continuous and long-
term observation, but the cost is high and the accuracy needs to be
improved; the application of 3S technology provides a fast,
economical and convenient method for the study of carbon
storage (Raj and Jhariya, 2021; Arehart et al., 2021), which enables
the research to break through the limitations of space and time and
provides effective technical support for simulating and estimating
regional carbon storage over a long period of time and on a large scale.
However, there is still uncertainty in accuracy, so one or several
methods can be combined to estimate the carbon sink of urban forests
according to actual conditions.

North American countries recognized the importance of the
carbon sink function of urban forests early on and developed
relevant computer software, such as UFORE and City-green, to
estimate the carbon storage and CO2 absorption function of urban
forests (Zhuang et al., 2022). The application of the UFORE model
requires a large number of sample plot surveys to obtain data on tree
species composition, population structure, tree diameter at breast
height and leaf area of urban forests, and to combine them with
relevant meteorological data, atmospheric pollution conditions and
other environmental factors for calculation. However, due to the
complexity of the urban environment and the large workload of
sample plot setting, it requires a lot of investment; City-green is a
tool based on remote sensing technology that is relatively easy to use
(Liao et al., 2021), but at the urban scale, it only considers the forest
area and ignores the differences in tree species composition. At the
same time, it uses the carbon sink function of general forest land as
the basis, which affects the accuracy of the estimation.

Nowak summarized the research results on urban forests and
applied remote sensing technology to establish a relationship model
between the normalized difference vegetation index (NDVI) and
forest biomass (Wani et al., 2021; Wang et al., 2022). NDVI is a
remote sensing indicator that reflects the vegetation coverage status
and is defined as the quotient of the difference between the
reflectance of the near-infrared channel and the visible light
channel and their sum. Biomass refers to the total amount of
organic matter accumulated by an organism or community over
a certain period of time. This method not only uses a smaller number
of sample plots, but also can outline the distribution of biomass. This
method has unique advantages for the more complex site
environment of the city. Combining the UFORE model with
remote sensing technology, Nowank et al. estimated the benefits
of urban forests across the United States and in each state, including
their carbon sequestration function (Shafique et al., 2020; Song et al.,
2020). This is the first time in the world that urban forest functions
have been measured at the national level.

Recently, the applications of GWR and MGWR models in
carbon stock estimation have witnessed remarkable progress. For
example, Costa et al. applied the GWR model to predict soil organic
carbon (SOC) in the Brazilian southeastern mountainous region.
They found that the GWR model could effectively capture the local
spatial variation of SOC affected by terrain factors such as altitude
and slope. By incorporating these spatial factors into the model, the
estimation accuracy of SOC in different sub - regions was enhanced
compared to traditional global regression models. Their study was
published in the Journal of Environmental Quality (Costa et al.,
2018). In the context of MGWR applications, Li et al. used the
MGWRmodel to explore the spatial heterogeneity of the influencing
factors of total CO2 emissions in 336 Chinese cities. Their results
showed that the MGWR model could adaptively adjust the scale of
influence of different variables. For instance, they revealed that the
impact of GDP per capita, population, and the proportion of
secondary industries on CO2 emissions was spatially
heterogeneous (Li et al., 2021). Another study by Cheng et al.
combined the MGWR model with remote sensing data to
estimate forest carbon stocks in Yunnan Province, China. They
integrated national forest resource inventory data and Landsat eight
multispectral remote sensing imagery and used the MGWR model
to account for the spatial heterogeneity of forest structure and
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environmental factors. This approach not only improved the
accuracy of forest carbon stock estimation but also provided a
more detailed spatial distribution map of carbon stocks, which
could be used for targeted forest management and conservation
strategies (Cheng et al., 2024).

In recent years, Chinese researchers have begun to pay attention
to the important role of urban forests in achieving low-carbon cities,
and have used different techniques to estimate the benefits of urban
forest carbon storage and CO2 absorption (Sun and Liu, 2020; Zhang
Y. et al., 2020; Qiu et al., 2020), but have not yet involved the carbon
storage function and distribution pattern of urban forests in
different functional areas.

Numerous regional studies on forest carbon stocks in China’s
urban agglomerations have been carried out. For example, in the
Beijing - Tianjin - Hebei urban agglomeration, Zou et al. found that
from 2001 to 2020, the carbon sequestration in this area steadily
increased, with forests accounting for 55.0% of the change (Zou
et al., 2022). Their research focused on the overall carbon
sequestration trend but did not delve deep into the fine - scale
spatial distribution characteristics. Kowkabi explored the carbon
storage and sequestration of urban forests in the qanats of Tehran
built - up areas. They revealed that the carbon storage and
sequestration patterns exhibit noticeable spatial heterogeneity, yet
their study area was limited to the built - up areas of a single city and
did not consider the broader context of the urban agglomeration
(Kowkabi, 2021). In the urban agglomeration on the northern slope
of the Tianshan Mountains, research using the PLUS model and
InVEST model showed that the carbon stock in this area had a
continuous increasing trend from 2000–2020, and was closely
related to land - use change (published in 2022) (Tao et al., 2022).

However, the complex terrain and climate in this region are
quite different from those in the Xiangjiang River Basin, and the
research methods and results cannot be directly applied to
our study area.

Despite these valuable studies, there are still significant gaps.
Existing research on forest carbon stocks in urban agglomerations in
China often fails to comprehensively consider the spatial non -
stationarity of various influencing factors, especially in regions like
the Xiangjiang River Basin. The Xiangjiang River Basin has a unique
geographical location, complex terrain, and a large - scale urban
agglomeration with diverse land - use types. The relationships
between forest carbon storage and factors such as topography,
climate, and human activities in this area are spatially non -
stationary. For instance, the impact of precipitation on forest
growth and carbon storage may vary significantly in different
parts of the basin due to the influence of mountains and rivers.
Our study aims to fill this gap by applying advanced models like the
Multiscale Geographically Weighted Regression (MGWR) model to
accurately capture the spatial non - stationarity of factors affecting
forest carbon stocks in the Xiangjiang River Basin urban
agglomeration, providing a more in - depth and accurate
understanding of the carbon storage distribution pattern in
this region.

This paper selects the important Changsha-Zhuzhou-
Xiangjiang River Basin urban agglomeration as the research
object, constructs an ordinary least squares model and four
geographically weighted regression models, and compares and
selects the optimal estimation model to estimate the spatial

distribution of forest carbon storage in the Xiangjiang River
Basin, providing a scientific method for urban forest construction
and function measurement.

3 Overview of the study area and
data sources

3.1 Overview of the study area

The Xiangjiang River Basin is separated from the Poyang Lake
system by the Mufu Mountains and Luoxiao Mountains on the
border between Hunan and Jiangxi in the east, connected to
Guangxi in the south by the Xiangjiang and Pearl River
watershed from Jianghua, adjacent to Zishui River in the west
across the Hengshan Mountains, and connected to Dongting
Lake in the north. The landform types in the basin are complex
and diverse, mainly mountainous and hilly, with the characteristics
of hilly gentle slopes, mountain streams and rivers (Liu and Mao,
2020; Zhang P. et al., 2020).

The core area of the Changsha-Zhuzhou-Xiangjiang River Basin
urban agglomeration (Figure 1) is located in the central and eastern
part of Hunan Province (112°36′–113°16′E, 27°36′–28°33′N), with
an area of about 8,448.18 km2. It has a typical subtropical monsoon
climate, with hot summers, mild winters and distinct four seasons.
The summer precipitation is sufficient, with an annual precipitation
of about 1,400 mm, an average annual temperature of 16°C–18°C, a
frost-free period of up to 279 days, and an average annual sunshine
of 1726 h (Lu et al., 2020; Zhong and Elzarka, 2021). This area is the
core growth area of Hunan Province’s economic development, a
rapid urbanization development area in Hunan Province, and an
important part of the Yangtze River Middle Reaches Urban
Agglomeration (Deng et al., 2021).

The Changsha-Zhuzhou-Xiangtan urban agglomeration is one of
the most densely populated areas in Hunan Province, with a relatively
high population density. According to the data from the sixth national
census of Hunan Province, the population densities of Changsha,
Zhuzhou and Xiangtan in 2010 were 791, 342 and 549 people per
square kilometer respectively. With the rapid economic development,
the economic aggregate of this urban agglomeration accounts for
more than 40% of that of Hunan Province. Changsha is renowned for
its construction machinery manufacturing, Zhuzhou is an important
base for railway equipment manufacturing, and Xiangtan has
developed strongly in the field of non-ferrous metal processing.
However, the rapid economic development has also brought about
relatively high carbon emissions. Therefore, the role of forest carbon
sinks is particularly important.

In recent years, the forest coverage rate of the Changsha-
Zhuzhou-Xiangtan urban agglomeration has been on the rise.
The forest coverage rate in Hunan Province has reached 53.15%.
The Changsha-Zhuzhou-Xiangtan Green Heart area, as a key area
for afforestation, has also seen a continuous increase in its forest
coverage rate. For example, the forest coverage rate of Zhuzhou City
has reached 61.96%. Despite this, due to urban expansion and
industrial development, forest resources in some areas still face
challenges. It is necessary to accurately grasp the spatial distribution
of forest carbon storage in order to better manage and protect
forest resources.
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The core area contains the world’s largest urban agglomeration
green core area, with the main timber forest species including
Masson pine and Chinese fir, and economic forest species
including tea oil, tung oil, citrus, etc. The roadside trees in the
urban agglomeration are mostly camphor trees, and continuous
large-area forests are mainly distributed in the suburbs of the city.
Changsha, Zhuzhou and Xiangtan are distributed in a “品” shape
along the Xiangjiang River, with the distance between them less than
40 km. The structure is compact, and the Xiangjiang River runs
through the north and south. Mountains, forests and plains are
evenly distributed, and the overall terrain is low (Wang L. et al.,
2021; Ma et al., 2020).

3.2 Data source

The data comes from the “2021 China Forest and Grassland
Ecological Comprehensive Monitoring and Evaluation Report”
(Wang and Li, 2024). The results of the 10th National Forest
Resources Inventory show that the national forest coverage rate
has reached 24.02% (Qiao et al., 2024; Cai et al., 2024). The data
related to forest coverage rate in this study differ from those in the
“Third National Land Survey”. On the one hand, it is because the
statistical standards of the two are different. This study may have
covered the parts not included in the “Third National Land Survey”.
On the other hand, different survey mapping scales will affect the
data. This kind of difference is acceptable under the influence of
multiple factors and will not change the core conclusion of this study
on the spatial heterogeneity analysis of forest carbon storage in
urban agglomerations in the Xiangjiang River Basin.

The data of 431 tree forest sample plots in the 10th continuous
forest resource inventory in Hunan Province in 2021 are shown in
Figure 1. These sample plots were selected with the intention of

covering different land use types, including urban core areas,
suburbs, and peri - urban forests in the Changsha - Zhuzhou -
Xiangtan urban agglomeration. The continuous large - area
forests are mainly distributed in the suburbs, while the urban
core areas have urban forest vegetation such as roadside trees. The
random selection of sample plots, as described above, helps to
reduce sampling bias to some extent. However, due to the
complexity and diversity of different land use types in the
study area, there may still be some potential sampling biases.
For example, forests in some special terrains or hard - to - reach
areas (such as deep in the mountains) may be under - represented
in the sample plots. In the urban core area, the complex land use
types may not be fully covered by the sample plots. Overall, the
sample selection method in this study has made efforts to balance
representativeness and feasibility, but future research can further
increase the sample size or optimize the sampling method to more
comprehensively cover different land use types and reduce
potential sampling biases.

The sample plot location is 25.8 m × 25.8 m 335 sample plots
were randomly selected at a ratio of 4:1 to construct the model, and
96 sample plots were used for independent sample testing. The
survey factors include sample plot location, altitude, slope, slope
aspect, breast diameter, tree height, age, canopy density, etc. (Singh
et al., 2024; Wang et al., 2024), and the breast diameter of the sample
tree is 5 cm. The climate factor data comes from the climate AP
3.0 software developed by Canadian scholars. By inputting the
latitude, longitude and altitude of the sample site, the annual
climate data corresponding to the sample site from 2018 to
2023 can be obtained, and the 5-year average value is taken as
the climate variable value of the sample site, including 17 climate
variables (Soto et al., 2024; Yin et al., 2024; Zhang et al., 2024) such as
average annual temperature, average annual precipitation, and
relative humidity.

FIGURE 1
Schematic diagram of the Changsha-Zhuzhou-Xiangtan urban agglomeration and sample plot distribution in the Xiangjiang River Basin (The
illustration was crafted utilizing ArcGIS software, version 10.2. For further reference, the URL link is provided: https://www.arcgis.com/index.html).
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4 Materials and methods

4.1 Calculation of carbon storage in
sample plots

There are large differences in carbon storage and carbon density
among vegetation types in different forest communities. Trees are
the main body of vegetation carbon storage, usually accounting for
more than 90% of vegetation carbon storage. There are certain
differences in the carbon sequestration capacity of different tree
species. Broad-leaved forests have a higher total carbon
sequestration than coniferous forests (Bhardwaj et al., 2024; Yang
et al., 2023; Jia et al., 2023). This means that in the Changsha-
Zhuzhou-Xiangtan urban agglomeration, the choice of forest tree
species has a direct impact on carbon emissions, and broad-leaved
forests may perform better in carbon sequestration. The main tree
species of forests in the Changsha-Zhuzhou-Xiangtan urban
agglomeration in the Xiangjiang River Basin are classified as
shown in Table 1.

As shown in Table 1, in the process of estimating the carbon
storage of the sample plot, we first calculated the carbon storage of
individual trees based on the single tree biomass model and the
corresponding carbon content coefficient (Araza et al., 2023). This
step involves calculating the aboveground and underground parts of
individual trees separately. Specifically, we used published industry
standards for standing tree biomass models and carbon accounting
parameters for specific tree species (Volkov et al., 2023), which cover
oak (Quercus spp.), Chinese fir (Cunninghamia lanceolata), Schima
superba, cypress, slash pine (Pinus elliottii), Podocarpus, and
Masson pine (Pinus massoniana). These models and parameters
provide accurate biomass estimation methods for specific tree
species, making the calculation of carbon storage more accurate.

For those tree species (groups) that do not yet have industry
standards, we use the universal biomass model (Zeng et al., 2024;
ZHANG et al., 2023; McClanahan et al., 2023) proposed by Zeng
Weisheng and uniformly set the carbon content coefficient to 0.5.
Formula 1 defines the aboveground biomass of a single tree. Formula
2 calculates the underground biomass for coniferous forests.
Formula 3 provides the underground biomass for broad-leaved
forests. Formula 4 computes the carbon storage of a single tree.

Ma � a × Db (1)
Mb1 � 0.0343 × D2.228 (2)
Mb2 � 0.0599 × D2.16 (3)

C � M × Ci (4)

Where: Ma is the aboveground biomass of a single tree of the
corresponding tree species; a and b are the model parameters of the
single tree biomass; D is the breast height diameter of a single tree;
Mb1 is the underground biomass of coniferous forest; Mb2 is the
underground biomass of broad-leaved forest; C is the carbon storage
of a single tree of the corresponding tree species; M is the whole
plant biomass of the corresponding tree species (the sum of the
aboveground biomass and the underground biomass); Ci is the
carbon content coefficient of the corresponding tree species.

Formulas 2, 3 calculate underground biomass based on different
tree species. The underground biomass calculation coefficients for
coniferous forests and broad-leaved forests are different. The
coefficient 0.0343 in formula 2 is a parameter in the empirical
formula for calculating underground biomass in coniferous forests.
It comes from the statistical and regression analysis of the
relationship between coniferous forest biomass and breast
diameter. The coefficient 0.0599 in formula 3 is a parameter in
the empirical formula for calculating underground biomass in

TABLE 1 Main tree species in the forests of the Changsha-Zhuzhou-Xiangtan urban agglomeration in the Xiangjiang River Basin (Deng et al., 2023; Wang
et al., 2023).

Level I Level II Tree types

coniferous
tree

Evergreen conifer Masson pine, slash pine, Japanese five-needle pine, Podocarpus, cedar, Araucaria, Cryptomeria, Oriental cypress,
Thousand-headed cypress, Juniperus, Dragon cypress, Ground cypress, Bamboo cypress

coniferous
tree

Deciduous conifers Golden pine, metasequoia, pond cypress

arbor Evergreen broad-leaved tree Magnolia grandiflora, white orchid, camphor tree, camphor tree, mosquito nut, Castanopsis sclerophylla,
Cyclobalanopsis glauca, French holly, Ligustrum lucidum, Osmanthus fragrans, Banyan tree, palm, Livistona

canariensis, Middle East date palm, pomelo, Elaeocarpus sylvestris, Acacia, Phoebe

arbor Deciduous broad-leaved tree Ginkgo, tulip tree, albizzia, locust tree, locust tree, locust tree, locust tree, camptotheca, liquidambar, sycamore,
white poplar, willow, weeping willow, chestnut, maple poplar, elm, elm, beech, mulberry, paper mulberry,

sycamore, Chinese tallow tree, Chinese fern, persimmon, Ailanthus altissima, Koelreuteria mukorossi, soapberry,
Pistacia chinensis, maple, paulownia, Davidia involucrata, Michelia lechangensis, red-flowered Magnolia

arbor Evergreen broad-leaved small trees and
shrubs

Bamboo cypress, cycad, Michelia, loquat, heather, golden coral, boxwood, boxwood, pittosporum, camellia,
sasanqua, holly, boxwood, Yunnan jasmine, oleander, gardenia, nandina domestica, mahonia, yucca, phoenix

orchid, holly, osmanthus

arbor Deciduous broad-leaved small trees and
shrubs

Magnolia, purple magnolia, Erqiao magnolia (big flower, beautiful), Chinese rose, floribunda rose, modern rose,
rose, Deutzia, plum, peach, peach, purple-leaf plum, cherry, pyracantha, hawthorn, crabapple, weeping

crabapple, wintersweet, bauhinia, osmanthus, hibiscus, hibiscus, azalea, pomegranate (peony pomegranate),
Japanese maple, red maple, feather maple, Ligustrum lucidum, winter jasmine, lilac (white, red, purple, blue),

forsythia, peony, barberry, purple-leaf barberry, crape myrtle

other types vine Rose, wisteria, ivy, kiwi, grape, creeper, bougainvillea, euonymus, honeysuckle, trumpet creeper

other types bamboo Filial bamboo, Phoenix bamboo, mottled bamboo, Bambusa textilis McClure
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broad-leaved forests. It comes from the statistical and regression
analysis of the relationship between broad-leaved forest biomass and
breast diameter. Through formulas 2, 3, the underground biomass of
a single tree can be estimated, and then the underground biomass of
the entire plot can be calculated. These biomass data are very
important for calculating forest carbon storage, because forest
carbon storage includes carbon storage in both the aboveground
and underground parts.

4.2 Optimal variable screening

Preliminarily screened statistically significant sample plot
variables (10) and climate variables (11), and used SPSS
V27 software to conduct stepwise regression and collinearity tests
on the variables at the significance level a = 0.05 [variance inflation
factor test (VIF)) less than 5] (Note: Variance inflation factor (VIF):
This is an indicator to measure the severity of collinearity. The
higher the VIF value, the more severe the collinearity and the more
unstable the estimation of the regression coefficient. This is a
commonly used As a rule, if the VIF value of a variable is
greater than five or 10 (different researchers may use different
thresholds), this variable is considered to have serious collinearity
with other variables and may need to be removed or merged from
the model). This process helps build a more robust and efficient
statistical model.

According to the results of stepwise regression and collinearity
test, five variables, namely, average diameter at breast height
(ADBH), stand density (SD), average age of stand (ASA), average
tree height (ASH), and average annual precipitation (MAP), were
finally determined as independent variables.

These five independent variables (average diameter at breast
height ADBH, stand density SD, average stand age ASA, average
stand height ASH, and average annual precipitation MAP) were
selected from a total of 21 statistically significant variables after
comprehensive consideration. This means that these variables are
considered to contribute the most to the model in the statistical
analysis, and there is no serious collinearity problem between them.

4.3 Model construction

4.3.1 Ordinary least squares (OLS) model
Ordinary Least Squares (OLS) is a linear regression method

widely used in statistics and econometrics to estimate parameters in
linear models (Bai et al., 2021). The core idea of the OLS model is to
estimate model parameters by minimizing the residual sum of
squares so that the difference between the observed value and the
model predicted value is minimized (Onifade et al., 2021; Cortiella
et al., 2021).

Ordinary least squares method is a method to find the minimum
sum of squares of residuals between dependent variables and
multiple independent variables using n groups of observations. It
is a common regression method used to explain the relationship
between independent variables and dependent variables. The
regression equation is formula 5:

Y � β0 +∑p
i�1
βiXi + ε (5)

In the formula: y is the dependent variable (carbon storage of
the sample plot), the unit is t/hm2; Xi is the independent variable; βi
is the regression coefficient estimated by the model; β0 is the
constant term of the model; p is the number of independent
variables; ε is the residual of the model, which obeys the
normal distribution N (0, δ2).

The OLS model assumes that the influence of the independent
variable on the dependent variable is globally homogeneous, that is,
the regression coefficient obtained remains constant in space,
ignoring the influence of the spatial position of the data on the
influence of the independent variable.

4.3.2 Geographically weighted regression
(GWR) model

The GWR model is an extension of the OLS model.
Geographically Weighted Regression (GWR) is a local spatial
regression analysis method (Comber et al., 2023; Oshan et al.,
2020) that allows model parameters to vary spatially, thereby
capturing the local spatial non-stationarity of spatial data.

The GWRmodel adds the location information of the data to the
regression process in the form of a spatial weight function, and uses
the function of the distance between neighboring points to weight all
observations, fully considering the spatial effect of the data to
improve the model’s prediction ability. The GWR model is a
typical local regression model, that is, each sample point is
regressed once, and its calculation formula is:

ŷi � β0 uivi( ) +∑p
k�1

βk uivi( )xik + εi (6)

Formula 6 calculates the Residual Sum of Squares (RSS). Where,
ŷi is the estimated value of the i-th point; (ui, vi) is the coordinate of
the i-th point; β0 (ui, vi) is the constant term of the i-th point; xik is
the k-th independent variable of the i-th point; βk (ui, vi) is the
regression coefficient of the k-th independent variable of the i-th
point; εi is the model residual term of the I-th point; i = 1, 2, 3, ., n (n
is the number of sample points); k = 1, 2, 3, ., p (p is the number of
independent variables).

4.3.3 Multiscale geographically weighted
regression (MGWR) model

The Multiscale Geographically Weighted Regression (MGWR)
model is a statistical method for spatial data analysis that is able to
take into account the effects of geographic space and adjust the
individual weights in the regression analysis. MGWR is an extension
of Geographically Weighted Regression (GWR) (Shabrina et al.,
2021; Kurkcuoglu, 2023) that allows different regression parameters
to vary at different spatial scales, providing a more flexible and
realistic model. Formula 7 is a geographically weighted regression
(GWR) model, describing the local regression coefficients as they
vary with spatial positions. The formula is as follows:

ŷ � β0 uivi( ) +∑p
k�1

βbwk uivi( )xik + εi (7)
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(1) The spatial weight kernel function is a mathematical function
used in the GWR model to determine the weight of each
observation point when estimating the local regression
coefficient. This function assigns weights based on the
spatial distance between observation points. The closer the
observation points are, the greater the influence on the
estimation of the local regression coefficient.

(2) The bandwidth is a parameter that determines the size of the
local neighborhood. It defines the range of neighboring
observation points considered when estimating the local
regression coefficient of each point.

Spatial weight kernel function and bandwidth play a central role
in GWR models (Lu et al., 2022). Different kernel function and
bandwidth selections lead to different local spatial relationship
capture and parameter estimation results, so they are important
indicators to distinguish different GWR models. Correct kernel
function and bandwidth selection are crucial to obtain accurate
and reliable GWR model estimates. In practical applications, it is
usually necessary to determine the optimal bandwidth and kernel
function through methods such as cross-validation to balance the
locality and globality of the model, thereby obtaining the best model
fit and prediction performance.

For the spatial weight kernel function, this study used MGWR
2.2.1 version software to construct Gaussian function and Bi-square
kernel function respectively; for bandwidth, this study used the
golden section search method (Golden section), and selected the
bandwidth with the smallest AICc value as the optimal bandwidth.
Finally, the two GWR methods were combined with the two spatial
weight kernel functions to construct a total of 4 GWR models
(Table 2), namely, GWR (Gaussian), GWR (Bi-square), MGWR
(Gaussian), and MGWR (Bi-square).

4.4 Model evaluation and independent
sample test

4.4.1 Model evaluation
In this study, we used a variety of statistical indicators to

comprehensively evaluate the performance of the constructed
OLS model and four GWR models. Specifically, we used the
following three indicators for model evaluation.

4.4.1.1 Residual Sum of Squares (RSS)
This indicator measures the sum of squares of the differences

between the model predictions and the actual observed values. The
smaller the RSS, the better the model fit (Ge et al., 2021).

4.4.1.2 Coefficient of Determination (R2)
Also known as the coefficient of determination, it measures the

proportion of the variation explained by the model to the total
variation. The closer the R2 value is to 1, the stronger the explanatory
power of the model.

4.4.1.3 Akaike Information Criterion (AIC)
This is a criterion for measuring the relative quality of a model,

which takes into account the complexity and goodness of fit of the
model. The smaller the AIC value, the stronger the explanatory
power of the model, while penalizing the complexity of the model
(Kim et al., 2020).

SRS � ∑n
i�1

yi − ŷ( )2 (8)

R2 � 1 − SRS/STS (9)
AIC � 2p − 2 lnL (10)

Formula 8 calculates the sum of the squares of the deviations
between the observed values of the dependent variable and the mean
value Formula 9 defines the Coefficient of Determination. Formula
10 presents the AIC formula. Where: SRS is the residual sum of
squares of the model; R2 is the determination coefficient of the
model; STS is the total sum of squares of the model; AIC is the Akaike
information criterion of the model; yi is the observed value of the i-th
point, ŷi is the estimated value of the i-th point; n is the number of
sample points; p is the number of independent variables; L is the
likelihood function.

4.4.2 Independent sample test
In order to further verify the predictive ability of the model, we

selected the following two indicators for independent sample test.

(1) Root mean square error (RMSE) This indicator measures the
standard deviation of the difference between the model
prediction value and the actual observation value. The
smaller the RMSE, the higher the prediction accuracy of
the model (Karunasingha, 2022; Liemohn et al., 2021).

(2) Mean absolute error (MAE)

This indicator measures the average absolute value of the
difference between the model prediction value and the actual
observation value. The smaller the MAE, the smaller the
prediction error of the model (Chicco et al., 2021). Equations 11,
12 are used to calculate the Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE), respectively. Equation 11 computes
RMSE as the square root of the average squared differences, while

TABLE 2 Geographically Weighted Regression (GWR) model kernel function type and bandwidth selection method.

Model Kernel function type Bandwidth selection method Model Characteristics

GWR (Gaussian) Gaussian kernel function (Gaussian) Golden Section Search Method (Golden section) Select the bandwidth with the smallest AICc value

GWR (Bi-square) Bi-square kernel function (Bi-square) Golden Section Search Method (Golden section) Select the bandwidth with the smallest AICc value

MGWR (Gaussian) Gaussian kernel function (Gaussian) Golden Section Search Method (Golden section) Multiscale GWR model

MGWR (Bi-square) Bi-square kernel function (Bi-square) Golden Section Search Method (Golden section) Multiscale GWR model
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Equation 12 directly averages the absolute differences, both serving
to quantify the accuracy of model predictions against observed data.

ERMS �
�����������
1
n
∑n
i�1

yi − ŷ( )2√
(11)

EMA � 1
n
∑n
i�1

∣∣∣∣∣∣∣∣∣yi − ŷ

∣∣∣∣∣∣∣∣∣ (12)

ERMS is the root mean square error of the model; EMA is the
mean absolute error of the model; yi is the observed value of the i-th
point, ŷi is the estimated value of the i-th point; n is the number of
sample points; p is the number of independent variables.

5 Results and analysis

In this study, SPSS 27 software and MGWR2.2 software were
used to fit the OLS model and four GWR models. The samples used
for model construction were 335 plots. The independent variables
used were average breast diameter (ADBH), stand density (SD),
average age of stand (ASA), average tree height (ASH), and average
annual precipitation (MAP). The corresponding dependent variable
was carbon storage per unit area (L/hm2).

5.1 Model fitting and independent
sample test

5.1.1 Model fitting
As shown in Table 3, the four GWR models are better than the

OLS model in terms of model fitting. Their RSS and AIC are
smaller than the OLS model, and their R2 is larger than the
OLS model.

(1) From the perspective of RSS, themodeling accuracy of various
models is ranked as MGWR (Gaussian) > MGWR (Bi-
square) > GWR (Gaussian) > GWR (Bi-square).

The residual sum of squares (RSS) is an important indicator
to measure the model fitting effect. The smaller the RSS, the
smaller the difference between the model’s predicted value and
the actual observed value, and the better the model fitting effect.
Therefore, the ranking results show that among the compared
models, the MGWR (Gaussian) model has the best fitting effect
(43336.56), and the worst fitting effect is GWR (Bi-
square) (51931.65).

(2) Considering R2, the modeling accuracy of various models is
ranked as MGWR (Gaussian) > MGWR (Bi-square) > GWR
(Gaussian) > GWR (Bi-square).

This result shows that among the four GWR comparison
models, the multiscale geographically weighted regression model
(MGWR (Gaussian)) using the Gaussian kernel function has the
highest explanatory power, followed by the multiscale model
(MGWR (Bi-square)) using the bi-square kernel function, while
among the traditional GWR models, the Gaussian kernel function
model (GWR (Gaussian)) has a higher explanatory power than the
bi-square kernel function model (GWR (Bi-square)). This shows
that the multiscale GWRmodel is more effective in capturing spatial
heterogeneity, and in terms of the choice of kernel function, the
Gaussian kernel function shows a better model fitting effect in this
study, and can more effectively explain the variation of the
dependent variable.

(3) It is generally believed that when the AIC value decreases by
more than 2, the improved model is better. Considering AIC,
the modeling accuracy of various models is ranked as MGWR
(Bi-square) >MGWR (Gaussian) > GWR (caussian) > GWR
(Bi-square).

From the perspective of Akaike Information Criterion (AIC),
the order of model accuracy is MGWR (Bi-square) > MGWR
(Gaussian) > GWR (Gaussian) > GWR (Bi-square). This
ordering result shows that among the compared models, the
multiscale geographically weighted regression model (MGWR
(Bi-square)) using the bisquare kernel function has the lowest
AIC value and is therefore considered to be the optimal model.

AIC is a criterion for measuring the relative quality of a model. It
balances the goodness of fit and complexity of the model. The
smaller the AIC value, the better the model is in explaining the data
without being overly complex. Therefore, the MGWR (Bi-square)
model not only has a good fitting effect, but also has a relatively low
model complexity, avoiding the problem of overfitting. The MGWR
(Gaussian) model follows closely, indicating that in the multi-scale
model, the bi-square kernel function performs better than the
Gaussian kernel function in this study. In the GWR model, the
AIC value of the Gaussian kernel function model (GWR (Gaussian))
is better than that of the bi-square kernel function model (GWR (Bi-
square)), showing the superiority of the Gaussian kernel function in
the traditional GWR model. This may be related to the difference in
the kernel function’s allocation of spatial weights, which affects the
model’s ability to capture local spatial relationships. In general, this

TABLE 3 Fitting and independence test results of each model.

Model Spatial weight kernel function RSS R2 AIC

OLS / 69263.62 0.723 2746.73

GWR Gaussian 50007.31 0.802 2703.16

GWR Bi-square 51931.65 0.768 2712.35

MGWR Gaussian 43336.56 0.836 2671.23

MGWR Bi-square 48391.76 0.821 2670.33
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ranking result provides information on the relative efficiency and
complexity of different models in fitting spatial data, providing a
basis for selecting the most appropriate model.

In summary, considering the three fitting statistics, the MGWR
(Gaussian) model has the best fitting effect. Although the AIC value
of the MGWR (Bi - square) model is slightly lower than that of the
MGWR (Gaussian) model, when considering the research purpose
of accurately depicting the spatial distribution characteristics of
forest carbon storage and the importance of model fitting effect,
the determination coefficient (R2) and residual sum of squares (RSS)
are more crucial evaluation indicators. The MGWR (Gaussian)
model shows the best performance in these two indicators,
indicating its stronger ability to explain the variation of the
dependent variable and better fitting degree to the data.
Therefore, we prioritize the MGWR (Gaussian) model as the
optimal model. Compared with the OLS model, its RSS is
reduced by 25927.06, the inflation is increased by 0.113, and the
AIC is reduced by 76.4.

5.1.2 Independent sample test
This study uses 96 randomly selected samples to conduct

independent sample tests on the five models to further compare
the prediction capabilities of various models. As shown in Table 4,
the four GWR models are superior to the OLS model in the
independent sample test, and their RMSE and MAE are both
smaller than the OLS model.

(1) From the perspective of RMSE, the validation accuracy of
various models is ranked as GWR (caussian) > GWR (Bi-
square) > MGWR (Bi-square) > MGWR (Gaussian).

(2) From the perspective of MAE, the accuracy of various models
is ranked as follows: MGWR (Bi-square) > GWR
(Gaussian) > MGWR (Gaussian) > GWR (Bi-square).
Combining the two independence test indicators, GWR
(Gaussian) has the best independent sample test result.

Compared with the OLS model, its RMSE is reduced by
1.95 and MAE is reduced by 1.09.

5.2 Spatial heterogeneity test

The severity of the GWR model parameter fluctuations is the
criterion for judging whether the model parameters change
significantly in the entire study area. If the range (interquartile
range) of the first and third quantiles of the GWR model variable
regression coefficient is greater than twice the standard error of the
OLS model, it means that the GWR model variable regression
coefficient has significant spatial heterogeneity. It shows that this
model can better reflect the spatial heterogeneity of variables.

Table 5 shows the results of the spatial heterogeneity test of each
model. For the two GWR models, except for the interquartile range
of the variable ASA of GWR (Bi-square) which is greater than twice
the standard error of the OLS model, the interquartile ranges of the
other variables are less than twice the standard error of the OLS
model, indicating that the GWR model used in this study fails to
fully reflect the spatial differences in the impact of variables on
carbon storage in the sample plots.

Both MGWR, models well reflect the spatial heterogeneity of
variables. Among them, the constant term of MGWR (Gaussian),
the interquartile range of ASA, ADBH, ASH, MAP, and SD, are all
greater than twice the standard error of the OLS, model. The
interquartile ranges of the constant term of MGWR (Bi-square),
ADBH,MAP, and SD, are all greater than twice the standard error of
the OLS, model. There is also some spatial heterogeneity in the
variables ASA, and ASH, but it is not significant.

Therefore, the MGWR (Gaussian) model variable regression
coefficient has significant spatial heterogeneity, indicating that the
model can better reflect the spatial heterogeneity of variables.

5.3 Optimal model and spatial distribution
pattern of forest carbon storage

5.3.1 Optimal model
The statistical results of the regression coefficient of MGWR

(Gaussian) are shown in Table 6. In Table 6, the average stand
diameter at breast height is a very important stand variable that
affects forest carbon storage in the study area. This is in line with the
laws of nature. The larger the stand diameter at breast height, the
carbon sequestration in the forest will inevitably increase. Even if the
diameter at breast height changes slightly, the forest carbon storage
will decrease. There will also be significant changes.

TABLE 4 Fitting and independence test results of each model.

Model Spatial weight kernel function RMSE MAE

OLS / 27.98 19.15

GWR Gaussian 26.03 18.31

GWR Bi-square 26.15 18.83

MGWR Gaussian 27.32 18.68

MGWR Bi-square 26.89 18.06

TABLE 5 Spatial heterogeneity test of each model.

Model Spatial weight kernel function Statistics Constant term ASA ADBH ASH SD MAP

GWR Gaussian Interquartile range 0.01763 0.00032 0.3655 0.00086 0.00001 0.00001

GWR Bi-square Interquartile range 1.08924 0.42648 0.02831 0.02138 0.00047 0.00056

MGWR Gaussian Interquartile range 49.42337 0.17831 1.16354 0.51873 0.00276 0.01863

MGWR Bi-square Interquartile range 68.73815 0.21936 1.08627 0.71204 0.00306 0.02361
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According to the sample data statistics, the carbon storage per
unit area of 431 sample plots is 31.162 t/hm2. Table 7 gives the
prediction results of the two models.

(1) The ordinary least squares model (OLS) is a global regression
model that assumes that the model parameters are constant
throughout the study area. Table 7 shows that the carbon

storage per unit area estimated by the OLS model is 14.361%
higher than the measured data, which means that the OLS
model overestimates the carbon storage of the forest.

(2) The multiscale geographically weighted regression (MGWR)
model, especially the MGWR (Gaussian) model, is a local
regression model that allows model parameters to vary with
geographic location, thereby better capturing spatial non-

TABLE 6 GWR (Gaussian) model regression coefficients.

Variable Average
value

Standard
deviation

Minimum Median Maximum Olscoefficients

Constant term −36.022 32.435 −89.201 −39.836 69.645 −35.419

Average age of the stand 0.522 0.18 −0.18 0.516 1.241 0.593

Average diameter at breast height of the
stand

2.342 1.034 0.373 2.195 4.928 1.917

Average tree height of the stand 0.517 0.575 −0.656 0.532 2.152 0.794

Stand density 0.015 0.002 0.01 0.015 0.023 0.015

Average annual precipitation 0.007 0.013 −0.044 0.009 0.033 0.008

TABLE 7 Prediction results of two models.

Model Carbon storage per unit area
(t/hm2)

Deviation between carbon storage per unit area and measured
value (%)

OLS 35.637 14.361

MGWR
(Gaussian)

33.976 9.031

FIGURE 2
Spatial distribution of forest carbon storage in the urban agglomeration of the Xiangjiang River Basin estimated based on the MGWR (Gaussian)
model (The illustration was crafted utilizing ArcGIS software, version 10.2. For further reference, the URL link is provided: https://www.arcgis.com/
index.html).
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stationarity. Table 7 shows that the carbon storage per unit
area estimated by the MGWR (Gaussian) model is 9.031%
higher than the measured data, and its accuracy is 5.33%
higher than that of the OLS model, indicating that the
prediction results of the MGWR (Gaussian) model are
closer to the measured data and have a smaller estimation
error. The estimated values of the MGWR (Gaussian) model
are consistent with the measured values.

By comparing the estimation results of the OLS and MGWR
(Gaussian) models, it can be seen that the MGWRmodel has certain
advantages in predicting the spatial distribution of forest carbon
storage in the Pearl River Delta. The MGWR model provides more
accurate predictions by considering spatial effects, especially in the
estimation of the spatial distribution of carbon storage. The results
emphasize the advantages of the MGWR model in dealing with
spatially non-stationary data, especially in the estimation of the
spatial distribution of forest carbon storage, and can provide more
accurate and reliable prediction results than the traditional
OLS model.

5.3.2 Spatial distribution pattern of forest
carbon storage

In view of the good performance of MGWR (Gaussian) in model
fitting, independent sample test and spatial non-stationarity test, the
spatial distribution map of forest carbon storage in the study area
was drawn based on the fitting results of this model (Figure 2). The
figure shows that the forest carbon storage presents a distribution
pattern with a high center and a low edge. The relatively high carbon
storage values are mainly concentrated in the suburban areas such as
the northern and southern parts of Changsha and some areas of
Xiangtan, which are rich in forest resources. These areas have a high
forest coverage rate and a strong forest carbon sink capacity. The
lower carbon storage values are concentrated in the western part of
Changsha, the western part of Zhuzhou and the southern part of
Xiangtan. These areas have a low forest coverage rate due to the
influence of industrial activities, terrain or economic
development models.

The interpolation tool of ArcGIS 10.2 was used to interpolate the
regression coefficients and variables of the OLS model and MGWR
(Gaussian) model. The ordinary kriging method (Zhang and Brack,
2021; Cao et al., 2021; Sachdeva et al., 2023) was selected to obtain
the spatial distribution results of the regression coefficients and
variables in the study area, and the raster calculator tool was used for
regression mapping.

As shown in Figure 2, the carbon storage in the middle area is
generally greater than that in the edge area. The specific situation is
analyzed as follows.

5.3.2.1 Regions with high carbon storage
As a provincial capital, Changsha’s northern and southern

parts may have higher forest coverage and quality, and
therefore higher carbon storage. The northern part of
Changsha mainly refers to the Dongting Lake Plain and
parts of the Xiangjiang River Basin. Although these areas
are mainly agricultural, they also have some forest
resources. The southern part of Changsha is rich in forest
resources and has a high coverage rate. The northern and

southern regions of Changsha exhibit some of the highest
forest carbon stocks in the province, indicating that the
region has a large area of forest coverage.

Some areas of Xiangtan, Xiangtan County borders Changsha
City and has a high forest coverage rate. (Xiangtan County,
Shaoshan City and Xiangxiang City also show their high forest
coverage rate. Shaoshan City has successfully created the
“Hunan Forest City” and its forest coverage rate is stable at a
high level. Xiangxiang City: Xiangxiang City has also
successfully created the “Hunan Forest City” and has many
forest nature parks, such as Dongtaishan National Forest
Nature Park, Huanggonglue Provincial Forest Nature Park,
Baozhongshan Provincial Forest Nature Park, etc., showing its
high forest coverage rate.

5.3.2.2 Regions with low carbon storage
Low carbon storage values are concentrated in the west of

Changsha, the west of Zhuzhou and the south of Xiangtan.
Changsha’s industrial areas are mainly concentrated in Changsha
Economic Development Zone and Changsha High-tech Zone. These
areas have relatively low forest coverage due to the concentration of
industrial activities and high land use intensity. Zhuzhou has
relatively low carbon storage because of the relatively
concentrated industrial activities, which has caused great damage
to forest resources. Zhuzhou High-tech Zone and Tianyi Economic
Development Zone are the main industrial areas in Zhuzhou. These
areas have also occupied a large amount of land due to industrial
development, affecting the forest coverage rate.

The southern part of Xiangtan may have a lower forest
coverage rate and carbon storage due to the influence of
topography or economic development model. Xiangtan
Economic Development Zone and Xiangtan High-tech Zone
are the main industrial areas in Xiangtan City. Industrial
activities in these areas may also have an impact on forest
coverage and carbon storage. These industrial areas
concentrate a large number of industrial enterprises and
production activities, requiring a large amount of land for the
construction of factories, warehouses and other related facilities,
resulting in a decrease in forest coverage (Deng et al., 2020). At
the same time, a large amount of carbon dioxide and other
greenhouse gas emissions will be generated during industrial
production, which will reduce the carbon storage of the region
(Sousa et al., 2023). In addition, the development of industrial
areas is often accompanied by urbanization (Wei et al., 2023).
Urban expansion will occupy more land resources, further reduce
forest area, and reduce forest coverage and carbon storage.

6 Discussion

This study analyzes and evaluates the spatial heterogeneity of
forest carbon stock in the Xiangjiang River Basin urban
agglomeration by introducing the multiscale geographically
weighted regression (MGWR) model by comparing the ordinary
least squares (OLS) model and the geographically weighted
regression (GWR) model. The discussion will focus on the
selection of models, the applicability of models, and the spatial
distribution characteristics of forest carbon stock.
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6.1 Model selection and applicability

The multiscale geographically weighted regression (MGWR)
model showed better fitting effect and prediction accuracy than
the OLSmodel in this study. This study extends prior work in several
aspects. In terms of parameter calibration, unlike previous studies,
we systematically compared different spatial weight kernel functions
and bandwidth selection methods. By using MGWR 2.2.1 software
to construct Gaussian and Bi - square kernel functions and applying
the Golden Section Search Method to select the optimal bandwidth,
we built four GWRmodels to determine the most suitable parameter
settings for our study area. Regarding variable selection, we
addressed the collinearity issue among variables through stepwise
regression and collinearity tests, carefully screening out five key
variables (average breast diameter, stand density, average age of
stand, average tree height, and average annual precipitation) that
contribute significantly to the model without serious collinearity. In
terms of validation techniques, we used multiple statistical
indicators for comprehensive model evaluation, including RSS,
R2, AIC for model fitting evaluation and RMSE, MAE for
independent sample tests, which provides a more comprehensive
and accurate assessment of model performance compared to
previous single - indicator evaluations.

The MGWR model can capture the spatial non-stationarity of
the data and allow the model parameters to vary with the
geographical location, which is of great significance for
understanding and predicting the spatial distribution of forest
carbon stock in the Xiangjiang River Basin urban agglomeration.
As a global model, the parameters of the OLSmodel remain constant
throughout the study area and cannot capture local spatial
heterogeneity. Therefore, the MGWR model is more applicable in
this study.

6.2 Spatial distribution characteristics of
forest carbon stock

The results show that the forest carbon stock in the Xiangjiang
River Basin urban agglomeration shows a trend that the central
region is larger than the marginal region in space. This may be
related to the higher forest coverage and better forest quality in the
central region. The northern and southern regions of cities such as
Changsha and Xiangtan have higher carbon storage due to rich
forest resources, while the western and southern regions have lower
carbon storage due to concentrated industrial activities and lower
forest coverage.

6.3 Limitations of the model and future
research directions

Although the MGWR model showed good performance in this
study, it still has certain limitations, such as high dependence on
sample quantity and quality, and stability issues in model parameter
estimation. Future research can consider combining more remote
sensing data and ground-based measured data to improve the
accuracy and applicability of the model. Specifically, integrating
satellite - based indices like NDVI could be a promising approach.

NDVI can provide extensive and continuous information on
vegetation coverage, which complements the limitations of
ground - based sample plot data in spatial coverage. By
incorporating NDVI data into the model, we can better
understand the growth status and distribution of forest
vegetation, and use it as an additional input variable to improve
the accuracy of predicting the spatial distribution of forest carbon
stocks. Additionally, LiDAR - derived canopy height data can offer
precise information about the vertical structure of forests. Since
different canopy heights are related to different vegetation growth
stages and biomass accumulations, this data can help more
accurately estimate forest biomass and carbon stocks. Integrating
such data into spatial modeling would enable the model to better
capture the relationship between forest structure and carbon storage,
enhancing the model’s performance.

Although this study analyzed the spatial heterogeneity of forest
carbon storage in urban agglomerations in the Xiangjiang River
Basin using multiple models, there are still deficiencies in the
processing of forest coverage rate data. The forest coverage rate
data used in the research differs from that of China’s Third National
Land Survey (“ The Third National Land Survey”). This is not only
due to the difference in statistical standards, but also influenced by
the scale of the survey mapping. Since the research did not deeply
analyze the specific extent of the impact of these differences on the
estimation of forest carbon storage, it may lead to certain deviations
in the estimation of carbon storage. In future research, it is necessary
to explore more deeply the influence mechanism of the differences
in forest coverage data under different statistical scopes and scales
on the research results of forest carbon storage, so as to assess
regional forest carbon storage more accurately and provide more
reliable basis for ecological protection and carbon management. At
the same time, exploring more factors that affect forest carbon
storage, such as soil properties, vegetation types, etc., is also one of
the directions for future research.

7 Conclusion

Based on the continuous inventory data and meteorological data
of forest resources in the Xiangjiang River Basin of Hunan Province,
this study screened out five key variables, constructed four
geographically weighted regression (GWR) models and an
ordinary least squares (OLS) model, and estimated the spatial
distribution pattern of forest carbon storage in the Xiangjiang
River Basin.

This study is innovative in several respects. One notable aspect is
the pioneering application of the Multiscale Geographically
Weighted Regression (MGWR) model to investigate the spatial
heterogeneity of forest carbon stocks in the Xiangjiang River
Basin urban agglomeration. Utilizing the MGWR model allows
for a more nuanced understanding of the spatial non-stationarity
of variables across different scales, a dimension that prior research
on this region has not fully addressed. This approach enhances the
precision with which we can discern the intricate relationships
between forest carbon storage and various influencing factors,
such as average breast diameter, stand density, and precipitation.

Another distinctive feature of this study is the comparative
analysis of multiple models, encompassing the ordinary least

Frontiers in Environmental Science frontiersin.org13

Kuang and Chen 10.3389/fenvs.2025.1573438

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1573438


squares (OLS) model and four different Geographically Weighted
Regression (GWR) models. This comprehensive comparison
enables an evaluation of the relative performance of these models
in fitting the data and predicting forest carbon storage. The insights
gained from this analysis are valuable for guiding future research on
forest carbon storage in similar regions, offering guidance on
selecting appropriate models for accurate estimation.

Moreover, the integration of forest resource inventory data and
climate data to identify key variables influencing forest carbon
storage represents a novel perspective. This approach facilitates a
deeper exploration of the factors affecting forest carbon
sequestration within the context of a changing climate, thereby
contributing to a more comprehensive understanding of the forest
carbon cycle in urban agglomerations.

The following conclusions were drawn.

(1) Superiority of the MGWRmodel: The carbon storage per unit
area estimated by the multiscale geographically weighted
regression (MGWR) model was 9.031% higher than the
measured data, and its accuracy was 5.33% higher than
that of the OLS model, indicating that the prediction
results of the MGWR (Gaussian) model were closer to the
measured data and had a smaller estimation error. The
estimated values of the MGWR (Gaussian) model were
consistent with the measured values. The MGWR model
was superior to the OLS model in predicting the spatial
distribution of forest carbon storage in the urban
agglomeration of the Xiangjiang River Basin, and could
more accurately capture spatial non-stationarity and local
spatial relationships. This shows that the multiscale
geographically weighted regression (MGWR) model has
obvious advantages in estimating the spatial distribution of
forest carbon storage. By considering spatial effects, the
MGWR model can capture local spatial relationships more
accurately and provide more precise prediction results than
the traditional OLS model.

(2) Spatial non-stationarity test: The results of the spatial non-
stationarity test show that theMGWRmodel can better reflect
the spatial heterogeneity of variables than the multi-scale
GWR model, and its variable parameters have obvious
differences in geographical space. This emphasizes the
advantages of the MGWR model in dealing with spatial
non-stationary data, especially in the estimation of the
spatial distribution of forest carbon storage.

(3) Spatial distribution pattern of forest carbon storage: The
carbon storage per unit area of the Xiangjiang River Basin
estimated by the MGWR (Gaussian) model ranges from
5.67 to 81.63 t/hm2, with an average of 31.162 t/hm2,
showing an overall distribution pattern of high center and
low edge. This result reveals the spatial distribution
characteristics of forest carbon storage in the Xiangjiang
River Basin urban agglomeration, providing an important
scientific basis for the management of regional
forest resources.

(4) Reflection of spatial relationships: Through the multiscale
geographically weighted regression (MGWR) model, the
geographically weighted regression method and the
selection of appropriate spatial kernel functions can better

reflect the spatial relationship between forest carbon storage
and variables, thereby improving the estimation accuracy of
the spatial distribution of large-scale forest carbon storage.
This study accurately reveals the spatial distribution pattern
of forest carbon storage in the Xiangjiang River Basin,
providing a scientific basis for achieving regional carbon
neutrality goals and promoting the construction of
ecological civilization.

Through this study, we not only improved our understanding of
the spatial heterogeneity of forest carbon storage in the Xiangjiang
River Basin urban agglomeration, but also provided a scientific basis
for achieving regional carbon neutrality goals and promoting the
construction of ecological civilization.
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