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Microplastics are increasingly recognized as a pervasive pollutant in both aquatic
and terrestrial environments, raising pressing concerns about their ecological
impacts and implications for human health. Traditional detection and
quantification methods—including manual microscopy and standalone
spectroscopic techniques—offer reliable accuracy but are limited by labor-
intensive procedures and low throughput. Recent advances in machine
learning (ML) have revolutionized the field of microplastic research by
automating and enhancing detection processes. In particular, algorithms such
as support vector machines, random forests, and convolutional neural networks
have demonstrated considerable success in classifying microplastics based on
chemical signatures and visual characteristics. This review offers a
comprehensive overview of ML approaches utilized for monitoring
microplastic contamination across diverse aquatic settings. Spectral
techniques, including infrared and Raman spectroscopy, leverage molecular
vibrations to facilitate highly specific identification of polymer types, even
within heterogeneous matrices. Image-based methods make use of
sophisticated computer vision techniques to classify microplastics by shape,
size, and color, reducing the subjectivity inherent in manual counting.
Extending these capabilities further, hyperspectral imaging combines spatial
and spectral data to generate comprehensive chemical maps, enabling the
simultaneous assessment of polymer composition and distribution. Integrating
ML algorithms into these various approaches has improved sensitivity, speed, and
scalability, thereby addressing critical challenges in high-throughput and real-
time monitoring. Despite these advances, key obstacles remain, including the
need for larger, higher-quality datasets and the development of robust models
capable of handling complex environmental conditions. Nevertheless, ongoing
improvements in imaging hardware and ML methodologies hold significant
promise for establishing more effective, automated, and accurate strategies
for microplastic detection. By providing a comprehensive overview of current
technologies and future opportunities, this review aims to guide researchers and
stakeholders in developing science-based solutions for mitigating the global
threat of microplastic pollution.
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Introduction

The emergence of microplastics in aquatic environments has
become a significant environmental challenge, posing substantial
risks to marine life and human health. Microplastics are plastic
particles typically smaller than 5 mm in diameter (Moore, 2008;
Zarfl et al., 2011). They originate from a wide array of
sources—including the fragmentation of larger plastic debris,
cosmetics, synthetic textiles, and industrial activities—and have
been detected in aquatic ecosystems across the globe (Andrady,
2011; Cole et al., 2011; Eriksen et al., 2014; Mao et al., 2020; Xu S.
et al., 2020). These contaminants include primary microplastics
(manufactured particles used in product) and secondary
microplastics (fragments generated by the breakdown of large
plastics) (Browne et al., 2011; Cole et al., 2011). Due to their
durability and small size, these contaminants spread extensively
and infiltrate diverse habitats and ecosystems, rendering
microplastics persistent, pervasive pollutants (Barnes et al., 2009).

Microplastic pollution exerts adverse impacts not only on the
environment but also on public health (Barnes et al., 2009; Rochman
et al., 2013). Because these particles are ubiquitous in both marine
and terrestrial ecosystems, they are ingested by a broad spectrum of
organisms—from plankton to larger marine fauna (Barboza and
Gimenez, 2015; Lusher et al., 2015; Bhatt and Chauhan, 2023). Such
ingestion can cause physical damage, hinder feeding, and expose
organisms to adsorbed toxins or pathogens (Rochman et al., 2013;
Wright et al., 2013; Curto et al., 2021). The risks intensify as
microplastics accumulate and biomagnify up the food chain.
Beyond ingestion, microplastics can disrupt natural habitats,
contribute to biodiversity loss, and serve as vectors for other
pollutants. Human health implications are also evident:
microplastics may enter our bodies through contaminated water
and seafood, raising concerns about food safety and public wellbeing
(Wright et al., 2013). These multifaceted ecological and health
repercussions underscore the urgent need for enhanced research
and robust management strategies (Barboza and Gimenez, 2015).

Effective monitoring of microplastic pollution is imperative for
mitigating its ecosystem-level and public health impacts (GESAMP,
2015). As these particles disperse widely through different
environments, documenting their concentrations and movements
is essential for understanding their ecological footprint. Advanced
predictive models are particularly valuable, as they forecast the
dispersion and identify likely accumulation zones of microplastics
(Löder and Gerdts, 2015). Such models play a crucial role in
pinpointing high-risk areas and informing the creation of
targeted environmental policies and cleanup initiatives. In
tandem, monitoring programs offer real-time data on pollution
levels, providing key metrics to assess the efficacy of enacted
measures and to raise public awareness (Napper and Thompson,
2020). Collectively, rigorousmonitoring andmodeling efforts form a
holistic approach to addressing the escalating challenges of
microplastic pollution.

Despite progress in understanding microplastic contamination,
the detection and quantification of these particles remain technically
demanding. The small size and diverse chemical composition of
microplastics complicate analyses, particularly in complex
environmental matrices like seawater, sediments, and biota, each
often requiring extensive sample preparation to isolate

microplastics. Traditional approaches—such as visual sorting and
manual counting—are time-intensive and prone to errors, especially
when particles measure less than 1 mm. Advanced spectroscopic
techniques like Fourier-transform infrared spectroscopy (FTIR) and
Raman spectroscopy yield more accurate identifications but can be
both expensive and time-consuming (Hidalgo-Ruz et al., 2012).
Additionally, the absence of standardized protocols hampers data
comparability across different investigations (Shim et al., 2016).
Together, these challenges underscore the need for more efficient,
reliable methods to detect and quantify microplastics, steps that are
essential for accurately gauging pollution levels and guiding
impactful mitigation efforts.

In light of these complexities, adopting innovative monitoring
and predictive strategies is essential (Blettler et al., 2018). Machine
learning (ML)—a domain of artificial intelligence—has begun to
revolutionize environmental science by offering advanced tools for
complex data analytics and forecasting (Koelmans et al., 2019).
Owing to its capacity to handle large, complex datasets, ML is
particularly well-suited to revealing patterns and anomalies that
might remain hidden using conventional methods (Thompson et al.,
2009; Löder and Gerdts, 2015).

The utility of ML in environmental research extends beyond
microplastics, encompassing applications such as climate change
modeling, biodiversity conservation, pollution assessment, and
waste management (Zhang et al., 2017; Reichstein et al., 2019).
These diverse case studies highlight ML’s versatility and
demonstrate its transformative potential to address the most
pressing environmental challenges (Olden et al., 2008; Tuia et al.,
2022; Kazi, 2025). In microplastic research specifically, ML
algorithms excel at uncovering correlations in large
environmental datasets, enabling more accurate predictions of
microplastic dispersion, concentration hotspots, and movement
trajectories (Su et al., 2023). By integrating diverse data
sources—from satellite imagery and water samples to chemical
composition analyses—ML-based methods can significantly
enhance the detection and quantification processes (Koelmans
et al., 2019; Prata et al., 2020). Taken together, these capabilities
offer a more comprehensive view of microplastic pollution, paving
the way for stronger, evidence-based mitigation strategies.

In this review, we examine the evolving role of ML in
microplastic research. We discuss a range of applications that
deepen our understanding of the distribution, concentration, and
biological impacts of microplastics and illustrate how data-driven
insights can inform policy and management. By harnessing the
power of ML, researchers can detect previously hidden patterns,
develop more precise models of microplastic spread, and craft more
effective interventions. We conclude by highlighting emerging
directions for future work, aiming to inspire further integration
of ML techniques into the study and remediation of
microplastic pollution.

Machine learning methodologies in
microplastic prediction

ML methodologies have become integral to predicting and
understanding microplastic pollution in aquatic environments. By
leveraging their capacity to process large, complex datasets, ML
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approaches often surpass traditional statistical methods in
environmental studies (Su et al., 2023). Within the scope of
microplastic research, such algorithms integrate diverse data
sources—ranging from satellite imagery and oceanographic
measurements to in situ field samples—to construct accurate
models of microplastic distribution, concentration, and
movement. In particular, supervised learning methods (e.g.,
random forests, support vector machines) and unsupervised
techniques (e.g., clustering algorithms), along with deep learning
approaches (e.g., convolutional neural networks), have been applied
to identify, measure, and predict microplastic contamination across
various aquatic ecosystems (Nesterovschi et al., 2023).

The incorporation ofML tools signifies a critical advancement in
environmental research, equipping scientists with more powerful
and nuanced analytical capabilities than conventional methods.
These innovations are widely regarded as essential for robust
monitoring and effective management of microplastic pollution,
thereby fostering more proactive environmental stewardship
(Chantry et al., 2021). For instance, real-time data from remote

sensing platforms—when coupled with ML-based predictive
models—can pinpoint high-risk accumulation areas, guide policy
interventions, and streamline targeted cleanup efforts. However, ML
approaches are used to augment, not fully replace, conventional
methods. Traditional microscopy and spectroscopy without ML
maintain proven accuracy but are extremely labor-intensive and
time-consuming (Song et al., 2021), whereas ML-driven methods
offer high-throughput automation at the expense of requiring
significant data and computing resources (Sarker, 2021a).

A comprehensive evaluation of ML models typically employs a
suite of performance metrics and techniques (Figures 1A–C).
Metrics such as accuracy, precision, recall, F1-score, and the area
under the receiver operating characteristic (ROC) curve each
illuminate different strengths and limitations of a given model.
Cross-validation strategies, confusion matrices, and sensitivity
analyses further refine these insights by indicating how well the
model generalizes to new datasets or conditions. Using multiple
assessment approaches in concert not only affords a fuller
understanding of each model’s capabilities but also directs

FIGURE 1
Optimization and Evaluation of Predictive Models. (A) Illustrates the comprehensive methodology for data preprocessing, including cleaning,
normalization, feature engineering, and augmentation, followed by model optimization through techniques such as grid search, random search, and
Bayesian optimization. This panel emphasizes the significance of preparing data and selecting optimal parameters to enhance model performance.
Evaluation metrics, including accuracy, precision, sensitivity, and the ROC curve, are detailed, highlighting the rigorous assessment of model
efficacy. (B) The confusion matrix depicted provides a visual comparison of experimental versus predicted values, offering insights into the model’s
predictive accuracy by displaying the number of true positives, false positives, true negatives, and false negatives. This visualization aids in understanding
the model’s performance in classifying data accurately. (C) Features the Receiver Operating Characteristic (ROC) curve, plotting the True Positive Rate
(Sensitivity) against the False Positive Rate (1-Specificity) at various threshold settings. The area above the dashed line represents themodel’s performance
exceeding random chance, with points further away from the line indicating higher predictive accuracy. This curve is crucial for evaluating the trade-offs
between sensitivity and specificity in model predictions.
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researchers toward more informed decisions concerning model
refinement and deployment. These rigorous evaluative practices
ensure that ML-driven solutions for microplastic prediction
remain both robust and adaptable to the inherent variability of
natural systems. In practice, many studies apply k-fold cross-
validation to ensure models perform well on unseen data and to
avoid overfitting (Lee and Jhang, 2021). Additionally,
hyperparameter tuning and regularization during model training
are employed to optimize performance without overtraining.

Supervised and unsupervised learning

Supervised and unsupervised learning are two essential ML
classes widely used in microplastic research (Figure 2), each
distinguished by their specific methodologies and applications
(Sarker, 2021b). Supervised learning algorithms are applied for
tasks involving prediction or classification based on already-
known output data (Rafique et al., 2021; Kazi, 2023). This
application is evident in scenarios like distinguishing between
different types of microplastics or predicting contamination levels
based on previously analyzed samples. Unsupervised learning is

highly effective in exploring data patterns where there are no pre-
established categories. This approach is invaluable for uncovering
unknown patterns or groupings in microplastic data, such as
identifying areas with high levels of contamination or discovering
new classes of microplastic pollutants based on their properties
(Zhang Y. et al., 2023).

Supervised learning algorithms are a diverse set of tools designed
to infer a function from labeled training data, allowing for
predictions or classifications on new, unseen data. Application of
some prominent supervised learning algorithms in the field of
microplastic including linear regression, logistic regression,
decision trees, support vector machines, Naive Bayes, k-Nearest
Neighbors (k-NN), and neural networks have been discussed below.

Unsupervised learning techniques, such as clustering and
dimensionality reduction, have emerged as valuable tools in
microplastic research because they reveal hidden patterns in
large, unlabeled datasets. By using methods like k-means,
hierarchical clustering, and principal component analysis (PCA),
researchers can group microplastic particles based on physical
features (size, shape) and chemical signatures (FTIR or Raman
spectral profiles) without the need for extensive manual labeling.
This is particularly advantageous given the high variability of
microplastic properties and the challenge of analyzing massive
sample collections. In practice, clustering allows automatic
segregation of polymer types, while dimensionality reduction
methods make it easier to visualize and interpret complex
spectral data.

Despite these benefits, several obstacles remain. Heterogeneous
data collection methods, differences in sample preparation, and the
complexity of spectral measurements can limit both reproducibility
and interpretability. Addressing missing values adds another layer of
complexity (Younus et al., 2024; Mousafi Alasal et al., 2025).
Additionally, large-scale adoption of unsupervised methods
necessitates robust infrastructure capable of managing high-
throughput spectral or imaging data. Future directions are likely
to focus on integrating domain knowledge into algorithm design,
standardizing data processing protocols, and advancing automated
systems that streamline end-to-end analysis.

Data for microplastic
contamination research

Research onmicroplastic contamination has gained prominence
in environmental science due to growing evidence that microplastics
represent a pervasive pollutant with potential threats to both wildlife
and human health (Larue et al., 2021; Blackburn and Green, 2022).
These minute plastic particles occur in a wide range of
environments—from oceans and freshwater systems to terrestrial
habitats—prompting extensive efforts to determine their prevalence,
distribution, and ecological impacts. A cornerstone of these
endeavors is the availability of diverse databases and resources
that collectively advance our understanding of microplastic
pollution (Kunz et al., 2023; Zhen et al., 2023).

Among the most influential global resources is the Global
Microplastics Initiative, which relies on citizen science to compile
and analyze data on microplastic contamination. This grassroots
effort is complemented by the NOAA Microplastics Database,

FIGURE 2
Schematic overview of ML methods commonly employed in
microplastic research. Methods are categorized under supervised
learning (linear regression, logistic regression, decision trees, support
vector machines, naïve Bayes, k-nearest neighbors, and neural
networks) and unsupervised learning (k-means clustering, hierarchical
clustering, and principal component analysis). The figure highlights
how supervised learning algorithms are used to predict or classify
microplastic-related phenomena based on labeled data, while
unsupervisedmethods are instrumental in uncovering hidden patterns
and structures in unlabeled datasets.
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primarily focused on marine environments and providing insights
into the impacts of microplastics on oceanic ecosystems (Jenkins
et al., 2022; Nyadjro et al., 2023). Likewise, the United Nations
Environment Programme (UNEP) and GRID-Arendal’s Marine
Litter Database constitutes a vital repository for information on
marine debris, including microplastics, enabling in-depth
investigations into the complexities of marine pollution.

A significant advancement in this area is the application of ML
models, which depend on robust datasets to drive the development
of predictive and classification tools (Su et al., 2023). These datasets
must be carefully structured—often in tabular form—and
encompass a variety of data types, ranging from high-resolution
imagery to categorical and numeric attributes (Coleman, 2025).
Capturing the physical, chemical, and biological characteristics of
microplastics is crucial, particularly features such as shape, spectral
signatures, and potential pollutant adsorption (Lin et al., 2022).
Reliable and high-quality datasets, typically derived from
experimental research and monitoring programs, play a critical
role in validating ML-based predictions. Although resource and
sampling constraints can limit the size and quality of these datasets,
proper selection of data sources is key to realizing the full potential of
ML in microplastic research (Yu and Hu, 2022).

Microplastic contamination research inherently spans multiple
scientific disciplines, drawing on expertise in environmental science,
analytical chemistry, marine biology, and public health (Gray et al.,
2018; Lusher et al., 2021). The databases described above thus serve
as invaluable repositories of data and relevant literature, laying the
groundwork for assessing the extent, origins, and ecological
consequences of microplastics. They also inform the design of
mitigation strategies and remediation plans. Looking ahead, the
field is poised for further growth through the development of
specialized databases dedicated solely to microplastic studies.
These evolving resources will enable more holistic and data-
driven examinations of microplastic pollution, supporting efforts

to address one of the most pressing environmental challenges of our
time (Table 1).

Machine learning in microplastic
contamination prediction

Traditional methods for detecting microplastics—including
visual identification, pyrolysis gas chromatography–mass
spectrometry (Py-GC-MS), Fourier-transform infrared
spectroscopy (FTIR), and Raman spectroscopy—remain highly
accurate but are increasingly constrained by the demand for
high-throughput, real-time, and extended environmental
monitoring (Phan et al., 2023). Such techniques often require
intensive labor, substantial time, and considerable data processing
resources. For example, visual identification can be subjective and
prone to human error, while advanced approaches like FTIR and
Raman spectroscopy, though capable of providing molecular-level
information, necessitate extensive sample preprocessing and
meticulous data analysis, making them less optimal for large-
scale or continuous field assessments. Py-GC-MS, which offers
detailed chemical profiles, can be destructive to samples, further
complicating efforts aimed at sustained observation (Primpke
et al., 2020).

Against this backdrop, ML has emerged as a transformative
solution, offering automated, efficient, and scalable methods for the
detection and classification of microplastic particles. By leveraging
high-dimensional data, ML-based approaches can expedite and
refine the identification process without compromising detection
thresholds. Indeed, ML can significantly enhance monitoring
systems by automating classification tasks, uncovering intricate
relationships in complex datasets, and minimizing human
intervention (Kida et al., 2024). Moving forward, research
integrating ML with advanced sensing technologies stands to

TABLE 1 The various resources used in microplastic research.

Resource/
initiatives

Scope and focus Data type Notable features
and significance

Reference

Global microplastics
initiative

Global citizen-science platform for
microplastic pollution

Geographic coordinates, contamination
levels, volunteer observations

- Leverages crowdsourced
data
- Broad geographic coverage
- Raises public awareness

Barrows et al. (2018)

NOAA microplastics
database

Marine-focused data on microplastic
occurrence and effects

Oceanic measurements, ecological
impact data, lab analyses

- Concentrates on marine
environments
- Provides insights into
oceanic ecosystem health

Nyadjro et al. (2023)

UNEP and GRID-Arendal’s
marine litter database

Comprehensive repository on marine
litter, including microplastics

Global surveys, remote sensing data,
literature records

- Covers broad aspects of
marine pollution
- Facilitates cross-comparison
of litter types

UNEP (2025)

ML datasets for microplastic
research

Structured data used to train and
validate ML models

Tabular data (e.g., shape, size), spectral
properties, pollutant adsorption
characteristics, images

- Enables predictive and
classification modeling
- Data quality directly affects
ML accuracy

Lin et al. (2022), Yu and
Hu (2022), Su et al. (2023)

Multidisciplinary research
inputs

Contributions from environmental
science, chemistry, marine biology,
public health

Varies: e.g., chemical analyses, biological
assays, monitoring records

- Provides holistic
understanding of microplastic
impacts
- Facilitates comprehensive
mitigation strategies

Gray et al. (2018), Lusher
et al. (2021)
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narrow the gap between the laboratory-grade precision of traditional
techniques and the real-world requirement for swift, large-scale
monitoring.

Moreover, ML is particularly suitable for boosting the efficiency
of spectral, imaging, and hybrid spectral-imaging techniques.
Emerging tools can be grouped according to the types of datasets
they process—for instance, purely spectral data, purely image-based
data, or a fusion of both. This categorization helps researchers select
the most appropriate ML framework for their specific applications,
whether they seek to identify microplastics in near-real time or

analyze large, retrospective datasets to map pollution trends. We
summarize a comparisons between traditional and ML methods
(Table 2) and provide method-wise summaries (Table 3).

Spectral identification of microplastics

Microplastics possess distinct molecular structures and
functional groups that interact with electromagnetic radiation,
giving rise to characteristic spectral signatures. These spectral

TABLE 2 A comparative analysis of traditional methods and ML approaches.

Criteria Traditional methods ML-based methods References

Methodology Visual identification, pyrolysis gas chromatography-mass
spectrometry (Py-GC-MS), Fourier-transform infrared
spectroscopy (FTIR), Raman spectroscopy

Automatic classification using complex
datasets with high-dimensional features

Mariano et al. (2021), Coleman
(2025), Zhang et al. (2025)

Accuracy High accuracy, molecular-level insights High accuracy without compromising
sensitivity

Processing time Limited by capacity to process large volumes Capable of handling large, complex
datasets

Data handling capacity Subjective (visual identification), prone to human error Reduces subjectivity by automating
classification tasks

Subjectivity Subjective (visual identification), prone to human error Reduces subjectivity by automating
classification tasks

Preprocessing
requirements

Extensive for FTIR and Raman; destructive for Py-GC-MS Minimal compared to traditional methods

Suitability for
continuous monitoring

Not suitable (especially Py-GC-MS) More suitable due to non-destructive
nature

Potential for scale-up Limited due to manual and labor-intensive processes Highly scalable, suitable for large-scale
assessments

TABLE 3 Methods for microplastic detection.

Method Key principle Advantages Limitations Suitability for
high-
throughput

Reference

Visual
Identification

Manual examination of samples
(e.g., under a microscope)

- Straightforward, low-
cost setup
- Requires minimal
equipment

- Subjective, prone to
human error
- Time-intensive

Low Mariano et al. (2021), Lim et al.
(2025)

Pyrolysis
GC–MS (Py-
GC–MS)

Thermal degradation of samples
followed by GC–MS to identify
polymers

- High chemical
specificity
- Capable of identifying
polymer composition

- Destructive to samples
- Involves extensive sample
prep
- Not ideal for real-time

Moderate to Low Bouzid et al. (2022), Santos et al.
(2023), Ccanccapa-Cartagena
et al. (2025)

FTIR
spectroscopy

Infrared absorption spectra used
to identify molecular
fingerprints

- Accurate molecular
characterization
- Nondestructive
analysis possible

- Requires preprocessing
- Limited throughput
(analysis of one sample at a
time)

Moderate Chen et al. (2020), Campanale
et al. (2023), Bin Zahir Arju et al.
(2025)

Raman
spectroscopy

Inelastic scattering of
monochromatic light to
determine composition

- Detailed chemical/
molecular info
- Minimal sample prep
(in many cases)

- Sensitive to fluorescence
- Time-consuming for large
datasets

Moderate Araujo et al. (2018), Chakraborty
et al. (2023), Jung et al. (2024)

ML approaches Automated classification and
pattern recognition using large,
high-dimensional datasets

- High scalability
- Rapid classification
and analysis
- Reduced human bias

- Model performance
depends on quality/
quantity of training data
- Requires computational
resources

High Lin et al. (2022), Campanale et al.
(2023), Weber et al. (2023)
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features emerge when microplastics are exposed to ultraviolet (UV),
visible (Vis), or infrared (IR) light via mechanisms such as electron
transitions and molecular vibrations. For example, polyethylene
(PE) and polystyrene (PS) exhibit unique absorption profiles in
UV-Vis spectroscopy due to differences in their electronic
configurations, thus allowing for preliminary differentiation based
on absorption and scattering behaviors. However, more precise
polymer identification often relies on vibrational spectroscopy
techniques—namely IR and Raman—which measure specific
molecular vibrations unique to each polymer (Xu J-L. et al.,
2020). In IR spectroscopy, polymers like PE display pronounced
C–H stretching vibrations, whereas PS exhibits distinct aromatic
C=C vibrations. Raman spectroscopy complements IR by detecting
inelastic scattering associated with molecular vibrations, making it
especially valuable for discriminating microplastics in complex
matrices. Although these techniques can achieve high levels of
accuracy, manual interpretation of the resulting spectra is
frequently labor-intensive and time-consuming.

ML is transforming the way spectral data are analyzed and
interpreted, particularly by automating the detection and
classification of microplastics. Rather than relying on manual
comparisons, ML models are trained on extensive spectral
datasets to discern features that distinguish different polymer
types. Traditional ML algorithms—such as support vector
machines (SVMs) and random forests—have been used
effectively to classify microplastics based on their FTIR or Raman
signatures. For instance, SVMs have demonstrated strong
performance in differentiating PE, polypropylene (PP), and
polyethylene terephthalate (PET) by leveraging their unique
vibrational modes in FTIR data (Enyoh et al., 2024). Likewise,
random forests have proven resilient against overfitting when
classifying microplastic spectra obtained from Raman
measurements.

Deep learning approaches, especially convolutional neural
networks (CNNs), further streamline microplastic identification
by automatically extracting salient features from raw spectral
data. CNNs have been employed to classify microplastics using
either direct spectral inputs or image-based representations of those
spectra (Zhang W. et al., 2023). One-dimensional CNNs (1D-
CNNs) show particular promise for analyzing Raman spectra (Ng
et al., 2020), reliably capturing nuanced patterns and delivering high
classification accuracy for multiple polymer types. These advantages
become especially clear when real-time analysis of environmental
samples is required—for instance, in soil or water monitoring
applications. Recent studies indicate that 1D-CNN models can
achieve classification accuracies exceeding 95% for polymers such
as PE, PP, and polyvinyl chloride (PVC) in soil samples, surpassing
many traditional ML methods (Xu et al., 2023).

In scenarios where labeled spectral data are scarce, transfer
learning has emerged as a powerful strategy (Qiu et al., 2020).
This technique utilizes models pre-trained on related tasks—for
example, hyperspectral imaging—then adapts them to novel but
similar tasks, such as near-infrared sensor data. Studies have shown
that transfer learning significantly reduces both the amount of
labeled data required and the computational overhead, thereby
speeding up real-time detection (Zhao et al., 2021). When
applied to portable NIRS systems, transfer learning not only cuts
down on data collection efforts but also enhances detection

accuracy. Despite the notable potential of transfer learning, more
traditional ML models remain viable whenever sufficient labeled
data are available, striking a balance between interpretability and
performance.

The incorporation of ML—particularly deep learning and transfer
learning—into existing spectral workflows is revolutionizing
microplastic detection. While classic ML algorithms continue to
offer a strong combination of simplicity and accuracy, deep learning
approaches excel at deciphering large, intricate datasets. As these
techniques advance, they will increasingly surmount the limitations
of conventional spectral methods, delivering faster, more accurate, and
scalable solutions for monitoring microplastic pollution across a broad
range of environmental contexts (Table 4).

Image identification

Advances in image processing and deep learning have
significantly improved the accuracy and reliability of microplastic
detection, leveraging fine-grained visual attributes such as shape,
size, color, and texture (Han et al., 2023). Historically, identifying
and enumerating microplastics relied on visual microscopy—an
approach that is both labor-intensive and subject to human bias,
particularly when examining large volumes of environmental
samples. These challenges often result in discrepancies between
actual and recorded microplastic counts, underscoring the need
for more robust and scalable methodologies. To address this gap,
researchers have developed various semi-automatic and fully
automated techniques that harness ML and sophisticated image
processing algorithms, substantially enhancing the speed,
consistency, and throughput of microplastic identification
(Rodriguez Chialanza et al., 2018; El Hayany et al., 2020; Huang
et al., 2023; Liu et al., 2023; Valente et al., 2023; Dacewicz et al., 2024;
Grand et al., 2024; Tang et al., 2024; Vitali et al., 2024).

One notable development is the application of the Canny edge
detection algorithm, a widely used method for delineating object
boundaries in digital images (Mogale, 2017; Giardino et al., 2023).
By focusing on the edges of particles, this approach accurately
isolates microplastics based on geometric criteria. For instance, a
semi-automatic protocol integrating Canny edge detection
demonstrated both high accuracy and rapid analysis for detecting
microplastics (Phan et al., 2023; Fritz et al., 2024). The effectiveness
of this algorithm can be further boosted through Nile Red staining, a
fluorescent dye that selectively binds hydrophobic particles—such as
microplastics—thereby improving detection rates in complex
environmental matrices (Maes et al., 2017).

Beyond semi-automated systems, deep learning architectures
have exhibited strong potential for automatically identifying and
classifying microplastics (Lorenzo-Navarro et al., 2020).
Convolutional neural networks (CNNs), in particular, excel at
extracting and learning intricate visual signatures from labeled
image datasets, resulting in high classification accuracy (Lorenzo-
Navarro et al., 2021; Meyers et al., 2022). Utilizing images captured
by digital cameras or mobile devices, these CNN-based approaches
can both expedite analyses and remove much of the subjectivity
encountered in manual counting. As a result, they offer a consistent
and repeatable framework that is well-suited for large-scale or
remote monitoring programs.
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The ability of automated image-based techniques to rapidly evaluate
large datasets also expands the geographical scope of microplastic
assessment. Portable systems—ranging from smartphone-enabled
imaging to field-deployable devices—make it feasible to gather reliable
data from diverse environments without requiring specialized equipment
or trained personnel. Additionally, new research explores multi-scale
image processing combined with deep learning to enhance detection
accuracy in varied conditions, demonstrating improved robustness and
generalizability of microplastic detection (Yang et al., 2024). Likewise,
hybrid methods that integrate classic image processing algorithms (e.g.,
Canny edge detection) with advanced ML models (e.g., CNNs) show
promise for boosting accuracy across multiple sample types (Dacewicz
et al., 2024; Fritz et al., 2024; Grand et al., 2024; Tang et al., 2024; Vitali
et al., 2024; Yang et al., 2024).

These continuous innovations in automated image identification
methods are poised to transform the global monitoring of microplastic
pollution (Table 5). By delivering superior precision, scalability, and
accessibility compared to manual counting, they enable more
comprehensive evaluations of contamination patterns and ecological
impacts. As these technologies continue to evolve, they will play an
increasingly pivotal role in understanding, managing, and ultimately
mitigating the environmental risks posed by microplastics.

Spectral imaging identification

Microplastics are pervasive pollutants in aquatic and terrestrial
environments, posing potentially severe ecological and public health

risks. By leveraging ML to analyze unique spectral signatures and
spatial morphologies, spectral imaging represents a powerful
approach for accurately identifying and characterizing
microplastics across diverse ecosystems (Ai et al., 2022; Su et al.,
2023). This integration of hyperspectral imaging with ML signifies a
major stride in environmental monitoring, offering more efficient
detection and robust analysis of microplastic contamination (Xu
et al., 2023).

Hyperspectral imaging has shown exceptional promise for
detecting microplastics in settings like farmland soils (Valls-
Conesa et al., 2023). Because it collects spectral data over a broad
wavelength range, hyperspectral imaging supports rapid, non-
destructive screening, enabling timely remediation measures (Ai
et al., 2022; Xu et al., 2023). By providing detailed chemical
information and spatial distribution patterns of microplastics,
this technique facilitates swift responses to emerging pollution
concerns and helps protect soil integrity.

Recent studies have illustrated the effectiveness of combining
FT-IR hyperspectral imaging with random forest algorithms to
classify microplastics (Valls-Conesa et al., 2023). This approach
not only boosts the efficiency and accuracy of microplastic
identification but also offers a fine-grained chemical breakdown
of samples, making it well-suited for environmental assessments.
Furthermore, the application of laser direct infrared (LDIR) imaging
in conjunction with ML methods has shown promise in overcoming
traditional limitations, such as matching errors and reduced
accuracy in complex samples (Cheng et al., 2022). By
incorporating ML algorithms into LDIR workflows, researchers

TABLE 4 Key spectral techniques and associated ML approaches for microplastic identification.

Technique Key principle Advantages Challenges Example ML
approaches

Reference

UV-vis
spectroscopy

Measures absorption/
scattering of UV-Vis light due
to electron transitions

- Rapid preliminary
screening
- Can differentiate polymers
with distinct electronic
configurations

- Limited specificity (better for
initial differentiation)
- Susceptible to overlapping
peaks

- Logistic regression or SVM
for classification based on
absorption data

Tsuchida et al.
(2024)

IR Spectroscopy Detects absorption of IR light,
causing molecular vibrations

- High chemical specificity
- Non-destructive in many
applications

- Requires sample preparation
and sometimes complex
preprocessing
- Slower throughput

- SVM for polymer
classification
- Random forest models
leveraging vibrational
signatures

Morgado et al.
(2021), Tan et al.
(2023)

Raman
Spectroscopy

Measures inelastic scattering
of monochromatic light

- Detailed chemical
information
- Capable of handling
complex matrices (soil,
water)

- Fluorescence interference
- Time-consuming for large
datasets

- Random forest for noise-
resistant classification
- 1D-CNN for feature
extraction

Weber et al. (2023),
Sunil et al. (2024)

Machine Learning Uses labeled spectra to learn
decision boundaries or
ensemble-based rules

- Good performance with
moderate data sizes
- Often more interpretable
than deep learning

- Limited for highly complex
datasets
- May require feature
engineering

- SVM for IR spectra
classification
- Random forest for Raman
spectra

Weber et al. (2023),
Sunil et al. (2024)

Deep Learning Learns features from raw
spectral data via convolutional
filters

- Excels with large, complex
spectral datasets
- Reduces need for hand-
crafted features

- Computationally intensive
- Requires large labeled
training sets

- 1D-CNN for Raman, NIR, or
FTIR data classification

Akkajit et al. (2023),
Weber et al. (2023)

Transfer Learning Adapts models trained on one
task/domain to a related task/
domain

- Reduces need for extensive
labeled data
- Faster model convergence
for real-time detection

- Effectiveness depends on
similarity between source and
target domains
- Model interpretability can be
lower

- Pre-trained CNNs adapted
for NIR or Raman
- Transfer from hyperspectral
to NIRS data

Akkajit et al. (2023)
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can enhance precision, minimize errors, and gain deeper insights
into the distribution and properties of microplastics.

ML is particularly valuable in settings where interference from
organic matter or other substances complicates microplastic
detection. By learning to recognize distinct spectral profiles, ML
models substantially reduce the labor and time involved in
microplastic extraction (e.g., sampling, filtration, chemical
digestion). In aquatic environments, factors like turbidity,
refractive variability, and high attenuation rates can degrade
hyperspectral data, introducing noise that obscures microplastic
signatures. However, advancements in both imaging technology and
ML-based analysis have shown potential for direct identification of
microplastics in environmental samples without extensive
preprocessing. Specifically, SVMs trained on hyperspectral data
have demonstrated high accuracy in detecting microplastics in
seawater and associated filtrates, even in the face of polymer
variability and organic material (Shan et al., 2019).

Looking ahead, spectral imaging for microplastic detection is
poised for noteworthy advances in both spatial and spectral
resolution. High-resolution imaging systems will further refine
the differentiation between microplastics and natural particles,
improving overall detection accuracy (Table 6). Additionally, the
advent of real-time or near-real-time spectral imaging promises to

revolutionize environmental monitoring by enabling on-site
detection and timely intervention when pollution events arise.
Realizing these improvements will entail progress in algorithmic
development—such as faster data processing andmore sophisticated
ML models—and in hardware engineering, which must support
rapid data capture and analysis.

Limitation of usage of ML techniques

While ML offers significant advantages in microplastic research,
there are notable limitations that must be carefully considered. A
major challenge is the significant computational power required by
many ML algorithms, particularly deep learning models. Although
deep learning has achieved remarkable success in diverse
applications, it necessitates extensive computational resources,
including specialized hardware and substantial processing time,
making it infeasible for all research environments, particularly
those with limited funding or infrastructure. Training deep
neural networks typically involves considerable processing
capabilities, often requiring specialized hardware such as
Graphics Processing Units (GPUs) or Tensor Processing Units
(TPUs) (Schmidhuber, 2015; Song et al., 2021). Additionally, the

TABLE 5 Summary of image-based approaches for microplastic detection.

Method Techniques Advantages Challenges Applications Reference

Manual counting Visual microscopy Traditional method, provides
basic estimates

Labor-intensive, subjective,
prone to error

Basic environmental sample
analysis

Mariano et al. (2021),
Lim et al. (2025)

Semi-automatic
image processing

Canny edge detection, Nile
Red staining

Enhances detection accuracy,
reduces error, fast detection
speeds

Still requires some manual
oversight

Improved accuracy and speed
in environmental monitoring

Phan et al. (2023),
Fritz et al. (2024)

Deep learning
(CNNs)

CNNs trained on labeled
image datasets

High accuracy, automatic
classification, scalable, removes
subjectivity

Requires large labeled datasets,
high computational resources

Extensive environmental
monitoring, high-resolution
analysis

Akkajit et al. (2023)

Mobile-based
detection

Image capture via digital
cameras or mobile phones

Accessible, scalable, suitable for
field settings

Depends on the quality of
mobile imaging and network
connectivity

Real-time, large-scale
environmental monitoring

Leonard et al. (2022)

TABLE 6 Overview of spectral imaging techniques and ML methods for microplastic detection.

Technology Description Benefits Applications Reference

Hyperspectral imaging Captures spectral data across a wide range
of wavelengths, offering a non-destructive,
rapid means of assessing microplastic
pollution

Timely remediation measures;
crucial for mitigating pollution and
protecting soil health

Effective in environments like
farmland soil

Ai et al. (2022),
Valls-Conesa et al.
(2023), Xu et al. (2023)

Random Forest + FT-IR
hyperspectral

Captures extensive spectral data,
classifying microplastics by providing a
detailed chemical breakdown of samples

Improves efficiency and accuracy of
microplastic identification;
powerful for environmental
monitoring

Suitable for classifying complex
environmental samples

Valls-Conesa et al.
(2023)

Laser Direct Infrared
(LDIR) Imaging + ML

Enhances microplastic identification,
traditionally faced with matching errors
and reduced accuracy, by improving
precision with ML algorithms

Reduces errors in identifying
microplastics, offering insights into
their characteristics and
distribution

Promising for complex samples,
including improvement over
traditional LDIR challenges

Cheng et al. (2022b)

Hyperspectral imaging
+ SVM

Utilizes hyperspectral data and SVM to
handle high-dimensional, nonlinear data;
effective in classifying microplastics in
marine environments

High accuracy and robustness in
detecting microplastics despite
environmental challenges

Valuable in marine environments,
particularly with variations in
polymer types and sizes

Shan et al. (2019)
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extensive datasets and numerous training iterations needed can
result in prolonged processing periods and heightened energy
consumption, posing substantial barriers for smaller research
teams or institutions constrained by budget or limited computing
facilities (Talaei Khoei et al., 2023). Moreover, microplastic research
faces specific challenges regarding data availability, as microplastics
are unevenly distributed across aquatic ecosystems and exhibit
chemically diverse compositions, complicating dataset creation
and training. The high energy demands associated with training
large-scale models have further sparked concerns about
environmental impacts, prompting calls for the development of
more energy-efficient algorithms (Strubell et al., 2019). As the
complexity of models grows, so too does the demand for
computational resources for both training and inference,
potentially limiting accessibility to these advanced tools for a
broader range of researchers and industries.

Technical and practical considerations extend beyond
computing resources. The requirement for high computational
power and specialized hardware makes real-time or in situ
analysis challenging, as portable devices must navigate trade-offs
between processing capabilities and power efficiency. Another
critical limitation is interpretability. Advanced deep learning
models often function as “black boxes,” complicating efforts by
researchers and regulatory bodies to comprehend the underlying
reasons behind classification outcomes (Ali et al., 2023; Nasimian
et al., 2024). This reduced transparency may impede the trust and
widespread adoption of AI-driven methodologies. Thus, enhancing
the explainability, interpretability, and user-friendliness of ML
algorithms will be essential for validating outcomes and ensuring
broader acceptance within the research community and among
regulatory authorities.

Influence of polymer types and
environmental conditions on accuracy of
ML models

The accuracy of ML models in predicting microplastic pollution
can be influenced by polymer types and environmental conditions.
Different polymers, such as PE and PP, possess distinct physical and
chemical properties—including density, degradation rates, and
chemical composition—that affect their environmental behavior and
accumulation patterns. Buoyant polymers like PE typically float,
whereas denser polymers like PS are prone to sinking, leading to
varied distribution patterns in aquatic environments (Thompson
et al., 2009). Moreover, polymers such as PET degrade more slowly
than PE, resulting in prolonged environmental persistence and varied
ecological impacts (Andrady, 2011). Environmental conditions, such as
temperature, UV radiation, water currents, and microbial activity,
further influence the degradation dynamics and transport of
microplastics. Elevated temperatures and increased UV radiation
accelerate plastic degradation, altering particle size and shape, which
affects mobility, detectability, and environmental persistence.
Additionally, microbial activity in marine ecosystems can alter
microplastic buoyancy and biodegradability, further complicating
predictions of their behavior (Zettler et al., 2013). Consequently, ML
models trained under specific polymer compositions or environmental
settings may encounter significant accuracy limitations when

generalized to diverse ecological scenarios, unless these variables are
comprehensively integrated into the modeling process.

Practical detection limits further compound these challenges.
Advanced spectroscopic methods commonly struggle to identify
microplastic particles below approximately 10–20 μm, leaving the
smallest particles largely undetected and potentially underestimated
in current assessments (Cunsolo et al., 2021). Recent advances, such
as ML-assisted hyperspectral imaging, have begun addressing these
limitations, extending microplastic detection capabilities to soil and
sediment samples following necessary preprocessing steps (Ai et al.,
2022; Valls-Conesa et al., 2023; Xu et al., 2023). However, these
techniques are still emerging and require further refinement. Real-
time analysis and monitoring capabilities are also essential for
effective response to pollution events. The complexity and
variability of environmental samples pose additional obstacles;
for example, factors such as water turbidity or high organic
content in sediments can degrade spectral data quality,
necessitating more sophisticated algorithms and enhanced
preprocessing strategies to maintain robust model accuracy under
challenging environmental conditions.

Conclusion

The integration of advancedML techniques with spectral, image,
and spectral imaging methods marks a transformative leap in the
detection, classification, and analysis of microplastics (Shan et al.,
2019; Primpke et al., 2020; Ai et al., 2022; Su et al., 2023; Valente
et al., 2023; Valls-Conesa et al., 2023; Xu et al., 2023; Zhang Y. et al.,
2023; Dacewicz et al., 2024; Fritz et al., 2024; Grand et al., 2024; Tang
et al., 2024; Vitali et al., 2024). Traditional methods like visual
microscopy and spectroscopy, while reliable in terms of accuracy,
are hindered by their labor-intensive nature and limitations in
processing large volumes of environmental data efficiently
(Hidalgo-Ruz et al., 2012). These conventional approaches,
though foundational, struggle to meet the demands of high-
throughput and real-time environmental monitoring. The
application of ML algorithms—such as SVM, random forests,
and deep learning models like CNNs—has enabled us to
overcome these limitations by automating and significantly
improving the precision, speed, and scalability of microplastic
identification tasks (Valls-Conesa et al., 2023; Yang et al., 2024).
Spectral identification, a powerful tool for identifying microplastics,
uses molecular vibration data from techniques such as IR and
Raman spectroscopy to discern microplastics based on their
unique chemical signatures (Liu et al., 2023; Zhang W. et al.,
2023; Grand et al., 2024). This method is particularly valuable for
its ability to differentiate polymers by their functional groups and
molecular bonds, offering high accuracy in complex environmental
matrices. Image identification, on the other hand, uses deep learning
models to automate the classification of microplastics based on
visual characteristics like shape, size, and color, thus reducing the
human subjectivity and labor required in manual identification.
These models, trained on large image datasets, can rapidly process
high-resolution images, providing a more reliable and scalable
solution for environmental monitoring. Spectral imaging, which
combines the advantages of both spectral and spatial data
acquisition, represents a comprehensive approach to microplastic
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detection. Hyperspectral imaging, paired with ML algorithms,
allows us to simultaneously capture chemical composition and
spatial distribution, enabling detailed characterization of
microplastics in diverse environments (Valls-Conesa et al., 2023;
Xu et al., 2023). This method not only enhances the identification
accuracy of microplastics but also provides valuable insights into
their ecological impact and distribution patterns, making it a critical
tool for environmental monitoring programs. The Table 7 offers a
comprehensive look at the evolution of ML techniques and spectral
imaging identification methods for microplastics in recent years.
Over the past decade, microplastic detection techniques have
increasingly incorporated ML components. In the early 2010s, it
was relied on traditional spectroscopy with minimal ML
involvement. By the mid-2010s, initial ML techniques such as
PCA were introduced to assist in interpreting spectral data. The
late 2010s saw the adoption of dedicated classification algorithms
like SVM and random forests, which improved the automation and
accuracy of microplastic identification. In the early 2020s, deep
learning models emerged, further boosting classification
performance and enabling more complex analyses such as
segmenting microplastics in images. This timeline highlights a
clear trend: the integration of ML has evolved from simple data
processing tools to advanced neural networks, significantly
enhancing the speed, accuracy, and scalability of microplastic
detection in recent years.

Despite the significant progress in leveraging ML for
microplastic detection, several challenges remain. A major
limitation is the need for larger, more diverse, and high-quality

datasets to train ML models comprehensively. Data scarcity
currently hampers the ability of models to recognize less
common polymer types or environmental scenarios. Ensuring
that models generalize across various environmental conditions,
polymer types, and interference from organic or other particulate
matter is crucial. Furthermore, the development of real-time analysis
capabilities will be essential for enabling on-site monitoring and
immediate responses to pollution events. The complexity of
environmental samples, particularly in water matrices where
factors like turbidity and light attenuation can degrade the
quality of spectral data, poses additional hurdles that require
more sophisticated algorithms capable of compensating for
such variances.

Standardized datasets ensure consistency in data collection,
facilitating comparisons across studies and enhancing the
reliability of predictions across diverse environmental contexts.
Several global initiatives and organizations are actively working
toward standardizing microplastic monitoring methods. For
example, the International Pellet Watch provides a standardized
global database for microplastic data collection and sharing (Ogata
et al., 2009). Similarly, the Global Partnership on Plastic Pollution
and Marine Litter (GPML) is developing unified protocols for
microplastic sampling and analysis in various ecosystems. Open
data platforms such as Marine Litter Watch, and NOAA’s global
microplastics data portal further facilitate standardized data sharing
and harmonization across the research community (Bergmann et al.,
2017; Nyadjro et al., 2023). Furthermore, recent international
guidelines have been proposed to unify microplastic data

TABLE 7 Several developments in spectral identification of microplastics in aquatic environments.

Year Spectral
techniques

ML algorithms Microplastic
types identified

Key developments References

2010 FT-IR, GC-MS NA PE, PP Samples collected from beaches were analyzed Frias et al. (2010)

2013 Pyrolysis-GC-MS N/A PE, PP, PS Early stages of using Pyrolysis-GC-MS for
microplastic identification, but no significant ML
integration yet.

Fries et al. (2013)

2014 Raman Spectroscopy N/A PE, PS Introduction of Raman Spectroscopy for more
detailed molecular characterization of
microplastics

Cozar et al. (2014), Lusher
et al. (2014), Yonkos et al.
(2014)

2015 FPA-FT-IR NA PE, PP, PVC, PS Multiple microplastic types were analyzed using
spectral analysis

Tagg et al. (2015)

2018 Stimulated, Raman
Spectroscopy

NA PE, PS, PET, PP Accelarated identification of several microplastic
types

Zada et al. (2018)

2019 NIR hyperspectral
Imaging
FT-IR

SVM
Random Forest

PE, PP, PS SVM and FT-IR were used for classification of
microplastic types based on spectral data

Hufnagl et al. (2019), Shan
et al. (2019)

2020 FT-IR PCA, UMAP,
Clustering

PE, PP, PVC PCA, UMAP and clustering were used on FT-IR
spectrum

Wander et al. (2020)

2021 FT-IR Bootstrap method PE, PP Identification microplastics from river sediments Morgado et al. (2021)

2022 Raman Spectroscopy PCA, dual PCA,
MCR-ALS

PP, PE, PS Several methods were developed to classify data
from Raman spectroscopy

Cheng et al. (2022a), Luo et al.
(2022), Tian et al. (2022)

2023 Multispectral
Imaging, FT-IR

Neural Networks,
Random Forest

PP, PE, PET, PVC Advancements in multispectral imaging
combined with ML for better identification
accuracy

He et al. (2023), Valls-Conesa
et al. (2023)

2024 FT-IR Deep Learning PE, PP, PA, PS Quantification of microplastic using FT-IR with
deep learning

Guo et al. (2024)
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reporting practices, aiming to address variations in environmental
conditions and polymer types that complicate data consistency
(Jenkins et al., 2022). Despite these ongoing challenges, global
collaboration and open-access data sharing are critical to creating
robust standardized datasets, ultimately enhancing predictive
accuracy and generalizability of machine learning models in
microplastic pollution studies.

Integration with other approaches offers a promising path to
overcome some of these limitations. One emerging direction is the
combination of ML with Internet of Things (IoT) sensor networks
and robotics for environmental monitoring. For instance, compact
optical sensors or AI-enabled cameras deployed on drones and
buoys have been tested for real-time microplastic detection (Zhao
et al., 2024). Such systems feed data continuously to ML models,
potentially enabling near real-time tracking of microplastics over
large areas. Another approach is to couple ML models with physics-
based oceanographic and transport models. By incorporating known
hydrodynamic processes (e.g., currents, settling behavior) into the
prediction pipeline, data-driven models can produce more
physically informed forecasts of microplastic dispersion (Zhang
and Choi, 2025).

Policy and implementation considerations also present
challenges. Environmental regulatory frameworks have only
begun to grapple with the adoption of AI-driven monitoring
tools. Agencies will require validated protocols to accept ML-
based methods as part of official pollution assessment, for
example, verification that an ML identification of microplastics is
as reliable as a human or traditional analytical method. Developing
standardized validation procedures and certification for AI tools will
be essential at national and international levels. Moreover, global
cooperation in data sharing will be necessary to fully exploit ML
capabilities, since microplastic pollution transcends borders.
Initiatives like NOAA’s data portal and international working
groups are steps toward this direction (Jenkins et al., 2022;
Nyadjro et al., 2023). Policymakers may need to provide funding
and infrastructure to deploy these advanced systems, especially in
regions where technical resources are limited. In summary,
addressing the policy-level challenges—through updated
regulations, investment in technology, and education of
stakeholders—will be key to moving AI-based microplastic
detection from research into practical, widespread use (Pauna
et al., 2022).

Nevertheless, ongoing advancements in ML and imaging
technologies show great promise in addressing these challenges.
As ML models become more robust, and imaging hardware evolves

to support higher resolution and faster processing speeds, the future
of microplastic monitoring will become increasingly automated,
accurate, and scalable. These innovations are poised to revolutionize
how we detect, classify, and monitor microplastics, ultimately
contributing to better environmental management and more
effective strategies for mitigating microplastic pollution. By
enhancing the precision and efficiency of microplastic detection,
these technologies will play a critical role in safeguarding ecosystems
and addressing one of the most pressing environmental challenges
of our time.
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