
Multiscale effects of climate
change and anthropogenic
activity on vegetation dynamics in
Guangdong-Hong Kong-Macao
greater bay area

Yun Tang1*, Yuanyuan Wang2 and Quanming Yang3

1School of Computer Science, Huainan Normal University, Huainan, China, 2China Water Huaihe
Planning, Design and Research Co, LTD, Hefei, China, 3School of Environment and Spatial Informatics,
Suzhou University, Suzhou, China

As a crucial indicator of terrestrial ecosystems, vegetation plays a significant role
in reflecting the interactions and coupled coordination between anthropogenic
activities and natural ecosystems. Understanding the drivers of vegetation change
is paramount for achieving sustainable development of socio-ecological systems.
Climate change and anthropogenic activities are the primary influencing factors
of vegetation change. Given the current research gap in understanding the
impacts of climate factors and anthropogenic activities on vegetation change
at different temporal scales within the rapid urbanization process of urban
agglomerations, based on the Normalized Difference Vegetation Index (NDVI),
nighttime light intensity and climatic factors, this paper explores the spatial-
temporal distribution of vegetation change trend through trend analysis, and uses
empirical mode decomposition and partial correlation analysis to analyzes the
correlation between vegetation change and climate factors and anthropogenic
activities at different time scales. The relative contributions of climate factors and
anthropogenic activities to vegetation change were analyzed by residual trend
method. The results reveal that: NDVI exhibits an increasing trend inmost regions,
Land Surface Temperature (LST) has significantly increased, and the intensity of
anthropogenic activities has significantly intensified in half of the regions. The
correlation between vegetation change and anthropogenic activities and climate
factors shows spatiotemporal heterogeneity, with significantly correlated areas
increasing with the extension of temporal scales. A strong negative correlation
between vegetation change and anthropogenic activity intensity is mainly
distributed in the core urban areas of various cities. The regions where
vegetation change is significantly negatively correlated with LST are primarily
located in Zhaoqing, Jiangmen, and Huizhou. Increases in precipitation and
sunshine duration promote vegetation growth. Vegetation change is primarily
influenced by anthropogenic activities in the short term. In the long-term trend,
most areas are dominated by climate factors, and vegetation changes caused by
anthropogenic activities are mainly distributed in the core areas of cities. These
findings contribute to a comprehensive understanding of the drivingmechanisms
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of vegetation dynamic changes in the context of urbanization and provide a
scientific basis for formulating more effective urban ecological management
and sustainable development strategies.
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1 Introduction

Terrestrial ecosystems, critical components of the global carbon
cycle, are vital for climate stability and biodiversity conservation (Ge
et al., 2021; Li Y. et al., 2021). However, rapid urbanization is causing
unprecedented changes in these ecosystems. Driven by both climate
change and anthropogenic activity, alterations in vegetation cover, a
prominent feature of terrestrial ecosystems, have garnered
widespread attention (Chang et al., 2022). Vegetation is crucial
for carbon regulation, climate maintenance, and fragile ecosystem
protection, and its dynamics directly impact ecological
sustainability. Climate change (e.g., rising temperatures, altered
precipitation) and anthropogenic activity (e.g., land-use change)
profoundly reshape global vegetation patterns. Therefore,
quantifying the relative contributions of climate change and
anthropogenic activity to vegetation change is key to
understanding terrestrial ecosystem change mechanisms and for
developing effective strategies to address climate change and
promote socio-economic and ecological sustainability.

Remote sensing provides important data for studying vegetation
dynamics and their drivers. Vegetation indices derived from remote
sensing are critical indicators for assessing plant biophysical
parameters (Wang et al., 2003). The NDVI has characteristics
with long temporal record, broad spatial coverage, and high
sensitivity, is the most widely used index for measuring
vegetation growth. NDVI is applied in vegetation dynamics
studies at global (Funk and Brown, 2006; Liu et al., 2022),
national (Prăvălie et al., 2022; Mehmood et al., 2024a), regional
(Li et al., 2015; Liu et al., 2023; Qi et al., 2024), and city scales
(Aburas et al., 2015; Barboza et al., 2021; Singh et al., 2024). In
China, long-term NDVI-based monitoring reveals a significant
increase in vegetation cover, with spatio-temporal heterogeneity
in the rate of increase. For example, studies in the Shaanxi-Gansu-
Ningxia region of the Loess Plateau (Li et al., 2015), the northern
Loess Plateau (Ning et al., 2015), the Heilongjiang River Basin (Chu
et al., 2019), the Yangtze and Yellow River Basins (Zhang et al.,
2020), the Yangtze River Delta (Yuan et al., 2019; Tian et al., 2024),
the Pearl River Delta (Hu and Xia, 2019; Abbas et al., 2021; Ruan
et al., 2020; Chen et al., 2022), the Pearl River Basin (Chen et al.,
2022), Jilin Province (Ren H. et al., 2023), Northern China (Lin et al.,
2020; Sun et al., 2021), and Southwest China (Qi et al., 2024)
demonstrate this trend. Common NDVI-based vegetation change
detection methods include linear regression (Wu et al., 2020), the
continuous change detection and classification (CCDC) algorithm
(Lasaponara et al., 2024), LandTrendr (Eckert et al., 2015; Wuyun
et al., 2024), DBEST (detecting breakpoints and estimating segments
in trends) (Rhif et al., 2022). The Mann-Kendall test offers several
advantages for vegetation trend analysis. This non-parametric
method does not require specific data distributions and is

suitable for non-normally distributed remote sensing data. In
addition, it is resistant to outliers, improving the accuracy of
vegetation trend identification (Li P. et al., 2021; Mehmood
et al., 2024b).

Climatic factors, topography, nitrogen deposition, CO2

concentration, and anthropogenic activity are major drivers of
vegetation change in terrestrial ecosystems (Potter and Brooks,
1998; Jiang, 2022). Climatic factors significantly influence
regional vegetation distribution and growth; rising temperatures,
altered precipitation patterns, and extreme climate events are
profoundly changing global vegetation growth, distribution, and
phenology (Jiang et al., 2017; Afuye and et al., 2021; Zhang et al.,
2018). Numerous studies indicate that temperature and
precipitation are key factors influencing vegetation change.
Increased temperature and summer precipitation extend growing
seasons and accelerate growth, promoting vegetation cover (Fang
et al., 2003). For example, precipitation patterns significantly affect
vegetation dynamics in China’s northern agro-pastoral transitional
zone (Jiang et al., 2020), and increased temperature and
precipitation lead to increased growing season NDVI on the
Qinghai-Tibet Plateau (Pang et al., 2017). Vegetation response to
climate change in the Yangtze and Yellow River Basins varies with
temporal scale (Zhang et al., 2020). In West Bengal, India,
temperature and precipitation jointly influence the Enhanced
Vegetation Index (Banerjee et al., 2024). Research further
suggests that vegetation growth environment, type, and the
spatial heterogeneity of climate change can modify vegetation
responses to climatic factors. For instance, NDVI in the Pearl
River Delta and Yangtze River Delta is more responsive to
temperature than precipitation (Chen et al., 2022; Yuan et al.,
2019; Abbas et al., 2021), whereas vegetation in the arid, semi-
arid, and sub-humid regions of Northern China, temperate
grasslands and deserts, and the northern Loess Plateau is more
sensitive to precipitation changes (Sun et al., 2021; Lin et al., 2020;
Ning et al., 2015). Grassland NDVI in the Heilongjiang River Basin
is positively correlated with precipitation year-round. Coniferous,
broadleaf, mixed forests, and woodlands show significant positive
correlation between NDVI and air temperature, and significant
negative correlation with autumn precipitation (Chu et al., 2019).
Grassland NDVI in relatively arid regions of Northern China is
more sensitive to heavy precipitation than to moderate or light
rainfall (Yuan et al., 2015). In semi-humid Northeast Asia,
vegetation sensitivity to growing-season temperature differs based
on species and elevation (Cao et al., 2019).

Urbanization and population growth amplify the impact of
anthropogenic activity on the ecological environment.
Anthropogenic activity increasingly influence vegetation,
sometimes more profoundly than climate change. For instance,
anthropogenic factors and land use are the primary combined
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influences on vegetation change in eastern China (Zou et al., 2025).
Land use change due to urbanization is a major driver of vegetation
cover decline in the Yangtze River Delta (Yuan et al., 2019). Urban
expansion in Shenzhen leads to regional net primary productivity
loss (Yu et al., 2009). In Northern China, reduced population density
and afforestation have promoted desertification recovery (Wang
J. et al., 2024). Population growth and migration may explain
significant vegetation cover changes in the African Sahel
(Boschetti et al., 2013), and anthropogenic activity are the
dominant factor in vegetation changes near Kolkata, India
(Banerjee et al., 2024). Studies indicate that anthropogenic
activity can have both promoting and inhibiting effects on
vegetation cover. Large-scale ecological projects promote
vegetation greening and NDVI increases (Zheng et al., 2021; Shi
et al., 2020), such as the Grain for Green program, increased crop
planting, and remediation of coal mining areas (Chen et al., 2022;
Ning et al., 2015). Afforestation promotes NDVI growth in Shaanxi,
Shanxi, and Hebei provinces, and much of Southern China (Lin
et al., 2020; Liu et al., 2022). However, anthropogenic activity are
also a major cause of vegetation degradation in China’s agro-
pastoral belt. Over-cultivation, overgrazing, and unsustainable
farming lead to degradation in Northeast China (Chu et al.,
2019; Zhang, 2014). Construction land expansion in the Pearl
River Basin causes NDVI decline (Wenyu et al., 2022), and
energy production, chemical infrastructure, and mineral resource
development increase the risk of vegetation degradation in northern
Shaanxi (Li et al., 2015).

Given the complex interactions of climate change and
anthropogenic activity on vegetation (Zou et al., 2025;
Georgescu et al., 2014; Wang et al., 2021), various quantitative
methods are used to distinguish their relative contributions.
These include Hurst exponent analysis (Wang et al., 2020),
geostatistical methods (Zhang et al., 2024), Geodetector
models (Zou et al., 2025), partial correlation analysis (Xu
et al., 2023), and residual trend analysis (RESTREND) (Yan
et al., 2021; Wang W. et al., 2024). RESTREND, based on
regression between vegetation indices and climatic factors,
calculates the residual between actual and climate-driven
vegetation change, representing the impact of anthropogenic
activity. Due to its simplicity and suitability for large-scale
analysis, RESTREND is chosen as the primary method to
quantify the impact of climate and anthropogenic activity on
vegetation change.

Regarding analysis of vegetation change drivers, most
existing studies rely on traditional methods focused on a
single temporal scale. However, long-term climate factor
variations are often non-linear, non-stationary, and complex,
with different temporal scales or periodic oscillations.
Anthropogenic activity intensities, such as urban expansion,
over-cultivation, overgrazing, and afforestation, demonstrate
spatio-temporal heterogeneity (Zhang et al., 2020; Gao et al.,
2022). The relative importance of climate and anthropogenic
activity on vegetation change is significantly affected by temporal
scale (Ge et al., 2021). Single-scale analyses cannot accurately
reflect vegetation responses to different drivers (Qi et al., 2019).
Therefore, incorporating multi-temporal scale analysis into
assessing the relative importance of climate change and
anthropogenic activity, studying vegetation change drivers at

annual, interannual, decadal scales, and long-term trends, is
crucial for analyzing spatio-temporal differences in the
dominant factors affecting vegetation change.

In recent years, China’s regional development strategy has
prioritized urban agglomerations. In this model, vegetation
change in urban agglomerations exhibits more complex
spatio-temporal heterogeneity, posing new challenges for
ecological protection and sustainable development. The
Guangdong-Hong Kong-Macao Greater Bay Area (GBA) is
one of China’s most densely populated regions, with high
levels of openness, economic activity, and social and economic
development. The GBA has experienced significant climate
change and intensive anthropogenic activity, resulting in
noticeable vegetation changes (Geng et al., 2022). Climate
change increases the magnitude of effects on ecosystem
vulnerability, and anthropogenic activity are the primary
drivers of these changes (Zhang P. et al., 2023), making it a
suitable location for studying vegetation dynamics during
urbanization. Multi-scale analyses of the relationships between
climate, anthropogenic activity, and vegetation dynamics in the
GBA are lacking. This study focuses on multi-temporal scale
differences in the impacts of anthropogenic activity and climate
change on vegetation, aiming to reveal the driving mechanisms of
vegetation change more comprehensively and provide a basis for
sustainable urban development and spatial planning.

Based on these considerations, this study proposes a multi-
timescale effects model to quantify the relative importance of climate
factors and anthropogenic activity on vegetation change in the GBA
at different temporal scales. The NDVI and nighttime light intensity
are used to represent vegetation change and anthropogenic activity,
respectively. Surface temperature, precipitation, and sunshine
duration are selected as climate factors. The analysis comprises
four aspects: (1) analyzing trends in vegetation change,
anthropogenic activity, and climate factors; (2) detecting multi-
temporal scale characteristics; (3) calculating the spatial
heterogeneity of correlations between vegetation change and
climate/anthropogenic activity across different temporal scales;
(4) quantifying the relative contributions of climate and
anthropogenic activity to vegetation change at different
temporal scales.

2 Materials and methods

2.1 Study area

The Guangdong-Hong Kong-Macao Greater Bay Area (GBA),
composed of nine cities in the Pearl River Delta urban
agglomeration, the Hong Kong Special Administrative Region
and the Macao Special Administrative Region, and is one of the
five key national city clusters. Covering an area of approximately
56,000 km2, the GBA had a permanent population of 86.884 million
at the end of 2023, accounting for about 6% of the total population of
China. Its geographical location is situated between
111°12′E−115°35′E and 21°25′N-24°30′N, as shown in Figure 1.
The GBA is located in a subtropical monsoon climate zone,
characterized by significant cloud cover for most of the year,
resulting in a cloudy and rainy environment. It experiences high
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temperatures and heavy rainfall in summer and mild, low-rainfall
conditions in winter, with synchronous rain and heat, abundant
rainfall, and sufficient heat. The annual average precipitation
reaches 1800 mm, the total annual sunshine duration is 2000 h,
and the annual average temperature ranges from 21.4°C to 22.4°C.
Subtropical evergreen broad-leaved forests flourish in the GBA, and
vegetation growth is vigorous. The economic development level of
the GBA exhibits internal imbalances, with an economic pattern
characterized by “strong east and weak west.” Over the past
2 decades, Hong Kong’s total economic output has surpassed
that of other cities. After the recent decade of development,
Shenzhen and Guangzhou have also reached leading economic

positions comparable to Hong Kong. The economic level of
Foshan and Dongguan has developed steadily, with relatively
high total economic output, while other cities have relatively
lower total economic outputs (Wu et al., 2021).

2.2 Data preparation

The data selected for this study include nighttime light imagery,
vegetation index, land surface temperature, and meteorological data,
covering a period from April 2012 to December 2020, totaling
105 months. All data were reprojected to the WGS84 coordinate

FIGURE 1
The location of the study area Guangdong–Hong Kong–Macao Greater Bay.

Frontiers in Environmental Science frontiersin.org04

Tang et al. 10.3389/fenvs.2025.1574870

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1574870


system and resampled to a spatial resolution of 0.004167 ° ×
0.004167 ° (approximately 500 m at the equator). The Seasonal
and Trend decomposition using Loess (STL) algorithm was applied
to the original data to decompose the time series into trend, seasonal,
and residual components, respectively. Based on the trend
components of the data sources, relevant calculations and
analyses were conducted to remove the influences of seasonality
and noise.

2.2.1 NDVI data
The NDVI is sensitive to chlorophyll and quantifies vegetation

change by measuring the contrast between the reflection of solar
radiation in the red band and near infrared band. With the
advancement of remote sensing technology, NDVI has been
widely used for monitoring vegetation change. This study

employed NDVI to monitor vegetation changes. The 16-day
composite NDVI product provided by MYD13A1 data was
selected, and monthly averages were calculated.

2.2.2 Climate data
Climate factors included LST, precipitation, and sunshine

duration. LST data were selected from the 8-day composite LST
product provided by MOD11A2, and monthly LST averages were
calculated. Meteorological data were obtained from the National
Meteorological Science Data Center, providing data from national
standard meteorological stations for the period 2012–2020 (http://
data.cma.cn/), and monthly average temperature, monthly total
precipitation, and monthly total solar radiation data were
extracted. Given the limited number of existing meteorological
stations and the complex topography of the study area, inverse

FIGURE 2
The flowchart of methods.
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distance weighting interpolation was performed on the
meteorological data using ArcGIS 10.6 software to match the
remote sensing images. The rasterized meteorological data spatial
distribution maps had the same spatial resolution and projection
information as the nighttime remote sensing imagery.

2.2.3 Nighttime light data
In 2012, the Visible Infrared Imaging Radiometer Suite

(VIIRS) onboard the National Polar-Orbiting Partnership
(NPP) satellite, launched by the National Aeronautics and
Space Administration (NASA), became available for capturing
nighttime lights. The NPP-VIIRS nighttime light remote sensing
imagery provides daily raw data, monthly composite data, and
some annual composite data, and these products have already
eliminated the effects of cloud cover, lightning, and moonlight.
The NPP-VIIRS/DNB data were obtained from the Earth
Observation Group at the Payne Institute for Public Policy,
Colorado School of Mines (https://eogdata.mines.edu/
products/vnl/), with a temporal coverage from April 2012 to
December 2020. Nighttime light intensity (NTL) was used in this
study to represent the intensity of anthropogenic activities.

2.3 Methods

This study develops a multi-timescale effects model (Figure 2) to
quantify the influence of climatic factors and anthropogenic activity
on vegetation change across multiple temporal scales within the
GBA. The analytical framework comprises the following: First, trend
analysis of vegetation, anthropogenic activity, and climate factor
time series is conducted using the Theil-Sen median trend estimator
and the Mann-Kendall test. Second, Empirical Mode
Decomposition (EMD) is applied to extract multi-temporal scale
characteristics from vegetation change, anthropogenic activity
intensity, and climatic factors. Subsequently, partial correlation
analysis is performed to assess the relationships between
vegetation change at different temporal scales and both climatic
factors and anthropogenic activity. Finally, the Residual Trend
(RESTREND) method is utilized to quantify the relative
contributions of climate factors and anthropogenic activity to
vegetation change across each temporal scale. Adopting a multi-
temporal perspective, this research aims to provide an in-depth
analysis of vegetation dynamics and their underlying drivers, with
the goal of providing a scientific basis for refining existing ecosystem
models and enabling fine-grained temporal monitoring of human-
environment interactions in rapidly urbanizing regions.

2.3.1 Mann-Kendall trend analysis
The temporal trend of a time series was calculated using a

combination of the Theil-Sen median trend estimator and the
Mann-Kendall test. The Theil-Sen median trend estimator, which
can reduce the influence of outliers, is widely used for dynamic
detection in long time series. The Mann-Kendall test is employed to
determine the significance of the trend. The calculation equation for
the Theil-Sen median trend estimator is as follows (Li et al., 2021a):

β � median
xj − xi

j − i
( ),∀j> i (1)

In the equation Equation 1, β represents the rate of change;median
is the median value of a dataset; and xi and xj are the observed values
for the ith month and the jth month, respectively. β > 0 indicates an
increasing trend, and β < 0 indicates a decreasing trend.

The significance of the trend change was calculated using the
Mann-Kendall non-parametric statistical test. The calculation
process of the Mann-Kendall trend test is as follows:

For a time series (x1, x2, . . . , xn ), the test statistic for the trend
test is:

τ � ∑n−1
i�1

∑n
j�i+1

sign xj − xi( ),∀j> i (2)

sign xj − xi( ) � 1, if xj − xi > 0
0, if xj − xi � 0
−1, if xj − xi < 0

⎧⎪⎨⎪⎩ (3)

In the Equations 2, 3 n is the length of the time series, and xi and
xj are the observed values for the ith month and the jth month,
respectively. When the observed values are independent and
identically distributed, the calculation of the variance, as given in
Equation 4:

Var τ( ) � n p n − 1( ) p 2n − 5( )
18

(4)

The formula for calculating the Mann-Kendall significance (Z),
as given in Equation 5:

Z �

τ − 1������
Var τ( )√ , if τ > 0

0, if τ � 0

τ + 1������
Var τ( )√ , if τ < 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(5)

A trend is considered significant when |Z|≥ 1.96.
The combination of the Theil-Sen median trend estimator and the

Mann-Kendall test can effectively reflect the spatial distribution
characteristics of the change trends in vegetation, anthropogenic
activities, and climate factors. Since pixels with a rate of change
strictly equal to 0 are essentially nonexistent, pixels with a rate of
change between −0.0005 and 0.0005 were classified as stable, pixels with
a rate of change less than −0.0005 were classified as degraded areas, and
pixels with a rate of change greater than 0.0005 were classified as
improved areas. The results of the Mann-Kendall test for significance at
the 0.05 confidence level were classified into significant change
(|Z|≥ 1.96) and non-significant change (|Z|≤ 1.96).

2.3.2 Dynamic Time Warping method
Dynamic Time Warping (DTW) is an algorithm used to

measure the similarity between two time series. The DTW
algorithm can achieve high classification accuracy when the
number of samples or the length of the time series of satellite
imagery is reduced, and it is widely applied in land use/cover
mapping and farmland detection.

With the advancement of the DTW algorithm in the automatic
identification and shape matching of time series of different lengths,
the DTW algorithm has been widely applied to analyze the
consistency of time series. The calculation formula is as follows
(Csillik et al., 2019):
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For time series of observed values A and B with lengths of n and
m, respectively, construct an n × m matrix:

A � a1, a2, . . . , ai, . . . , an
B � b1, b2, . . . , bj, . . . , bm

{ (6)

In the Equation 6, the (ith, jth) element is the Euclidean distance
between points Ai and Bj. This represents the similarity between
every point in sequence A and every point in sequence B, where a
smaller distance indicates a higher similarity. The Dynamic
Programming algorithm seeks a path through a set of points in
the matrix grid. These points are the aligned points used in the
calculation of the cumulative distance between the two sequences.
This warping path W is calculated as Equations 7, 8:

W � �ω1, �ω2, . . . , �ωk max n,m( )≤ k≤ n +m + 1 (7)

�ωk �
��������
ai − bj( )2√

(8)

The path needs to satisfy three constraints.

(1) Boundary Condition: �ω1 � (1, 1), �ωk � (m, n), meaning that
the selected path must start at (1,1) and end at point (m, n).

(2) Continuity: The path cannot skip over a point for matching,
but must align with points adjacent to itself. That is, if
�ω(k − 1) � (a′, b′), then �ωk � (a, b) needs to satisfy (a −
a′)≤ 1 and (b − b′)≤ 1.

(3) Monotonicity: If �ω(k − 1) � (a′, b′), then �ωk � (a, b) needs
to satisfy 0≤ (a − a′) and 0≤ (b − b′).

The optimal matching path between the two sequences is found
in the distance matrix as the path that minimizes the accumulated
distance between sequences A and B:

DTW A, B( ) � 1
K

× min ∑k
1

Wk
⎛⎝ ⎞⎠ � 1

K
× γK � γ i, j( )

K
(9)

In the Equation 9, γ(i, j) is the accumulated distance. It starts
by matching the two time series, A and B, from point (1,1), and
accumulates the distance corresponding to each point passed
through until reaching the end point (n, m). This accumulated
distance represents the similarity between sequences A and B.
The denominator K is used to compensate for different
warping paths.

The accumulated distance γ(i, j) is the sum of the distance
d(Ai, Bj ) of the current grid point (Ai, Bj ) and the minimum
accumulated distance of the neighboring elements that can reach
this grid point. This is derived using the following recursive function
as Equation 10:

γ i, j( ) � d Ai, Bj( ) +min γ i − 1, j − 1( ), γ i − 1, j( ), γ i, j − 1( ){ }
(10)

Given the classification advantages of the DTW algorithm,
anthropogenic activity, climatic factors, and vegetation change
can be flexibly analyzed using DTW similarity measures within
urban areas exhibiting natural phenological variability. Both
anthropogenic activity and climatic factors represent major
influences on vegetation change. The heterogeneity in NDVI
induced by anthropogenic activity is examined based on the

similarity of NDVI time series corresponding to varying levels
of nighttime light intensity. In parallel, the heterogeneity in
vegetation change arising from climatic factor variations is
assessed by calculating the similarity of NDVI time series
associated with varying magnitudes of LST, precipitation, and
sunshine duration.

2.3.3 Empirical mode decomposition method
This study analyzed the change characteristics of vegetation,

climate factors, and anthropogenic activities at the pixel scale across
multiple temporal scales using the Empirical Mode Decomposition
(EMD) method.

The EMDmethod decomposes the original time series dataX(t)
into n components and a residual component, i.e., Intrinsic Mode
Functions (IMFi, i � 1, 2, . . . , n). Each IMF component and the
residual component represent the change characteristics and long-
term trends of the time series at a specific temporal scale. The
specific decomposition process of empirical mode decomposition is
as follows (Zhang et al., 2020):

(1) Identify all the extrema points of the original time series signal
h(t) from the study data source.

(2) Fit the upper and lower envelopes of these extrema points
using spline interpolation. Calculate the mean of these
envelopes, denoted as s(t). Then, subtract s(t) from the
original time series signal h(t) to obtain r(t).

(3) Determine whether r(t) meets the criteria to be classified as
an Intrinsic Mode Function.

(4) If r(t) is not an Intrinsic Mode Function, replace h(t) with
r(t) and repeat steps (1) through (3) iteratively until r(t)
satisfies the conditions to be considered an Intrinsic Mode
Function. This process yields an IMF, denoted as xi(t). Each
IMF then represents oscillatory variations in observed values
within a specific frequency band.

(5) Once an IMF is obtained, subtract this mode function from
the original time series signal. Repeat steps (1) through (4) to
continuously obtain the next IMF until the remaining
sequence after subtraction is either monotonic or constant.

Based on this procedure, the original time series is decomposed
using EMD into several IMFs and a residual component, as given in
Equation 11:

h t( ) � ∑n
i�1
xi t( ) + r (11)

where n is the number of decomposed IMFs, xi(t) epresents each of
the decomposed IMF signals, and r represents the
residual component.

The average period of the ith IMF component is calculated by
dividing the length of the time series by the number of peaks (local
maximum). To evaluate the relative importance of each IMF and the
residual component, the variance contribution is calculated:

Vi � Vr xi( )/ ∑n
i�1
Vr xi( ) + Vr r( )⎡⎣ ⎤⎦ (12)

Vr � Vr r( )/ ∑n
i�1
Vr xi( ) + Vr r( )⎡⎣ ⎤⎦ (13)
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In the Equations 12, 13 Vr(xi) and Vr(r) represent the variance
of the ith IMF component and the residual component, respectively.

2.3.4 Partial correlation analysis
Climate factors, anthropogenic activities, and vegetation change

are interrelated; altering one element affects the others. Partial
correlation analysis calculates the correlation between a
dependent variable and an independent variable while excluding
the influence of related variables on the dependent variable. The
magnitude of the partial correlation coefficient reflects the influence
of each factor on the dependent variable, with other factors acting as
control variables. Second-order partial correlation coefficients are
based on correlation analysis and first-order partial correlation
analysis, and third-order partial correlation coefficients are based
on correlation analysis, first-order partial correlation analysis, and
second-order partial correlation analysis. The calculation formula
for partial correlation analysis is as follows (Xu et al., 2023):

Rxy �
∑n
i�1

xi − �x( ) yi − �y( )���������∑n
i�1

xi − �x( )2
√ ����������∑n

i�1
yi − �y( )2√ (14)

In the Equation 14, Rxy represents the correlation coefficient; xi

and yi represent the values of variables x and y in the ith period,
respectively; �x and �y represent the average values of variables x and
y, respectively; and n represents the sample size. The range of Rxy

is from −1 to 1.
The equation for calculating the first-order partial correlation is

as follows:

Rxy,1 � Rxy − Rx1Ry1�����������������
1 − Rx1

2( ) 1 − Ry1
2( )√ (15)

In the Equation 15, Rxy,1 represents the partial correlation
coefficient between variables x and y when variable one is held
constant, and Rxy, Rx1, Ry1 represent the correlation coefficients
between variables x and y, x and 1, and y and 1, respectively.

The equation for calculating the second-order partial
correlation, as given in Equation 16:

rxy.12 � rxy.1 − rx2.1ry2.1������������������
1 − rx2.12( ) 1 − ry2.12( )√ (16)

where rxy.12 is the second-order partial correlation coefficient; x
and y represent the elements for which the partial correlation
coefficient is calculated; one and two represent the control
variables; and rxy.1, rx2.1, ry2.1 represent first-order partial
correlation coefficients.

The equation for calculating the third-order partial correlation,
as given in Equation 17:

r12.345 � r12.35 − r14.35r24.35�������������������
1 − r14.352( ) 1 − r24.352( )√ (17)

where r12.345 represents the third-order partial correlation coefficient
between vegetation and a certain variable, after controlling for three
other variables sequentially; and r12.35, r14.35, r24.35 represent the
corresponding second-order partial correlation coefficients.

2.3.5 Residual trend method
Vegetation change is influenced by both climate factors and

anthropogenic activities. The RESTREND analyzes the relative roles
of climate factors and anthropogenic activities on vegetation change
by establishing a relationship model between vegetation change and
climate factors. The RESTRENDmethod analyzes the residual trend
between the observed NDVI values (NDVIobs)and the predicted
NDVI values (NDVIpre)by using climate factors (precipitation,
LST, and sunshine duration) as explanatory variables in a
regression model. The basic principle of the RESTREND method
is as follows (Qi et al., 2019):

Establish a regression model between NDVIpre and
climate factors:

NDVIprei,j � b0 + b1Pi,j + b2Ti,j + b3Si,j (18)

In the equation, Pi,j, Ti,j, Si,j represent the monthly total
precipitation, land surface temperature, and monthly total
sunshine duration at spatial location (i, j), respectively, and
b0, b1, b2, b3 are the coefficients determined by the least
squares method.

Based on the results of Equation 18, the residual NDVIres
between NDVIobs and NDVIpre is calculated. The change trend
of NDVIpre is used to measure the impact of climate factor changes
on vegetation change, and the change trend of NDVIres is used to
represent the impact of anthropogenic activities on vegetation
change, thus extracting the influences of climate factors and
anthropogenic activities on vegetation change. Subsequently, the
Sen’s slope method was used to calculate the relative roles of climate
factors and anthropogenic activities in vegetation change.

3 Results

3.1 Change trend analysis

The combination of the Theil-Sen median trend estimator and
the Mann-Kendall test can effectively reflect the temporal trends of
vegetation, anthropogenic activities, and climate factors in GBA.

3.1.1 Vegetation change trend
By overlaying the classification results of the Theil-Sen median

trend estimator and the Mann-Kendall test, the change trends of
NDVI at the pixel scale were obtained, as shown in Figure 3. The
proportions of the five change types were as follows: significant
increase: 17.36%, slight increase: 46.23%, no change: 7.41%, slight
decrease: 24.09%, and significant decrease: 4.9%. The area of land
with improved vegetation was significantly larger than the area with
degraded vegetation. The GBA experienced widespread vegetation
greening during the study period, with the total area of significantly
improved vegetation accounting for 17.36% and the total area of
slightly improved vegetation accounting for 46.23%. Areas with
significant vegetation improvement were mainly distributed in
Zhaoqing, Huizhou, and Jiangmen. The cities with the highest
proportions of improved vegetation area were Zhaoqing, Hong
Kong, and Shenzhen, with percentages of 76.89%, 72.9%, and
71.23%, respectively.
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FIGURE 3
Spatial distribution of NDVI change trend.

FIGURE 4
Spatial distribution of NTL change trend.
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The total area of vegetation degradation in the GBA reached
28.99%, with relatively significant degradation in Zhongshan,
Dongguan, and Guangzhou, the total area of vegetation
degradation accounted for 46.99%, 43.21% and 41.31%,
respectively. These three cities have experienced more rapid
urbanization and significant expansion of built-up areas
compared to other cities. This rapid urbanization process has led
to noticeable degradation of surface vegetation cover.

3.1.2 Trend of anthropogenic activity intensity
The spatial distribution of the change trends in anthropogenic

activity intensity is shown in Figure 4. The proportions of the five
change types were as follows: significant increase: 51.47%, slight
increase: 8.77%, no change: 6.69%, slight decrease: 2.43%, and
significant decrease: 0.71%. The proportions of areas with
increased anthropogenic activity intensity were relatively lower in
the three cities of Zhaoqing, Huizhou, and Jiangmen.

3.1.3 Trends of climate factors
The spatial distribution of LST change trends is shown in

Figure 5. The proportions of the five change types were as
follows: significant increase: 34%, slight increase: 53.42%, no
change: 5.29%, slight decrease: 6.8%, and significant decrease:
0.48%. With the rapid urbanization of the GBA, the LST in
various cities also showed varying degrees of increase. Dongguan,
Zhongshan, Zhuhai, and Shenzhen had relatively high proportions
of areas with increased LST, with the percentages of significantly
increased areas being 80.11%, 71.49%, 53.77%, and 52.08%,
respectively. Jiangmen had the lowest proportion of areas with
significantly increased LST, at 19.15%.

3.2 Similarity analysis

The heterogeneity of NDVI induced by anthropogenic activity
was explored, as shown in Figure 6, the DTW distance of NDVI time
series exhibited a clear increasing trend with the increase in the
difference between nighttime light intensities, indicating that the
differences in NDVI became larger. As shown in Figure 7, with the
increase in the difference between climate factors, the DTW
distances of the NDVI time series corresponding to the three
climate factors also showed an increasing trend. Among them,
the DTW distance corresponding to different sunshine durations
was relatively lower.

3.3 Multi-time scale characteristics analysis

3.3.1 Multi-time scale characteristics of
vegetation change

Based on the EMD method, multi-temporal scale analysis was
performed on the NDVI time series at the pixel scale from April
2012 to December 2020. The mean period of each IMF and the mean
variance contribution of each IMF and the residual component for
all pixels were calculated as the change period and variance
contribution of vegetation at different temporal scales,
respectively. The average periods and average variance
contributions are shown in Table 1, and the spatial distribution
of variance contributions to vegetation change at different temporal
scales is shown in Figure 8.

As shown in Table 1, the vegetation changes in the GBA are
mainly characterized by periods of 10 months, 36 months, and

FIGURE 5
Spatial distribution of LST change trend.
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86 months. The increasing trend in residual component indicate an
overall increase in vegetation cover, which is consistent with the
Mann-Kendall trend. Based on the decomposition of vegetation
change time series, the multi-temporal scales of vegetation change in
the GBA are categorized as annual (1-year), interannual (3-year),
sub-decadal (7-year), and long-term trend.

Figures 8A–D present the variance contributions of the 1-year,
3-year, 7-year temporal scales and the long-term trend to vegetation
change in the GBA, respectively. For the 1-year temporal scale, the
variance contributions of most cities are below 50%, except for a
small region in Zhaoqing. Regions where the 3-year variance
contribution exceeds 50% account for 15% of the GBA and are
mainly distributed in Huizhou, Guangzhou, and Zhaoqing. The 7-
year variance contribution exceeds 50% in 10.3% of the study area,
primarily in Huizhou and Guangzhou. Long-term trends account
for over 50% variance in 17.2% of the GBA, with a higher prevalence
in Zhaoqing, Jiangmen, and Zhongshan.

3.3.2 Multi-time scale characteristics of climate
factors and anthropogenic activity

Table 2 indicates that the dominant periodicities for
anthropogenic activity intensity in the GBA are 12 months,
36 months, and 86 months. The residual components of
anthropogenic activity intensity exhibit an increasing trend, with
the variance contribution reaching 62.2%, demonstrating a marked
increase in anthropogenic activity intensity, which is consistent with
the Mann-Kendall trend analysis. The multitemporal scales of
anthropogenic activity intensity change in the GBA are then
categorized as 1-year, 3-year, 7-year and long-term trends to
facilitate the analysis of their impact upon vegetation change.

Figures 9A–D present the variance contributions of the 1-year,
3-year, and 7-year temporal scales, and the long-term trend to

anthropogenic activity intensity in the GBA, respectively. The
variance contributions of the 1-year, 3-year, and 7-year temporal
scales were generally below 30%, indicating minimal fluctuation in
anthropogenic activity intensity at shorter temporal scales. The
regions with variance contributions greater than 50% in the long-
term trend accounted for 65%, indicating that most regions are
dominated by long-term trends in anthropogenic activity intensity,
and the long-term trend of anthropogenic activity intensity has a
significant impact on vegetation change.

As shown in Table 3, the LST is mainly characterized by
10 months, 36 months, and 79 months periodicities, with the
residual component exhibiting an increasing trend and a variance
contribution of 25.32%, indicating an increase in LST. This study
summarized the multi-temporal scales of LST change as 1-year, 3-
year, 7-year temporal scale, and a long-term trend.

Figures 10A–D respectively show the variance contributions of
the 1-year, 3-year, and 7-year temporal scales, and the long-term
trend to LST change in the GBA. The 1-year and 7-year temporal
scales generally have variance contributions to LST that are less than
50%. The regions with variance contributions greater than 50% at
the 3-year temporal scale accounted for 25.26%, Zhaoqing,
Guangzhou, and Huizhou are dominated by 3-year LST changes.
The regions with variance contributions greater than 50% in the
long-term trend accounted for 12.46%, mainly distributed in the
core urban areas, indicating that LST changes in the core urban areas
are dominated by long-term trends.

According to Table 3, multi-temporal scales of precipitation and
sunshine duration changes are summarized as 1-year, 3-year, and 7-
year temporal scales, and a long-term trend. The variance
contribution of the long-term trend to precipitation was 25.49%,
and the precipitation showed a decreasing trend, and there was no
clear long-term trend in sunshine duration.

FIGURE 6
DTW distance of NDVI sequence corresponding to different NTL intensity.
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FIGURE 7
DTW distance of NDVI sequence corresponding to climatic factors (A) LST, (B) precipi-tation, (C) sunshine duration.
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TABLE 1 Mean period and variance contribution of vegetation change at different time scales.

Description IMF1 IMF2 IMF3 IMF4 IMF5 Residual component

period 10 36 86 100 100

variance contribution 19.15% 30.05% 20.59% 1.82% 0 28.39%

FIGURE 8
Variance contribution of different time scales to vegetation change (A) 1-year, (B) 3-year, (C) 7-year, (D) long-term trend.

TABLE 2 Mean period and variance contribution of anthropogenic activity intensity at different time scales.

Description IMF1 IMF2 IMF3 IMF4 IMF5 Residual component

period 12 36 86 100 100

variance contribution 11.91% 16.42% 8.98% 0.49% 0 62.2%
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FIGURE 9
Variance contribution of different time scales to anthropogenic activity intensity (A) 1-year, (B) 3-year, (C) 7-year, (D) long-term trend.

TABLE 3 Mean period and variance contribution of climate factors at different time scales.

Climate factors Description IMF1 IMF2 IMF3 IMF4 IMF5 Residual component

LST period 10 36 79 92 88

variance contribution 17.3% 36.48% 19.75% 1.16% 0 25.32%

precipitation period 10 36 84 99 99

variance contribution 22.85% 34.51% 15.92% 1.22% 0 25.49%

sunshine
duration

period 10 34 84 84 72

variance contribution 36.86% 30.02% 19.07% 3.54% 0 10.52%
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3.4 Effects of climatic factors and
anthropogenic activity on vegetation

3.4.1 Correlation between anthropogenic activity
intensity and vegetation change

Using the influence of climate factors (LST, precipitation, and
sunshine duration) on vegetation change as control variables, a
pixel-by-pixel partial correlation analysis was performed on the
relationship between vegetation change and anthropogenic activity
intensity at 1-year, 3-year, and 7-year temporal scales, as well as the
long-term trend and overall values. Based on the spatial distribution
of the partial correlation coefficients, the spatial heterogeneity of the
correlation between vegetation change and anthropogenic activity

intensity in the GBA at different temporal scales was analyzed. The
area percentages of different correlations are shown in Table 4.

Figures 11A–E respectively show the spatial distribution of the
partial correlation between vegetation change and anthropogenic activity
intensity in the GBA at the 1-year, 3-year, and 7-year temporal scales, the
long-term trend, and the overall values. At the 1-year temporal scale in the
GBA, the relationship between vegetation change and anthropogenic
activity intensity was not significant in 54.14% of the regions, while
22.35% and 23.51% of the regions showed significant negative or positive
correlations, respectively. Pixels with negative and positive correlations
were evenly distributed in the GBA. The areas with significant
correlations between vegetation change and anthropogenic activity
intensity increased at the 3-year and 7-year temporal scales. The

FIGURE 10
Variance contribution of different time scales to LST (A) 1-year, (B) 3-year, (C) 7-year, (D) long-term trend.

TABLE 4 The proportion of correlation between vegetation change and anthropogenic activity intensity at different time scales.

Correlation IMF1 IMF2 IMF3 Residual component Raw values

R< 0, p< 0.05 22.35 31.97 41.34 24.96 32.87

R< 0, p> 0.05 26.58 18.87 10.54 26.84 16.94

R> 0, p< 0.05 23.51 30.30 37.58 22.25 32.45

R> 0, p> 0.05 27.56 18.86 10.54 25.95 17.74
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contribution of the long-term trend to anthropogenic activity intensity
was 62.2%, significantly greater than that of other temporal scales. The
partial correlation analysis for the long-term trend showed a significant
correlation between vegetation change and anthropogenic activity
intensity in 47.21% of the regions, with negative correlations mainly
distributed inGuangzhou,Huizhou, Zhaoqing, and Jiangmen. The partial
correlation analysis for the overall values showed a significant correlation
between vegetation change and anthropogenic activity intensity in 65.32%
of the regions in theGBA,with negative correlationsmainly distributed in
the core urban areas of each city, indicating that urbanization
development has a negative impact on vegetation.

3.4.2 Correlation between climatic factors and
vegetation change

To reveal the spatial heterogeneity of the correlation between
vegetation change and LST change at different temporal scales,
partial correlation analyses were performed pixel-by-pixel on the
relationship between vegetation change and LST at 1-year, 3-year,
and 7-year temporal scales, the long-term trend, and the overall

values, using the influence of anthropogenic activity intensity,
precipitation, and sunshine duration on vegetation change as control
variables. Similarly, the partial correlations between vegetation change
and precipitation, between vegetation change and sunshine duration at
different temporal scales were analyzed.

As shown in Table 5 and Figures 12A–E, at the 1-year, 3-year, and
7-year temporal scales, the change trends of regions with significant
correlations between vegetation change and LSTwere similar to those of
regions with significant correlations between vegetation change and
anthropogenic activity intensity. For the overall values, the relationship
between vegetation change and LSTwas not significant in 37.09% of the
regions. The regions with significant negative correlations between
vegetation change and LST accounted for 30.24%, mainly distributed
in Zhaoqing, Jiangmen, and Huizhou. The regions with significant
positive correlations between vegetation change and LST reached
32.67%, concentrated in the built-up areas of Guangzhou, Foshan,
Zhongshan, Zhuhai, Hong Kong, Shenzhen, and Dongguan. The GBA
is located in a humid region with abundant precipitation. The increase
in temperature has a small impact on the available water for vegetation,

TABLE 5 The proportion of correlation between vegetation change and LST at different time scales.

Correlation IMF1 IMF2 IMF3 Residual component Raw values

R< 0, p< 0.05 17.84 28.99 37.62 12.70 30.24

R< 0, p> 0.05 22.25 18.05 10.58 38.97 18.39

R> 0, p< 0.05 33.14 34.02 41.28 10.85 32.67

R> 0, p> 0.05 26.77 18.95 10.52 37.48 18.70

FIGURE 11
Spatial distribution of partial correlation between vegetation change and anthropogenic activity intensity at different time scales (A) 1-year, (B) 3-
year, (C) 7-year, (D) long-term trend, (E) overall values.
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but it can promote vegetation photosynthesis, and the increase in land
surface temperature promotes vegetation growth.

As shown in Table 6 and Figures 13A–E, the correlations
between vegetation change and precipitation in the GBA were
significantly correlated in most regions at the 3-year and 7-year
temporal scales and the long-term trend. In the built-up areas of
Guangzhou, Foshan, Jiangmen, Zhongshan, and Dongguan, an
increase in precipitation promoted vegetation growth.

As shown in Table 7 and Figures 14A–E, for the overall values, an
increase in sunshine duration promoted vegetation growth in the built-
up areas of Guangzhou, Foshan, Zhongshan,HongKong, and Jiangmen.

3.5 The contribution of climatic factors and
anthropogenic activity to vegetation change

The RESTREND method was used to analyze the response of
vegetation change to climate factors and anthropogenic activities in
the GBA. Areas with extremely low proportions of impervious

surfaces, where vegetation change is only affected by climate
factors and not by anthropogenic activities, were randomly
selected. The coefficients of a multiple regression model were
calculated as the coefficients of the RESTREND model. Based on
these coefficients, the predicted values of NDVI were calculated, and
the differences between the predicted and observed values were
compared. The IMF1 of NDVI was used as the dependent variable in
the RESTREND model, and the IMF1 of LST, precipitation, and
sunshine duration were used as independent variables. Based on this
method, the relative importance of climate factors and
anthropogenic activities on vegetation change was determined at
the 1-year temporal scale. Similarly, the relative importance of
climate factors and anthropogenic activities at the 3-year and 7-
year temporal scales and the long-term trend were determined.
When the relative contribution of climate factors to vegetation
change was greater than 50%, vegetation change was considered
to be dominated by climate factors. When the relative contribution
of climate factors to vegetation change was less than 50%, vegetation
change was considered to be dominated by anthropogenic activities.

FIGURE 12
Spatial distribution of partial correlation between vegetation change and LST at different time scales (A) 1-year, (B) 3-year, (C) 7-year, (D) long-term
trend, (E) overall values.

TABLE 6 The proportion of correlation between vegetation change and precipitation at different time scales.

Correlation IMF1 IMF2 IMF3 Residual component Raw values

R< 0, p< 0.05 27.81 38.88 36.87 30.07 42.60

R< 0, p> 0.05 26.36 18.17 11.09 24.89 23.23

R> 0, p< 0.05 21.41 26.50 41.11 22.23 16.14

R> 0, p> 0.05 24.43 16.45 10.93 22.80 18.03
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As shown in Figure 15, at the 1-year, 3-year, and 7-year temporal
scales, the relative contribution of the predicted NDVI values,
i.e., vegetation changes induced by climate factors, was low in
most regions of the GBA. The regions with a contribution
greater than 50% accounted for 23.33%, 22.50%, and 18.79%,
respectively, and these regions did not exhibit a clustered
distribution, indicating that vegetation change was mainly driven
by anthropogenic activities at short temporal scales, and the impact
of urbanization on vegetation was significant. The GBA has
experienced rapid urbanization in the past decade, with a
significant expansion of high-intensity anthropogenic activity
areas, which has significantly affected the distribution of
vegetation. For the long-term trend, the regions with a relative
contribution of predicted NDVI values greater than 50% accounted
for 81.81%, and the regions with a contribution greater than 75%
accounted for 69.85%, indicating that climate factors played a
dominant role in vegetation change. The regions with a relative
contribution of predicted NDVI values less than 50% in the long-
term trend, i.e., where anthropogenic activities played a dominant

role in vegetation change, were mainly distributed in the core urban
areas. Among them, the regions with a contribution less than 25%
accounted for 10.54%, indicating that with the expansion of the
temporal scale, climate factors played a dominant role in vegetation
change in most regions of the GBA in the long-term trend. However,
in the core urban areas that were significantly affected by
urbanization, vegetation change was determined by the intensity
of anthropogenic activities.

4 Discussion

4.1 Mapping anthropogenic activity from
nighttime lights

Since 1992, NTL data have been extensively utilized in
urbanization research, characterizing the intensity and extent of
anthropogenic activity from a nocturnal perspective and
demonstrating itself as a reliable indicator (Bennett and Smith,

FIGURE 13
Spatial distribution of partial correlation between vegetation change and precipitation at different time scales (A) 1-year, (B) 3-year, (C) 7-year, (D)
long-term trend, (E) overall values.

TABLE 7 The proportion of correlation between vegetation change and sunshine duration at different time scales.

Correlation IMF1 IMF2 IMF3 Residual component Raw values

R< 0, p< 0.05 22.33 27.42 41.04 10.49 31.04

R< 0, p> 0.05 27.24 20.20 11.84 38.89 23.53

R> 0, p< 0.05 25.96 31.66 35.39 11.79 23.37

R> 0, p> 0.05 24.47 20.72 11.73 38.82 22.07
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2017). With the proliferation of NTL sensors, algorithms, and data
products, NTL data are poised to provide enhanced insight into the
socio-economic and environmental changes associated with
urbanization. However, limitations persist in NTL-based urban
applications. For example, scale effects introduce uncertainties
across both spatial and temporal dimensions; differing spatial
resolutions can lead to significant discrepancies in the spatial
patterns identified in research findings, while varying temporal
scales (e.g., annual, monthly, daily) can elicit different NTL
patterns and outcomes. Beyond anthropogenic activity influences,
NTL variations are also affected by angular effects, seasonal changes,
transient light sources, cloud-mask failures, and noise. This can
result in inconsistencies between NTL intensity and actual
anthropogenic activity intensity (Zhang R. et al., 2023), such as
in some rural areas or urban peripheries (Goldblatt et al., 2018).
Furthermore, anthropogenic activity mapping presents a complex
challenge encompassing factors like population, infrastructure, and
land cover. To improve the accuracy of NTL data in urban
applications, it is essential to integrate them with geospatial data
and other multi-source remote sensing data.

Electricity consumption and urban development are positively
correlated; increased electricity consumption primarily stems from
sustainable economic growth, urban population, and expanded
construction land. Taking Beijing, Shanghai, and Guangzhou as
examples, high levels of anthropogenic activity and power
consumption frequently coincide (Xu, 2023). Based on this
observation, this study utilizes electricity consumption data as a
secondary means of validating the characteristics of anthropogenic
activity intensity. As shown in Figure 16, Guangzhou and Shenzhen

exhibit the highest electricity consumption in the Pearl River Delta
region, followed by Foshan and Dongguan. Although Huizhou’s
electricity consumption is lower, its average annual growth rate is
high (Figure 4), indicating a widespread distribution of areas
experiencing increasing anthropogenic activity intensity. These
results align with findings based on NTL intensity, providing
indirect confirmation of the reliability of NTL intensity as a
proxy for anthropogenic activity intensity.

4.2 Impact of climate change on
vegetation dynamics

This study delved into the impact of climate change on
vegetation dynamics in the GBA. Climate change is a key factor
influencing vegetation dynamics. During the study period, land
surface temperatures in the GBA generally increased, with the
percentages of significantly increased areas in Dongguan and
Zhongshan reaching 80.11% and 71.49%, respectively, while the
long-term trend of precipitation showed a decrease, and sunshine
duration showed no significant long-term changes. The greater the
differences in land surface temperature, precipitation, and sunshine
duration, the greater the differences in NDVI time series (Mondal
and Jeganathan, 2018; Ding et al., 2023), which together constitute a
scenario in which climate change has a complex impact on
vegetation dynamics in the GBA.

The results showed that the impact of climate factors on
vegetation in the GBA exhibited spatial heterogeneity, which is
similar to the results of previous studies in northern China, the

FIGURE 14
Spatial distribution of partial correlation between vegetation change and sunshine duration at different time scales (A) 1-year, (B) 3-year, (C) 7-year,
(D) long-term trend, (E) overall values.
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Yangtze and Yellow River basins, the Qinghai-Tibet Plateau, and
West Bengal, India (Yuan et al., 2015; Banerjee et al., 2024; Xu et al.,
2023). We found that the positive correlation between LST and
vegetation was more pronounced in areas with higher urbanization
levels, which is consistent with some studies that show rising
temperatures cause earlier spring warming and delayed autumn
cooling, extending the growing season and increasing the leaf area
index, resulting in regional greening (Li et al., 2022). In contrast,
Zhaoqing, Jiangmen, and Huizhou exhibiting a negative correlation
between LST and vegetation were more common, where
urbanization levels were relatively lower, increased temperatures
can lead to enhanced vegetation transpiration, exacerbating water
stress and inhibiting vegetation growth.

The decrease of precipitation have a limiting effect on vegetation
growth in the long-term scale, which is consistent with the
conclusions of relevant studies that indicate negative impacts of
low precipitation and aridification on vegetation (Tuo et al., 2024).

In Guangzhou, Foshan, and Zhongshan, precipitation and sunshine
duration both showed a positive correlation with vegetation, which
is similar to the research results from northern China, the Hengduan
Mountains, the Qinghai-Tibet Plateau, and the Central Yunnan
Urban Agglomeration (Chen et al., 2020; Chen et al., 2021; Zhang
et al., 2019; He et al., 2024). From a mechanistic perspective, climate
factors directly influence plant physiological processes such as
photosynthesis, respiration, and transpiration, thereby affecting
vegetation growth and distribution. Different vegetation types
also exhibit varying sensitivities to these influences (Ren Y. et al.,
2023), which may be the cause of spatial differences.

In the short-term scales, vegetation change may be driven by
anthropogenic activities, but in the long-term trends, climate factors
gradually become dominant. Some studies also point out that
climate change is the main driver of vegetation change over long
periods (Ge et al., 2021; Wang J. et al., 2024). This further
emphasizes the key role of climate change in shaping vegetation

FIGURE 15
Spatial distribution of relative contributions of climate factors to vegetation change (A) 1-year, (B) 3-year, (C) 7-year, (D) long-term trends.
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dynamics, and the long-term impact of climate change needs to be
fully considered when formulating ecological environment
protection strategies.

4.3 Impact of anthropogenic activity on
vegetation dynamics

From a spatial distribution perspective, the increase in
anthropogenic activity intensity was mainly concentrated in the
core urban areas, such as Guangzhou, Shenzhen, and Foshan, where
the rate of urban expansion was faster. Zhaoqing, Huizhou, and
Jiangmen showed relatively lower proportions of increased
anthropogenic activity intensity, indicating that there is obvious
spatial heterogeneity in the urbanization process within the GBA,
which is similar to the results of research in many regions (Gao et al.,
2024; Fan et al., 2022). Although the GBA generally exhibited a
greening trend, with vegetation improving in 63.59% of the region,
the problem of vegetation degradation remained prominent,
especially in areas such as Zhongshan, Dongguan, and
Guangzhou, where the total area of degradation accounted for as
much as 28.99%. This indicates that rapid urbanization has a
negative impact on vegetation cover (Yu et al., 2009; Ruas et al.,
2022; Zhang et al., 2023a).

A significant negative correlation between anthropogenic
activity intensity and vegetation change existed in some regions,
particularly evident in the core urban areas (Gao et al., 2022; Zheng
et al., 2021). Zhongshan, Dongguan, and Guangzhou experienced
rapid expansion of impervious surfaces during the study period.
Anthropogenic activity intensity increased significantly, and the
proportion of vegetation degradation was relatively high,
indicating that the urbanization process caused significant
degradation of vegetation cover, which is similar to the research
results in the GBA and the Lanzhou-Xining urban agglomeration
(Wu et al., 2022; Wang J. et al., 2024). The results of the partial

correlation analysis further confirmed this: as the temporal scale
increased, the areas with significant correlations between vegetation
change and anthropogenic activity intensity increased. In the long-
term trend, anthropogenic activity intensity and vegetation change
exhibited a significant negative correlation, particularly in the core
urban areas, indicating that the urbanization development had a
negative impact on vegetation. This is consistent with previous
research that pointed out that urban expansion leads to a
decrease in vegetation cover (Zou et al., 2025; Zhang et al.,
2023b; Yang et al., 2021). The urbanization process leads to an
increase in impervious areas and a decrease in green space areas,
which directly results in a reduction of vegetation cover. At the same
time, urbanization also changes surface hydrological processes and
energy balance, further inhibiting vegetation growth (White and
Greer, 2006; Zhou et al., 2021). For example, the dense distribution
of buildings and the hardening of roads may lead to a decrease in soil
moisture content, which is not conducive to vegetation growth.
However, some studies have shown that anthropogenic activities
promote vegetation cover, with ecological restoration projects,
afforestation activities, and decreased population density
becoming important factors for increased vegetation cover (Liu
et al., 2023; Jin et al., 2020; Shi et al., 2020; Wang J. et al., 2024).

The impact of anthropogenic activities on vegetation varies at
different temporal scales. In the short-term temporal scales,
vegetation change is mainly driven by anthropogenic activities,
such as the reduction of vegetation cover area caused by urban
expansion, which is similar to the conclusions of some studies that
found the short-term impacts of urban expansion on vegetation are
more significant (Qi et al., 2023). In the long-term trend, areas with
higher levels of urbanization showed a stronger dominance of
anthropogenic activities, while non-urbanized areas tended to be
dominated by climate factors (Prăvălie et al., 2022; Li P. et al., 2021;
Pang et al., 2017; Banerjee et al., 2024; Yu et al., 2009; Hu et al., 2023).
Studies have found that vegetation types and their specific ecological
adaptation strategies determine their different response patterns to

FIGURE 16
Electricity consumption by city in the Pearl River Delta.
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climate change, which also explains why vegetation changes in
different regions exhibit different patterns under the same
climatic conditions. For example, Zhaoqing, Huizhou, and
Jiangmen had higher proportions of vegetation improvement,
while Zhongshan and Dongguan showed obvious vegetation
degradation.

4.4 Limitations and future directions

This study used remote sensing and meteorological data and
employed various time series analysis methods to explore vegetation
dynamics in the GBA and their relationship with climate change and
anthropogenic activities. However, there are still some limitations,
which are mainly reflected in the following aspects: 1. Data source
limitations: This study relied on MODIS data and NPP-VIIRS/DNB
nighttime light data, although these data have good applicability at
the regional scale, there are still certain shortcomings in their
spatiotemporal resolutions. This may lead to some bias in the
detailed depiction of vegetation change and its influencing
factors, especially for the evaluation of the lagged effects of
extreme climatic events on vegetation. 2. Insufficient
representation of meteorological data: Although this study used
the monthly total precipitation and sunshine duration data from
meteorological stations, the distribution of meteorological stations
may not fully represent the climate conditions of the entire study
area, especially in topographically complex regions, where the
results of data interpolation may have some uncertainties. 3.
Methodological limitations: In conducting multi-factor analysis,
this study may not have fully captured the non-linear
relationships between vegetation change and influencing factors.
The selected indicators may not fully represent all climate factors
when using the RESTREND method to evaluate the relative
contribution of climate factors and anthropogenic activities to
vegetation change, which may simplify or underestimate the
complex influence of climate change on vegetation.

Future studies could be improved in the following aspects: 1.
Improve data quality and resolution: Future research can try to use
remote sensing data with higher spatial and temporal resolutions to
monitor vegetation dynamics more precisely, and better evaluate the
lagged effects of extreme climate events on vegetation. 2. Multi-
source data integration: Combining remote sensing data with
ground observation data can compensate for the shortcomings of
remote sensing data in accuracy and validation. For example, field
vegetation surveys and flux observations can be used to improve the
accuracy and reliability of research results.

5 Conclusion

This study analyze the spatiotemporal patterns of vegetation
change in the GBA, its response characteristics to anthropogenic
activities and climate factors, and to quantify the relative
contributions of climate factors and anthropogenic activities
to vegetation change. According a comprehensive analysis of
multi-source data, this study seeks to reveal the driving
mechanisms of dynamic vegetation change in the context of
urbanization.

The results of this study showed that the GBA as a whole
experienced a significant vegetation greening process. The area
with improved vegetation was significantly greater than that with
degraded vegetation, indicating an overall increasing trend in
vegetation cover in the region. Specifically, vegetation in
Zhaoqing, Huizhou, and Jiangmen showed significant
improvement, while vegetation degradation was more
pronounced in the core urban areas of Zhongshan, Dongguan,
and Guangzhou. Simultaneously, anthropogenic activities in the
region also underwent significant changes. The intensity of
anthropogenic activities showed a significant increase in half of
the regions, reflecting the impact of the rapid urbanization process
on anthropogenic activity intensity. In addition, LST also underwent
significant changes, LST increased more noticeably in cities such as
Dongguan, Zhongshan, Zhuhai, and Shenzhen, which may be
related to the urban heat island effect. Further analysis showed
that the dynamics of vegetation change are influenced by driving
factors at different temporal scales. The intensity of anthropogenic
activities showed smaller fluctuations at short temporal scales, while
65% of the region showed anthropogenic activity intensity
fluctuations dominated by long-term trends, indicating that the
changes in anthropogenic activities have a cumulative effect over
long temporal scales. LST changes in core urban areas were also
dominated by long-term trends, which may be the result of the
combined effects of long-term urbanization and climate change.

The correlations between vegetation change and anthropogenic
activity intensity, and between vegetation change and climate factors
exhibited obvious spatiotemporal heterogeneity. As the temporal scale
increased, the regions exhibiting significant correlations between
vegetation change and anthropogenic activity intensity and between
vegetation change and LST gradually increased, indicating that at longer
temporal scales, the influences of anthropogenic activities and
temperature on vegetation were more pronounced. Notably,
vegetation change was significantly correlated with anthropogenic
activity intensity in two-thirds of the regions, and the negative
correlations were mainly distributed in the core urban areas of
various cities, indicating that the urbanization process had a negative
impact on vegetation. Simultaneously, regions where vegetation change
was significantly negatively correlated with LSTweremainly distributed
in Zhaoqing, Jiangmen, and Huizhou, while regions with significant
positive correlations were concentrated in the built-up areas of
Guangzhou, Foshan, Zhongshan, Zhuhai, Hong Kong, Shenzhen,
and Dongguan, reflecting the complex impact of temperature
changes on vegetation growth in different regions. In addition,
increases in precipitation and sunshine duration both promoted
vegetation growth to a certain extent.

This study revealed the temporal characteristics of the impacts of
climate factors and anthropogenic activities on vegetation change. At
short temporal scales, vegetation change was mainly driven by
anthropogenic activities, indicating that the short-term impact of
urbanization on vegetation was more significant, while the influence
of climate factors was relatively small. However, in the long-term trend,
vegetation change in most regions was mainly dominated by climate
factors, while the vegetation changes caused by anthropogenic activities
were mainly distributed in the core urban areas, indicating that over the
long-term, the influence of climate factors on vegetation gradually
became apparent, while the influence of anthropogenic activities was
mainly reflected in urbanized areas.
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