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With the rapid development of tourism, understanding its relationship with
environmental pollution has become a critical issue. Traditional research
methods often struggle to effectively capture complex time series data and
nonlinear associations, limiting their ability to accurately analyze and predict the
interactions between tourism development and environmental changes. In
response to these challenges, this research introduces a time series modeling
framework leveraging LSTM-Attention-Random Forest (LARF). The LSTM model
captures the temporal dynamics in tourism and environmental data, the Attention
mechanism enhances the focus on critical time steps, and the Random Forest
improves prediction accuracy by leveraging nonlinear relationships through
ensemble learning. Experimental results demonstrate that the LARF model
significantly outperforms traditional methods in prediction accuracy and
generalization ability across multiple datasets, with an average improvement
of 18.2% in MSE and 16.5% in MAPE compared to baseline models like LSTM,
GRU, and Random Forest. Specifically, the LARF model achieves an MSE of 30.0
on the Global Tourism Data and 35.0 on the China City Air Quality Data,
highlighting its robustness and reliability. Furthermore, the model provides
innovative insights for pollutant risk quantification and environmental
management, offering actionable recommendations for sustainable tourism
and environmental governance. This study contributes not only to advancing
methodologies for analyzing tourism and environmental systems but also offers a
versatile framework that can be applied to other complex systems for predictive
modeling and decision support in the future.
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1 Introduction

With the swift expansion of international tourism, the interaction between tourism and
environment has become the focus of social attention. The environmental effects of tourism
activities is not only reflected in the emission of pollutants and resource consumption, but
also reflected in the changes in the ecosystem and the long-term impact of the earth system
(BrtnickỲ et al., 2020). Therefore, studying the interconnected dynamics between tourism
development and the environment holds substantial academic significance and practical
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application value. By accurately predicting this coupling
relationship, it can provide scientific basis for policymakers to
optimize tourism planning and promote sustainable development
(Ma and Tang, 2022; Pan et al., 2021). At the same time,
environmental pollution control and tourism resource
management can also make more effective decisions based on
this prediction.

However, current research concerning the interaction between
tourism and environmental systems faces numerous challenges.
Traditional research methods mostly rely on static models or
linear regression models, which cannot effectively deal with
complex, time-varying and nonlinear relationships (Khodayar
and Wang, 2020). The interaction between tourism and
environment is usually significant in time sequence, and the
interaction between various environmental factors is difficult to
be captured by traditional models (Guseva et al., 2022). Therefore,
how to extract meaningful features from dynamic data over a long
time span and accurately model this coupling relationship is still a
key problem to be solved urgently.

In the past few years, researchers have proposed numerous
techniques to simulate the interplay between the progression of
tourism and environmental changes. Conventional approaches,
including ARIMA, SARIMA, and similar time series models, are
extensively applied to track the fluctuations in tourism and
environmental indicators due to their well-established theoretical
foundations. However, their linear nature presents challenges in
handling intricate nonlinear associations (Sirisha et al., 2022; Zhang
L. et al., 2025). To address this shortfall, machine learning
techniques such as random forest and support vector machines
have been employed to boost the capability of handling high-
dimensional and multivariate datasets (Xiong and Zuo, 2020;
Huang et al., 2025). Nonetheless, these methods frequently
overlook the temporal dependencies inherent in time series data.
Concurrently, deep learning techniques, like LSTM and GRU, are
increasingly gaining attention and have shown substantial
advancements in predicting time series data for tourism and
environmental systems, thanks to their proficiency in modeling
long-term temporal dependencies (Wang et al., 2022; Zhang H.
et al., 2025). Despite these advancements, current methodologies
still exhibit certain limitations. Deep learning heavily relies on the
quantity and quality of data, traditional machine learning struggles
to fully encapsulate the temporal features, and there remains a lack
of comprehensive depiction of the nonlinear inter relationships and
dynamic coupling among multiple variables.

In view of the above shortcomings, this paper proposes a new
prediction model of coupling relationship between tourism
development and environment (LARF), which integrates LSTM
network, Attention mechanism and Random Forest to realize
multi-level modeling of complex dynamic relationship. Different
from traditional methods, this model focuses on combining the
temporal feature extraction ability of deep learning with the
nonlinear modeling advantage of ensemble learning. The LSTM
network is good at dealing with dynamic changes in time series,
Attention mechanism emphasizes key time points and improves the
model’s capacity to identify critical information, and the random
forest plays an important role in nonlinear feature learning and
result stability. Through the modular design, LARF model not only
has significant advantages in time-dependent feature extraction and

multivariate relationship modeling, but also can adapt to the
complex requirements of different data scenarios. Experiments
demonstrate that the model markedly enhances the accuracy of
predictions regarding the interconnection between tourism and the
environment, provides reliable data support for policy making and
environmental governance, and provides a general technical
framework for complex system modeling.

The main contributions of this paper are as follows.

• A coupling relationship modeling method based on LARF is
proposed to fully mine the time series characteristics and key
factors in tourism and environment data.

• It enhances the model’s forecasting precision and
generalizability, offering notable advantages in capturing
multivariate and nonlinear relationships.

• It provides a new idea and tool for pollutant risk quantification
and environmental governance strategy formulation, and
holds significant practical relevance.

In Chapter two, the research status of related fields will be
reviewed, and the main methods and challenges of modeling the link
between tourism and environmental factors will be reviewed. The
third chapter introduces the model framework and method details
proposed in this paper. In Chapter four, the experimental design and
dataset introduction are presented, and the experimental results are
analyzed and discussed. In Section 5, we provide a summary of our
findings and outline directions for future research.

2 Related work

2.1 Multi-dimensional influence and
coupling relationship quantification of
tourism activities on environment

A large number of studies have explored the multi-dimensional
impacts of tourism activities on the environment, including
pollutant emissions, resource consumption, and ecosystem
damage (Irfan et al., 2023). For example, some studies have
examined the effects that tourism has on air quality by
investigating how increases in tourist numbers influence
pollutant concentration levels (Zhang et al., 2020; Yu et al., 2023;
Robaina et al., 2020). In addition, there are studies that focus on the
pressure of tourism activities on water resources and land use,
unveiling the interaction between tourism development and
environmental carrying capacity.

In addition to tourism’s impact on the environment,
environmental change will also backfire on the development of
tourism. Environmental elements, including climate change and
recurring natural disasters, can influence the appeal of tourist
destinations, thereby impacting tourist numbers and tourism
revenue (Rosselló et al., 2020). This type of research highlights
the two-way interaction between tourism and the environment,
pointing out the need for sustainable tourism development
(Muhammad et al., 2021).

To measure the interaction tourism and the environment,
scholars have adopted various indicators and models. For
instance, the coordinated coupling degree model is frequently
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utilized to evaluate the level of harmonious development between
tourism and environmental systems (Fei et al., 2021). These studies
provide important theoretical support for understanding the
dynamic relationship between them, but there are still
shortcomings in dealing with complex time series and nonlinear
relationships (Zheng et al., 2024), and more advanced modeling
methods are urgently needed.

2.2 Theoretical framework of tourism-
environment interaction

The two-way relationship between tourism and the environment
is a complex and dynamic system, involving both the impact of
tourism activities on the environment and the reverse effect of
environmental changes on the development of the tourism industry.
The Sustainable Tourism Development Theory emphasizes that
while promoting economic growth and social prosperity, the
tourism industry must take measures to reduce the negative
impact on the environment and ensure the long-term sustainable
use of resources (Park et al., 2022). This theory provides us with an
important perspective, indicating that in the process of developing
the tourism industry, it is necessary to consider the carrying capacity
of the environment and promote the realization of green tourism
and a low-carbon economy.

The Ecological Footprint Theory focuses on the consumption of
natural resources and energy by tourism activities, as well as the
impact of pollution and waste generated on the ecosystem (Işık et al.,
2021). By quantifying the ecological footprint of tourism activities,
researchers can more clearly understand how the tourism industry
consumes natural resources and provide a scientific basis for tourism
sustainability. The Environmental Kuznets Curve Hypothesis (EKC
Hypothesis) reveals the relationship between economic
development and environmental pollution, proposing that with
economic development, environmental pollution will increase in
the early stage, but after reaching a certain stage of development, the
pollution level will tend to stabilize or decrease (Naveed et al., 2022).

These theories provide a powerful framework for understanding
the complex feedback mechanism between tourism and the
environment, revealing that tourism activities not only affect the
environment, but also that environmental changes in turn affect the
attractiveness of the tourism industry. Therefore, how to achieve the
coordination between environmental protection and economic
growth in tourism activities has become the key to promoting
the development of sustainable tourism.

2.3 Evolution and challenges of modeling
coupling relationship between tourism and
environment

Early studies mostly used statistical methods such as linear
regression and time series analysis (such as ARIMA model). These
models are easy to use and interpretable, and can effectively capture the
linear trend in the data (Liu et al., 2023; Zhou et al., 2024). However,
when dealing with the intricate nonlinear dynamics of tourism and
environmental systems, statistical models often yield suboptimal
performance, the performance of statistical models is often

unsatisfactory, and it is difficult to accurately reflect the dynamic
interaction between them. Conventional machine learning techniques,
including Support Vector Machine (SVM), decision trees, and random
forests, have been applied to model the interaction between tourism
activities and environmental changes (Demir and Sahin, 2022). These
methods perform better than traditional statistical models in dealing
with nonlinear relationship and high-dimensional data. For example,
random forests improve the stability and predictive performance of the
model by integrating multiple decision trees (Ghiasi and Zendehboudi,
2021; Pokhrel et al., 2023). However, these methods still have the
problem of insufficient time series feature extraction when dealing
with data with significant time series dependence, which limits their
application in complex system modeling.

With the improvement of computing power and the increase of
data volume, deep learning methods have gradually become a
research hotspot. The Long Short-Term Memory (LSTM)
network is extensively utilized for modeling the interaction
between tourism and environmental conditions due to its
outstanding ability to recognize long-range dependencies within
time series data (Zhang et al., 2022). LSTM can effectively process
data with complex temporal features, but its model structure is
complex and the training process is time-consuming. In order to
further improve the performance of the model, the attention
mechanism is incorporated to strengthen the model’s capacity to
focus on critical time steps, automatically identify and assign higher
weights to important time points, so as to improve the prediction
accuracy (Fahim et al., 2020; Masenya, 2024; Li and Guenier, 2024).
However, while the Attention mechanism enhances the model’s
capability to extract key features, it still faces challenges when
dealing with multi-dimensional environmental data, especially in
the case of complex interaction of environmental factors, and the
performance of the model still needs to be improved. Ensemble
learning methods such as random forest significantly improve the
robustness and generalization ability of the model by combining
multiple weak learners (Feng et al., 2021). These methods perform
well in dealing with multivariate and nonlinear relationships, but
their interpretability is relatively poor, and it is difficult to directly
understand the internal mechanism of the model. In addition, deep
learning and ensemble learning methods usually require a large
amount of data and computing resources, which increases the
complexity in practical applications.

Although the methods based on deep learning and ensemble
learning have shown significant advantages in capturing complex
nonlinear and temporal features, there are still problems such as
high model complexity, large training cost and poor interpretation
when dealing with large-scale andmulti-dimensional environmental
data (Mohammed and Kora, 2023). Therefore, how to improve the
performance of the model while taking into account the simplicity
and interpretability has become an important direction of current
research (Mi et al., 2020).

3 Methods

3.1 Overview of the LARFmodel architecture

The relationship linking tourism development and the
environment is dynamic, complex and highly nonlinear system.
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Tourism activities, such as changes in the number of tourists and
tourism infrastructure construction, directly or indirectly cause
environmental pollution (such as air quality degradation,
wastewater discharge increase, etc.), while environmental changes
(such as climate conditions, pollution levels) also affect tourists’
decision-making behavior. This bidirectional coupling relationship
not only has significant time dependence, but also is cross-affected
by multi-dimensional data, such as tourism economic indicators,
environmental quality indicators, and climate data. However,
traditional statistical models (such as linear regression and time
series models) often assume linear relationships between variables,
which cannot capture complex interaction characteristics. However,
a single deep learning model is easily limited to the problem of
insufficient nonlinear relationship modeling or overfitting.
Therefore, the design motivation of LARF model is to build a
hybrid framework that integrates the advantages of deep learning
and ensemble learning, accurately captures the dynamic coupling
relationship between tourism and environment, and provides
support for scientific prediction and policy making.

In terms of the model’s functions, the LARF model adopts a
modular design, as shown in Figure 1. The overall structure includes
a data preprocessing module, an LSTM-Attention module, a
random forest module, and an output module, with each module

playing a key role in modeling the association between tourism and
environmental dynamics. The data preprocessing module
standardizes the original data of tourism and the environment,
fills missing values, and reconstructs time series to solve the
problems posed by complex data sources and inconsistent units.
The utilization efficiency of multi-source data is improved through
standardized processing, and sliding window technology is
employed to capture the dynamic temporal characteristics
of the data.

As the core part of the model, the LSTM-Attention module
effectively extracts short-term fluctuations and extended temporal
relationships within the data. Additionally, the Attention
mechanism enhances the model’s ability to focus on key time
points through automatic weighting, allowing the model to
capture significant effects such as the lagging impact of a surge
in tourist numbers on air pollution during peak tourist seasons or
focusing on “key events” like holidays and extreme weather. This
improves prediction accuracy. The high-dimensional time series
features extracted by the random forest module further model
nonlinear relationships, and its noise-robust capabilities make it
suitable for handling the seasonal fluctuations of tourism data and
the high-dimensional complexity of environmental data. For
example, the random forest module can capture the nonlinear

FIGURE 1
Structure diagram of LARF multi-module tourism and environment coupling relationship prediction model.
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pattern of escalating pollution when the number of tourists exceeds a
certain threshold. Finally, the output module integrates the
prediction results from the random forest to generate short-term
predictions (such as future pollution levels or tourist numbers) and
long-term trend analysis (such as the influence of tourism growth on
ecological landscape), thus providing a clear and quantitative
decision-making basis for policymakers.

The justification for the choice of model components is based on
the strengths of each individual method. Random Forest was
selected over other ensemble models like XGBoost or CatBoost
due to its robust ability to handle complex, high-dimensional, and
noisy data, which is crucial for modeling tourism and environmental
data. While XGBoost and CatBoost excel in handling non-linear
relationships, they require additional feature engineering to capture
time dynamics effectively, which makes Random Forest a more
natural fit for this research. Additionally, although Transformer-
based models such as BERT and GPT have demonstrated superior
performance in long-range dependency modeling, their high
computational cost and complexity, especially when handling
large-scale time-series data, make them less suitable for the
practical requirements of this study. Therefore, we opted for the
LSTM-Attention framework, which balances efficiency and
predictive power while effectively capturing temporal dynamics
and providing flexibility for integrating multi-source data.

The LARF model is both a theoretical and practical tool for
addressing the complex interactions between tourism and the
environment, offering robust support for management and
decision-making. During peak tourism seasons or major festivals,
when environmental pressures such as exhaust emissions and
wastewater increase, the model predicts pollution levels using
historical data, enabling preemptive measures like limiting tourist
flow or enhancing environmental facilities. It also quantifies the
feedback of environmental conditions on tourism, such as
predicting changes in tourist numbers following air governance
policies, to optimize resource allocation and evaluate policy
effectiveness. Additionally, the LARF model identifies the
carrying capacity of scenic resources and determines critical
thresholds to prevent overdevelopment and environmental
degradation. At a strategic level, it simulates the long-term effects
of development strategies, such as the impact of new scenic spots on
regional environmental quality or analyzing trends in sustainable
tourism and environment development over the next decade.
Combining LSTM, Attention mechanisms, and Random Forest,
the LARF model captures dynamic patterns, emphasizes critical
data points, and models nonlinear relationships, while its modular
design ensures adaptability across diverse datasets and applications.
This makes it a versatile framework for advancing quantitative
analysis and promoting sustainable tourism and environmental
management through accurate predictions and scientific
decision-making.

3.2 LSTM module

In the LARF model of this paper, the LSTM (Long Short-Term
memory network) module is used to extract the dynamic features in
the time series data, especially to capture the short-term fluctuations
and long-term dependence in the integration of tourism and

environmental systems. LSTM performs well in time series
modeling through its unique gating structure, which can
effectively avoid the gradient disappearance or gradient explosion
problems common in traditional recurrent neural Network (RNN)
(Zargar, 2021). As shown in Figure 2, the LSTM module stores the
important long-term information in the time series through the
memory unit, and dynamically controls the inflow, retention or
forgetting of information through the coordination of the forget
gate, input gate and output gate (Jiasen et al., 2020), so as to realize
the efficient extraction and update of historical information and
ensure that the model can accurately model the dynamic
relationship in the time series.

In this paper, the main role of the LSTM module is to extract
time series features from tourism and environment data, model the
short-term and long-term effects of tourism activities on
environmental conditions, and the reaction relationship of
environmental changes on tourism. It is characterized by the
memory unit to effectively capture short-term fluctuations and
long-term dependence, and adapt to the characteristics of
tourism peak season and environmental feedback (He et al.,
2021). The ratio of information inflow and forgetting was
dynamically adjusted to ensure that the model was flexible in
time series data. Moreover, the gating mechanism effectively
alleviates the gradient vanishing problem of traditional RNN,
making it suitable for complex time series tasks. The following
formula specifically describes the calculation process of each gating
mechanism in the LSTM module.

The core mechanism of LSTM consists of the following steps,
which are progressively updated and computed in combination with
the temporal properties of the input data:

The forget gate, which is used to decide which past information
should be kept and which should be forgotten at the current time
step t. As shown in Equation 1.

ft � σ Wf · ht−1, xt[ ] + bf( ) (1)

where ft is the output of the forgetting gate, ranging from [0, 1],
representing the forgetting proportion of each memory cell, xt is the
input data of the current time step (such as the number of tourists,
environmental pollution index, etc.), ht1 is the hidden state of the
previous time step, Wf is the weight matrix of the forgetting gate,
and bf is the bias of the forgetting gate. σ is the activation function
(usually Sigmoid) used to map the result to [0, 1].

The input gate, which is used to decide how the input
information at the current time step is updated to the memory
cell. Its calculation consists of two parts:

The first is information selection (Equation 2).

it � σ Wi · ht−1, xt[ ] + bi( ) (2)

The second is new candidate value generation (Equation 3).

~Ct � tanh Wc · ht−1, xt[ ] + bc( ) (3)
where it is the output of the input gate, in the range [0, 1],
indicating the importance of the current input, ~Ct is the new
candidate memory value at the current time step, Wi, Wc is the
weight matrix of the input gate and the candidate memory, bi, bc is
the bias of the input gate and the candidate memory, and is the bias
of the input gate and the candidate memory, tanh is the hyperbolic
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tangent function used to limit the candidates to (BrtnickỲ
et al., 2020).

Update the memory cell state. The state of the current memory
cell is updated by forgetting the old information and adding new
information (Equation 4):

Ct � ft · Ct−1 + it · ~Ct (4)
where Ct is the memory cell state at the current time step, Ct1 is the
memory cell state at the previous time step, ft is the forget gate
output to control the retention of old information, and it · ~Ct is the
part of new information selected by the input gate.

The output gate, which determines the hidden state at the
current time step, is ht is and the information that the next layer
of the network or the next time step needs to output (Equations 4, 5):

ot � σ Wo · ht−1, xt[ ] + bo( ) (5)
ht � ot · tanh Ct( ) (6)

where ot is the output of the output gate in the range [0, 1], ht is the hidden
state at the current time step, which represents the extracted features,Wo is
the weight matrix of the output gate, and bo is the bias of the output gate.

The LSTM module plays a core role in time series feature
extraction in the LARF model. Its unique gating mechanism
enables the model to accurately capture the dynamic relationship
between tourism and the environment, and provide high-quality
temporal features for the subsequent Attention mechanism and
random forest module. This design effectively improves the
modeling accuracy and stability of LARF model, and becomes
the basic module for analyzing the interaction between tourism
and the environment.

3.3 Attention module (multi-head attention)

In the LARF model, as a key component, the multi-head
attention module is mainly used to model the multi-dimensional
characteristics of time series. Different patterns are modeled by
multiple attention heads in parallel, and the short-term
dependence, long-term dependence and interaction between
variables in time series are captured from different feature
subspaces (Liu et al., 2021). For example, one attention head
can focus on short-term fluctuations during peak tourism
seasons, while another head can model the impact of
environmental governance policies on long-term trends. The
Attention mechanism is able to identify key time points in
tourism and environmental data (such as major holidays or
high-pollution days) and assign higher weights to these time
steps, thereby helping the model highlight the most important
information for target prediction (Liu et al., 2022). Through the
output fusion of multiple attention heads, the multi-head
attention module can comprehensively learn different time
series patterns, enhance the feature expression ability, and
provide high-quality input for the subsequent random forest
module. In addition, the multi-head attention module is
usually used in combination with the output of LSTM to
further refine the time series features extracted by LSTM and
weight the key time steps, so as to capture complex patterns and
important information in the sequence more effectively.

As shown in Figure 3, the multi-head attention mechanism
learns the features and patterns of time series in different
subspaces by computing multiple attention heads in parallel,

FIGURE 2
Temporal feature extraction module of LSTM based on time dependence.
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and assigns different weights to different time steps. The core
goal is to enhance the model’s ability to capture key time points
and multivariate interactions, especially in tourism and
environment modeling, to be able to identify “critical events”
or “high impact time points”, such as the short-term impact of
the surge in tourist numbers on environmental pollution during
the peak tourism season, and the long-term effect of policy
adjustments on the interaction between environment and
tourism. The figure on the left shows the overall architecture
of multi-head Attention, which relies on Scaled DotProduct
Attention, while the figure on the right further shows how it
is calculated. By weighting the Query, Key, and Value, the model
is able to assign different attention weights to each time step in
the input time series, thereby highlighting the most important
information for predicting the target. The multi-head attention
mechanism parallelizes this process, uses multiple attention
heads to model different patterns in different feature
subspaces, and fuses their outputs, which significantly
improves the feature expression ability and the description
effect of complex temporal relationships. The following
formula provides a detailed explanation of the multi-head
attention mechanism’s computation process.

Scaled DotProduct Attention, the basic unit of multi-head
attention, consists of the following computation steps:

The input sequence X is projected into the Query, Key, and
Value vector Spaces, respectively, using a linear transformation
(Equation 7).

Q � XWQ, K � XWK, V � XWV (7)
where Q,K,V are query, key, and value matrices, andWQ,WK,WV

are trainable linear transformation weight matrices.

We then compute the attention weights, where query Q and key
K compute the relevance score via dot product, scale to stabilize the
gradient (divided by

��
dk

√
, where dk is the dimension of the key), and

then normalize to the attention weights via the Softmax function
(Equation 8).

Attention Q,K,V( ) � softmax
QK⊤��
dk

√( )V (8)

where QK⊤ is to calculate the similarity between each time step and
Softmax is to convert it into a probability distribution for
weighting V.

Finally, the weighted values are output, and the weights are used
in the weighted value matrix V. The result is a weighted
representation for each time step.

MultiHead Attention extends the idea of single-head
attention by computing multiple attention heads in parallel to
learn different feature patterns. The process is divided into the
following steps:

Firstly, the input X is linearly transformed to generate multiple
Q,K,V, and each head calculates attention independently
(Equation 9).

headi � Attention Qi,Ki, Vi( ) (9)
where i is the index of the attention head, and there are h heads
in total.

Then there is concatenation and linear transformation,
which concatenates the outputs of all attention heads and
maps them to the original dimension by linear
transformation (Equation 10).

MultiHead Q,K, V( ) � Concat head1, head2, . . . , headh( )WO (10)

FIGURE 3
Multi-head attention temporal feature focusing module.
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where WO is the linear transformation weight matrix.

3.4 Random forest module

In the LARF model of this paper, the Random Forest module
is used as the final predictor, which is mainly used for nonlinear
modeling and integrated prediction of high-dimensional time
series features extracted by the LSTM-Attention module.
Random forest is a decision tree-based ensemble learning
technique. By constructing multiple decision trees and fusing
the prediction results of these trees, the generalization ability and
robustness of the model are improved (Sun et al., 2020). As
shown in Figure 4, random forest generates multiple decision
trees through random sampling and feature selection, and each
tree is trained with different subsamples and feature
combinations and generates independent prediction results. It
can effectively deal with high-dimensional feature data, especially
in the modeling of the interaction between tourism and the
environment, and can capture complex nonlinear
relationships, such as the multivariate interaction patterns
between the number of tourists, climate conditions and
pollutant concentrations (Malekloo et al., 2022). The random
forest module ensures the stability and accuracy of the final
prediction results through the integration strategy, and
reduces the risk of overfitting that may be caused by a single
decision tree (Huo et al., 2021).

The random forest module models the high-dimensional
features generated by the LSTMAttention module. The input
features contain multivariate time series information, such as the
number of tourists, weather conditions, pollutant concentrations,
etc. The random forest gradually extracts the nonlinear relationship
between the input features and the target variable through the node
splitting of each decision tree. Through random sampling and
feature selection, the random forest module performs well in
reducing noise interference and data overfitting. Especially when
there is redundant information or outliers in the input features, the
random forest can still stably generate accurate prediction results. In
addition, random forests are able to capture complex nonlinear
patterns in the interaction between tourism and the environment,
such as the increase in tourist numbers may nonlinearly exacerbate
environmental pollution, and certain external interventions (such as
flow restriction policies) may further change this relationship. The
results of each decision tree are fused by majority voting
(classification task) or weighted average (regression task) to
generate the final prediction value, which provides high-precision
results for tourism and environment modeling. The following
formula describes the key steps and computational process of
random forest in detail:

Prediction of a single decision tree, given the input feature vector
X, the prediction result of a single decision tree Ti is denoted by
Equation 11:

hi X( ) � Ti X( ) (11)

FIGURE 4
Random forest ensemble learning model.
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where hi(X) is the prediction of the i decision tree for the input X,
and Ti is the ith decision tree.

Each decision tree is built using a random subsample of the
dataset (Bootstrap sampling) and some of the features.

While for random sampling and feature selection, random
sampling is used to generate subsamples Di from the original
dataset D by sampling with replacement for training each
decision tree. Each subsample size is N of the original data, but
may contain duplicate samples. Random feature selection, on each
split node, randomly selects a subset of features (

��
F

√
features each

time, assuming a total of F features) to find the best split point.
Ensemble prediction of random forest, random forest generates

the final prediction value by integrating the results of all decision
trees, and the specific methods are divided into two types according
to the task type.

One is the classification task, where the random forest uses
majority voting to aggregate the classification results of all decision
trees (Equation 12):

H X( ) � argmax
c

∑M
i�1

I hi X( ) � c( ) (12)

whereM is the total number of decision trees, c is the class class, I is
the indicator function, which is 1 if hi(X) = c and 0 otherwise, and
argmaxc is the class that was selected with the most votes.

The other is regression, where the random forest takes a
weighted average of the predictions of all the decision trees
(Equation 13):

H X( ) � 1
M

∑M
i�1

hi X( ) (13)

where H(X) is the final regression prediction value of the random
forest, M is the total number of decision trees, and hi(X) is the
regression prediction value of the i decision tree for input X.

4 Experiment

4.1 Datasets

In this study, three publicly available datasets are utilized: Global
Tourism Data, China City Air Quality and Tourism Data, and
Kaggle Tourism and Pollution Dataset. These data sets have time
series characteristics and contain multivariate data on tourism and
environment.

The Global Tourism Data is provided by the United Nations
World Tourism Organization (UNWTO) and covers tourism-
related indicators on a global scale, including key economic
indicators such as tourist numbers, international tourism
revenues, and domestic tourism expenditures, as well as time-
series data related to tourism activities (Kyrylov et al., 2020). The
data is broken down by country and region and covers multiple
years (typically starting in 1995, with the data updated annually). In
addition, the dataset contains macroeconomic characteristics such
as the contribution rate of tourism to the country’s GDP and the
employment situation.

The China City Air Quality and Tourism Data contains air
quality, meteorological data, and information related to tourism

activities in major cities in China. Air quality data include
concentrations of common pollutants such as PM2.5, PM10,
NO2, SO2, and CO, as well as AQI (Air Quality index) (Zeng
et al., 2021). Meteorological data include temperature, humidity,
precipitation, and so on. Tourism data includes indicators such as
the number of tourists, tourism revenue, and the rank of scenic
spots. Data are usually recorded on a daily or monthly basis,
covering tier-1 to tier-3 cities in China with high temporal
resolution.

Kaggle Tourism and Pollution Dataset is a comprehensive
dataset that integrates tourism activity data (e.g., number of
tourists, hotel occupancy rates, international flight flows) and
environmental pollution data (e.g., PM2.5, PM10, CO2 emissions,
greenhouse gas concentrations) from major cities around the world
(Ahmad et al., 2018). The dataset also contains geolocation and
meteorological features (e.g., temperature, precipitation) for some
cities. The time span of the data usually covers 5–10 years, and the
resolution of the data varies according to the city and variable, and it
is mainly recorded on a monthly basis.

In order to ensure data quality and consistency, comprehensive
data preprocessing operations must be performed. The purpose of
preprocessing is to remove data noise, fill missing values,
standardize data formats, align and unify different data sources,
so as to ensure that the data can be effectively used in the LARF
model. Additionally, we would like to clarify that while the datasets
primarily include tourism-related variables, the integration of
pollution and industrial emissions data is derived from
supplementary sources, particularly those provided by the
United Nations Environment Programme (UNEP) and other
environmental data repositories. These sources include specific
datasets on air quality, CO2 emissions, and industrial pollution
that were incorporated into the dataset for a more comprehensive
analysis. The pollution and industrial emissions data are aligned
with tourism data to provide a multi-dimensional view of how
tourism and environmental factors interact over time. The
integration of these variables was carefully conducted to ensure
data consistency and accuracy, with a focus on aligning different
temporal and spatial resolutions of the datasets. Tables 1, 2
describe in detail the key variables, response variables, data
preprocessing methods, and statistical characteristics of
each data set.

4.2 Experimental environment and settings

The experimental environment and setup in this paper fully
consider the computational complexity and performance
optimization requirements of the model. The combination of
high-performance hardware (such as NVIDIA Tesla V100) and
mainstream deep learning frameworks (PyTorch) ensures that the
model can complete training and inference quickly. In terms of
parameter Settings, the hyperparameters are fine-tuned according to
the characteristics of LSTM-Attention and Random Forest to
balance prediction performance and computational efficiency.
Table 3 gives the detailed Settings of various experimental
parameters.

In order to fully evaluate the computational efficiency of the
model, we recorded and analyzed the training time and inference
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time of the LARF model in detail. In the experiment, we used
NVIDIA Tesla V100 GPU for training. The size of the training
dataset and the complexity of the model directly affected the training
time. According to the experimental settings, with default
parameters and hardware configuration, the training time of the
LARFmodel on the Global TourismData dataset is about 6–8 h, and
the inference time is about 0.5 s per sample; the training time on the
China City Air Quality and TourismData dataset is about 4–6 h, and
the inference time is about 0.3 s per sample; the training time on the
Kaggle Tourism and Pollution dataset is about 5–7 h, and the
inference time is about 0.4 s per sample. These results show that
although the LARF model has a high computational complexity, it
can complete the training and inference tasks within a reasonable
time frame with efficient hardware support and optimized
parameter configuration.

4.3 Evaluation metrics

To assess the predictive accuracy of the LARF model, this
paper selects key evaluation metrics to quantify the error and
the model’s fit between its predicted values and actual
observations.

MSE � 1
n
∑n
i�1

yi − ŷi( )2 (14)

MSE (Equation 14) measures the squared error between the
predicted value and the true value and is a commonly used basic
error metric. It is particularly sensitive to large errors, suitable for
tasks that require high model accuracy, and can significantly reflect
whether there is a large deviation in the model.

RMSE �
������������
1
n
∑n
i�1

yi − ŷi( )2√
(15)

RMSE (Equation 15) is the square root of MSE and has the same
dimension as the original data, which facilitates the interpretation of
the actual magnitude of the error. Compared with MSE, RMSE is
also sensitive to large errors, but its physical meaning is more
intuitive, and it is suitable for measuring the overall level of
model prediction error.

MAE � 1
n
∑n
i�1

|yi − ŷi| (16)

MAPE � 1
n
∑n
i�1

yi − ŷi

yi

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ × 100 (17)

TABLE 1 Overview of the tourism and environment-related datasets.

Dataset
Name

Coverage
area

Time span Key features Application scenarios Data source

Global Tourism
Data

Global 1995 to present,
updated annually

Tourist numbers, international
tourism revenue, domestic tourism
expenditure, tourism’s contribution
to GDP, tourism indicators

Macroscopic analysis of global
tourism industry trends and regional
coupling relationships

UNWTO Official Website

China City Air
Quality and
Tourism Data

Major cities in
China

2015 to present,
daily records with
no missing data

PM2.5, PM10, AQI, NO2, SO2, CO,
temperature, humidity,
precipitation, tourist numbers,
attraction search volume

Analyze urban tourism activity and its
coupling relationship with
environmental factors

Aqicn.org, China
Environmental Monitoring
Station, local tourism
management portals

Kaggle Tourism
and Pollution
Dataset

Major cities
worldwide

Last 5–10 years,
quarterly records

Hotel traffic, hotel occupancy,
tourism activity intensity, PM2.5,
PM10, CO2 emissions, daily climate
data, meteorological conditions

Multivariate dataset for cross-city
analysis of coupling and nonlinear
relationships between tourism
activities and environmental pollution

Kaggle

TABLE 2 Overview of key variables, response variables, data preprocessing methods, and statistical descriptions for each dataset.

Dataset Name Key variables
(predictor variables)

Response variables Data preprocessing
methods

Statistical description

Global Tourism Data Tourist numbers, international
tourism revenue, domestic
tourism expenditure, tourism’s
contribution to GDP, tourism
employment rates

Air quality indicators (e.g.,
CO2 emissions, particulate
matter), tourism’s impact on the
environment

Missing value imputation, format
standardization, data alignment by
year

Tourist numbers range from
millions to billions, annual data;
International tourism revenue and
GDP contributions show an
increasing trend

China City Air Quality
and Tourism Data

PM2.5, PM10, NO2, SO2, CO,
temperature, humidity,
precipitation, tourist numbers,
tourism revenue, attraction
search volume

Air quality impact (e.g.,
pollution levels related to
tourism activities)

Noise removal, missing value
imputation, standardization, data
alignment across cities

PM2.5 daily mean values range
from 10 to 300 μg/m3, seasonal
fluctuations; Tourist data with
significant daily variations due to
holidays and seasons

Kaggle Tourism and
Pollution Dataset

Hotel traffic, hotel occupancy,
tourism activity intensity,
PM2.5, PM10, CO2 emissions,
greenhouse gas concentrations,
temperature, precipitation

Pollution levels related to
tourism activities (e.g., changes
in CO2 and PM2.5)

Data normalization, missing data
interpolation, monthly data
alignment

Hotel traffic varies by region,
seasonal peaks; CO2 emissions and
PM2.5 concentrations show strong
correlations with tourism activity
intensity
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where yi is the actual value, ŷi is the predicted value, and n is the
number of samples.

MAPE (Equation 17) measures the relative proportion of
prediction errors, and the results are expressed as percentages to
facilitate comparisons across data of different magnitudes. This
indicator is suitable for scenarios where the target values have a
large relative range of variation, such as seasonal fluctuations in
tourist numbers or environmental pollution levels.

In general, MSE and RMSE emphasize large errors and are
suitable for tasks that require high prediction accuracy of the model,
and the physical meaning of RMSE is more intuitive. MAE
(Equation 16) pays more attention to the average deviation size
of the model, is not sensitive to outliers, and is suitable for scenarios
with noisy data. MAPE measures the relative proportion of
prediction errors and is suitable for situations where the range of
target values fluctuates greatly. Together, these indicators provide
multi-dimensional evaluation criteria for the prediction accuracy
and stability of LARF model, and comprehensively verify the
prediction ability of LARF model and the effectiveness of
modeling the complex relationship between tourism and
environment.

R2 � 1 − ∑n
i�1 yi − ŷi( )2∑n
i�1 yi − �y( )2 (18)

where yi is the true value, ŷi is the predicted value, �y is the mean of
the true value, and n is the number of samples.

R2 (Equation 18) is a measure of the goodness-of-fit of the
model, indicating the ability of the model to explain changes in the
target value, and ranges from 0 to 1, with a value closer to
1 indicating a better model fit. A negative R2 value means that

the model is not even as predictive as using the mean as the
predictive value.

4.4 Results

Now for the R2 socre comparison, This set of experiments is
performed by LARF model on three datasets (Global Tourism Data,
China City Air Quality and Tourism Data, Kaggle Tourism and
Pollution) Dataset) are used to predict the target variable, aiming to
evaluate the predictive performance of the model. The experiment
mainly analyzes the fitting relationship between True Values and
Predicted Values, and verifies the accuracy of the model by the
R2 coefficient of determination and the fitting line.

In Figure 5, the distribution of true and predicted values is
represented by a scatter plot, while the fitted line illustrates the
predicted trend of the model. The experimental results demonstrate
that the LARF model achieves excellent prediction performance
across the three datasets, with a close fitting relationship between the
true and predicted values. The fitted line (green) is close to the ideal
line (black dashed line), and theR2 determination coefficient reaches
a high level for all datasets. Specifically, for the Global Tourism Data
dataset, R2 � 0.94, indicating that the model effectively captures the
complex relationship between tourism and environmental variables
on a global scale. The China City Air Quality and Tourism Data
dataset achieves the best performance with R2 � 0.95, showcasing
the model’s strong capability in modeling time dependencies and
multivariate interactions in city-level data. For the Kaggle Tourism
and Pollution Dataset, R2 � 0.90, slightly lower than the other two
datasets but still robust, highlighting the model’s strong
generalization ability. Overall, as shown in the figure, the LARF

TABLE 3 The experimental environment and parameter settings are detailed.

Category Details

Software

Operating System Ubuntu 20.04 LTS/Windows 11

Programming Language Python 3.8

Deep Learning Framework PyTorch 1.12.1/TensorFlow 2.9.1

Data Processing Libraries Pandas (1.4.3), NumPy (1.22.4), Scikit-learn (1.1.1), Matplotlib (3.5.2)

Hardware

CPU Intel Xeon Gold 6230R @ 2.10 GHz (40 cores)

GPU NVIDIA Tesla V100 (32 GB)

Memory 128 GB DDR4

Storage 2 TB SSD

Parameters

LSTM Module Input time window size: 30 days; Hidden layer size: 128; Optimizer: Adam; Learning rate: 0.001

Attention Module Number of heads: 8; Key/Value dimensions: 64; Output dimension: 64

Random Forest Module Number of estimators: 100; Max depth: 64; Required minimum samples for a split: 20%; Minimum number of samples required at a leaf
node: 10

Evaluation Metrics MSE, MAE, MAPE, R2
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model’s good fitting performance across different datasets
demonstrates its advantages in handling complex time series and
nonlinear relationships.

In the experimental results of this paper, we compared the LARF
model with several other common hybrid models and evaluated its
prediction performance on multiple data sets. The experimental
results are shown in Table 4. From the evaluation indicators (MSE,
RMSE, MAE, MAPE) in the table, it can be seen that the LARF
model performs better than other comparison models on
all data sets.

The LARF model has obvious advantages in MSE, RMSE, MAE
and MAPE on the three data sets of Global Tourism Data, China
City Air Quality and Kaggle Tourism Data. On the Global Tourism
Data data set, LARF has an MSE of 30, RMSE of 5.5, MAE of 3.5 and
MAPE of 12.0, which are all lower than other models, especially
when compared with LSTM, GRU, XGBoost and other models, it
shows higher accuracy and stability. Although LSTM and GRU can
also capture the characteristics of time series data well, their MSEs

are 45 and 40 respectively, which are significantly higher than LARF,
and their performance in MAE and MAPE has not reached the
level of LARF.

The comparison with other hybrid models further highlights the
advantages of the LARF model in dealing with complex nonlinear
relationships. The comparison results of the LARF model with
hybrid models such as LSTM-ARIMA, GRU-ARIMA, and
LSTM-Random Forest also show that LARF performs better in
capturing nonlinear relationships between multiple variables.
LSTM-ARIMA and GRU-ARIMA are stronger in processing time
series data, but not as good as LARF in prediction accuracy.
Especially on the Kaggle Tourism Data dataset, the MAPE of
LARF is 15.0, compared with 17.0 for LSTM-ARIMA and
18.5 for GRU-ARIMA, showing a large gap, indicating that the
LARF model has better prediction ability when solving the complex
relationship between tourism and environmental pollution.

In addition, traditional single models (such as ARIMA) have
great limitations in processing these complex time series data and

FIGURE 5
Plot of the fitting results of the true and predicted values of the LARF model on multiple data sets.

TABLE 4 Performance comparison of different models on multiple datasets.

Model Global tourism data China city air quality Kaggle tourism data

MSE RMSE MAE MAPE MSE RMSE MAE MAPE MSE RMSE MAE MAPE

LARF 30 5.5 3.5 12.0 35 5.80 3.70 13.5 40 6.1 3.9 15.0

LSTM-ARIMA (Duan et al., 2023) 38 6.0 3.8 14.0 42 6.50 4.20 15.0 48 6.9 4.4 17.0

GRU-ARIMA (Pierre et al., 2023) 40 6.3 4.1 15.0 46 6.80 4.50 17.5 53 7.3 4.8 18.5

LSTM-Random Forest (Djaballah et al.,
2024)

35 5.9 3.7 13.5 41 6.40 4.10 14.5 47 7.0 4.5 16.0

LSTM (Polyzos et al., 2021) 45 6.7 4.2 18.0 52 7.10 4.50 20.0 59 7.5 4.8 22.0

GRU (Lu et al., 2020) 40 6.3 4.0 16.0 46 6.65 4.25 17.8 52 7.0 4.5 19.6

Random Forest (Sahani and Ghosh,
2021)

50 7.1 4.5 20.0 60 7.60 4.90 22.5 70 8.1 5.3 25.0

XGBoost (Kang et al., 2022) 38 6.0 3.8 15.0 46 6.45 4.10 17.2 54 6.9 4.4 19.4

ARIMA (Sahai et al., 2020) 60 8.0 5.0 25.0 75 8.60 5.50 28.0 90 9.2 6.0 31.0
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multi-dimensional features. As can be seen in Table 4, ARIMA has
the highest MSE, RMSE, MAE and MAPE on all data sets, especially
on the Kaggle Tourism Data data set, where ARIMA’s MAPE is as
high as 31.0, much higher than LARF’s 15.0, which further verifies
the LARF model’s strong adaptability and superior prediction
performance on complex data sets.

The experimental results of the LARF model on multiple data
sets show that it not only performs well in processing time series
dependencies and nonlinear relationships, but also has obvious
advantages in improving prediction accuracy, reducing errors and
optimizing model stability. This makes the LARF model more
reliable in practical applications and can provide more accurate
prediction support for the management of tourism and
environmental pollution.

In order to see the performance comparison of each model on
different data sets more intuitively, we visualize the data in Table 4,
as shown in Figure 6.

Through this visualization, it is clear to see the performance
difference of different models on different datasets, while observing
that LARFmodel performs well on all metrics, while ARIMA has the
worst performance, especially on complex datasets such as Kaggle
Tourism Data.

Now the ablation experiment is performed, in which the
contribution of each module in the LARF model to the overall
performance of the model is analyzed. By removing each module
one by one, we systematically evaluate the specific role of each
module in capturing time dependence, extracting key features, and
modeling complex nonlinear relationships, and observe the changes
of model performance (such as MSE, RMSE, MAE, MAPE) on
different data sets, In order to measure the extent of each module’s
impact on the model’s predictive capabilities. The experimental
results are shown in Table 5.

As shown in Table 5, the ablation experiment results show the
impact of removing each module (LSTM, Attention, Random
Forest) in the LARF model on the performance of the model.
The LARF Full Model performs best on all datasets in terms of
evaluation metrics (such as MSE of 30.0 and MAPE of 12.0 for
Global Tourism Data), which verifies the effectiveness of the synergy
of each module. MSE and MAPE rise significantly after removing
the LSTM module, indicating the critical role of LSTM in capturing
temporal dependencies. After removing the Attention module, the
MAPE increases from 15.0 to 18.6, indicating the importance of
Attention in extracting key time step information. After removing
the Random Forest module, MSE and MAPE rise to 56.0 and

FIGURE 6
Visual comparison of performance indicators of multiple models on different data sets.
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23.0 respectively on Kaggle Tourism Data, which verifies its
advantages in nonlinear relationship modeling. In general, each
module is indispensable for the performance improvement of
LARF model.

These findings are further visualized in Figure 7, which presents
a combined bar and line plot for the ablation experiment results
across the three datasets and four evaluation metrics (MSE, RMSE,
MAE, and MAPE). The bar chart clearly shows the performance of
each model (Full LARF model and the ablated versions) on
different datasets, with distinct colors representing Global

Tourism Data, China City Air Quality, and Kaggle Tourism
Data. The line plot connects the average performance values
across datasets, highlighting the overall trend for each model.
This visualization intuitively demonstrates the significant
degradation in performance after removing individual modules,
especially for metrics such as MAPE and MSE. It emphasizes the
contribution of each module in maintaining the robustness and
accuracy of the LARF model.

Finally, a feature importance analysis experiment is conducted,
focusing on utilizing the LARF model to identify the most impactful

TABLE 5 Ablation study: performance after removing modules.

Model Global tourism data China city air quality Kaggle tourism data

MSE RMSE MAE MAPE MSE RMSE MAE MAPE MSE RMSE MAE MAPE

LARF (Full Model) 30.0 5.5 3.5 12.0 35.0 5.80 3.70 13.5 40.0 6.1 3.9 15.0

Remove LSTM 40.0 6.8 4.2 16.0 46.0 7.20 4.50 18.0 52.0 7.6 4.8 20.0

Remove Attention 38.0 6.5 4.0 15.0 43.5 6.85 4.25 16.8 49.0 7.2 4.5 18.6

Remove Random Forest 42.0 7.0 4.4 18.0 49.0 7.50 4.80 20.5 56.0 8.0 5.2 23.0

FIGURE 7
Ablation study: visualization of the performance after removing modules.
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input features for predicting the interaction between tourism
development and environmental dynamics.

The results are illustrated in Figure 8, which displays the
normalized significance of features derived from the random
forest module for three datasets: Global Tourism Data, China
City Air Quality and Tourism Data, and Kaggle Tourism and
Pollution Dataset. Each panel in the figure corresponds to one
dataset, with features represented along the x-axis and their
normalized importance scores along the y-axis. The bar lengths
reflect the contribution of each feature, enabling a clear comparison
of their relative significance. This visualization effectively highlights
the dominant features and their varying impacts across different
datasets, providing an intuitive understanding of the factors
influencing the tourism-environment relationship.

In the Global Tourism Data, tourist arrival numbers are the
most critical feature, boasting an importance score of 0.40. This
highlights their pivotal role in shaping environmental variables.
Other influential factors include temperature (0.20) and
PM2.5 concentrations (0.15), indicating the significant impacts of
air pollution and climatic conditions. Seasonality (0.10) and
industrial emissions (0.05) contribute to a lesser degree.
Regarding the China City Air Quality and Tourism Data,
PM2.5 concentrations emerge as the most dominant feature, with
an importance score of 0.35. This underscores the strong correlation
between air quality and urban tourism activities. Tourist arrival
numbers (0.25) and temperature (0.15) also play significant roles,
while seasonality (0.10) and industrial emissions (0.07) capture
additional patterns. In the Kaggle Tourism and Pollution Dataset,
a more evenly distributed pattern of feature importance scores is
evident. Tourist arrival numbers (0.30) and PM2.5 concentrations
(0.25) are the top-ranked features, followed by temperature (0.15)
and seasonality (0.10). Industrial emissions (0.05) have the least
impact, suggesting their relatively minor influence on the predictive
models. Collectively, these findings consistently underscore the
crucial roles of tourist numbers and air pollution across different
datasets. At the same time, they reveal dataset-specific nuances in
the importance of other contributing factors.

Several key insights and implications are revealed from the
feature importance analysis experiments in this paper. Features

such as tourist arrivals and PM2.5 concentrations are consistently
the most important in all datasets, highlighting their fundamental
role in modeling the tourist-environment relationship. However, the
importance of other features such as temperature and industrial
emissions varied from dataset to dataset, reflecting regional or
dataset differences in factors affecting the interaction of tourism
and the environment. These findings provide feasible policy
recommendations, such as prioritizing air quality management
(e.g., controlling PM2.5 levels) and monitoring tourist numbers
during peak seasons, to mitigate environmental impacts while
promoting sustainable tourism practices.

5 Conclusion

This paper proposes a modeling method of coupling
relationship between tourism development and environment
based on LARF. Through the extraction of time series features,
the identification of key time points and the modeling of nonlinear
relationship, the complex interactive relationship between tourism
activities and environment is comprehensively analyzed. It is
observed that the influence of tourism activities on
environmental conditions exhibits significant time-dependent and
nonlinear characteristics, and the change of environmental quality
will also produce dynamic feedback on the development of tourism.
Through model experiments, the LARF model performs well in
terms of prediction accuracy, ability to capture key features and
robustness, which offers a valuable approach for examining the
relationship tourism-environment interaction.

In comparison to existing studies, this paper presents both the
confirmation of known conclusions and the revelation of new
insights. While previous research has generally recognized the
negative impacts of tourism on the environment—such as
increased pollution during peak tourist seasons—this paper not
only verifies these known patterns but also uncovers the long-term
feedback relationships between environmental change and tourism
development. Specifically, it highlights how environmental
improvements can attract more tourists and the significant role
of policy interventions in shaping the tourism-environment

FIGURE 8
Tourism environment modeling feature importance scores for the three datasets.
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coupling. Additionally, while existing studies often rely on
traditional linear models or single machine learning methods,
which struggle to capture the complex nonlinear dynamics of
tourism and environmental interactions, this paper introduces a
hybrid approach combining deep learning with random forest
models. This approach successfully captures the complex
multivariate interactions, particularly in high-dimensional data
and time-series analysis, thereby demonstrating superior
modeling capabilities.

The advantages of this study are reflected in several aspects.
First, the LSTMmodule effectively captures long-term dependencies
within time-series data, the Attention mechanism enhances the
model’s ability to focus on key moments during processing, and
the Random Forest module further improves the model’s ability to
express nonlinear relationships, significantly enhancing the
accuracy of predictions. Second, this paper introduces a modular
framework, making the model more scalable and adaptable to
different regions and data scenarios. Furthermore, the model
provides a theoretical basis for scientific policy-making and
resource optimization by extracting multi-dimensional features
and analyzing dynamic interactions. However, there are still
some limitations. The model is highly dependent on the quality
and availability of data, and it may show limitations when faced with
missing or low-quality data. Additionally, the model’s
computational complexity increases with its sophistication, and
further verification is needed to assess its applicability for real-
time predictions. Although the model captures the bidirectional
coupling relationship between tourism and the environment, it does
not fully address the causal analysis of specific impact factors. Future
research could explore the integration of causal inference methods
to improve the model’s interpretability.

This paper not only reveals the dynamic coupling characteristics
of tourism and environment through LARF model, but also realizes
theoretical innovation and expansion in modeling methods and
practical applications, which provides a new perspective for research
in related fields. However, there is still room for improvement. In the
future, the performance of the model in data-scarce scenarios can be
further optimized, and the modeling methods of causality can be
explored to more comprehensively understand and predict the
complex interaction between tourism and environmental systems.
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