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The driving forces and their spatiotemporal differences of pollutant discharge in
30 provinces in China from 2001 to 2020 were investigated by adopting the
logarithmic mean divisia index (LMDI) method, distinguishing between industrial
and domestic wastewater pollutant discharge. Our study results show that
economic expansion was the dominant driver of chemical oxygen demand
(COD) and NH3-N discharge in China, mainly due to the impact of rapid
economic development in the developed eastern provinces. The gap among
30 provinces in the contribution related to the driving effects of industrial COD
and NH3-N discharge greatly narrowed with time, tending toward the national
average. It showed the significant effectiveness of industrial structure adjustment,
clean production, and the technology of industrial wastewater treatment across
the country. Industrial COD and NH3-N discharge has been reduced to a certain
extent. However, with rapid economic growth and urbanization, the domestic
sewage treatment volumewas still increasing, and the growth rate was faster than
that of GDP in some provinces. The technology of many provinces had gradually
failed to meet the growing demand for treating domestic sewage pollutants.
Consequently, the influencing contributions had significant regional differences
among provinces. The governance of the water environment in China should
attach importance to technological advances for domestic water conservation
and wastewater treatment in the future.
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Highlights

• The disparities of the influencing effects of industrial and domestic pollution
discharge were disclosed.

• The spatiotemporal dynamics of the influencing effects of wastewater pollution
discharge were investigated in China.

• The gap among 30 provinces in China in each effect’s contribution to industrial COD
and NH3-N discharge was narrowing.

• A large gap remained among 30 provinces in China in each effect of domestic COD
and NH3-N discharge.
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1 Introduction

As economic development in China has entered a new normal,
the development emphasis has shifted from pursuing speed to
quality. The goal of improving the ecological environment has
become an important element of high-quality development.
Environmental pollution is still serious in China; water pollution
incidents have occurred frequently, causing a constant water
environmental crisis. Because of this, the governments have
undertaken measures to improve the water environment (Cheng
et al., 2022; Jin et al., 2014; Li et al., 2022). However, it is still
insufficient in terms of the condition of rapid economic
development (Liu et al., 2021; Xie et al., 2022; Yao et al., 2019).
In recent years, some positive outcomes have emerged, and the
volume of industrial wastewater discharge has decreased
considerably in China. In contrast, domestic sewage discharge
has continued to increase with rapid urbanization. In addition,
significant differences between the changes of domestic and
industrial pollutant discharge were found in terms of chemical
oxygen demand (COD) and ammonia nitrogen (NH3-N). At the
end of the 11th 5-year plan (2006–2010), the discharge of domestic
COD and NH3-N was 1.8× and 3× the discharge of industrial COD
and NH3-N (ChinaNBoSo, 2020). By the 13th 5-year plan
(2016–2020), the ratios of domestic to industrial COD and NH3-
N discharge increased to 6.7 and 3.2 (ChinaNBoSo, 2020).
Accordingly, it is necessary to understand the driving
mechanisms of the changes in water pollutant discharge in the
economic transitional period in China.

China’s environmental pollution and economic growth nexus
has received increasing attention in recent years and has emerged as
an important topic among economists and policymakers. The most
common argument in the theoretical research is that the
environmental Kuznets curve (EKC) hypothesis holds that the
levels of pollution first increase with economic growth and
decline subsequently relative to economic growth in higher levels
(Grossman and Krueger; Panayotou, 1993; Grosman and Krueger,
1994; Shen, 2006; Li et al., 2024; Ozturk et al., 2024; Al-Mulali et al.,
2015). The EKC hypothesis and its empirical study are important
values in understanding the dynamic change of water environmental
quality and have indicative significance (Long et al., 2019; Chen
et al., 2016). However, wastewater discharge is a complex process
that involves all aspects of socio-economic development (Ruan and
Yan, 2022). Numerous scholars in this field have examined the key
influencing factors of environmental change (Dietz and Rosa, 1997;
Chen et al., 2010; Shahbaz et al., 2014; Wang and Feng, 2017). Some
scholars have selected variables from economic, structure,
population, and technical effects. For example, Vincent (1997)
adopted population density (Vincent, 1997). Cole (2004) used
trade factors (Cole, 2004). Shen (2006) selected the secondary
industry share, population density, per capita physical capital,
and labor (Shen, 2006). Lee et al. (2010) chose political system-
related factors (Lee et al., 2010). Zhang et al. (2017) focused on the
total population and volume of urban water consumption per GDP
(25). Cai et al. (2020) selected economic growth-per-
capita GDP (26).

In relation to calculation methods, it is acknowledged that factor
decomposition analysis has a wide range of applications in the
environmental fields (Geng, 2011; Shao et al., 2014; Robaina-Alves

et al., 2016). Many scholars apply the logarithmic mean divisia index
(LMDI) method to the driving influences analysis of wastewater
discharge (Ang and Choi, 1997; Jeong and Kim, 2013; Xu et al., 2014;
Li et al., 2019; Rasul, 2016). For example, Zhao and Chen (2014)
account for the Chinese agricultural water footprint from 1990 to
2009, decomposing the driving forces into diet structure effect,
efficiency effect, economic activity effect, and population effect
(Zhao and Chen, 2014). Geng et al. (2014) used the LMDI
method and found that economic factors made a positive
contribution to the industrial wastewater discharge, whereas the
technical improvement considerably offset emission increases (Geng
et al., 2014). Recently, we have realized that understanding the
spatial matching between social, resource, and environmental
factors when improving water quality, controlling wastewater
discharge, and enhancing wastewater management is a problem
we should consider (An et al., 2018). Zhang et al. (2021) constructed
an LMDI decomposition model to quantitatively study the
spatiotemporal distribution and driving effects in urban
wastewater treatment (Zhang et al., 2021). Tian et al. (2023)
explored the determinants of wastewater discharge reduction and
divided Mainland China into seven regions to clarify the differences
among distinct regions (Tian et al., 2023).

However, the studies on wastewater discharge analyzed by the
LMDI method still have some limitations. Most studies only
measured the decomposition effect of the total wastewater
discharge or industrial wastewater discharge but lacked an
analysis of domestic sewage pollution discharge (Chen et al.,
2019; Wei et al., 2019; Chang and Zhu, 2021). In addition, most
research on the spatial–temporal characteristics has focused on
simple descriptions instead of relevant spatial analysis (Zhang
et al., 2021; Jia et al., 2017). China has a vast territory, and due
to the natural environment, economic condition, technology, and
other factors, different regions have distinct wastewater discharge
statuses and driving factors (Yang et al., 2015). However, regional
heterogeneity has usually not been elaborated in existing studies (Ma
et al., 2020); nor have investigations distinguished the drivers
influencing industrial and domestic pollution discharge in
different provinces.

Against this background, this paper addresses these issues. It
makes efforts to decompose the spatiotemporal influencing effects of
regional development in COD andNH3-N discharge in China, using
the datasets at the Chinese provincial level from 2001 to 2020, which
provide up-to-date information on the historic behavior of water
pollution variables. The general contribution of this study is two-
fold. On the one hand, the present study contributes to new
knowledge by decomposing the analysis on the disparities of
influencing effects of industrial and domestic pollution discharge.
On the other hand, we employed the LMDI and multi-regional
(M-R) model to investigate the spatiotemporal dynamic
contributions of the influencing effects, which can help the
government formulate more precise polices for regional
wastewater discharge reduction. To the best of our knowledge,
the differences in terms of industrial wastewater and domestic
sewage have not been investigated. We believe that this study
could open a way forward in achieving a specific viewpoint for
future studies on the influence of pollution from development.

The remainder of this paper is organized as follows. The “Data
and methods” section briefly describes the data and analytical
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methods and models used in this study. The “Results and
discussion” section presents and discusses the results. The
“Conclusions and future studies” section summarizes our
findings and offers some concluding remarks and further
research direction.

2 Data and methods

The decomposition models were proposed based on LMDI
methods and the M-R model to analyze the influencing factors of
COD and NH3-N discharge in China in terms of economic scale
effect (ESE), urbanization effect (UE), industrial structure effect
(ISE), and technology effect (TE). The analysis focused on two
aspects: 1) the disparities between industrial and domestic pollution
sources; 2) the spatiotemporal dynamics of the influencing effects.
The technical roadmap of this study is shown in Figure 1.

2.1 Proposed LMDI decomposition

The LMDI model can separate each factor’s contribution to the
total index and trace causes for changes in the index. It is widely
applied because it has no residuals and is transparent in interpreting
decomposition results (Román-Collado and Casado Ruíz, 2024;
Tian et al., 2025). For this reason, it has become a commonly
used approach in studying the driving factors of
environmental problems.

Based on the KAYA identify, the LMDI method in this study for
decomposing the influence in COD and NH3-N discharge from
economic development was constructed in the base year and target
year as Equation 1.

Vi � ∑
j

Vij � ∑xi1xi2 · · · xik j ∈ 1, k[ ] (1)

where Vi denotes the whole volume of regional water pollution
discharge, which varies depending on k drivers.

According to the LMDI additive principle, the specific
expression of the decomposition is shown in Equation 2 and
Equation 3.

ΔV T−0( )
i � VT

i − V0
i � ΔV T−0( )

ix1 + ΔV T−0( )
ix2

+/ + ΔV T−0( )
ixk

(2)

where ΔV(T−0)
i denotes the total volume of pollution discharge in

the i province from the base year (0) to the target year (T). The right
side of Equation 2 is the decomposition results according to k
drivers. The decomposition of the j factor is shown in Equation 3.

ΔV T−0( )
ixj � L VT

i , V
0
i( ) ln xT

j,i

x0
j,i

( ) � VT
i − V0

i

lnVT
i − lnV0

i

ln
xT
j,i

x0
j,i

( ) (3)

The positive contribution degrees of the factors indicate that
these factors can promote COD and NH3-N discharge. The negative
contribution degrees imply that the driving factors tend to inhibit
COD and NH3-N discharge.

2.2 The M-R decomposition

A spatial decomposition analysis was carried out to identify why
differences exist among provinces, considering the COD andNH3-N
discharge and decomposition factors. The spatial analysis is
conducted using data from a specific year and is called a single-
year spatial analysis (Ang, 2015). When the spatial comparison
group consists of I (i ≥ 2) regions, the literature recommends
applying the M-R model (Ang et al., 2016; Wu and Zeng, 2013).
The M-R model allows for calculated direct comparisons between
each region and a previously calculated reference entity. In this
research, the reference region is constructed. Its attributes are given
by the arithmetic average of all the provinces included in China. The
pollution discharge of the reference region is given by the weighted
average of all the provinces. The same procedure is applied to
calculate the remaining attributes of the reference region.

The spatial difference between one province i and the reference
province in year T can be decomposed as follows:

FIGURE 1
Technical roadmap of this study.
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ΔV Ri−�R( ) � VRi − V
�R � ΔV Ri− �R( )

x1 + ΔV Ri− �R( )
x2 +/ + ΔV Ri− �R( )

xk , (4)

where ΔV(Ri−�R) is the spatial difference of COD and NH3-N
discharge between province i (VRi ) and the reference province in
t year (VR). The right side of Equation 4 is the decomposition results
according to k drivers. ΔV(Ri−�R)

xj
represents influencing effects that

are defined as Equation 5:

ΔV Ri− �R( )
xj � L(VRi , V

�R) ln(xRi
j

xj
�R
) � VRi − V �R

lnVRi − lnV �R
ln(xRi

j

xj
�R
) (5)

2.3 The decomposition model proposed in
this study

In this study, the driving factors of industrial COD and NH3-N
discharge are decomposed into economic scale, industrial structure,
and technology. Domestic COD and NH3-N drivers are decomposed
into economic scale, urbanization, and technology. Concretely, the
technical effect could be further decomposed into water intensity,
wastewater discharge intensity, and pollutant emission intensity.
Therefore, Equation 1 can be expressed as Equations 6, 7:

Vin � ∑Vin
ij � ∑ Vin

i

Win
i

Win
i

Fin
i

Fin
i

Ain
i

Ain
i

Gi
Gi

� ∑PEIini ·WDIini ·WIini · ISini · ESini (6)

Vds � ∑Vds
ij � ∑ Vds

i

Wds
i

Wds
i

PU
i

PU
i

PT
i

PT
i

Fds
i

Fds
i

Gi
Gi

� ∑PEIdsi ·WDIdsi ·WIdsi · Uds
i · ESdsi (7)

The definition and the statistical description of all the variables
in the above equations are shown in Table 1.

2.4 The relative contribution rate of
each factor

In order to take a comparison analysis of the contribution of the
influencing effect within each region, the study adopted the relative
contribution degree (ρij) indicated by the ratio of the contribution of
each influencing effect to the absolute value of the change of pollutant
discharge in the region, which is calculated according to Equation 8.

ρij �
ΔVij∑jΔVij

(8)

2.5 Data sources

Provincial wastewater, COD, and NH3-N discharge, respectively,
from industrial and residential sources, covering the period from
2001 to 2020, were collected from the China Statistical Yearbook on
Environment (2001–2020). GDP (Gi), Industrial added value (Ai),
population (Ptot

i ) and urban population (Pur
i ) in each province are taken

from the statistical yearbooks of each province in China (2001–2020).

3 Results and discussion

3.1 Influencing the contribution ratio of the
drivers at the national level

According to the results shown in Figure 2, both industrial COD
andNH3-Ndischarge showed a downward trend inChina from 2001 to
2020 due to the combined effect of regional economic growth,
industrialization or urbanization, and technological advances.
However, the total volume of domestic pollution discharge is
increasingly higher than that of industrial pollution discharge in
China. This is because the effect of economic growth caused a sharp
reduction in industrial pollution discharge but a slight decrease in
domestic pollution discharge, although the ESE has played an
important role in causing COD and NH3-N discharge. Meanwhile,
urbanization led to more domestic COD and NH3-N discharge at high
levels. Industrialization had a negative effect on industrial COD and
NH3-N discharge reduction during the periods of the 10th and 11th
Five-Year Plans. However, the effect has become positive in controlling
industrial COD and NH3-N discharge since the 12th Five-Year Plan.
Management and controls have been implemented systematically over
industries with high wastewater pollutant discharge since 2001 in
China, through the adjustment and optimization of industrial
structure and enhanced environmental protection policy. Some
industries have substantially reduced COD and NH3-N discharge,
especially manufacturing and food processing, textile, paper and
paper products, smelting and pressing of ferrous metals, and
production and supply of electric powder and heat powder.
Moreover, technological advances also contributed to the reduction
of COD and NH3-N discharge. It can be seen from Figure 2 that the TE

TABLE 1 Description of variables in the LMDI and M-R models.

Symbols Indication

VIn
i The volume of industrial COD and NH3-N discharge in i province

Vds
i

The volume of domestic COD and NH3-N discharge in i province

Win
i The volume of industrial wastewater discharge in i province

Wds
i

The volume of domestic wastewater discharge in i province

Fin
i The volume of industrial water consumption in i province

Fds
i

The volume of domestic water consumption in i province

Ai Industrial added value of i province

Gi GDP of i province

PT
i The total population in i province

PU
i Urban population in i province

ESi The effect of economic scale in i province

ISi The effect of industrial structure in i province

Ui The effect of urbanization in i province

WIi The effect of water intensity

WDIi The effect of wastewater discharge intensity

PEIi The effect of pollutant emission intensity
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can significantly reduce the industrial wastewater discharge when it is
high, but when the industrial wastewater discharge is reduced to a
certain extent, the TE is limited. Consequently, the industrial COD and
NH3-N discharges have been reduced to a small amount, but the
domestic COD and NH3-N discharges still remained at a high level.
Domestic COD discharge was increasing.

3.2 The temporal evolution of provincial
decomposition analysis

3.2.1 The effect of economic scale
The results showed great differences by region in the temporal

variation. Concretely, the ESE of all provinces was positively driven

from 2011 to 2020, whether industrial or domestic COD and NH3-N
discharge. Changes of the ESE showed a varied history curve with
different levels of economic development. As depicted in Figure 3,
the ESE of industrial COD and NH3-N discharge in the eastern
developed provinces has declined continuously since the 10th Five-
Year Plan. The effect increased in part of middle China first and then
decreased from the 12th Five-Year Plan, as did the northeast region,
which is relatively backward in economic development. In the
western region, where the economy lags, industrial COD and
NH3-N discharge only began to decrease since the 13th Five-
Year Plan. The results reveal that the levels of pollution first
increase with economic growth and decline subsequently relative
to economic growth at higher levels, which follows the
environmental Kuznets curve (EKC) hypothesis (Chen et al., 2010).

FIGURE 2
Decomposition of the influencing effects of COD and NH3-N discharge in China during the 10th, 11th, 12th, and 13th Five-Year Plans. ESE, ISE, UE,
and TE, respectively, represent economic scale effect, industrialization effect, urbanization effect, and technology effect.
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The EKC relationship existed between economic growth and
domestic COD and NH3-N discharge in China as well. However,
quite a few areas, such as Anhui, Gansu, and Yunnan, have only
reached the turning point of the EKC during the 13th Five-Year
Plan. Thus, the ESE of some provinces declined, while others
maintained a high level of domestic COD and NH3-N discharge.

3.2.2 The effect of industrial structure and
urbanization

As shown in Figure 3, the ISE of most areas has turned positive
due to the reduction of industrial COD and NH3-N discharge in the
13th Five-Year Plan. A few areas, such as Anhui, Hunan, Sichuan,
Yunnan, and Jilin, still discharge more industrial pollution, which is

attributed to industrialization development. Industrial COD and
NH3-N discharge in these provinces mainly came from the
processing of food from agricultural products, the manufacture of
foods, raw chemical materials, and chemical products. In addition,
the manufacture of paper and paper products was a major
contributor to industrial pollutant emissions in Anhui and
Hunan. As a result of industrialization development, industrial
wastewater pollution has been a serious problem in these areas.
In the meantime, China was moving rapidly into urbanization. In all
provinces, the UE has contributed to domestic COD and NH3-N
discharge. During 2001–2020, the effects in some areas increased,
while they decreased in other areas. The growth of the UE showed
that the construction of urban environmental pollution treatment

FIGURE 3
The contribution of the influencing effects of COD and NH3-N discharge of 30 provinces in China during the 10th, 11th, 12th, and 13th Five-Year
Plans. ESE, ISE, UE, and TE, respectively, represent economic scale effect, industrialization effect, urbanization effect, and technology effect.
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facilities has not caught up with the need for environmental
pollution discharge caused by population agglomeration in areas
such as Guangdong, Fujian, Sichuan, Guizhou, and Xinjiang.
Meanwhile, the domestic COD and NH3-N discharge has
decreased substantially in a few areas with high urbanization
levels, including Shanghai, Tianjin, and Beijing. The results show
that cities with high urbanization could increase efforts to improve
infrastructure construction, facilitating the reduction of regional
domestic COD and NH3-N discharge.

3.2.3 The effect of technology
In the aspect of TE, the development level of technology varies in

different areas, so its effect on COD and NH3-N discharge reduction
was uneven. The TE was all positive for the reduction of industrial
COD and NH3-N discharge. During the period of the 13th Five-Year
Plan, the contribution of the TE of the industrial COD and NH3-N
discharge in each province in China tended to a similar degree.
Concretely, the effects of industrial water intensity were always
positive to water pollution reduction. The effects of pollutant
intensity showed negative influences in the early stage and then
changed gradually to positive influences in reducing industrial COD
and NH3-N discharge with time. In comparison, the contribution of
industrial wastewater intensity in nearly half of China has shown a
disincentive to pollution reduction at varying levels until the period
of the 13th Five-Year Plan.

In the aspect of domestic COD and NH3-N discharge, the TE
also played a positive role in reducing pollution in the whole region
from 2001 to 2015. However, half of the provinces had a small
hindering effect on domestic pollution reduction during the period
of the 13th Five-Year Plan. The WI (water intensity) effects were
negative in all the provinces in China, which means technology
advances of theWI reduce the domestic COD andNH3-N discharge.
In contrast, the WDI (wastewater discharge intensity) and PEI
(pollutant emission intensity) effects increased discharge in many
provinces. It suggests that the technical level of some areas has
gradually failed to meet the growing demand for domestic COD and
NH3-N discharge and treatment as time advances. That is to say, the
governance of the water environment in China should attach
importance to technology advances for treating domestic COD
and NH3-N discharge.

3.3 The spatial variation of provincial
decomposition analysis

Overall, a great difference was noted in the spatial dynamic
change of the drivers between industrial and domestic pollution
discharge during 2001–2020, shown in Figure 4. The absolute value
of each effect of industrial COD and NH3-N discharge showed a
decreasing trend, indicating that the gap between these provinces in
China was narrowing during 2001–2020. However, not much has
changed in the regional disparity related to the ESE and TE of
domestic COD and NH3-N discharge, and a slight reduction was
shown in the UE of domestic pollution discharge.

In terms of industrial COD and NH3-N discharge, the ESE
values of 12 provinces are always positive, indicating that their
economic growth caused more industrial COD and NH3-N
discharge than the average level of China, especially in Jiangsu,

Zhejiang, Guangdong, and Shandong, which had significantly
higher values. In other words, the driving force of economic
effects on industrial COD and NH3-N discharge in China mainly
came from the economic growth of eastern developed areas during
2001–2020. However, these regions have gradually shifted from
extensive economic expansion to high-quality economic
development. Their industrial structure adjustment currently has
a good effect on reducing industrial pollutant discharge. As shown in
Figure 4, the ISE contributions of Guangdong, Hebei, Henan,
Jiangsu, Shandong, and Zhejiang were higher than those of the
reference region in China. The ISE contributions also increased in
some underdeveloped regions, such as Anhui, Jilin, Jiangxi, Inner
Mongolia, Ningxia, and Shaanxi, through industrial structure
upgrading and optimization. Thus, the average value of the ISE
in China remained negative in the 13th Five-Year Plan, promoting
the reduction of industrial pollutant discharge on the whole.
Structural adjustment also plays a positive role in technological
advancement (Wu and Zeng, 2013). Almost half of the provinces
had a significantly higher TE contribution than the reference
region. It is mainly because the contributions of cleaner
production technology effects and industrial pollution treatment
technology effects were high in these provinces. Some provinces
had relatively low contributions to the TE but then increased
significantly, changing from negative to positive. For example,
wastewater reduction in important sectors has achieved
remarkable results in Fujian through the construction of a
green manufacturing system and technological innovation,
shifting traditional industries toward circular economy
industries. The provinces of Hebei, Hubei, and Shandong have
significantly reduced pollutant discharge from industrial
wastewater via the upgrading of traditional industries with high
water consumption, such as steel manufacturing and chemical
engineering.

In the aspect of domestic COD and NH3-N discharge, the ESE
of domestic COD and NH3-N discharge in more than half of the
provinces was also larger than the average value in China, in line
with their contribution to industrial pollution discharge. The
spatial structure of the ESE has not changed much in domestic
COD and NH3-N discharge, indicating that the improvement of
regional economic levels has not alleviated the impact of economic
expansion, driving the increase of domestic COD and NH3-N
discharge. Especially, the economic centers of China, such as
Beijing, Shanghai, Guangdong, Zhejiang, and Tianjin, which
drive the economic development of the surrounding areas,
urbanization also has a relatively large driving impact on the
emission of domestic pollutants. The UE in domestic COD and
NH3-N discharge was negative in most provinces but tended
toward the average of China over time. In terms of the TE, the
contributions of most provinces were positive. At the same time, a
few provinces with better economic development were negative,
including Beijing, Shanghai, Jiangsu, and Tianjin. That is to say,
the TE in these provinces was lower than the average level of
China, indicating that regional domestic sewage treatment
capacity had not developed simultaneously in the process of
economic growth and urbanization. Therefore, these regions
should place greater emphasis on the improvement of domestic
water conservation and the centralized treatment rate of domestic
wastewater pollutants in the future.
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4 Conclusions and future studies

4.1 Conclusions

Wastewater pollution discharge reduction is a comprehensive
action that is intricately intertwined with socio-economic and
environmental conditions, and the applicability and effectiveness
of regional policy have become urgent concerns and exploration
issues for water environment management under the new normal of
China’s economy. This study identified the current distribution, the
contribution, and historical (temporal) changes of the influencing
drivers, and the differences between industrial and domestic
pollutants, serving as a more precise and differentiated decision
and policy tool to effectively manage wastewater.

During the period of 2001–2020, the expansion of economic
scale was the dominant positive driver of COD and NH3-N
discharge of wastewater in China, and the effects of
industrialization and urbanization were relatively limited. The
technical effect was always the main solution to reducing
emissions of COD and NH3-N. However, some provinces have
entered the technological bottleneck stage of water
pollutant treatment.

In terms of temporal evolution, most provinces have emission
trends that are similar to those of the whole country. The ESE in the
eastern developed provinces has declined first, then in parts of
middle China and the northeast region, which are relatively

backward in economic development. The ESE in the western
undeveloped region has only begun to decrease since the 13th
Five-Year Plan, following the EKC hypothesis. ISE had increasing
emission contributions during the 10th and 11th Five-Year Plans,
but these became positive in industrial COD and NH3-N discharge
reduction since the 12th Five-Year Plan. Meanwhile, the UE in all
provinces contributed to domestic COD and NH3-N discharge.
Over time, the effects of some areas increase and others decrease.
During 2001–2020, the TE always had a positive influence on the
reduction of industrial COD andNH3-N discharge in China. The TE
in some provinces has shifted from a positive to a negative
contribution to reducing domestic COD and NH3-N discharge
since the 13th Five-Year Plan.

In terms of spatial variation, the contribution structure of each
effect showed different characteristics between industrial and
domestic pollution discharge as well. The gap among the spatial
contributions related to the driving effects of industrial COD and
NH3-N discharge narrowed with time, tending toward the national
average. However, the contribution of each province held a relatively
stable level, or showed a slight reduction, in terms of the influencing
effects of domestic COD and NH3-N discharge. It showed the
significant effectiveness of industrial structure adjustment, clean
production, and the technology of industrial wastewater treatment
across the country. As the industrial wastewater discharge was
reduced to a certain extent, the influencing effects have been
limited. With economic growth, the domestic sewage treatment

FIGURE 4
Spatial differences of the influencing effects of COD and NH3-N discharge of 30 provinces in China during the 10th, 11th, 12th, and 13th Five-Year
Plans. ESE, ISE, UE, and TE, respectively, represent economic scale effect, industrialization effect, urbanization effect, and technology effect.
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volume was still increasing, and the growth rate was faster than that
of GDP in some provinces. The technology of many provinces had
gradually failed to meet the growing demand for domestic sewage
treatment. Consequently, the influencing contributions had
significant regional differences among provinces. The governance
of the water environment in China should attach importance to
technology advances for domestic water conservation and
wastewater treatment in the future.

4.2 Future studies

Overall, we believe that the modeling approach presented in this
paper can be replicated in other regions of the world. As the largest
developing country as well as the fastest-growing developing
country, China’s approach to wastewater pollution discharge and
environmental issues is of great significance for other developing
countries. This study not only helps to understand China’s problem
of wastewater pollutant emission but also provides a reference for
other developing countries facing similar problems. In further
research, the authors hope to improve the research methods for
studying China’s industrial and domestic wastewater pollution
problems, using a smaller scale (for example, prefecture-level and
county-level cities).
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