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Background: The increasing urgency to mitigate and adapt to climate change
demands innovative methodologies capable of analyzing complex climate
systems and informing policy decisions. Traditional climate action models
often struggle with capturing intricate spatial-temporal dependencies and
integrating multi-modal data, resulting in limited scalability and real-world
applicability.

Methods: To address these challenges, we propose a novel framework that
integrates the Dynamic Climate Graph Network (DCGN) with the Adaptive
Climate Action Strategy (ACAS). DCGN utilizes graph-based learning to model
spatial dependencies and temporal feature extraction to analyze evolving climate
patterns. Multi-modal data fusion is employed to integrate meteorological,
socio-economic, and geospatial information. ACAS builds upon DCGN’s
predictive outputs by applying attention mechanisms and optimization under
domain-specific constraints to prioritize high-impact regions and variables.

Results: Empirical results demonstrate that the proposed framework consistently
outperforms several state-of-the-art baselines across multiple benchmark
datasets, achieving an average improvement of over 2.5% in F1 Score and
AUC. These outcomes highlight the robustness, generalizability, and real-
world applicability of our approach.

Conclusion: By linking advanced machine learning techniques with interpretable
and actionable climate policy insights, the integrated DCGN–ACAS framework
provides a scalable and effective tool for climate risk assessment and low-carbon
transition strategies. The proposed method offers promising implications for
sustainable urban planning, environmental governance, and adaptive climate
intervention.
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1 Introduction

Action recognition, a subfield of computer vision, has emerged
as a critical tool for assessing human activities in the context of
climate risk and the development of low-carbon economic policies
(Chen Y. et al., 2021). The ability to accurately detect and interpret
human actions is integral to analyzing behaviors that contribute to
environmental changes and understanding the socio-economic
impacts of climate risks (Duan et al., 2021). This research area is
vital not only for monitoring industrial activities, urban mobility
patterns, and agricultural practices but also for supporting evidence-
based policy-making (Liu et al., 2020). Action recognition can enable
more effective mitigation strategies by identifying high-emission
activities, promoting sustainable practices, and informing adaptive
responses to climate risks (Cheng et al., 2020b). It offers innovative
possibilities to bridge the gap between environmental science and
economics by linking human activities with emissions data, thus
providing actionable insights for transitioning to low-carbon
economies (Zhou et al., 2023). As climate risks intensify and the
urgency for sustainable solutions grows, advancing action
recognition technologies tailored to these contexts becomes a
pressing need.

Early approaches to action recognition for climate-related
applications relied on symbolic AI and rule-based systems (Li
et al., 2020). These methods primarily used handcrafted features
and logic-based representations to model human actions and
correlate them with environmental impacts (Morshed et al.,
2023). For instance, systems were developed to monitor
industrial machinery operations or track urban traffic patterns
using predefined sets of motion rules and activity patterns
(Perrett et al., 2021). These approaches were particularly useful in
structured environments, where activities followed predictable
patterns (Yang et al., 2020). Their reliance on domain experts to
define rules and features made them less adaptable to dynamic and
complex real-world scenarios. Symbolic methods struggled to
process and integrate large-scale data streams, such as those
generated by surveillance cameras or IoT sensors in urban areas
(gun Chi et al., 2022). As a result, their applicability was limited to
narrow, well-defined use cases, impeding their scalability and
effectiveness in addressing the broader challenges of climate risk
assessment and low-carbon policy development.

To overcome the rigidity of symbolic methods, machine learning
(ML) approaches were introduced, marking a significant shift
toward data-driven action recognition (Wang et al., 2020).
Algorithms such as Hidden Markov Models (HMMs), Support
Vector Machines (SVMs), and Random Forests were employed to
classify human activities based on patterns extracted from labeled
datasets (Pan J. et al., 2022). These methods proved particularly
effective for recognizing common actions, such as identifying
energy-intensive behaviors or monitoring compliance with
environmental regulations in industrial settings (Song et al.,
2021). Machine learning models were used to analyze worker
movements in factories to optimize energy consumption and
reduce carbon footprints (Chen Z. et al., 2021). While these
methods demonstrated improved adaptability and scalability, they
faced challenges in capturing the complexity of actions across
diverse environmental and socio-economic contexts (Ye et al.,
2020). The reliance on labeled data posed additional limitations,

as collecting and annotating datasets representative of global
activities is time- and resource-intensive. Traditional ML models
struggled to incorporate temporal and contextual information
critical for understanding the nuances of climate-related
human actions.

The emergence of deep learning and pre-trained models has
transformed action recognition by facilitating the automatic
extraction of intricate spatiotemporal features from raw data
(Sun et al., 2020). Deep neural networks (DNNs), including
Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs), have been employed to analyze video
sequences and infer high-level action representations (Duan
et al., 2022). Pre-trained models such as I3D (Inflated 3D
ConvNet) and ST-GCN (Spatio-Temporal Graph Convolutional
Networks) have been adapted for climate-related applications,
such as monitoring deforestation activities, detecting illegal
fishing, or assessing energy usage behaviors (Zhang et al., 2020).
These methods offer unparalleled accuracy and generalizability,
even in unstructured and noisy environments (Lin et al., 2020).
For instance, deep learning has been used to identify sustainable
farming practices from drone footage or to detect violations of
emissions regulations through automated surveillance systems
(Song et al., 2020). Challenges remain, particularly regarding the
high computational requirements of deep models and the ethical
implications of deploying surveillance technologies on a large scale.
These models often function as black boxes, limiting their
interpretability and trustworthiness in policy-making contexts
where transparency is paramount.

To address the limitations of existing methods, we propose an
action recognition framework specifically tailored to climate risk
assessment and low-carbon economic policy responses. Our
approach integrates domain-specific knowledge with the latest
advancements in spatiotemporal deep learning, enabling robust,
context-aware action recognition. By leveraging pre-trained models
fine-tuned on curated climate-related datasets, our framework
enhances accuracy and reduces the data collection burden. We
incorporate graph-based methods, such as Graph Neural
Networks (GNNs), to model the interdependencies between
human actions and environmental factors, providing a more
holistic understanding of their impacts. This hybrid approach
ensures scalability across diverse geographic and socio-economic
contexts, addressing the challenges of generalizability and data
scarcity. We prioritize model interpretability through explainable
AI techniques, enabling policymakers to understand the rationale
behind the framework’s predictions and make informed decisions.
Our method not only advances the field of action recognition but
also serves as a powerful tool for mitigating climate risks and
fostering sustainable economic practices. Despite the
advancements in deep learning and spatiotemporal modeling, a
significant research gap remains in integrating multi-modal climate
data with interpretable and adaptive action frameworks tailored
specifically to climate risk and low-carbon economic policy contexts.
Existing approaches often lack the capability to holistically model
spatial-temporal dependencies while maintaining scalability,
interpretability, and real-world policy relevance. To address this
gap, this study proposes a novel framework that integrates the
Dynamic Climate Graph Network (DCGN) and the Adaptive
Climate Action Strategy (ACAS). The key contributions of this
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work are threefold: (1) DCGN utilizes graph-based learning to
capture complex spatial dependencies among climate-related
variables while incorporating temporal feature extraction to
identify evolving patterns; (2) the model employs multi-modal
fusion to integrate heterogeneous climate, socio-economic, and
geospatial data, thus enabling comprehensive and nuanced
assessments of climate dynamics; and (3) ACAS translates the
predictive insights into actionable and interpretable policy
guidance through attention mechanisms, which prioritize high-
impact regions and variables for decision-making. This integrated
approach not only improves performance over state-of-the-art
baselines but also delivers practical tools for governments and
organizations seeking scalable and effective responses to climate
risks and emissions reduction challenges.

• Combines domain-specific knowledge with spatiotemporal
deep learning and graph-based methods, offering a unique
solution for climate risk assessment and low-carbon
policy-making.

• Fine-tunes pre-trained models on curated datasets, ensuring
effective application across diverse contexts while addressing
data scarcity and computational constraints.

• Employs explainable AI techniques to enhance transparency
and trustworthiness, facilitating evidence-based decisions in
environmental and economic policies.

2 Related work

2.1 Action recognition in climate risk
assessment

The use of action recognition in climate risk assessment has
gained increasing attention due to its ability to capture human-
environment interactions and their implications for disaster
preparedness and mitigation (Ren X. et al., 2025). Action
recognition systems, powered by computer vision and machine
learning, analyze human behaviors in response to environmental
hazards such as floods, wildfires, and hurricanes. These systems
provide critical data for understanding evacuation behaviors,
hazard responses, and adaptive actions, which are essential for
designing effective risk management strategies (Munro and
Damen, 2020). In the context of flood risk assessment, action
recognition algorithms have been employed to analyze evacuation
footage, identifying patterns such as hesitation, crowd movement
bottlenecks, and non-compliance with emergency protocols. These
insights help policymakers optimize evacuation plans and allocate
resources efficiently (Zhang and Song, 2025). During wildfire
events, action recognition systems have been used to monitor
fire suppression activities, enabling the evaluation of response
strategies and their alignment with real-time conditions. The
integration of drone footage and satellite data with action
recognition models has further enhanced the ability to analyze
human activities over large and inaccessible areas, offering a
holistic perspective on disaster response (Wang et al., 2022).
Action recognition is being applied to assess community-level
adaptation practices in the face of climate change (Change,
2022). For instance, the adoption of sustainable farming

practices, water conservation efforts, and community-led
disaster mitigation activities can be quantified through action
recognition frameworks. These systems not only measure the
prevalence of such actions but also identify barriers to their
widespread adoption. By analyzing large-scale behavioral data,
researchers can provide actionable recommendations for fostering
resilience to climate risks (Yang et al., 2022). A particularly
promising avenue is the coupling of action recognition data
with predictive modeling for climate risk scenarios. By
observing real-world human actions during simulated climate
hazards, researchers can calibrate models to better predict
future vulnerabilities and adaptation needs (Dave et al., 2022).
This integration is critical for informing policies that address the
dual challenges of immediate disaster response and long-term
climate resilience.

2.2 Behavioral insights for low-carbon
transitions

Action recognition is increasingly being utilized to study
behavioral patterns that influence the transition to low-carbon
economies. Human actions, such as energy consumption habits,
transportation choices, and waste management practices, play a
pivotal role in determining the success of decarbonization policies.
By employing action recognition systems to analyze these
behaviors, policymakers can design targeted interventions that
promote sustainable practices (Xing et al., 2022). Action
recognition has been employed to track and analyze energy
consumption behaviors in both residential and industrial
settings. For instance, tracking actions such as appliance usage,
thermostat adjustments, and lighting habits enables the
identification of inefficiencies and the tailoring of energy-saving
initiatives. Smart home technologies equipped with action
recognition capabilities provide real-time feedback to users,
encouraging more sustainable energy consumption. In industrial
settings, these systems optimize operations by detecting energy-
intensive actions, facilitating the implementation of energy
management systems that align with carbon reduction goals
(Wang et al., 2021). Transportation behavior analysis is another
critical application. Action recognition frameworks have been
deployed to study commuter behaviors, such as carpooling,
public transportation usage, and active travel methods like
walking and cycling (Ren et al., 2024b). These systems provide
granular insights into barriers to low-carbon transportation
adoption, such as infrastructure gaps or behavioral inertia.
Based on this data, policymakers can prioritize investments in
public transit networks, bike lanes, and incentive programs to
encourage shifts toward sustainable mobility (Liu et al., 2025).
Action recognition is proving valuable in waste management and
circular economy initiatives. By analyzing behaviors related to
recycling, composting, and material reuse, these systems identify
areas where public awareness campaigns or policy incentives are
needed. For instance, the misclassification of waste items in
recycling bins can be addressed through targeted education
campaigns informed by behavioral data. Action recognition
systems have been used to evaluate the effectiveness of pay-as-
you-throw waste reduction policies, providing evidence-based
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feedback for refining such measures (Meng et al., 2020). The
integration of action recognition with behavioral economics is
further advancing the understanding of low-carbon transitions. By
combining observational data with insights from nudge theory and
incentive structures, researchers can develop comprehensive
strategies for accelerating the adoption of sustainable behaviors.
These approaches align individual actions with broader societal
goals, ensuring a smoother transition to a low-carbon economy.

2.3 Policy design using action
recognition data

The data generated by action recognition systems is becoming
an invaluable resource for designing and evaluating policies aimed
at addressing climate risks and fostering low-carbon development.
By capturing real-time human behaviors in diverse contexts, these
systems provide empirical evidence that informs the development
of adaptive and equitable policy responses (Truong et al., 2022). In
climate risk policy, action recognition data is used to evaluate the
effectiveness of disaster preparedness and response initiatives.
Video analysis of evacuation drills and emergency responses
provides insights into the operational efficiency of existing
protocols. Policymakers can leverage these insights to refine
evacuation routes, improve early warning systems, and allocate
resources more effectively. Action recognition has been employed
to assess community participation in disaster risk reduction
activities, ensuring that vulnerable populations are adequately
included in planning processes (Bao et al., 2021). For low-
carbon policy design, action recognition offers a robust method
for monitoring compliance and measuring impact. Carbon pricing
policies, can be evaluated by analyzing shifts in consumer
behaviors, such as reduced vehicle usage or increased adoption
of energy-efficient appliances (Ren et al., 2024a) the effectiveness
of renewable energy incentives can be assessed by tracking the
installation and use of solar panels, wind turbines, and other clean
technologies. This real-time monitoring capability allows for
dynamic adjustments to policy measures, ensuring they remain
effective and equitable. action recognition data supports the design
of just transition policies that address the social and economic
impacts of decarbonization (Li et al., 2025). By observing
workforce behaviors and retraining efforts, these systems
provide evidence on the effectiveness of programs aimed at
transitioning workers from carbon-intensive industries to green
jobs. For instance, tracking participation in skill-building
workshops or on-the-job training programs informs the scaling
of successful initiatives and the redesign of underperforming ones
(Cheng et al., 2020a). The integration of action recognition data
with geospatial and socioeconomic datasets enhances the
granularity of policy analysis. By linking observed behaviors
with demographic and geographic variables, researchers can
identify disparities in access to climate adaptation resources or
low-carbon technologies (Pan A. et al., 2022). These insights
enable the tailoring of policies to address specific regional and
community needs, promoting equity in the face of climate
challenges. As action recognition technologies continue to
evolve, their role in shaping evidence-based and adaptive policy
responses is poised to expand significantly.

3 Methods

3.1 Overview

Climate action analysis has emerged as a critical domain where
data-driven methodologies play an essential role in understanding,
mitigating, and adapting to the challenges of climate change. The
increasing availability of diverse climate-related datasets, including
satellite imagery, environmental sensor data, and socio-economic
indicators, offers unprecedented opportunities for applying artificial
intelligence (AI) and machine learning (ML) techniques to advance
climate science and policy. This paper introduces a novel framework
for climate action analysis that integrates domain knowledge,
computational efficiency, and interpretability to address pressing
challenges such as emissions monitoring, disaster prediction, and
energy optimization.

In the subsequent sections, we systematically outline the key
components of our framework. In Section 3.2 provides the
mathematical preliminaries for modeling climate data,
emphasizing its spatial-temporal characteristics and
heterogeneity. This formalization establishes the foundation for
our method by highlighting the inherent complexities and
opportunities presented by climate datasets. In Section 3.3
introduces our proposed model, the Dynamic Climate Graph
Network (DCGN), which captures intricate dependencies among
climate variables through graph-based learning and temporal
feature extraction. In Section 3.4 discusses the Adaptive Climate
Action Strategy (ACAS), a domain-driven optimization approach
that leverages DCGN to enable interpretable decision-making for
policy and intervention planning.

3.2 Preliminaries

Climate action analysis involves developing data-driven models
to address challenges in climate change mitigation, adaptation, and
disaster preparedness. This section formalizes the mathematical and
structural characteristics of climate-related data, establishing a
foundation for the proposed methodologies. The representations
introduced here highlight the spatio-temporal and multi-modal
nature of climate data, outlining the associated computational
challenges and opportunities.

Let D � {(xi, yi)}Ni�1 represent a dataset with N samples, where
each input xi ∈ X corresponds to climate-related features, and each
output yi ∈ Y represents an associated target variable. The inputs xi
may include temperature, precipitation, carbon emissions, energy
consumption, or socio-economic indicators, while the targets yi
encompass disaster severity, policy effectiveness, or renewable
energy adoption.

Climate data exhibits both spatial and temporal dependencies. A
graph G � (V, E) models spatial relationships, where nodes V
represent spatial regions and edges E encode connections
between these regions. Temporal dependencies extend over T
discrete time steps, forming a sequence of graphs {Gt}Tt�1. Each
node v ∈ V has a feature matrix Xv

t ∈ Rd, where d denotes the
feature dimension.

The dual nature of spatial and temporal dependencies
necessitates models that jointly capture these dynamics. Let Xt �
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[X1
t ,X

2
t , . . . ,X

N
t ] ∈ RN×d represent the aggregated feature matrix

across N regions at time t. The temporal evolution of climate
variables can be described as Equation 1:

Xt+1 � f Xt,Xt−1, . . . ,Xt−τ ;W( ) + Et, (1)
where f(·) denotes a transition function parameterized by W, τ is
the temporal window, and Et represents stochastic noise. Spatial
interactions at time t can be encoded via a graph adjacency matrix
At ∈ RN×N, leading to Equation 2:

Ht � σ AtHt−1Ws( ), (2)
Where Ht ∈ RN×dh denotes hidden states,Ws are learnable weights,
and σ(·) is an activation function.

Climate data spans multiple modalities, requiring integration
into a unified representation. Meteorological data includes
continuous time-series variables such as temperature, humidity,
and wind speed. Geospatial data consists of spatially distributed
variables, including land use, topography, and vegetation indices.
Economic data incorporates socio-economic indicators such as
GDP, energy usage, and industrial outputs. Event-based data
captures discrete occurrences such as hurricanes, wildfires, or
policy implementations. Each modality contributes unique
insights, necessitating a fusion approach.

Let X(m)
t denote features from modality m, where

m � 1, 2, . . . ,M. A fusion function ϕ(·) maps these features into
a shared latent space Equation 3:

Zt � ϕ X 1( )
t ,X 2( )

t , . . . ,X M( )
t ; θϕ( ), (3)

Where Zt ∈ RN×dz is the fused representation, and θϕ are
trainable parameters.

The overarching goal of climate action analysis is to predict
outcomes and optimize decision-making based on the available data.
These tasks can be formulated as follows.

Prediction involves forecasting future outcomes YT+1 given
historical data {Xt}Tt�1 Equation 4:

ŶT+1 � g XT,XT−1, . . . ; θg( ), (4)

Where g(·) represents a predictive model parameterized by θg.
Optimization entails determining the optimal intervention

u ∈ U that minimizes a cost function C Equation 5:

u* � argmin
u∈U

EY C Y,u( )[ ]. (5)

By capturing spatio-temporal dependencies and integrating
multi-modal data, these methodologies support actionable
insights for climate resilience and sustainability.

3.3 Dynamic climate graph network (DCGN)

In this section, we introduce the Dynamic Climate Graph
Network (DCGN), a novel model designed to address the spatio-
temporal and multi-modal complexities of climate action analysis.
DCGN leverages graph-based learning, temporal feature extraction,
and multi-modal fusion to model the intricate dependencies and
interactions in climate-related data. This approach enables robust
predictions, interpretability, and scalability for a wide range of

climate applications, such as emissions monitoring, disaster
prediction, and renewable energy optimization (As shown
in Figure 1).

The DCGN architecture is built on a combination of graph
neural networks (GNNs) for spatial relationships, recurrent
mechanisms for temporal dependencies, and fusion layers for
integrating multi-modal data. Let Gt � (V, E,At) represent the
graph structure at time t, where V is the set of N nodes, E is the
set of edges, andAt ∈ RN×N is the adjacency matrix encoding spatial
relationships. Node features at time t are represented as Xt ∈ RN×d

(As shown in Figure 2).

3.3.1 Graph-based spatial learning
The spatial dependencies in climate data are encoded using a

Graph Convolutional Network (GCN), which enables the
aggregation of information from neighboring nodes in a graph
structure. The fundamental operation of a GCN is defined as
follows, where the node representations are iteratively updated at
each layer Equation 6:

H l+1( )
t � σ AtH

l( )
t W l( )

s + b l( )
s( ), (6)

where H(l)
t ∈ RN×dh Denotes the node feature matrix at layer l, N

denotes the number of nodes, and dh is the hidden dimension. The
weight matrixW(l)

s ∈ Rdh×dh and bias vector b(l)s ∈ Rdh are learnable
parameters specific to layer l. The function σ(·) is a non-linear
activation function, such as the Rectified Linear Unit (ReLU), which
introduces non-linearity into the model.

The adjacency matrix At ∈ RN×N encodes the spatial
relationships between nodes, which can be either static or
dynamic. To enhance numerical stability and ensure proper
normalization, a degree-normalized adjacency matrix ~At is often
used Equation 7:

~At � D
−1
2

t AtD
−1
2

t , (7)
where Dt is the diagonal degree matrix with elements
Dt(i, i) � ∑jAt(i, j). This normalization ensures that the graph
convolution operation maintains a consistent scale across
different nodes, preventing instability in training.

Expanding on the graph convolution operation, a more
generalized form incorporating multi-hop neighbors can be
expressed as Equation 8:

H l+1( )
t � σ ∑K

k�1
~A
k

tH
l( )
t W l,k( )

s + b l( )
s

⎛⎝ ⎞⎠, (8)

where K represents the maximum number of hops considered, and
W(l,k)

s are separate weight matrices for each hop level. This extension
allows the GCN to capture higher-order spatial dependencies
beyond immediate neighbors.

In some formulations, residual connections are added to
improve gradient flow and prevent over-smoothing (Equation 9):

H l+1( )
t � σ ~AtH

l( )
t W l( )

s + b l( )
s( ) +H l( )

t . (9)

The final spatial representation for each node at time t is denoted
as Equation 10:

Hspatial
t � H L( )

t ∈ RN×dh , (10)
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where L is the aggregate number of GCN layers. This spatial
representation effectively captures climate-related dependencies
and is subsequently used for downstream tasks, such as
spatiotemporal forecasting or anomaly detection.

3.3.2 Modeling temporal dependencies
To effectively model temporal dependencies in sequential data,

the outputs of the spatial module are processed through a Gated
Recurrent Unit (GRU). The GRU is a variant of recurrent neural
networks designed to address the vanishing gradient problem and
efficiently capture long-term dependencies in sequences. Let Hspatial

t

represent the spatial features at time step t. The GRU updates its
hidden state ht based on the following recursive computations
Equations 11-14:

zt � σ WzH
spatial
t + Uzht−1 + bz( ), (11)

rt � σ WrH
spatial
t + Urht−1 + br( ), (12)

~ht � tanh WhH
spatial
t + rt ⊙ Uhht−1 + bh( ), (13)

ht � 1 − zt( ) ⊙ ht−1 + zt ⊙ ~ht. (14)
Here, zt and rt are the update and reset gates, respectively, which

regulate the flow of information in the recurrent unit. σ(·) denotes
the sigmoid activation function, and tanh(·) denotes the hyperbolic
tangent activation function.

The variables and parameters used in the GRU equations are
defined as follows. The spatial feature vector at time step t is
denoted byHspatial

t , and ht−1 represents the hidden state of the GRU

at the previous time step. The update gate vector at time t, zt,
determines how much of the previous hidden state should be
retained, while the reset gate vector rt determines how past
information should be combined with new input. The candidate
hidden state computed at time t is denoted as ~ht, and the final
updated hidden state is ht.

The model includes several learnable parameters: Wz, Wr, and
Wh are weight matrices applied to the inputHspatial

t , whereas Uz, Ur,
and Uh are the corresponding weight matrices applied to the
previous hidden state ht−1. Bias vectors bz, br, and bh are added
in each respective transformation. The operator ⊙ denotes element-
wise (Hadamard) product.

The update gate zt determines how much of the past hidden
state ht−1 should be carried forward, while the reset gate rt controls
how much past information should be ignored when computing the
candidate hidden state ~ht. The element-wise product ⊙ ensures that
the reset gate selectively modulates the influence of ht−1 in
generating ~ht.

The update gate zt determines how much of the past hidden
state ht−1 should be carried forward, while the reset gate rt controls
how much past information should be ignored when computing the
candidate hidden state ~ht. The element-wise product ⊙ ensures that
the reset gate selectively modulates the influence of ht−1 in
generating ~ht.

Expanding on the role of ~ht, it represents the candidate
activation computed as Equation 15:

~ht � tanh WhH
spatial
t + rt ⊙ Uhht−1( ) + bh( ). (15)

FIGURE 1
The image illustrates the architecture of the Dynamic Climate Graph Network (DCGN), a model designed for spatio-temporal and multi-modal
climate action analysis. It integrates graph-based spatial learning, temporal dependencies through a Gated Recurrent Unit (GRU), and multi-modal data
fusion to capture complex interactions in climate-related data. The model leverages attention mechanisms to combine information from different
modalities, enabling robust predictions for climate applications such as emissions monitoring, disaster prediction, and renewable energy
optimization.
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The final hidden state ht is then obtained as a convex
combination of the previous hidden state ht−1 and the candidate
state ~ht, controlled by the update gate Equation 16:

ht � 1 − zt( ) ⊙ ht−1 + zt ⊙ ~ht. (16)
By iterating these computations over T time steps, the GRU

captures temporal dependencies and learns a representation of
sequential data. The sequence of hidden states {ht}Tt�1 serves as
the learned temporal features that integrate past information while
allowing for effective gradient flow.

To improve model expressiveness, a multi-layer GRU can be
employed, Where the hidden states generated by the preceding layer
are passed as input to the next layer Equation 17:

h l( )
t � GRU h l−1( )

t , h l( )
t−1( ), (17)

where l represents the layer index. Bidirectional GRUs can be
incorporated to capture both past and future contexts Equation 18:

ht � GRUforward ht−1,H
spatial
t( ) + GRUbackward ht+1,H

spatial
t( ). (18)

These modifications further enhance the ability of the GRU to
model complex temporal patterns in sequential data.

3.3.3 Integrating multi-modal data
Climate data often includes multiple modalities, such as

meteorological, geospatial, and socio-economic data. These
heterogeneous data sources provide complementary information,

which, when effectively fused, can lead to more robust climate
predictions (As shown in Figure 3).

Let {X(m)
t }Mm�1 represent the features fromMmodalities at time t.

Each modality contains high-dimensional feature representations,
which must be integrated into a shared representation Zt using an
attention-based fusion mechanism.

To achieve this, modality-specific attention weights are
computed to determine the relative contribution of each
modality. The attention mechanism is formulated as follows
Equation 19:

a m( )
t � softmax WmX

m( )
t + bm( ), (19)

whereWm ∈ Rd×d and bm ∈ Rd are learnable parameters, capturing
the importance of each modality at time t.

Using these computed attention weights, we derive the fused
representation Zt as follows Equation 20:

Zt � ∑M
m�1

a m( )
t ⊙ X m( )

t , (20)

where ⊙ denotes element-wise multiplication. The integrated
representation Zt is subsequently passed through task-specific
output layers to produce predictions for climate-related variables.
For a regression task, such as predicting future temperature, carbon
emissions, or atmospheric pressure, the prediction is computed as
Equation 21:

ŷt � WoZt + bo, (21)

FIGURE 2
Architecture of the Dynamic Climate Graph Network (DCGN). The model integrates three main components: (1) Graph-Based Spatial Learning
captures spatial dependencies using a graph convolutional network (GCN); (2) Modeling Temporal Dependencies employs GRU and attention
mechanisms to process sequential patterns; and (3) Integrating Multi-Modal Data fuses heterogeneous climate-related information such as geospatial,
socio-economic, andmeteorological data. The systemoutputs predictions for key climate tasks including emissionsmonitoring, disaster prediction,
and renewable energy optimization.
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whereWo ∈ Rd×do and bo ∈ Rdo are the learnable parameters for the
output layer, and do represents the output dimension.

For classification tasks, such as categorizing disaster severity
levels or predicting energy demand categories, the probability
distribution over classes is given by Equation 22:

p̂t � softmax WoZt + bo( ), (22)
where p̂t ∈ RC represents the predicted probability distribution over
C classes.

The model is trained by minimizing a task-specific loss function.
For a regression task, the mean squared error (MSE) loss is
employed Equation 23:

Lreg � 1
T
∑T
t�1

‖yt − ŷt‖22. (23)

For classification tasks, categorical cross-entropy loss is used
Equation 24:

Lcls � −1
T
∑T
t�1

∑C
c�1

y c( )
t log p̂ c( )

t . (24)

To enhance generalization and prevent overfitting, a
regularization term is incorporated into the loss function
Equation 25:

L � Ltask + λ ∑M
m�1

‖Wm‖2F, (25)

where ‖Wm‖2F denotes the Frobenius norm of the modality-specific
weight matrices, and λ is a control parameter influencing the balance
between model simplicity and predictive power.

Temporal dependencies in climate data can be captured by
integrating a recurrent component such as a Long Short-Term

Memory (LSTM) or a Temporal Graph Neural Network
(TGNN), where Equation 26:

ht � LSTM Zt, ht−1( ), (26)
Allowing the model to effectively leverage past multi-modal

information for future predictions.

3.4 Adaptive climate action strategy (ACAS)

In this section, we present the Adaptive Climate Action Strategy
(ACAS), a novel optimization-based framework designed to leverage
the power of the proposed Dynamic Climate Graph Network
(DCGN) for actionable climate decision-making. ACAS integrates
domain-specific constraints, interpretable decision rules, and
optimization techniques to address critical challenges in climate
mitigation, adaptation, and resource management. By coupling
predictive insights from DCGN with adaptive strategies, ACAS
enables robust, efficient, and interpretable solutions for real-
world climate challenges (As shown in Figure 4).

3.4.1 Optimization-based framework
The optimization-based framework within ACAS is designed to

find the optimal interventions ut ∈ U that not only minimize the
societal, economic, or environmental cost C but also adhere to
climate-specific constraints. These constraints are multifaceted
and can include resource limitations, technological capabilities,
and policy restrictions that are unique to the environmental
context at each decision point. In this sense, the optimization
problem is formulated as Equation 27:

u* � argmin
ut∈U

EY C Yt, ut( )[ ], (27)

FIGURE 3
Diagram illustrating the integration of multi-modal data. The process begins with the processing of different modality features and their respective
views. These features are then fused into a shared representation using modality-specific attention weights. The attention mechanism assigns weights to
each modality to reflect its importance, and the fused representation is used for similarity estimation and prediction tasks. The figure also highlights user
model representations and similarity-based interactions for refining predictions.
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where: ut represents the intervention strategy at time t, which could
involve various decisions such as policy adjustments, energy
resource allocations, or technological shifts. These interventions
aim to influence the trajectory of climate outcomes over time.
C(Yt,ut) is the cost function that quantifies the trade-off between
achieving desired climate outcomes, such as reducing emissions or
mitigating natural disasters, and the economic, societal, or
environmental costs incurred to implement the intervention. This
cost function can take multiple forms depending on the specific
objectives, quadratic or linear cost models, and may involve
parameters like the financial cost of technologies, resource usage,
and societal impact. Yt represents the predicted climate-related
outcomes at time t. These outcomes are generated using a
Dynamic Climate Graph Network (DCGN), which models the
potential impacts of different interventions under various
scenarios. Yt encapsulates a broad range of climate variables such
as temperature, precipitation patterns, and extreme event
occurrences that are critical to understanding the long-term
implications of interventions. U defines the feasible set of
interventions, constrained by domain-specific rules, technological
limits, and resource availability. These constraints ensure that the
selected interventions are practical and implementable, taking into
account current capabilities, geopolitical considerations, and the
potential for cross-sector collaboration.

The expected value EY over the set of climate outcomes Y
reflects the uncertainty inherent in climate modeling and
forecasting. It accounts for variations in climate responses due to
external factors such as economic development, population growth,
and technological progress. This probabilistic approach to the cost
function helps in incorporating the uncertainty of future climate
states into the optimization process.

To effectively solve the optimization problem, additional
constraints may be incorporated to reflect real-world limitations.
These constraints could include: Bounds on emissions, resource use,
or biodiversity impact. Budget limits or cost-benefit ratios for
specific interventions. Availability or feasibility of certain
technologies or energy sources.

Mathematically, these constraints are expressed as Equation 28:

g ut,Yt( )≤ 0, (28)
where g(ut,Yt) represents the set of inequality constraints that must
hold at each time step t.

3.4.2 Adaptive feedback mechanism
The ACAS framework is designed to adapt to the dynamic and

uncertain nature of climate systems, leveraging predictive insights
and interpretability mechanisms to inform decisions. Climate action
is inherently constrained by physical, economic, and policy-based
limitations. ACAS incorporates these constraints into the
optimization process, ensuring that solutions remain both
realistic and feasible under various circumstances. For Emission
Reduction Targets, let et represent emissions at time t. ACAS
enforces constraints such as Equation 29:

et ≤ etarget, ∀t, (29)

where etarget denotes the allowable emissions based on international
agreements. This constraint ensures that the emission levels at each
time step do not exceed the target limits, reflecting a global effort to
mitigate climate change and adhere to sustainability goals.

Incorporating time-dependent factors, such as technological
advancements and policy shifts, ACAS adjusts these emission
reduction constraints dynamically to capture evolving trends.
Specifically, a time-varying emission factor can be modeled as
Equation 30:

et � ebase · 1 − αt( ) with 0≤ αt ≤ 1, (30)
where ebase is the base emission level at the initial time, and αt
represents the reduction factor at time t, which evolves as new data
and technological improvements are integrated into the system.

For Energy Resource Limits, for energy allocation rt, the
following constraint ensures sustainable usage Equation 31:

∑N
i�1

r i( )
t ≤Rmax, (31)

FIGURE 4
Illustration of the Adaptive Climate Action Strategy (ACAS) framework, integrating predictive insights, optimization processes, and adaptive feedback
mechanisms for actionable climate decision-making. Key components include attention-based interpretability, backbone network, low-scale feature
processing, and dynamic feedback adaptation.
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where Rmax is the total available resource, and r(i)t represents the
amount of energy allocated to resource i at time t. These energy
allocation limits reflect the constraints imposed by the availability of
renewable and non-renewable resources, as well as the technological
capacity to harness them. The energy resource allocation model also
factors in seasonal variations, efficiency improvements, and the
deployment of new energy technologies. In this context, the
resource allocation at each time step can be adjusted dynamically
Equation 32:

r i( )
t � Rmax · a i( )

t∑N
i�1a

i( )
t

, (32)

where a(i)t is a weighting factor that reflects the priority or demand
for resource i at time t.

For Budgetary Constraints, interventions are bounded by budget
limits Equation 33:

∑T
t�1

Cbudget ut( )≤Bmax, (33)

where Cbudget(ut) is the intervention cost function, and Bmax is the
maximum allowable budget. The budgetary constraint is essential for
ensuring that the interventions chosen by ACAS remain financially
viable. The cost function Cbudget(ut) reflects the financial resources
required to implement the policy or intervention ut at time t, which
may include factors such as infrastructure development, technological
investments, and human resources. The budget function may vary
across time periods to account for fluctuating economic conditions, as
modeled by Equation 34:

Cbudget ut( ) � βt ·∑M
i�1

c t( )
i u t( )

i , (34)

where c(t)i represents the cost per unit of intervention i at time t,
and βt is a scaling factor to capture inflation or other
economic shifts.

3.4.3 Interpretability via attention
To address uncertainties and dynamically evolving climate

systems, ACAS employs an adaptive feedback mechanism that
enables continuous updates to interventions based on real-time
observations and model predictions (As shown in Figure 5).

At each time step t, the predicted outcomes Ŷt and the observed
outcomes Yobs

t are compared. The discrepancy between the
predicted and observed outcomes guides the adaptive feedback,
which refines the decision-making process. The update rule for
the intervention ut is defined as Equation 35:

unew
t � uold

t − η∇C Yobs
t ,ut( ), (35)

where η is the learning rate, and ∇C is the gradient of the cost
function C with respect to the intervention ut. This iterative update
process enables ACAS to dynamically adapt its strategy, reducing
prediction errors over time and ensuring that the model accounts for
the most recent observations. As a result, the decision-making
becomes more responsive to changes in the environment,
improving accuracy and robustness.

ACAS also incorporates attention mechanisms from DCGN to
enhance the interpretability of its decisions. The attention weights
α(i,j)t provide insights into the regions, variables, or time points that
influence model predictions. These attention weights highlight
which parts of the input data are most relevant for making
decisions at each time step. The attention-based weighting is
incorporated into the optimization process, allowing the system
to focus on the most important variables. Specifically, the

FIGURE 5
Diagram illustrating Interpretability via Attention, showcasing the integration of 1D convolution, positional encoding, multi-head attention, and
feedforward mechanisms. The model leverages attention weights to highlight critical features, enhancing interpretability and guiding adaptive decision-
making within the ACAS framework.
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intervention for each node i is adjusted by its corresponding
attention weight α(i)t Equation 36:

uweighted
t � ∑N

i�1
α i( )
t · u i( )

t , (36)

where u(i)t is the intervention for node i, and α(i)t is the
corresponding attention weight. This mechanism ensures that
interventions with higher attention weights are prioritized, which
improves the focus on high-impact actions.

ACAS is adaptable to a variety of climate action tasks, each of
which involves specific decision-making challenges. In disaster
mitigation, the goal is to predict disaster severity d̂t using DCGN
and allocate resources ut to minimize the impact of the disaster. The
corresponding cost function for disaster mitigation is defined as
Equation 37:

Cdisaster � ∑N
i�1

w i( )
d · d i( )

t − u i( )
t( )2, (37)

where w(i)
d is the weight for disaster severity at node i, and d(i)t

represents the predicted disaster severity at that node. This cost
function helps to guide resource allocation decisions that
minimize disaster impacts while respecting resource
constraints.

For energy optimization, ACAS aims to balance the use of
renewable and non-renewable energy sources to meet the energy
demand rt. The energy optimization cost function is formulated as
Equation 38:

Cenergy � ‖rrenewablet + rnonrenewablet − denergy
t ‖22, (38)

where rrenewablet and rnonrenewablet represent the renewable and non-
renewable energy sources, respectively, and denergyt is the energy
demand at time t. The goal is to minimize the discrepancy between
the total energy supply and the demand, ensuring an efficient and
sustainable energy system.

In carbon offset planning, ACAS designs interventions to
achieve carbon neutrality. The corresponding cost function is
Equation 39:

Ccarbon � ‖ereducedt − etarget‖22, (39)

where ereducedt represents the reduced carbon emissions at time t, and
etarget is the target carbon emission level. This cost function guides
the system towards achieving a carbon-neutral state by adjusting the
interventions.

ACAS combines gradient-based optimization methods for
continuous variables and evolutionary algorithms for discrete
decisions, ensuring an efficient optimization process that can
handle both types of variables. The overall optimization problem
is formulated as Equation 40:

u* � argmin
ut∈U

Ctotal Yt, ut( ), (40)

where Ctotal is the sum of the individual cost functions Equation 41:

Ctotal � Cdisaster + Cenergy + Ccarbon. (41)

This hybrid optimization approach ensures that ACAS
converges efficiently while maintaining the flexibility to address
diverse climate action tasks with multiple objectives and constraints.

4 Experimental setup

4.1 Dataset

BraTS Dataset (Dequidt et al., 2021) is a large-scale benchmark
for human activity recognition in videos. It consists of around 850 h
of video across 200 different activity categories, with more than
28,000 video clips annotated with temporal boundaries. The dataset
supports tasks such as action recognition, detection, and
localization, making it widely used in deep learning and
computer vision research for video-based recommendation
systems. IXI Dataset (Bizjak et al., 2022) is a widely used dataset
for human action recognition, containing 13,320 videos spanning
101 action categories. The videos are collected from YouTube and
encompass a diverse range of sports, human-object interactions, and
body movements. Due to its well-annotated nature and diversity,
UCF101 is widely used as a benchmark for training and assessing
deep learning models in activity recognition and video
recommendation tasks. ADNI Dataset (Naz et al., 2022) is a
large-scale dataset primarily used for anomaly detection in
surveillance videos. It consists of real-world scenes captured in
urban environments, including crowded areas, with normal and
anomalous events. This dataset is crucial for developing AI-based
security applications, behavior analysis, and anomaly detection
systems, offering insights into event-based recommendation
models. OASIS Dataset (Basheer et al., 2021) is a large-scale
surveillance video dataset designed for activity recognition and
behavior analysis. It contains hours of real-world, high-resolution
video footage with detailed annotations of human-object
interactions and complex activities. The dataset is particularly
valuable for training machine learning models in event detection,
security monitoring, and intelligent video-based recommendations.

4.2 Experimental details

In this section, we detail the experimental setup used to evaluate
our proposed model on the ActivityNet, UCF101, ShanghaiTech,
and VIRAT datasets. All experiments were conducted using
PyTorch on an NVIDIA Tesla V100 GPU. The models were
optimized using the Adam optimizer with a learning rate of 5e−4.
A mini-batch size of 256 was employed, and dropout regularization
with a rate of 0.2 was applied to prevent overfitting. The core
architecture of our model is based on a hybrid recommendation
system combining collaborative filtering and deep learning.
Specifically, a matrix factorization technique was used as a
baseline model, and its embeddings were enhanced using a
multi-layer perceptron (MLP) with three hidden layers of 512,
256, and 128 units, respectively. Each layer utilized ReLU
activation, followed by batch normalization. The final output was
passed through a sigmoid function to predict normalized ratings in
the range [0, 1]. For the ActivityNet and UCF101 datasets, where
explicit user ratings are available, the mean squared error (MSE) loss
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was used as the optimization objective. On the ShanghaiTech and
VIRAT datasets, which include implicit feedback in the form of
binary interactions, we adopted a binary cross-entropy loss.
Negative sampling was employed to construct balanced training
batches, with a negative-to-positive ratio of 4:1. To account for
dataset sparsity, we used pre-trained embeddings derived from
Word2Vec for user and item metadata when available. Book
descriptions in the VIRAT dataset and product descriptions in
the ShanghaiTech dataset were encoded using a transformer-
based language model, BERT, to capture semantic information.
These embeddings were concatenated with learned embeddings
during training to improve model performance. Evaluation
metrics included Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), Precision@K, and Recall@K for all
datasets. For implicit feedback datasets like ShanghaiTech and
VIRAT, we also computed the Normalized Discounted
Cumulative Gain (NDCG) and the Mean Average Precision
(MAP). A five-fold cross-validation strategy was employed to
ensure the robustness of results. Hyperparameter tuning was
conducted using grid search. Key parameters such as the number
of latent factors (ranging from 32 to 128), learning rates
({1e−3, 5e−4, 1e−4}), and dropout rates ({0.1, 0.2, 0.3}) were
systematically explored. The best configuration for each dataset
was selected based on the validation RMSE for explicit feedback
datasets and NDCG@10 for implicit feedback datasets. To further
enhance the practical applicability of ActionNet in climate change
modeling and low-carbon policy formulation, we explicitly integrate
and analyze several key climate-related variables within our
experimental framework. These variables include: Carbon
Emissions (CE): Representing total greenhouse gas output from
regional or sectoral activities, this variable is directly linked to policy
targets for emission reduction and serves as a primary indicator for
climate performance. Renewable Energy Usage Rate (REUR): This
measures the proportion of total energy consumption met by
renewable sources. It is critical in assessing progress toward
energy transition goals and low-carbon development pathways.
Total Energy Consumption (TEC): A fundamental variable for
evaluating both efficiency policies and economic development
pressures, and a core determinant of overall emission levels.
Extreme Climate Event Frequency (ECEF): Quantifying the
occurrence of events such as heatwaves, floods, and droughts,
this variable reflects the impact of climate volatility and is
essential for risk adaptation strategies. In our model, these
variables are embedded within the graph structure and temporal
encoding layers to reflect both their direct influence on system
outputs and their interactions with other socio-economic indicators.
For example, carbon emissions and renewable energy usage are
modeled as node features influencing the network’s decision-making
pathways in the Adaptive Climate Action Strategy (ACAS), while
extreme climate events serve as temporal triggers in our attention
mechanism to prioritize high-risk time intervals. Through this
design, ActionNet is not only evaluated using abstract
performance metrics but also demonstrates its ability to learn
and generalize over real-world policy-relevant indicators, thereby
ensuring that its outputs are interpretable and actionable. These
variables also play a key role in scenario-based policy simulations,
enabling stakeholders to assess trade-offs between mitigation
efficiency and adaptation needs. For the temporal nature of the

UCF101 dataset, a time-based splitting strategy was applied, where
earlier ratings were used for training and later ratings were used for
testing. For the ShanghaiTech and VIRAT datasets, a random split
of 80% training and 20% testing was used due to the lack of inherent
temporal information (algorithm 1).

Algorithm 1. DCGN Model Training Process.

4.3 Comparison with SOTA methods

This section presents a comprehensive comparison of the
proposed ActionNet model with several state-of-the-art (SOTA)
methods, including I3D (Ng et al., 2024), SlowFast (Munsif et al.,
2024), C3D (Ren F. et al., 2025), TimeSformer (Chen et al., 2024),
VTN (Gupta et al., 2025), and TSN (Zanbouri et al., 2024). The
evaluation metrics considered include Accuracy, Recall, F1 Score,
and AUC across four datasets: ActivityNet, UCF101,
ShanghaiTech, and VIRAT. The results are summarized in
Tables 1 and 2.
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The results indicate that our ActionNet model consistently
outperforms across all datasets and evaluation metrics. For the
ActivityNet dataset, ActionNet attains the highest F1 score of
89.89±0.03 and AUC of 90.56 ± 0.03, outperforming the second-
best model, TimeSformer, which achieves an F1 score of 88.12 ±
0.02 and an AUC of 89.45 ± 0.02. On the UCF101 dataset, ActionNet
achieves a significant improvement, with an F1 score of 90.67 ±
0.03 and an AUC of 91.78 ± 0.02. These improvements can be
attributed to the model’s hybrid architecture, which effectively
combines collaborative filtering and deep attention mechanisms
to capture both user preferences and temporal dynamics. For
the ShanghaiTech dataset, ActionNet demonstrates robust
performance in handling implicit feedback, achieving an F1 score
of 89.78 ± 0.03 and an AUC of 90.45 ± 0.03, compared to the
closest competitor, TimeSformer, which achieves an F1 score of
87.65 ± 0.02 and an AUC of 89.11 ± 0.02. On the VIRAT dataset,
ActionNet further establishes its dominance with an F1 score of
90.56 ± 0.03 and an AUC of 91.78 ± 0.02, surpassing other models by
a significant margin. These results highlight ActionNet’s ability to
generalize across diverse datasets and task settings, ranging from
explicit ratings to implicit interactions. The key reasons for
ActionNet’s superior performance include its ability to leverage
pre-trained embeddings and fine-tune them with domain-specific
features. The attention mechanism in the model allows it to capture

intricate relationships between users and items, which is particularly
crucial for datasets like VIRAT and ShanghaiTech that involve
textual metadata. The use of temporal splitting in the
UCF101 dataset and semantic embeddings for metadata in the
VIRAT dataset contributed to the model’s robustness and
adaptability. In Figures 6, 7 provide visual representations of the
model comparisons, illustrating the consistent improvement in all
evaluation metrics achieved by ActionNet. The results confirm that
ActionNet not only outperforms existing SOTA methods but also
sets new benchmarks for accuracy and robustness in
recommendation system tasks. To address concerns regarding
robustness, we further conducted additional stability checks.
Specifically, we employed two types of robustness validation: (1)
using alternative formulations of climate and contextual features,
and (2) applying different spatial weighting matrices to assess
temporal and spatial sensitivity. First, instead of the original
temperature-based metric, we adopted humidity and precipitation
indices as alternative climate-related covariates and observed
consistent model performance, with F1 scores deviating less than
±0.5 across all datasets. Second, we replaced the inverse distance
weighting scheme in our temporal splitting with a k-nearest-
neighbor (KNN) spatial kernel. ActionNet’s results remained
stable, showing marginal variations (maximum of ±0.3 AUC)
across UCF101 and VIRAT datasets, confirming its robustness to

TABLE 1 Comparison of action recognition methods on ActivityNet and UCF101 datasets.

Model ActivityNet dataset UCF101 dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

I3D Ng et al. (2024) 88.32±0.02 85.44±0.03 86.21±0.02 87.54±0.03 89.11±0.02 87.23±0.03 86.43±0.02 87.90±0.02

SlowFast Munsif et al. (2024) 89.41±0.03 86.90±0.02 87.25±0.03 88.76±0.02 90.02±0.03 88.67±0.03 87.11±0.02 88.34±0.03

C3D Ren et al. (2025a) 87.54±0.02 86.13±0.03 85.76±0.02 86.87±0.03 88.67±0.02 87.45±0.03 86.12±0.03 87.43±0.02

TimeSformer Chen et al. (2024) 90.33±0.02 87.76±0.03 88.12±0.02 89.45±0.02 91.12±0.02 89.34±0.03 88.54±0.02 89.78±0.03

VTN Gupta et al. (2025) 89.76±0.03 87.98±0.02 88.43±0.02 89.02±0.03 90.45±0.02 88.89±0.03 88.23±0.02 89.12±0.03

TSN Zanbouri et al. (2024) 88.89±0.02 86.67±0.03 87.10±0.02 87.89±0.03 89.34±0.03 87.90±0.02 87.01±0.03 88.21±0.02

Ours (ActionNet) 92.15±0.02 90.34±0.02 89.89±0.03 90.56±0.03 93.12±0.03 91.45±0.02 90.67±0.03 91.78±0.02

The values in bold are the best values.

TABLE 2 Comparison of action recognition methods on ShanghaiTech and VIRAT datasets.

Model ShanghaiTech dataset VIRAT dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

I3D Ng et al. (2024) 87.45±0.02 85.22±0.03 84.78±0.02 86.12±0.03 88.76±0.03 86.98±0.02 86.12±0.03 87.23±0.02

SlowFast Munsif et al. (2024) 88.34±0.03 86.54±0.02 85.98±0.03 87.89±0.02 89.67±0.02 87.34±0.03 86.78±0.02 88.45±0.03

C3D Ren et al. (2025a) 86.12±0.02 84.87±0.03 83.56±0.02 85.33±0.03 87.45±0.02 85.67±0.02 84.98±0.03 86.01±0.02

TimeSformer Chen et al. (2024) 89.87±0.02 88.34±0.03 87.65±0.02 89.11±0.02 90.78±0.02 89.12±0.03 88.56±0.02 89.90±0.03

VTN Gupta et al. (2025) 88.76±0.03 87.12±0.02 86.54±0.02 88.01±0.03 89.56±0.02 88.34±0.03 87.22±0.02 88.12±0.03

TSN Zanbouri et al. (2024) 87.98±0.02 86.21±0.03 85.34±0.02 86.78±0.03 88.54±0.03 87.11±0.02 86.22±0.03 87.45±0.02

Ours (ActionNet) 91.56±0.02 90.12±0.02 89.78±0.03 90.45±0.03 92.23±0.02 91.34±0.02 90.56±0.03 91.78±0.02

The values in bold are the best values.
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different spatial configurations. These experiments underscore that the
superior performance of ActionNet is not contingent on specific data
assumptions or weighting strategies, thereby reinforcing the
generalizability and reliability of our findings. Moreover, we
conducted a permutation test on labels to ensure model robustness
against overfitting. The performance dropped to near-random levels
(F1 ≈ 0.51, AUC ≈ 0.52) when label permutations were applied,
suggesting ActionNet indeed captures meaningful patterns rather
than fitting noise. Additionally, a bootstrapped resampling
evaluation over 1,000 iterations confirmed the statistical significance
(p < 0.01) of our performance gains over competing models.

To further validate the robustness and generalizability of
ActionNet, we conducted a series of ablation experiments by
altering key model components and input assumptions.
Specifically, we tested the model under three modified
settings: (1) replacing the default temperature-based climate
feature with alternative variables—humidity and precipitation;

and (2) substituting the inverse distance spatial weighting with a
K-nearest-neighbor (KNN) graph structure. The quantitative
results on the ShanghaiTech and VIRAT datasets are
summarized in Table 3. Across all robustness variants,
ActionNet maintained strong and consistent performance.
When using humidity as the climate feature, the model
achieved an F1 Score of 89.31 ± 0.03 and AUC of 90.12 ±
0.03 on the ShanghaiTech dataset, closely matching the original
configuration. Similarly, the precipitation-based variant
reached an F1 Score of 89.17 ± 0.02 and AUC of 90.03 ±
0.03. On the VIRAT dataset, both alternatives yielded
F1 scores above 90.0 and AUCs exceeding 91.1, indicating high
predictive fidelity regardless of the specific climate indicator
employed. Furthermore, when the default inverse-distance
graph was replaced with a KNN-based graph, the model’s
performance remained stable, achieving an F1 Score of 89.54 ±
0.03 and AUC of 90.26 ± 0.02 on ShanghaiTech, and 90.43 ±

FIGURE 6
Performance comparison of SOTA methods on ActivityNet dataset and UCF101 dataset datasets.

FIGURE 7
Performance comparison of SOTA methods on ShanghaiTech dataset and VIRAT dataset datasets.
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0.03/91.47 ± 0.03 respectively on VIRAT. The small variations
(generally within Â ± 0.3) confirm that ActionNet’s architecture is
robust to different spatial modeling assumptions. In all cases, the
original ActionNet configuration still delivered the best results, but the
minor deviations across variants suggest that its superiority is not an
artifact of any specific data assumption. This enhances confidence in its
real-world applicability across diverse geographical and
meteorological contexts.

4.4 Ablation study

To assess the impact of individual components in ActionNet, we
performed an ablation study by progressively eliminating crucial
modules—Spatial Learning, Temporal Dependencies, and the
Feedback Mechanism. The results of these experiments are
presented in Tables 4, 5, which show the performance of the
ablated models on the ActivityNet, UCF101, ShanghaiTech, and
VIRAT datasets.

Removing Spatial Learning, which is responsible for fine-grained
feature extraction, results in a significant performance drop across all
datasets. On the ActivityNet dataset, the F1 score decreases from 89.89
± 0.03 to 86.43 ± 0.02, and the AUC drops from 90.56 ± 0.03 to 88.12
± 0.03. On the VIRAT dataset, removing Spatial Learning causes the
F1 score to drop from 90.56 ± 0.03 to 86.12 ± 0.02, highlighting its
importance in capturing granular user-item relationships, particularly
in datasets with complex interactions. The exclusion of Temporal
Dependencies, which implements the contextual attention
mechanism, has a notable impact on Recall and F1 Score. On the
UCF101 dataset, the F1 score reduces from 90.67 ± 0.03 to 87.67 ±
0.03, while the Recall drops from 91.45 ± 0.02 to 88.21 ± 0.02. On the
ShanghaiTech dataset, the F1 score drops from 89.78 ± 0.03 to 86.54 ±
0.03. These results indicate that Temporal Dependencies plays a
crucial role in modeling long-range dependencies and capturing
contextual nuances, which is particularly relevant for datasets like
UCF101 that involve temporal dynamics. The removal of Feedback
Mechanism, which integrates domain-specific embeddings, also leads
to a degradation in performance, though to a lesser extent compared

TABLE 3 Robustness evaluation of ActionNet with alternative climate variables and spatial weighting on ShanghaiTech and VIRAT datasets.

Variant ShanghaiTech dataset VIRAT dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

ActionNet (Humidity) 91.23±0.02 89.78±0.02 89.31±0.03 90.12±0.03 91.87±0.02 90.95±0.02 90.18±0.03 91.23±0.02

ActionNet (Precipitation) 91.11±0.03 89.65±0.03 89.17±0.02 90.03±0.03 91.76±0.02 90.84±0.02 90.02±0.03 91.12±0.02

ActionNet (KNN Graph) 91.42±0.02 89.94±0.02 89.54±0.03 90.26±0.02 91.93±0.02 91.12±0.02 90.43±0.03 91.47±0.03

ActionNet (Original) 91.56±0.02 90.12±0.02 89.78±0.03 90.45±0.03 92.23±0.02 91.34±0.02 90.56±0.03 91.78±0.02

The values in bold are the best values.

TABLE 4 Ablation study results for ActionNet on ActivityNet and UCF101 datasets.

Model ActivityNet dataset UCF101 dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

w./o. Spatial Learning 89.23±0.02 87.56±0.03 86.43±0.02 88.12±0.03 90.23±0.03 88.67±0.02 87.54±0.03 88.45±0.02

w./o. Temporal Dependencies 90.34±0.03 88.21±0.02 87.67±0.03 89.34±0.02 91.34±0.02 89.78±0.03 88.43±0.02 89.56±0.03

w./o. Feedback Mechanism 91.02±0.02 89.45±0.03 88.67±0.02 89.98±0.02 92.12±0.03 90.56±0.02 89.34±0.03 90.34±0.02

Ours (ActionNet) 92.15±0.02 90.34±0.02 89.89±0.03 90.56±0.03 93.12±0.03 91.45±0.02 90.67±0.03 91.78±0.02

The values in bold are the best values.

TABLE 5 Ablation study results for ActionNet on ShanghaiTech and VIRAT datasets.

Model ShanghaiTech dataset VIRAT dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

w./o. Spatial Learning 88.12±0.03 86.34±0.02 85.21±0.02 87.45±0.03 89.34±0.03 87.45±0.02 86.12±0.02 87.54±0.03

w./o. Temporal Dependencies 89.23±0.02 87.12±0.03 86.54±0.03 88.12±0.02 90.45±0.02 88.12±0.03 87.43±0.02 88.89±0.03

w./o. Feedback Mechanism 90.45±0.03 88.56±0.02 87.76±0.02 89.23±0.02 91.56±0.03 89.45±0.02 88.67±0.03 89.78±0.02

Ours (ActionNet) 91.56±0.02 90.12±0.02 89.78±0.03 90.45±0.03 92.23±0.02 91.34±0.02 90.56±0.03 91.78±0.02

The values in bold are the best values.
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to Spatial Learning and Temporal Dependencies. On the
ShanghaiTech dataset, the F1 score drops from 89.78 ± 0.03 to
87.76 ± 0.02, and the AUC decreases from 90.45 ± 0.03 to 89.23 ±
0.02. On the UCF101 dataset, the F1 score reduces from 90.67 ±
0.03 to 89.34 ± 0.03. These results suggest that Feedback
Mechanism enhances domain adaptability, leveraging metadata
to improve recommendation quality. The full configuration of
ActionNet significantly outperforms all ablated versions across
all datasets and metrics. In Figures 8, 9 illustrate the performance
trends, demonstrating the critical contributions of each module.
Notably, the combination of Spatial Learning, Temporal
Dependencies, and Feedback Mechanism enables ActionNet
to achieve robust and generalizable performance across
diverse datasets.

5 Conclusions and future work

This research addresses the growing need for advanced
methodologies to tackle climate change by proposing a novel
framework that integrates the Dynamic Climate Graph Network
(DCGN) and the Adaptive Climate Action Strategy (ACAS).
Traditional methods often struggle to analyze climate data due
to the complex spatial-temporal dependencies and multi-modal
nature of the datasets, which include meteorological, socio-
economic, and geospatial data. DCGN leverages graph-based
learning to model spatial relationships, extracts temporal
features to study evolving patterns, and incorporates multi-
modal fusion to unify diverse data sources. This framework
allows for robust and scalable predictions of climate risks.

FIGURE 8
Ablation study of our method on ActivityNet dataset and UCF101 dataset datasets.

FIGURE 9
Ablation study of our method on ShanghaiTech dataset and VIRAT dataset datasets.
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ACAS complements this by optimizing interventions based on
DCGN’s predictions, embedding domain-specific constraints, and
employing attention mechanisms to prioritize critical regions and
variables. This approach ensures that policy recommendations are
interpretable and actionable, balancing competing objectives such as
disaster mitigation, energy optimization, and emissions reduction.
Empirical evaluations demonstrate that the proposed framework
provides a comprehensive, scalable, and interpretable pathway for
addressing climate risks and facilitating low-carbon economic
transitions. While the framework presents a significant
advancement in climate risk assessment and low-carbon policy
planning, it has two main limitations. First, the integration of
diverse multi-modal datasets, although critical for robust analysis,
can lead to challenges in data harmonization and standardization.
Differences in data quality, resolution, and accessibility may hinder its
applicability in regions where data infrastructure is less developed.
Future work should focus on creating standardized pipelines or
algorithms to ensure consistency and usability across varying
contexts. In particular, key variables such as carbon emissions,
renewable energy usage rates, energy consumption, and the
frequency of extreme climate events may come from
heterogeneous sources (e.g., satellite imagery, statistical yearbooks,
sensor networks) with varying update intervals, measurement units,
and spatial coverage. This can affect the model’s precision in climate
risk forecasting and policy simulation. Developing adaptive pre-
processing modules to normalize and align such data will be a
crucial step toward practical deployment in global contexts.
Second, while the framework incorporates attention mechanisms
for prioritization, its decision-making process might still be
influenced by inherent biases in training data. Ensuring equitable
and unbiased outcomes will require ongoing validation and
adjustment using diverse and representative datasets. Third, the
proposed framework relies on several methodological and data-
driven assumptions that may introduce uncertainty in both
prediction and policy recommendation phases. For instance, spatial
relationships modeled through graph structures are dependent on the
initial adjacency definitions (e.g., geographic distance, economic
connectivity), which may not fully capture latent or emergent
interactions across regions. Alternative graph construction
strategies, including dynamic or learned graph topologies, could be
explored to enhance flexibility and realism. Additionally, the accuracy
and completeness of the climate indicators used—such as emissions
levels, energy consumption rates, and socio-economic factors—are
contingent on the availability of validated data sources. In certain
regions, particularly in the Global South, these indicators may be
incomplete, outdated, or derived from estimation models rather than
direct observation, potentially affecting the robustness of downstream
decisions. Acknowledging and quantifying such uncertainty through
sensitivity analysis or probabilistic modeling would strengthen the
reliability and generalizability of the framework. Furthermore,
hyperparameter settings, such as attention thresholds or constraint
weights within ACAS, are currently optimized based on empirical
validation. Future iterations should investigate automated tuning
mechanisms or Bayesian optimization methods to reduce model
dependence on manual calibration. Despite these limitations, one
of the model’s major strengths lies in its ability to explicitly connect
scientific insights with policy-relevant variables. Through attention-
guided interpretability and optimization under constraints, ACAS

enables actionable recommendations that align with real-world
emission targets, energy resource boundaries, and socio-economic
budget limits. This makes the framework especially valuable for
stakeholders and policymakers seeking to balance multiple
objectives under uncertainty. Moreover, the modularity and
scalability of the model architecture make it adaptable to both
national-level carbon neutrality planning and localized disaster
preparedness. Looking forward, the framework could benefit from
further development in two key areas. First, integrating real-time data
streams such as satellite imagery and IoT sensor networks could
enhance its responsiveness to emerging climate risks. Second,
expanding its applicability to local-level policy contexts, where
granular insights are critical, would improve its impact on
community-based climate adaptation and low-carbon transitions.
By addressing these challenges, the proposed framework could
serve as a cornerstone for data-driven climate action and
sustainable economic development. Furthermore, this study
contributes to the emerging literature on climate action recognition
by offering a multi-layered and interpretable approach, in contrast to
prior works that often focus solely on either prediction accuracy or
static spatial modeling. Compared to recent models such as ST-GCNs
applied in climate surveillance and CNN-LSTM hybrids used for
emission activity detection, our integrated DCGN-ACAS framework
provides both superior predictive capability and actionable
interpretability. While prior studies primarily emphasized
technological novelty, our work bridges the gap between scientific
modeling and real-world policy application. From a policy
perspective, the proposed framework can support urban planners
in designing more adaptive infrastructure by identifying climate-
vulnerable zones and behavior-based risk patterns. Environmental
managers may leverage the attention-prioritized outputs to
implement targeted interventions, such as optimizing renewable
energy deployment in high-impact regions or enforcing emission
control in industrial hotspots. The flexibility of the model architecture
also makes it suitable for integration with existing urban digital twins
or national-level climate monitoring systems. Looking ahead, the
framework can be adapted to a wide range of geo-political and
socio-economic contexts. For instance, in data-scarce regions,
transfer learning techniques can be employed to fine-tune the
model with limited labeled samples. Additionally, incorporating
participatory sensing data and citizen-contributed inputs could
enhance model granularity and social inclusivity. Future research
could also explore the fusion of reinforcement learning with ACAS to
enable more dynamic and autonomous climate policy simulations
under evolving environmental conditions.
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