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Introduction: The Yangtze River Basin (YRB) is a region of immense economic
and ecological significance in China, whose complex topography and climatic
variability render it particularly susceptible to landslide disasters.

Methods: In this study, landslide spatial density (LSD) is adopted as a quantitative
indicator and multiple linear regression analysis alongside the geographic
detector method are employed to evaluate the influence of natural and
anthropogenic factors on LSD. A Composite Human Activity Intensity Index
(CHAII) is developed from nighttime light intensity, population density, and
distances to impermeable surfaces and cultivated land. Factors analyzed
include CHAII, slope, topographic ruggedness, precipitation, and distances to
river and fault lines.

Results: Results reveal that precipitation and distance to fault are the most
significant drivers of LSD across the YRB, with precipitation exhibiting the
highest explanatory power. CHAII, precipitation, and topographic ruggedness
show strong positive correlations with LSD, whereas slope, distance to river, and
distance to fault are negatively correlated. Notably, slopes of 20°–30° correspond
to reduced LSD, suggesting a localized mitigating effect. Regionally, intense
precipitation in the upper YRB substantially amplifies landslide risk even under
low levels of human activity, whereas in the middle YRB natural and
anthropogenic factors jointly influence LSD, reflecting a transitional zone. In
the lower YRB, interactions between human activity and natural factors become
more pronounced, increasing spatial heterogeneity of LSD.

Discussion: The findings provide important scientific insights for landslide risk
management and contribute to the sustainable development of the YRB.
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1 Introduction

Landslides are geological disasters that occur when the soil and
rock masses on slopes slide downward under the influence of
gravity, resulting from both natural geological processes and
human activities (Hungr et al., 2014). They are among the most
hazardous and frequent geological disasters worldwide. In the
context of global warming, China, with its complex geographical
environment, frequent extreme climatic events, and accelerated
urbanization, faces immeasurable human casualties and economic
losses caused by landslides (Petley, 2012; Zhang and Zhang, 2014; Li
et al., 2017; Lin and Wang, 2018; Zhang et al., 2020; Ge et al., 2024).

Landslides are typically triggered by a combination of natural
and anthropogenic factors. Among natural causes, precipitation is
recognized as the most direct and frequent trigger, particularly
during periods of intense or prolonged rainfall (Zêzere et al.,
2015). In addition, slope angle, topographic relief, geological
structure, and lithology also play crucial roles in determining
slope stability (Van Westen et al., 2008). Human activities such
as deforestation, land reclamation, road construction, and urban
sprawl can significantly alter surface conditions and hydrological
processes, exacerbating the risk of landslides (Glade, 2003; Fan et al.,
2020; Dai et al., 2002). Low-intensity human disturbances may also
accumulate over time to trigger instability in marginally stable
terrains. To mitigate landslide risks, scholars have proposed
various prevention and control strategies, including engineering
solutions, ecological restoration, land-use planning, and the
development of early warning systems (Hong et al., 2007; Bao
et al., 2022). With advances in remote sensing and GIS
technologies, spatial modeling approaches—such as the
information value model, logistic regression, certainty factor, and
the geographic detector—have become widely used for landslide
susceptibility assessment and zoning (Lee and Pradhan, 2007;
Yilmaz, 2009).

As the largest water system in China, the Yangtze River Basin
spans multiple geomorphic steps, making it a high-risk area for
landslides (Tang et al., 2021). This region not only experiences
frequent and widespread landslides, but their formation
mechanisms are also exceptionally complex. Investigating the
spatial distribution characteristics of landslide disasters and
exploring their driving factors can effectively prevent
landslides and mitigate disaster losses (Chen et al., 2020).
Landslide Spatial Density (LSD) is commonly used as a key
indicator to measure the degree of landslide clustering and is
widely applied to assess landslide frequency and geographic
distribution patterns (Tian et al., 2025). With the rapid
development of “3S″ technologies and computer-based
methods, LSD has become an effective tool for understanding
landslide distribution patterns and their development through
spatial analysis (Guzzetti et al., 2009; Ghaderpour et al., 2024).
For example, Zhang et al. mapped historical landslide points
across administrative units at various scales to analyze landslide
spatial distribution (Zhang and Huang, 2018); Sepúlveda et al.
investigated the relationship between disaster points, bedrock
lithology, and precipitation patterns (Sepúlveda and Petley,
2015); and Qiu et al. used spatial point pattern analysis to
illustrate the spatial distribution of landslide disaster points in
Shaanxi Province (Qiu et al., 2019).

Most existing studies on landslides in the YRB focus on small
scale regions such as the Three Gorges Reservoir area or single-
factor analyses. Chang, for instance, applied deep learning
algorithms to assess and predict landslide susceptibility in the
Yichang section of the YRB (Chang et al., 2022); Wu
summarized the main factors affecting slope stability in the
Three Gorges area and used an integrated information model to
evaluate and zone landslide risks in the region (Wu et al., 2004);
Zeng established a quantitative risk assessment framework based on
the relationship between water level changes in the Three Gorges
Reservoir and landslides (Zeng et al., 2023). In addition,
understanding how land use changes and urbanization patterns
influence ecological processes has become a key concern in regional
disaster studies. For instance, studies have revealed how green space
morphology affects urban waterlogging under highly urbanized
conditions (Zhang et al., 2025), and how land use evolution
affects spatiotemporal patterns of habitat quality across China
(Chen et al., 2025). These findings highlight the complex
interactions between human-induced land surface changes and
environmental risks, underscoring the importance of considering
both anthropogenic and natural variables in landslide studies.

Despite these numerous studies, research on large-scale,
multifactor driven mechanisms of landslides in the YRB remains
scarce. Therefore, this study constructs a Composite Human
Activity Intensity Index (CHAII), integrating population density,
distance to cultivated land and impervious surfaces, and nighttime
light data from 2000 to 2020, to measure human activity intensity.
Additionally, we selected the following natural influencing factors:
slope, topographic ruggedness, precipitation, distance to river, and
distance to fault. Through multiple linear regression analysis and
geographic detector methods, we examine the individual effects of
these factors on LSD and explore the coupling relationships between
different driving factors. The aim is to reveal the driving
mechanisms of natural factors and human activities on LSD and
provide important insights for landslide risk management
in the YRB.

2 Materials and methods

2.1 Data and availability

The landslide point data used in this study are sourced from the
Resource and Environmental Science Data Center (https://www.
resdc.cn/data.aspx?DATAID=290), which includes a total of
50,836 landslide points collected from the provinces along the
main channel of the Yangtze River over a 21-year period from
2000 to 2020 (Resdc, 2024). As the landslide point data include
various types of disasters, such as landslides, slope failures, and
debris flows, this study only considers landslide data. The provinces
of Jiangsu, Zhejiang, and Shanghai are not included in the landslide
disaster data in this dataset, so Anhui Province is used to represent
the Lower Yangtze River Basin in this study. The study area is shown
in Figure 1.

The landslide point data used in this study were obtained from
the Resource and Environment Science and Data Center, where
geological hazard events have been officially categorized into
landslides, debris flows, slope failures, and rockfalls. To ensure
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consistency and accuracy in the research scope, only records
explicitly labeled as “landslide” were retained during data
preprocessing, while those classified as “slope failure,” “debris
flow,” or “collapse” were excluded to eliminate potential
classification bias. Since the dataset encompasses multiple types
of geological hazards and lacks landslide records for Jiangsu,
Zhejiang, and Shanghai, Anhui Province was selected to
represent the downstream region of the Yangtze River Basin
(Chang et al., 2023). This selection was based on several key
considerations. First, compared to other downstream provinces,
Anhui possesses relatively complete and continuous landslide
records, enhancing data reliability and interregional
comparability. Second, Anhui’s geographical position and diverse
landforms—including plains, hills, and low mountains—enable it to
capture the varied geomorphic characteristics of the lower basin.
Third, the province’s high urbanization rate and intensive human
activities exemplify typical anthropogenic influences on landslide
distribution in downstream regions, providing a useful contrast to
the more natural-condition-driven landslide patterns observed
upstream and midstream. These factors collectively justify the use
of Anhui as a representative case for downstream analysis.

The land cover data used in this study were sourced from the
30 m resolution annual land cover dataset developed by Yang and
Huang (Yang and Huang, 2021), which can be downloaded from
https://zenodo.org/records/5210928#. The land cover types include
cropland, forest, grassland, water bodies, ice and snow, bare land,
impervious surfaces, and wetlands.

The population density dataset was sourced from the
WorldPop platform (https://hub.worldpop.org/geodata/listing?
id=76) (Adams, 2024). The spatial resolution is 0.00833°. The
elevation data were obtained from the 30-m resolution Digital
Elevation Model (DEM) raster data provided by the Geospatial
Data Cloud. These data were then clipped and processed for spatial
analysis in ArcGIS Pro 3.1 to derive the slope and topographic
ruggedness for the study area.

Precipitation data were sourced from the National Earth System
Science Data Center (https://www.geodata.cn), providing annual
rainfall data for China from 1982 to 2022 at a 1 km resolution
(Peng et al., 2019). For this study, precipitation data from 2000 to
2020 were clipped to the study area, subjected to raster calculations,
and standardized to produce a layer representing the average annual
precipitation over the 21-year period. To ensure compatibility with
the 30-m resolution of the DEM data, the precipitation data were
resampled using a spatial aggregation method. Specifically,
precipitation values were averaged within each 30-m grid cell,
thereby aligning the resolution of the precipitation data with that
of other spatial datasets and eliminating potential resolution
mismatches.

River data (scale 1:1,000,000) were sourced from the National
Platform for Basic Scientific and Technological
Conditions—National Earth System Science Data Center—Lakes
andWatershed Subcenter (http://lake.geodata.cn). The data selected
includes first-to fifth-order rivers within the study area
(Geodata, 2024).

The fault data were sourced from the 1:1,000,000 scale Digital
Geological Map Spatial Database provided by the Geological Science
Data Publishing System (Jianfeng et al., 2017). River and fault data
were processed through clipping, Euclidean distance calculation,

and raster calculator to determine the distances to rivers and faults
within the study area.

All influencing factors were standardized to the [0,1] range after
data preprocessing, and all analyses and calculations were
performed in the WGS84 coordinate system. This standardization
ensures comparability of the data on the same scale and eliminates
the influence of unit differences on the analysis results.

2.2 CHAII

The Composite Human Activity Intensity Index (CHAII) is a
quantitative measure of human activity intensity, calculated using
data from night-time lights, distance to cropland and impervious
surfaces, and population density. Night-time light data not only
reflect the presence of human activity but also indicate its intensity
(Zhao et al., 2021). The higher the average night-time light intensity
at a location, the more frequent and intense human activity is likely
to be in that area. However, night-time light data cannot effectively
capture human activities in areas without illumination, such as
agricultural land. Generally, human activities in and around
cropland and impervious surfaces tend to be more prolonged,
stable, and intense. The interaction between natural conditions
and socioeconomic factors may lead to land use conflicts,
particularly Multiple Linear Regression in areas where land use
intersects with socioeconomic interests, resulting in significant
physical changes. For instance, population growth leads to
increased land demand, which triggers competition. The closer
the proximity to cropland and impervious areas, the higher the
population density tends to be, and the stronger the activity intensity
(Lambin and Meyfroidt, 2011). Considering the high degree of
urbanization and population density in the middle and lower
reaches of the Yangtze River, this study incorporates population
density as a variable in the representation of human activity
intensity. The three indicators—distance to cropland and
impervious surfaces, average night-time light intensity, and
population density—effectively capture the influence of different
levels of agricultural and urbanization development on human
activity intensity. Therefore, the calculation formula for CHAII is
as follows:

CHAII � Norm NTL AVG( ) + Norm DOP AVG( )

+Norm
1

ICDIST + 1
( )

where NTL, AVG is the average night-time light intensity for the
landslide point from 2000 to 2021, DOP_AVG is the average
population density for the landslide point from 2000 to 2021,
and IC, DIST is the average distance from the landslide point to
impervious surfaces and cropland from 2000 to 2021. Norm () is the
normalization function that scales the data to the range [0,1].

2.3 Multiple linear regression

A multiple linear regression model was used to analyze the
relationship between LSD and its driving factors in the YRB. The
selected driving factors include CHAII, slope, topographic
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ruggedness, precipitation, distance to river, and distance to fault.
The model calculation formula is as follows:

S LSD( ) � β1*S CHAII( ) + β2*S slope( )
+ β3*S topographic ruggedness( )
+ β4*S precipitation( ) + β5*S distance to river( )
+ β6*S distance to f ault( ) + ε

where LSD represents the spatial density of landslides andεis an
error term. β1–β6 are regression coefficients. S () is the standardized
function. The mean of the standardized data was 0, and the standard
deviation was 1. To match the spatial density of the landslides, we
used the mean values of average annual precipitation (hereafter
referred to as precipitation), distance to river, distance to fault and
slope within a circular neighbourhood with an 8 km radius.
Typically, landslides do not occur in flat areas, such as flat urban
centres. Therefore, in the regression analysis, we only used the LSD,
CHAII and other influencing factors at all the landslide points.

2.4 Geographic detector

Spatial heterogeneity is one of the fundamental characteristics of
geographic phenomena, and the geographic detector is an effective
method for detecting spatial heterogeneity. The geographic detector,
proposed by Wang, is a statistical method for quantitatively
assessing stratified heterogeneity. It has clear physical
significance, makes fewer assumptions about the data, and can
quantitatively describe the correlation between potential factors
and geographic phenomena (Wang et al., 2010a), specifically the
correlation between the six major influencing factors and LSD in this
study. The principle of this method is to measure the explanatory
power of independent variables on the dependent variable by
comparing the spatial distribution consistency of the independent
and dependent variables. The geographic detector consistsof four
main components: risk detector, factor detector, ecological detector,
and interaction detector (Wang et al., 2010b). In this study, the
factor detector is used to explore the individual effects of different
influencing factors on LSD in different river basins, and the
interaction detector is applied to examine the coupling effects
between factors and their driving mechanisms on LSD across
various basins.

Factor Detector: To calculate the individual influence of the six
driving factors—CHAII, slope, topographic ruggedness,
precipitation, distance to river, and distance to fault—on the
distribution of LSD, the following steps were taken: First, spatial
overlay analysis was performed on the LSD and the driving factors
such as CHAII; second, the influence factor regions were divided
into different spatial categories; finally, the average difference of each
driving factor (such as CHAII) was computed, and a significance test
was conducted to assess the relative importance of the factors. The
calculation formula is as follows:

q � 1 − ∑L
h�1Nhσ2

h

Nσ2

In the formula, q represents the explanatory power of the
influencing factor on LSD; Nh and N are the sample sizes of

layer h (where h = 1,2, . . . ,L) and the study area, respectively,
which correspond to the number of landslide points;σ_h2 and
σ2 represent the variances of the Y values in layer h and the
study area, respectively. The value of q ranges from [0, 1]. A
larger q value indicates a stronger explanatory power of the
factor on LSD, while a smaller q value indicates a weaker
explanatory power. When q = 1, it indicates that the factor is
unrelated to the geographic phenomenon.

Interaction Detector:The explanatory power of factors X1 and
X2 on the regional variable Landslide Spatial Density (LSD) can be
assessed through the following steps. First, the q-values for X1 and
X2 are calculated, denoted as q (X1) and q (X2), respectively. Then,
the q-value for the interaction between the two factors is computed,
and a comparison of q (X1) and q (X2) is conducted to indicate the
nature of their interaction (Guo et al., 2023; 2023; Peng et al., 2023).
The interaction detector is used to identify the interaction between
factors, specifically evaluating the effects of coupling (either
enhancement or attenuation) and the individual contributions of
each factor to LSD. The specific types of interaction are detailed
in Table 1.

The geographic detector requires input variables to be
categorical, meaning that continuous data must be discretized.
Since geographic detectors cannot directly handle continuous
data, and research has shown that differences in q-values can
significantly increase under different discretization methods and
numbers of categories (Meng et al., 2018), various discretization
methods and classification quantities were tested during the
experimental process. Ultimately, the methods and quantities
outlined in Table 2 were selected based on statistical analysis to
ensure the robustness and accuracy of the results. The choice of
discretization methods was driven by the need to balance the
preservation of data variability with the requirement for
categorical variables, ensuring that the discretized categories
meaningfully reflect the underlying distribution of each factor.
For instance, the geometric interval method was applied to
variables such as the Composite Human Activity Intensity Index
(CHAII), slope, and distance to fault, as this method is well suited for
variables exhibiting skewed or power-law distributions. In contrast,
the natural breaks method was used for factors like precipitation and
topographic relief, as it effectively captures intrinsic value groupings
and thresholds within the data. The number of classes was set
between 5 and 10 to balance resolution and the stability of q-values.
All q-values presented in the analysis were derived from discretized
variables using optimized classification parameters, ensuring
consistency, interpretability, and statistical reliability.

3 Results

3.1 The landslide distribution characteristics
of the YRB from 2000 to 2020

Figure 2 shows the spatial distribution of landslide points and
LSD distribution in the study area from 2000 to 2020. Significant
differences are observed between the two, with both generally
following a band shaped distribution along the main channel of
the Yangtze River, particularly in the upper and middle reaches
where landslides are more concentrated. According to the statistical

Frontiers in Environmental Science frontiersin.org04

Liu et al. 10.3389/fenvs.2025.1576700

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1576700


data, the number of landslides in different provinces is as follows:
13 in Qinghai, 90 in Tibet, 13,978 in Sichuan, 3,580 in Yunnan,
11,023 in Chongqing, 4,827 in Hubei, 5,209 in Hunan, 10,842 in
Jiangxi, and 1,274 in Anhui. Sichuan and Chongqing have the
highest number of landslides and also exhibit very high LSD
values. While Yunnan and Hubei have fewer landslides compared
to Sichuan and Chongqing, they still show localized high LSD areas,
mainly concentrated in mountainous regions and areas with heavy
rainfall. Jiangxi, with a relatively high number of landslides and high
LSD values, is primarily influenced by the region’s hilly terrain and
human activities.

3.2 Spatial distribution of LSD driving factors
in the YRB

The results of the standardized processing of the six driving factors
for LSD in the Yangtze River Basin are shown in Figure 3. The CHAII
exhibits significant variation across different river sections and basins.
The slope reveals the influence of topographic gradient on LSD in
various regions of the Yangtze River Basin. The topographic ruggedness
reflects the intensity of surface elevation changes. The precipitation data
indicate higher annual rainfall in the middle and lower reaches of the
Yangtze River. The distance to rivers and distance to faults reflect the

TABLE 1 Types of interaction between two driving variables on the response variable.

Interaction type q Value relationship

Nonlinear attenuation q (X1∩X2)<Min (q (X1),q (X2))

Single-factor nonlinear attenuation Min (q (X1),q (X2))<q (X1∩X2)<Max (q (X1),q (X2))

Double-factor enhancement q (X1∩X2)>Max (q (X1),q (X2))

Independent q (X1∩X2) = q (X1)+q (X2)

Nonlinear enhancement q (X1∩X2)>q (X1)+q (X2)

TABLE 2 The optimal discretization parameters for continuous factors were selected based on statistical analysis.

Xi Factor Discretization method Number of categories

X1 CHAII Geometric Interval 8

X2 slope Geometric Interval 8

X3 topographic ruggedness Natural Breaks 8

X4 precipitation Natural Breaks 10

X5 distance to river Geometric Interval 5

X6 distance to fault Geometric Interval 8

FIGURE 1
Overview of the study areas. (a) Global perspective of the YRB and the main channel of the YRB. (b) The main channel of the YRB, showing the
topography and the landslide frequency statistics for the study area in this paper.
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spatial distribution characteristics of rivers and faults within the study
area. The distance to rivers and distance to faultsreflect the spatial
distribution characteristics of rivers and fault structures within the study
area, and they play a significant role in influencing landslide spatial
density. To quantitatively assess the spatial relationship between
landslides and these natural factors, this study classified the distance
values using the Geometrical Interval Method in GIS. In the spatial
analysis, the Euclidean distance was first used to calculate the nearest
distance from each landslide point to rivers and active faults, resulting in
two distance-based variables: distance to river and distance to fault.

These variables were then classified into multiple intervals to facilitate
statistical analysis of their relationships with LSD. Specifically, the
distance to river was divided into five classes: 0.000–0.037 km,
0.038–0.053 km, 0.054–0.090 km, 0.091–0.178 km, and
0.179–0.383 km. The distance to fault was classified into eight
classes: 0.000–0.185 km, 0.186–0.480 km, 0.481–0.948 km,
0.949–1.690 km, 1.691–2.870 km, 2.871–4.743 km, 4.744–7.718 km,
and 7.719–9.591 km.

Figure 4 shows the results of the Pearson correlation coefficient
analysis, which illustrates the linear relationships between the variables.

FIGURE 2
Landslide and LSD Distribution Map. (a) Distribution of landslide points in the study area. (b) Distribution of LSD in the study area.
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The coefficient values range from [-1, 1], where a negative Pearson
correlation coefficient indicates a negative linear relationship, and a
positive coefficient indicates a positive linear relationship. The larger the
absolute value of the correlation coefficient, the stronger the linear
relationship between the influencing factors. Additionally, the Variance
Inflation Factor (VIF) is commonly used to detect multicollinearity in
models (Salmerón et al., 2024). If VIF >10, it indicates severe

multicollinearity (O’brien, 2007). The results in Table 3 demonstrate
that there is no strong linear correlation (greater than 0.8 or −0.8)
between the influencing factors, except for precipitation and distance to
faults, which have a correlation of 0.78. The correlation coefficients
between other factors are all less than 0.2. Most of the significance
coefficients (p-values) for the factors are p < 0.001, with the exception of
the slope and distance to rivers, which have a p-value of 0.014. The VIF

FIGURE 3
Presents the spatial distribution map of the standardized driving factors for LSD. Panels (a–f) correspond to CHAII, slope, topographic ruggedness,
precipitation, distance to rivers, and distance to faults.

FIGURE 4
Results chart of pearson correlation coefficient.
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values for all independent variables are within an acceptable range,
indicating that there is no severe multicollinearity issue. The VIF value
for the distance to faults is 2.668, much lower than 10, confirming that
the model’s results are reliable, and the explanatory power of each
variable is relatively independent. These findings support the conclusion
that the selected six influencing factors have no strong correlations,
making them suitable for the LSD evaluation model.

The correlation analysis on the relationship between LSD and six
influencing factors was conducted through the multiple linear
regression method. The results are shown in Table 3. The R2 is
0.2288, and the adjusted R2 is 0.2289. Since natural disasters are
affected by multiple factors, and there may be strong non-linear
relationships and complex interactions among these factors,
especially for complex disaster phenomena such as landslides, floods,
and earthquakes. An R2 of 22.8% indicates that the model can explain
approximately one-fourth of the variability, which is considered
reasonable in many landslide studies (Pan et al., 2007; Van Westen
et al., 2008; Tien Bui et al., 2012; Sudaryatno et al., 2020; Qi et al., 2024).
The unstandardized coefficient B represents the direct impact of the
influencing factors on LSD. The results of the multiple linear regression
analysis show that among the positive correlations, rainfall (1.063) has
the greatest impact on LSD, followed by CHAII (0.522) and terrain
relief (0.032). The unstandardized coefficient of the annual average
rainfall is 1.063, that is, for every standard unit increase in rainfall, LSD
increases by 1.063 units. The standardized coefficient of CHAII is 0.522,
which indicates that the increase in the intensity of human activities is
positively correlated with LSD. The slope, distance from rivers, and
distance from faults are significantly negatively correlated with LSD.
The coefficient of the slope is −0.033, and this result shows that, when
other variables are controlled, LSD has a slight downward trend as the
slope increases. In addition, the coefficient of the distance from rivers
is −0.233, meaning that the farther away from the river a region is, the
lower the LSD. The coefficient of the distance from faults is −0.453,
showing that the closer to the fault a region is, the higher the LSD.

3.3 Characteristics of driving factors for LSD
in different river sections of the YRB

3.3.1 Individual effects of driving factors in different
sections of the YRB

The analysis results of LSD and its driving factors in different
reaches of the YRB using the factor detector in Geographic
detector (Figure 5) display the relationships between LSD and

multiple driving factors in different reaches of the YRB, and
quantitatively reveal the relative explanatory power of each
factor for LSD.

In the UYRB, the results of the factor detector in Geographic
detector show that the p-values of all six influencing factors are
0.000, indicating a significant correlation between the selected
factors and LSD. Ranked according to the q-values, precipitation
(q = 0.266) is the strongest factor affecting the distribution of
landslide spatial density, with an explanatory power reaching
26.6%, which is at a relatively high level [42,43]. The distance
to faults (q = 0.055) is the second influencing factor. Topographic
relief (q = 0.024) and CHAII (q = 0.021) are secondary factors.
Although the slope (q = 0.007) is significant, its effect is
relatively small.

In the analysis of the MYRB, the results of the factor detector in
Geographic detector also show that the p-values of all six
influencing factors are 0.000, further confirming the strong
correlation between the factors and LSD. The ranking according

TABLE 3 Results of multiple linear regression analysis in the YRB.

S (LSD) Coefficient Standarderror t P>|t| VIF 95%confidenceinterval

S (X1) 0.522 0.020 25.581 0.000 1.312 0.482 0.562

S (X2) −0.033 0.006 −5.172 0.000 1.081 −0.045 −0.020

S (X3) 0.032 0.011 2.917 0.004 2.607 0.482 0.562

S (X4) 1.063 0.010 109.297 0.000 1.058 1.044 1.082

S (X5) −0.233 0.008 −30.001 0.000 2.668 −0.248 −0.217

S (X6) −0.453 0.004 −103.987 0.000 1.517 −0.462 −0.445

aNumber of observations = 50,835, F (7,50829) = 2,515.32, Prob > F = 0.0000, R2 = 0.2289, AdjustedR2 = 0.2288, Durbin-Watson statistic = 1.619.

FIGURE 5
The q-values of the individual effects of LSD driving factors in
different reaches of the YRB.
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to the q-values is as follows: rainfall (0.139), distance from faults
(0.061), CHAII (0.040), distance to rivers (0.023), slope (0.007),
and topographic relief (0.005). In comparison, although the slope
(0.007) and the distance to rivers (0.023) have certain explanatory
power, their impacts on the landslide spatial density are
relatively weak.

In the LYRB, the results of the factor detector in Geographic
detector show that the p-values of all six factors are 0.000. Except for
the slightly higher p-value of topographic relief (p = 0.143), the other
factors all have significant correlations with LSD. According to the
q-values, the distance to faults (q = 0.222) becomes the most
important influencing factor for landslides in the downstream
area; precipitation (q = 0.183) is the second main factor, and its
explanatory power is weakened compared with that in the UYRB
and MYRB; the importance of CHAII (q = 0.068) is significantly
increased in the LYRB; the influences of the distance from rivers (q =
0.027) and the slope (q = 0.032) are increased in the downstream
area, while the influence of terrain relief (q = 0.011) is relatively the
weakest in this area.

3.3.2 Coupling effect of driving factors in different
river sections of the YRB

Figure 6 and Table 4 present the experimental results of the
interaction detector in the geographic detector method for LSD and
its driving factors across different river sections of the YRB.

The results of the interaction detector for the Upper Yangtze
River Basin (UYRB) show that the interaction q-values between any
two factors are significantly higher than those of the individual
factors, indicating that the interaction types are predominantly
double-factor enhancement (6.7%) and nonlinear enhancement
(93.3%). The interaction q-values of all individual factors with
other factors are higher than their respective single factor
q-values. Among them, the interaction between precipitation and
distance to fault has the highest q-value (0.452), which is a 69.5%
increase compared to the individual factor q-value. Other key
interaction factors include precipitation and topographic
ruggedness (q = 0.291), precipitation and slope (q = 0.282), and
precipitation and CHAII (q = 0.273), all exhibiting nonlinear
enhancement and significantly improving the LSD distribution.

FIGURE 6
Interactive detection results of different regions in the YRB. Panels (a–c) correspond toUYRB, MYRB and LYRB.
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However, the interaction between precipitation and CHAII (double-
factor enhancement) shows only a 2.4% increase in the q-value
compared to the individual factor. Among the lower-impact
interactions, the interaction between slope and distance to river
(q = 0.026), slope and CHAII (q = 0.033), and CHAII and distance to
river (q = 0.036), though showing nonlinear enhancement, have
weak explanatory power for LSD.

In the MYRB, the interaction types of influencing factors are
predominantly nonlinear enhancement (86.7%), with double-factor
enhancement accounting for 13.3%. The interaction between
CHAII, precipitation, and distance to river is of double-factor
enhancement type. The interaction q-value between CHAII and
precipitation is 0.169, significantly higher than the single-factor

q-value for CHAII (0.041). Additionally, the interaction between
CHAII and fault has a q-value of 0.141, indicating a clear coupling
effect. In the interactions of other factors, the q-values are generally
below 0.1, with the interaction between slope and topographic
ruggedness having the lowest q-value (0.019). Notably, the
interaction between precipitation and distance to river has a
q-value of 0.163, exhibiting nonlinear enhancement and
surpassing the maximum individual q-values (0.139) of both
factors. Similarly, the interaction between precipitation and
topographic ruggedness has a q-value of 0.151, exceeding the
maximum individual q-value (0.139).

In the LYRB, the interaction types mainly show nonlinear
enhancement. The interaction between precipitation and distance

TABLE 4 Results of multiple linear regression analysis in the YRB.

C A + B Result Interpretation C A + B Result Interpretation

UYRB

X2∩X1 = 0.033 0.029 C>A+B ↑↑ X1∩X3 = 0.051 0.045 C>A+B ↑↑

X2∩X4 = 0.282 0.274 C>A+B ↑↑ X4∩X5 = 0.298 0.278 C>A+B ↑↑

X2∩X5 = 0.026 0.019 C>A+B ↑↑ X4∩X6 = 0.452 0.322 C>A+B ↑↑

X2∩X6 = 0.072 0.063 C>A+B ↑↑ X4∩X3 = 0.318 0.291 C>A+B ↑↑

X2∩X3 = 0.037 0.032 C>A+B ↑↑ X5∩X6 = 0.07 0.067 C>A+B ↑↑

X1∩X4 = 0.273 0.288 C < A + B ↑ X5∩X3 = 0.046 0.036 C>A+B ↑↑

X1∩X5 = 0.036 0.033 C>A+B ↑↑ X6∩X3 = 0.087 0.079 C>A+B ↑↑

X1∩X6 = 0.089 0.077 C>A+B ↑↑

MYRB

X2∩X1 = 0.051 0.048 C>A+B ↑↑ X1∩X3 = 0.068 0.046 C>A+B ↑↑

X2∩X4 = 0.149 0.146 C>A+B ↑↑ X4∩X5 = 0.163 0.162 C>A+B ↑↑

X2∩X5 = 0.034 0.031 C>A+B ↑↑ X4∩X6 = 0.262 0.199 C>A+B ↑↑

X2∩X6 = 0.081 0.068 C>A+B ↑↑ X4∩X3 = 0.151 0.144 C>A+B ↑↑

X2∩X3 = 0.019 0.012 C>A+B ↑↑ X5∩X6 = 0.085 0.084 C>A+B ↑↑

X1∩X4 = 0.169 0.179 C < A + B ↑ X5∩X3 = 0.031 0.029 C>A+B ↑↑

X1∩X5 = 0.06 0.064 C < A + B ↑ X6∩X3 = 0.076 0.066 C>A+B ↑↑

X1∩X6 = 0.141 0.101 C>A+B ↑↑

LYRB

X2∩X1 = 0.107 0.100 C>A+B ↑↑ X1∩X3 = 0.112 0.079 C>A+B ↑↑

X2∩X4 = 0.227 0.215 C>A+B ↑↑ X4∩X5 = 0.207 0.211 C < A + B ↑

X2∩X5 = 0.075 0.059 C>A+B ↑↑ X4∩X6 = 0.435 0.406 C>A+B ↑↑

X2∩X6 = 0.26 0.254 C>A+B ↑↑ X4∩X3 = 0.21 0.194 C>A+B ↑↑

X2∩X3 = 0.062 0.043 C>A+B ↑↑ X5∩X6 = 0.251 0.249 C>A+B ↑↑

X1∩X4 = 0.227 0.252 C < A + B ↑ X5∩X3 = 0.055 0.038 C>A+B ↑↑

X1∩X5 = 0.1 0.096 C>A+B ↑↑ X6∩X3 = 0.266 0.233 C>A+B ↑↑

X1∩X6 = 0.304 0.291 C>A+B ↑↑
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to fault has the highest q-value of 0.406, significantly higher than the
individual factor q-values, indicating a marked nonlinear
enhancement effect. In the downstream region, the interaction
between CHAII and distance to fault has a q-value of 0.304, and
the interactions between precipitation and CHAII, as well as
distance to river, are double-factor enhancements. The q-values
of the remaining interactions are generally below 0.100, particularly
the interaction between slope and topographic ruggedness
(q = 0.011).

4 Discussion

4.1 Analysis of LSD and driving factors in
the YRB

Precipitation, as the most significant natural factor affecting
landslide spatial density (LSD), significantly increases LSD.
According to the data used in this study, extreme precipitation in
the upper reaches of the Yangtze River accounts for 69.3% (annual
precipitation >1,000 mm), in the middle reaches 41.7% (annual
precipitation >1,500 mm), and in the lower reaches 11.4% (annual
precipitation >1,600 mm). In recent decades, the frequency of
extreme precipitation has been highest in the upper reaches of
the Yangtze River (Fang et al., 2018), and the extreme
precipitation index for the YRB shows a continuous upward
trend. The majority of the increase in the extreme precipitation
index occurs in the middle and lower reaches of the Yangtze River
(Yuan et al., 2021). This result aligns with the findings of this study,
further confirming that annual precipitation is the dominant factor
influencing LSD across the entire YRB. The study clearly indicates
that annual precipitation significantly alters the LSD of the Yangtze
River Basin, and related studies show that the frequency of extreme
precipitation in the upper reaches of the Yangtze River has remained
high in recent decades, with a continued increase in the extreme
precipitation index from 1961 to 2020, particularly in the middle
and lower reaches. This further supports the view that precipitation
plays a dominant role in the landslide formation process in the
Yangtze River Basin, with other factors being secondary.

This finding reflects the importance of precipitation as a
hydrodynamic force. Once a large amount of precipitation enters
the soil, it reduces soil suction and increases pore water pressure. As
precipitation continues, the groundwater level gradually rises,
leading to an increase in the weight of the soil, which reduces
shear strength and exacerbates geological instability. Moreover,
saturated soil layers are more likely to slide, as the addition of
water reduces the friction between particles, making the soil particles
less stable (Arbanas et al., 2021; Han et al., 2024). The increasing
frequency of extreme precipitation events in the YRB will rapidly
increase the moisture content both on the surface and underground
(Zhang et al., 2024), this process may also be amplified by
topographical conditions, such as on steep slopes or near fault
zones, where the impact of precipitation becomes more
pronounced, thereby increasing the occurrence of landslides
(Chang et al., 2022).

Regarding human activity, the distribution of CHAII indicates
the potential destructive role of human activities, especially in
regions susceptible to disturbance. This result highlights the close

connection between human activity interference and landslide
occurrence, particularly in the urbanized and development dense
areas of the middle and lower Yangtze River.

For the distance factors, the coefficients for distance to faults and
distance to rivers are −0.453 and −0.233, respectively, indicating that
regions closer to faults and rivers exhibit higher LSD. Areas near
faults are more likely to be affected by geological structure changes
and seismic activity, while areas near rivers are more susceptible to
erosion and groundwater infiltration, increasing landslide risk. The
increased rainfall in the YRB, coupled with a rise in extreme
precipitation events, leads to higher erosion rates in areas near
rivers, contributing to more frequent landslides. In the upper
reaches, the impact of faults is particularly pronounced due to
the steep terrain and high rainfall, with fault activities triggering
large-scale landslides. Interaction analysis shows a nonlinear
enhancement effect between CHAII and distance to faults,
further suggesting that even in areas near faults where direct
human activity impacts are limited, geological instability can still
heighten landslide risk. Similar results are found in the middle and
lower reaches, though the flatter terrain in these areas limits the
triggering effect of fault activities on landslides. Previous studies
have also supported this perspective. Ge et al. noted that fault
activities enhance the likelihood of landslides, particularly in
regions with dense or frequent fault activity (Feng et al., 2024).
This shows that fault activities in the YRB not only directly cause
geological instability but also indirectly increase landslide risk
through hydrological effects and groundwater infiltration.

The slope coefficient is −0.033, indicating that, all else being
equal, an increase in slope helps reduce LSD. Further multiple linear
regression analysis of the slope reveals that when the slope is
between 10° and 20°, it shows a positive correlation with LSD
(q = 0.188), with an average annual precipitation of
1,076.148 mm. When the slope is between 20° and 30°, the slope
is negatively correlated with LSD (q = −0.087), with an average
annual precipitation of 1,236.331 mm. This result suggests that
steeper slopes may reduce moisture retention, decreasing pore water
pressure and thus lowering the risk of soil instability under certain
conditions. In the interaction between slope and slope surface
moisture, steeper slopes, due to rapid drainage and limited soil
saturation, can reduce the risk of landslides caused by increased soil
moisture. This phenomenon is reflected in studies of slope moisture
dynamics, where some experiments suggest that steep slopes can
stabilize soil by reducing moisture accumulation, lowering landslide
risk (Pelascini et al., 2022). However, on the whole, the slope
coefficient is small, at only −0.033, indicating that within certain
ranges, an increase in slope can somewhat reduce LSD, but the
impact is weak and not a primary factor. For most landslides, LSD
increases with slope. However, under specific environmental
conditions, an increase in slope may lead to a decrease in LSD.

On the other hand, the positive influence of topographic
ruggedness highlights the positive correlation between terrain
complexity and LSD. The contrasting relationships between slope
and topographic ruggedness reflect their different mechanisms in
landslide occurrence. Under steep slope conditions, reduced
moisture retention on the slope leads to relatively low soil
moisture content, thus decreasing geological instability and
reducing landslide risk. Meanwhile, increased terrain complexity
or ruggedness may concentrate water flow, thereby increasing the
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instability of surface soil. This interaction between topographic
factors produces a relatively balanced impact on landslide risk
over a large range of slopes. Steeper slopes primarily reduce
landslide risk through rapid drainage and decreased soil
moisture, whereas increased topographic ruggedness indicates
terrain irregularity and potential water accumulation zones,
which tend to have a higher landslide risk. Therefore, the
association between the two suggests the complexity of terrain
characteristics in landslide initiation mechanisms: steep slopes
tend to reduce landslide occurrence within a certain slope range,
while complex terrain structures increase the likelihood of localized
landslides. This understanding is valuable in landslide risk
assessment, as it helps to more precisely identify and distinguish
the characteristics of high-risk areas.

4.2 Spatial heterogeneity of LSD and driving
factors in different sub-basins of the
yangtze river

The differences in natural geographical features and human
activities in the Yangtze River Basin result in significant variations in
LSD across different river sub-basins. Therefore, the factors affecting
LSD and their interactions vary substantially across regions.

4.2.1 UYRB: Significant natural drivers in
mountainous landslides

The results for the UYRB indicate that the interaction between
precipitation and distance to fault significantly exceeds the
individual influence of each factor on LSD. This result aligns
with previous studies on the combined driving effects of
precipitation and geological conditions in steep mountainous
areas, confirming the triggering effect of precipitation on
unstable slopes. In fault active areas, precipitation can rapidly
increase surface saturation, weakening slope stability, and greatly
increasing the likelihood of landslides. Additionally, the
interaction between precipitation and topographic ruggedness is
also high, further emphasizing the importance of the combined
effect of precipitation and terrain variation in complex
topographic areas. In the upper reaches, human activity has
relatively little influence, with the interaction between CHAII
and precipitation only enhancing LSD by 2.4%. This suggests
that human activity has a minimal impact on landslide
distribution in this region, which aligns with the relatively low
human activity intensity in the upper reaches. Thus, landslide
distribution in this region is primarily controlled by precipitation
and geological conditions. The significant nonlinear enhancement
effect further strengthens the spatial consistency of landslide disas-
ters, supporting Stanley et al.’s conclusions on the impact of
precipitation on landslides in complex terrain in plateau regions
(Stanley et al., 2024).

4.2.2 MYRB: Combined natural and human
activity effects

The MYRB, located at the transition zone between the
Sichuan Basin and the Jianghan Plain, is characterized by hilly
and basin like terrain. This area has experienced significant
urbanization and agricultural intensification, leading to high

land use intensity. The experimental results indicate that the
interaction between annual precipitation and distance to fault
exceeds the single effects of precipitation and faults. Precipitation
exacerbates instability in geologically fragile zones, significantly
increasing landslide risk. Particularly, the interaction between
precipitation and CHAII has a q-value of 0.169, indicating that
human activity under precipitation triggered conditions
increases the probability of landslides. This phenomenon
suggests that in the middle reaches, both natural and
anthropogenic factors significantly enhance the occurrence of
landslides. In areas with relatively mild terrain but high human
activity, the driving factors of LSD transition from being
primarily driven by natural factors to a combined influence of
both natural and human activities. Human activities, such as road
construction and land reclamation, may cause surface
disturbance, which, when combined with precipitation,
exacerbates slope instability. The q-value for the interaction
between CHAII and precipitation increases by nearly three
times, further verifying the amplifying effect of human
activities under precipitation driven conditions.

4.2.3 LYRB: Complex LSD distribution in
urbanized areas

The LYRB is relatively flat, but in some local hilly areas, the
combined effects of precipitation and geological structures still
play a major role in the distribution of landslide spatial density.
According to the results in section 4.3.2, with urban expansion,
impermeable surfaces such as buildings and roads increase, and
drainage systems may not be sufficient to handle concentrated
rainfall, leading to local instability and increased landslide risk.
This phenomenon is consistent with Li et al.’s research on the
coupling amplification effect of human activity on natural
disaster risk distribution in the Yangtze River Delta,
emphasizing that the impact of urbanization on natural
disasters should not be over looked (Li et al., 2021). Moreover,
the interaction between topographic ruggedness and
precipitation in the lower reaches indicates that even in
relatively flat terrains, the combined effects of natural and
human activities can increase landslide risk, especially under
shortterm intense rainfall conditions.

In summary, the driving mechanisms behind LSD in the
different subbasins of the Yangtze River vary significantly with
both natural and human activity factors. In the upper reaches,
natural factors dominate, with precipitation and topographic
complexity being the main influences. The nonlinear
enhancement effect of precipitation and fault distance is
prominent. In the middle reaches, the combined effect of
natural and human activities becomes more pronounced, with
human activities significantly amplifying the impact of
precipitation on LSD. In the lower reaches, a “natural-human”
composite model prevails, where both precipitation and geological
activities, along with human interventions, significantly enhance
LSD. These regional differences highlight the need for localized
landslide risk management strategies that consider both natural
conditions and human activity characteristics. Specifically,
targeted prevention and control measures should be applied in
high-risk areas, adapting to local environmental conditions and
anthropogenic influences.
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The observed spatial heterogeneity in LSD and its driving
mechanisms implies that a “one-size-fits-all” approach to
landslide risk mitigation is inadequate. Instead, risk management
strategies should be tailored to local environmental and
socioeconomic contexts. In the UYRB, efforts should focus on
enhancing early warning systems and geotechnical monitoring in
precipitation-prone, fault-dense areas. In the MYRB, integrated
land-use planning and slope stabilization measures are crucial to
mitigating the compound effects of natural and anthropogenic
stressors. In the LYRB, urbanization has led to an increase in
impermeable surfaces, its impact on landslide distribution is
relatively small, mainly manifested in the rapid accumulation of
water flow during heavy rainfall, which may increase the risk of local
landslides due to the increase in impermeable surfaces. Therefore,
future landslide risk management should focus on the interaction
between active fault areas and rainfall, and take targeted measures
such as strengthening landslide monitoring in fault areas,
optimizing disaster prevention and warning systems, and
increasing protection efforts during rainfall prone periods. These
differentiated strategies not only align with the spatial heterogeneity
of LSD but also ensure that mitigation efforts are both efficient and
regionally appropriate.

4.3 Limited impact and complex coupling of
human activity on LSD in the YRB

Tian et al. indicated that human activities are the primary
triggering factors for landslides in the Yellow River Basin.
Furthermore, the spatial variation in human-induced
disturbances exacerbates the spatial heterogeneity of LSD,
with the effects of human disturbance varying across different
regions, amplifying LSD’s spatial heterogeneity (Tian et al.,
2025). However, in the Yangtze River Basin, although there is
spatial heterogeneity in human activity intensity across different
sub-basins, the impact of human activities on LSD is relatively
limited, with natural factors, particularly precipitation and
distance to fault, serving as the dominant drivers of LSD.
Research by Ge et al. also found that land use changes can
influence landslide risk. In areas such as the Huang-Huai-Hai
Plain, the Qinghai-Tibet Plateau, and the Loess Plateau, changes
in land types have been found to mitigate landslide risk.
Conversely, in other regions, these changes may exacerbate
land-slide risk (Ge et al., 2024). In line with these findings,
our analysis of the Land Use Type Area in the CHAII, including
impervious surfaces and cultivated land, shows that the
proportion of human activity-related land use types
(cultivated land and impervious surfaces) remains constant at
around 37%–38%. This is consistent with the conclusions drawn
by Ge et al. Moreover, the interaction between CHAII and
natural factors varies significantly across different regions of
the Yangtze River Basin. Although the CHAII in the upper
reaches is relatively low, its interaction with natural factors,
such as annual precipitation, significantly amplifies landslide
risk, with the interaction value increasing by as much as 92.1%.
This phenomenon may be linked to the complex geological and
hydrological conditions in the upper reaches of the Yangtze
River. With increased precipitation, surface moisture in this

region rises, leading to greater soil instability. Even low-intensity
human activities can significantly facilitate landslide occurrence
under these conditions. This finding supports the argument put
forward by Ge et al. that in regions with complex geographical
and hydrological environments, the impact of human activities
on landslides becomes more pronounced.

5 Conclusion

This study utilizes multiple linear regression analysis,
geographic detector factor detectors, and interaction detectors to
assess both the individual and interactive effects of several factors,
including CHAII (X1), slope (X2), precipitation (X3), topographic
ruggedness (X4), distance to river (X5), and distance to fault (X6), on
LSD in the YRB. The key findings are summarized as follows:

(1) In the YRB, CHAII, precipitation, and topographic
ruggedness are positivelycorrelated with LSD, while slope,
distance to fault, and distance to river exhibit negative
correlations. Annual precipitation and proximity to faults
are identified as the primary drivers of LSD in the basin.
Notably, under specific environmental conditions, an increase
in slope may result in a reduction in LSD, thereby mitigating
landslide risks.

(2) Significant spatial variation in the driving mechanisms of
landslide distribution is observed across the different sub-
basins of the YRB. In the upper reaches, natural factors
predominantly control landslide occurrence, with a marked
distribution of landslides in mountainous areas. The middle
reaches are characterized by a dual influence of both natural
and human activities, while the lower reaches exhibit a
complex LSD distribution, primarily driven by
urbanization. These regional variations suggest that
landslide risk management strategies should be region-
specific, with tailored interventions that consider local
natural conditions and human activity patterns,
particularly in high-risk zones.

(3) While the intensity of human activity displays notable spatial
heterogeneity across the YRB, its direct impact on landslide
spatial density remains relatively minor. The dominant
drivers of LSD are still natural factors, particularly
precipitation and distance to fault. However, the influence
of human activities on LSD varies significantly across regions.
In the upper reaches of the Yangtze River, the interplay of
complex geological and hydrological conditions amplifies the
effect of precipitation on landslide risks. Under these
circumstances, even low intensity human activities can
significantly enhance landslide occurrence through
interactive effects.

(4) Compared to other regions, the coupling effect between
human activities and natural factors on LSD in the YRB is
relatively complex, especially in areas with complicated
geographical and hydrological conditions. Therefore, future
landslide risk assessments in the YRB should focus on the
interaction effects between natural factors and human
activities to more accurately explore the spatial distribution
and driving factors of landslide disasters.
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