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Introduction: This study examines the spatial dispersion of traffic-related
pollutants (CO, NOx, and PM10) along a major highway corridor that connects
the Eastern Black Sea Region with northern Türkiye. The primary objective is to
compare the performance of two atmospheric dispersionmodels—AERMOD and
CAL3QHCR—and to evaluate how topographic variables influence their outputs.

Methods: Dispersion simulations were performed using AERMOD and
CAL3QHCR under identical meteorological and traffic input scenarios. Model
predictions were compared using Spearman’s rank correlation coefficient and
validated against observational data from ten air quality monitoring stations.
Fractional Bias (FB) and Normalized Mean Square Error (NMSE) were
employed as statistical performance metrics.

Results: Both models estimated higher pollutant concentrations near
highways, but AERMOD consistently predicted higher maximum values
(CO: 0.78 ppm; NOx: 1.48 ppm; PM10: 26.59 μg/m3). CAL3QHCR produced
lower estimates (CO: 0.20 ppm; NOx: 0.09 ppm; PM10: 2.70 μg/m3), yet it
showed better agreement with observed CO and NOx concentrations.
Correlation analysis indicated strong negative correlations between
pollutant levels and elevation (e.g., CO: r = −0.87). Both models captured
the spatial decline in concentrations with increasing distance from the road,
particularly within the first kilometer.

Discussion: AERMOD was found to overpredict pollutant concentrations, while
CAL3QHCR yielded closer estimates for CO and NOx. However, both models
exhibited poor performance in simulating PM10, as indicated by high NMSE values
and consistent underestimation. These findings highlight the significance of
topography in dispersion modeling and the necessity of model calibration for
PM-based assessments.
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1 Introduction

Road transportation stands out as one of the primary contributors to outdoor air
pollution, particularly in densely populated urban areas, due to the increase in vehicle
emissions that pose serious risks to public health. In response to these growing
environmental and health concerns, extensive research over the past few decades has
focused on evaluating the effectiveness of various emission reduction strategies aimed at
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improving air quality by mitigating road traffic-related emissions
(Soret et al., 2014; Askariyeh et al., 2017; El-Hansali et al., 2021;
Nishitateno et al., 2024).

Among the primary causes of road traffic-related air pollution
are the usage of fossil fuels, poor fuel quality, and poor vehicle
maintenance. Furthermore, non-exhaust emissions, including
sources like brakes, tires, and road surface wear, are not currently
subject to legal regulation and contribute to air pollution caused by
traffic (Khan et al., 2021; Harrison et al., 2021). Due to the significant
impact of road traffic on pollution levels, vehicle traffic in urban
areas is considered an index for air quality. The fluctuation in both
the time and space of vehicular traffic, particularly in urban areas,
impacts the pollution level and exacerbates the overall air quality of
the environment (Logothetis et al., 2023). According to estimates, a
significant majority of the world’s population will reside in urban
areas in the future, particularly in close proximity of major highways
where traffic congestion can be felt up to 500 m away (Boogaard
et al., 2022).

Vehicle emissions consist primarily of pollutants such as carbon
monoxide (CO), nitrogen oxides (NOx), particulate matter (PM),
and volatile organic compounds (VOCs). Secondary pollutants like
ozone (O3) are formed through atmospheric reactions involving
these primary pollutants (Iqbal et al., 2021). Exposure to these
traffic-related pollutants can lead to serious health problems
(Bigazzi and Rouleau, 2017). This condition greatly enhances the
significance of modeling road pollution. Currently, air quality
estimation, which is crucial for human wellbeing, is conducted
through dispersion models that rely on mathematical or physical
correlations grounded in scientific principles. These models are
employed to evaluate the present condition of air quality by
utilising diverse data, predict future trends, make essential
management choices, evaluate potential health consequences, and
trace the probable sources of specific pollution incidents. Air quality
dispersion models comprehensively calculate the interplay between
emission sources, meteorological conditions, and other
environmental elements (Demirarslan et al., 2017; Johnson, 2022;
Fateeva and AYu, 2020). Additionally, these models are employed to
assess the effects of vehicle emissions (Bai, 2019). Many studies in
the literatures have concentrated on the computation of pollutant
concentrations associated with traffic and assessing their real-time
dispersion. Additionally, these studies have aimed to ascertain the
air quality near roadways. Furthermore, there are research
investigations that assess the levels of air pollution caused by
vehicle emissions in metropolitan areas and devise ecological
strategies to mitigate the risks associated with pollution (Crabtree
et al., 2009; Samaranayake et al., 2014; Khalid and Ali, 2019; Craig
et al., 2020).

Between 2002 and 2023, the number of automobiles in Türkiye
grew by almost 207.80%, reaching 26.6 million from 8.6 million (TSI
2023b). The exponential increase in demand for motor vehicles,
combined with their excessive use, results in increased traffic
emissions, which lead to an increase in air quality in urban areas.
Precise simulation of pollutants, particularly near roadways, is
crucial for developing sustainable regional transport strategies
and mitigating the potential harm caused by hazardous air
pollutants (Ma, 2015).

This study examined the dispersion patterns of CO, NOx, and
PM10 pollutants emitted from the road in northern Türkiye, which

links the Eastern Black Sea region with other areas. The dispersion
were estimated using the American Meteorological Society/
Environmental Protection Agency Regulatory Model (AERMOD
View 8.9.0) and the California Line Source Model with Queuing and
Hotspot Calculation/Refined (CAL3QHCR) programs in
CALRoads View 6.2.6.

The main objectives of the research can be outlined as follows: i)
Modeling the behavior of road pollutants in the Eastern Black Sea
region and determining their impacts on Ordu (ORD), Giresun
(GRSN), Trabzon (TRB), Rize (RZ), and Artvin (ART) provinces
located on this highway with dispersion maps. ii) Comparison of Air
Quality Dispersion Models (AQDM) results. iii) An assessment was
conducted to determine the impact of various independent
topographic variables (ITV) – Y (latitude), X (longitude), Aspects
(ASP), Distance to Road (DR), Elevation (ELEV), Slope (SLP), and
Forest Ratio (FR) - on the calculations performed by the model
programs utilised in the study area.

The novelty of this study lies in its comprehensive and
comparative assessment of two widely applied AQDMs along a
topographically complex transportation corridor in Türkiye’s
Eastern Black Sea Region. Rather than relying solely on
conventional performance metrics, the study systematically
investigates how each model responds to independent
topographic variables, thereby uncovering model-specific
sensitivities to complex terrain features. To explore inter-model
consistency, a comparative analysis was performed under uniform
input conditions. For each pollutant and sub-region, modeled
datasets were randomly partitioned into 30% training and 70%
testing subsets, enabling a robust and reproducible evaluation.
Spearman’s rank correlation coefficient was used to assess the
level of agreement between the models, providing additional
insight into their relative performance. Furthermore, model
accuracy was evaluated against empirical data obtained from ten
air quality monitoring stations using statistical performance
indicators—Fractional Bias (FB) and Normalized Mean Square
Error (NMSE). Through this dual-layered approach, the study
conducts performance analysis both via empirical validation and
model sensitivity to spatial-topographic variables. Collectively, these
components form a comprehensive and replicable framework for
AQDM intercomparison, particularly valuable in geographically
and meteorologically complex environments where observational
data may be limited.

2 Materials and methods

2.1 Study area

The Eastern Black Sea Region—one of the three subregions of
Türkiye’s broader Black Sea Region (Engin et al., 2007)—is
characterized by highly rugged terrain, where mountain ranges
rise abruptly from the coastline toward the interior (Figure 1).
This distinctive geomorphology generates complex meteorological
conditions, rendering air pollutant dispersion modeling both
essential and methodologically challenging. The region is
bounded to the north by the Black Sea and encompasses a
densely populated corridor aligned with the 460-km D010 coastal
highway, a major transportation axis linking Europe and Asia
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(Demirarslan and Zeybek, 2021). As of 2022, the region hosts a
population of approximately 2.5 million (TSI, 2023a). Elevated
traffic volumes—driven by intercity transportation demands and
seasonally intensified by agricultural activity—render this corridor a
significant hotspot for vehicular emissions, thereby justifying its
selection as the focus of this modeling study. To effectively manage
the region’s spatial complexity and maintain computational
efficiency, the study area was subdivided into eight discrete
modeling sub-regions. Each sub-region was independently
analyzed to account for local variations in topography,
meteorological conditions, and traffic intensity. This stratified
approach enhanced both the spatial resolution and the
interpretability of the dispersion modeling results.

2.2 Meteorological data

The meteorological data for the study area were obtained from
meteorological stations in five provinces. This data is for 2021 and

includes variables such as Opaque Cloud Cover (OCC), Dry Bulb
Temperature (DBT), Relative Humidity (RH), Station Pressure (SP),
Wind Direction (WD), Wind Speed (WS), Ceiling Height (CH),
Total Precipitation (TP), Global Horizontal Radiation (GHR),
Bowen Ratio (BR), Albedo (A), Planetary Boundary Layers (PBL)
and Mixing Height (MH) over a period of 1 year. As both models
used in the study required hourly datasets, hourly meteorological
data spanning the entire year were utilized. The information about
the meteorological stations and the average values of the data
obtained are summarised in Table 1.

The meteorological data utilized in this study were obtained
from the Turkish Ministry of Environment, Urbanization, and
Climate Change, General Directorate of Meteorology. These
data, provided on an hourly basis, were aggregated into
annual datasets to ensure consistent inputs for the dispersion
modeling process.

The selection of meteorological stations was based on two
primary criteria: i) the availability of all necessary input variables
compatible with the dispersion models employed in this study, and

FIGURE 1
Study area map showing highway network and provincial boundaries used in AQDM simulations.
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ii) the spatial representativeness of the stations in covering key
locations along the Eastern Black Sea corridor.

Although observational datasets inherently contain potential
measurement errors and data gaps, the meteorological data used
in this study were sourced from official national monitoring stations
operating under standardized protocols. These stations are
recognized as reliable sources for air quality modeling
applications. Due to the scale and logistical complexity of the
study area, conducting independent field measurements was not
considered feasible.

For instances where missing data were identified, gap-filling was
performed by applying the mean values of the corresponding
parameters derived from the same station’s available records.
This method was adopted to minimize data discontinuities while
preserving the internal consistency and reliability of the dataset.

The emission inventory was developed to characterize traffic-
related air pollutants in the study area, with a focus on CO, NOx, and
PM10. In this context, NOx refers to the combined concentrations of
nitric oxide (NO) and nitrogen dioxide (NO2), reported throughout
the manuscript as total NOx without conversion to NO2 equivalents.
However, a methodological challenge arises during model
validation: in Türkiye, national air quality monitoring stations
measure only NO2, as NOx is not directly monitored. To address
this constraint, NO2 was employed as a proxy for total NOx. This
approach is scientifically justified by the rapid atmospheric
interconversion between NO and NO2 via photochemical
reactions, typically occurring within minutes under standard
urban daytime conditions (Nowlan et al., 2025). At the emission

source, NO constitutes the majority of NOx emissions
(approximately 85%–95%), with NO2 comprising the remainder
(El Abassi et al., 2018; Krol et al., 2024). Due to the rapid oxidation of
NO to NO2, NO2 concentrations are frequently used as a practical
surrogate for total NOx in urban-scale dispersion modeling and
validation. While this introduces a methodological
limitation—specifically, the comparison of modeled NOx with
observed NO2—the use of NO2 as a proxy remains a widely
accepted and scientifically supported practice in the absence of
direct NOx measurements.

The inventory was prepared using the Tier 1 methodology
described in the EMEP/EEA Air Pollutant Emission Inventory
Guidebook, and the resulting data served as input for dispersion
modeling to assess pollutant distribution under regional
meteorological and topographic conditions. This approach
relies on quantifying the total amount of fuel consumed by
vehicles and applying average emission factors to calculate
emissions associated with fuel oil usage. Exhaust emissions
were then determined based on the general equation presented
in Equation 1 (EEA, 2020).

Ei � ∑
j

∑
m

FCj,m × EFi,j,m( )⎛⎝ ⎞⎠ (1)

In this equation, Ei, emission of pollutant i [g]; FCj,m fuel
consumption of vehicle category j using fuel m [kg]; EFi,j,m fuel
consumption-specific emission factor of pollutant i for vehicle
category j and fuel m [g/kg].

TABLE 1 Information and mean values of five different meteorological stations in the study area.

Met. Data sets Met. Stations coordinates

ART RZ TRB GRSN ORD

Lat (N) Long (E) Lat (N) Long (E) Lat (N) Long (E) Lat (N) Long (E) Lat (N) Long (E)

41.30 41.28 41.03 40.5 40.98 39.75 40.91 38.38 40.98 37.88

Average meteorological data for provinces

CCO (Tenths) 6 3 6 6 4

DBT (°C) 15 16 16 16 16

RH (%) 78 81 70 67 73

SP (mbar) 1013 1015 1012 1012 1012

WD (°) 172 192 182 177 193

WS (m/s) 2 1 2 1 1

CH (m) 1021 1085 970 1293 1072

TP (mm) 2235 1876 777 963 850

GHR (Wh/m2) 157 7758 7758 9269 9170

BR 0.82 1.62 1.62 1.62 1.62

A 0.63 0.65 0.64 0.65 0.65

PBL (m) 1226 1674 1908 1908 1700

MH (m) 1781 1299 1904 1391 1391
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By the end of 2021, the number of registered motor vehicles in
Türkiye had reached 25,249,119, with the average age of the national
fleet calculated at 14.5 years. When analyzed by vehicle type, the
average age was found to be 13.6 years for passenger cars, 15.0 years
for minibuses, 14.8 years for buses, 12.8 years for light trucks, and
17.6 years for heavy trucks. Among the 13,706,065 registered
passenger cars, 37.6% were diesel-powered, 35.9% used LPG,
25.5% ran on gasoline, and only 0.7% were electric or hybrid
vehicles. Vehicles with unspecified fuel types accounted for 0.3% of
the total (Turkish Statistical Institute, 2022). These data provide a
critical reference for evaluating the emission characteristics of the
vehicle fleet in Türkiye. Accordingly, both vehicle types (Passenger
Cars–PC, Light Commercial Vehicles–LCV, and Heavy-Duty
Vehicles–HDV) and fuel types (gasoline, diesel, and LPG) were
explicitly considered in the emission calculations. The primary
source of traffic data was the Traffic and Transportation Survey of
Highways report for the years 2016–2021, prepared by the Republic of
Türkiye Ministry of Transport and Infrastructure, Department of
Traffic Safety, Directorate of Transport Studies Branch (TTSH, 2016).
However, the report does not provide detailed fleet characteristics
such as vehicle age distribution, speed profiles, or driving behavior,
which are typically required for more advanced (Tier 2 or Tier 3)
emission estimation methodologies.

In the present study, highway traffic passing through eight
regions included in the modeling domain was analyzed based on
average daily vehicle counts recorded between 2016 and 2021.
Traffic data were categorized into three main groups: Passenger
Cars (PC), Light Commercial Vehicles (LCV), and Heavy-Duty
Vehicles (HDV). The LCV category includes panel vans, small
trucks, and pickups, whereas the HDV category comprises trucks,

articulated lorries (tractor + trailer), and buses. This classification
enabled the application of appropriate emission factors for each
vehicle group, thereby improving the accuracy of traffic-related
pollution estimates within the modeling framework.

The detailed traffic input data used in both AQDMs are
presented in Table 2 (TTSH, 2016).

In the absence of detailed, site-specific data—such as vehicle age
distribution, speed profiles, or driving behavior—Tier 1 emission
factors, as defined in the EMEP/EEA Air Pollutant Emission
Inventory Guidebook (2019), were adopted in this study. While
the Tier 1 methodology involves generalized assumptions, it offers a
practical first-order estimation of emissions based on available
traffic volume and vehicle classification data. However, the lack
of region-specific parameters introduces uncertainties into the
modeled outputs. These limitations were taken into account
during the evaluation process. The emission factors used for
various vehicle–fuel combinations in the calculation of traffic-
related emissions are presented in Table 3 (EEA, 2020).

It is important to note that the AERMOD, model requires
emission rates to be expressed in grams per second (g/s), while
the CAL3QHCR, model utilizes composite emission factors
calculated based on vehicle counts and expressed in grams per
mile (g/mile), as noted by Zeydan and Öztürk (2021).

2.3 Modeling

This study adopts a dual-modeling framework involving two
distinct atmospheric dispersion models: AERMOD and
CAL3QHCR. The initial phase employed the AERMOD

TABLE 2 Average daily vehicle type distributions for the eight regions within the study area.

Region PC (vehicle/day) LCV (vehicle/day) HDV (vehicle/day)

1 46,663 3144 12,018

2 65,461 6192 13,862

3 78,478 8475 18,245

4 67,180 7944 20,165

5 238,586 30,495 38,125

6 94,021 12,612 18,533

7 37,583 6705 11,648

8 14,604 2004 3924

TABLE 3 Emission factors for Vehicle–Fuel Combinations used in the estimation of traffic-related emissions.

Vehicle Fuel CO (g/kg fuel) NOx (g/kg fuel) PM10 (g/kg fuel)

PC Petrol 84.70 8.73 0.03

Diesel 3.33 12.96 1.10

LPG 84.70 15.20 0.00

LCV Petrol 152.30 13.22 0.02

Diesel 7.40 14.91 1.52

HCV Diesel 7.58 33.37 0.94
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modeling system to simulate the release and dispersion of inert
pollutants in relation to ambient air quality. AERMOD is a steady-
state Gaussian plume dispersion model that incorporates boundary
layer theory and is applicable to both simple and complex terrain. It
is capable of modeling pollutant behavior from various source
types—including point, line, and area sources—within a range of
up to 50 km. The model also accounts for convective and stable
boundary layer dynamics, with horizontal and vertical
meteorological parameters determining turbulence structure
(Chen et al., 2009; Christopher, 2015; Demirarslan et al., 2017;
Bai, 2019; Demirarslan and Yener, 2022).

Meteorological data and emission rates constitute critical inputs
in air pollution modeling, significantly influencing the accuracy of
simulation results. To generate meteorological inputs for AERMOD,
two preprocessors—AERMET and AERMAP—were utilized.
AERMET processes observational meteorological data to derive
boundary layer parameters, including wind speed, turbulence
intensity, and temperature gradients. It requires three input
datasets: hourly surface observations, upper-air soundings, and
site-specific meteorological measurements (Jamshidi Kalajahi
et al., 2019). AERMAP, the terrain preprocessor, provides
elevation data for both emission sources and receptor locations,
enabling precise terrain characterization (Misra et al., 2013).

The CAL3QHCR model, by contrast, is designed primarily for
near-roadway microscale applications and is particularly suited to
assessing vehicular emissions. It applies a Gaussian dispersion
approach to estimate hourly average pollutant concentrations
based on traffic volumes, vehicle speeds, types, and emission
factors. The model accounts for crosswind effects and computes
pollutant concentrations by integrating emissions from multiple
road links. It thereby enables the estimation of pollution
contributions from roadway traffic at specific downwind receptor
locations (Claggett, 2014; Xiao et al., 2021).

While CAL3QHCR is conventionally applied at localized scales,
this study extends its use to a regional corridor spanning
approximately 426 km in the Eastern Black Sea region. The
objective was to evaluate its comparative performance alongside
AERMOD, which is capable of modeling dispersion over both short
and long distances. Despite the limitations inherent in extrapolating
CAL3QHCR beyond its intended scope, its regulatory acceptance
and specificity to traffic emissions justified its inclusion in this
broader-scale application.

The choice of AERMOD and CAL3QHCR was also
influenced by practical constraints, such as restricted access to
more advanced or proprietary models. Both models are
extensively documented, widely used in regulatory and
academic contexts, and offer an effective balance between
computational efficiency and applicability. Their combined use
allowed for comprehensive assessment of pollutant dispersion at
both regional and localized scales.

To ensure methodological consistency and enable direct
comparison, both AQDM systems were provided with identical
emission inventories and meteorological datasets, which were
standardized into compatible units. The 426-km roadway was
uniformly modeled as a linear emission source, and a common
receptor grid was applied across the entire modeling domain. The
study area was subdivided into eight regions, delineated based on
administrative boundaries and topographic variation, to allow for

region-specific analysis. Each region included 441 receptor points,
evenly spaced and georeferenced to identical coordinates along and
adjacent to the roadway segments. This standardized configuration
enabled a spatially consistent comparison of model outputs.

In the AERMOD framework, traffic-related emissions were
represented using a line-area source approach, which captures
both the linear geometry of roadways and the lateral dispersion
of emissions across the road surface. To maintain temporal
consistency, both models were driven by identical hourly
meteorological and emission data, aligned with the input
requirements of their respective modeling systems.

CAL3QHCR provides data on gas concentrations calculated in
ppm. Therefore, the CO and NOx concentrations results calculated
using the AERMOD programme were converted from µg/m3 to ppm
in order to facilitate comparison.

2.4 Statistical analysis

An assessment was conducted to determine the impact of various
ITVs—X, Y, ASP, DR, ELEV, SLP, and FR—on the pollutant
concentration estimates generated by the model programs used in
this study. These variables were derived from high-resolution spatial
data sources. Specifically, ELEV, SLP, and ASP were extracted from
the Digital Elevation Model (DEM) provided by NASA/METI/AIST
(2009) using terrain analysis tools in ArcGIS 10.2 (ESRI, 2014). In
order to facilitate their inclusion in statistical analyses, the ASP values
were transformed into a continuous Radiation Index (RADIND)
using the equation proposed by Bolton et al. (2018), which is also
provided in Equation 2.

RADIND � 1 − COS π
180 ASP − 30( )( )
2

(2)

This index ranged from 0.0 on NNE-facing slopes to 1.0 on
SSW-facing slopes, providing a normalized measure of solar
radiation exposure for each receptor point.

Spearman correlation analysis was employed to examine the
associations between pollutant concentrations and selected variables
across the study regions. The strength and direction of these
relationships were evaluated to gain insights into the spatial patterns
of pollutant dispersion. In addition, the Mann–Whitney U test was
conducted to assess whether pollutant concentration distributions
differed significantly between the dispersion models applied. All
statistical analyses were conducted using SPSS version 18.2.1 (IBM, 2021).

To evaluate the degree of agreement between the AQDM
systems in predicting pollutant concentrations, a Spearman
correlation analysis was conducted on the outputs of the two
models. For each of the eight defined regions, the dataset was
randomly divided into a 30% training set and a 70% testing set
to enhance robustness and reduce the risk of overfitting.

Spearman’s rank correlation coefficient (ρ) was computed
separately for the training and testing subsets in each region.
These coefficients were subsequently used to evaluate the
consistency of the model predictions and the extent of agreement
between the AQDM systems.

The strength of the correlations was interpreted according to
Spearman’s rank correlation coefficient (ρ), following the thresholds
established by Azman et al. (2025):
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Weak: ρ < 0.3.
Moderate: 0.3≤ ρ < 0.5.
Strong: ρ ≥ 0.5.
To maintain consistency and enhance clarity in the presentation

of results, all pollutant concentration values were rounded to two
decimal places (expressed in parts per million, ppm). For
measurements falling below 0.01 ppm, scientific notation (e.g.,
2.00e-4 ppm) was employed to retain numerical precision and to
prevent misinterpretation as zero.

2.5 Model validation and inter-model
comparison strategy

In this study, the predictive performance of two atmospheric
dispersion models was systematically evaluated by comparing their
modeled pollutant concentrations with observed values obtained
from air quality monitoring stations. Annual average
concentrations of PM10, NOx, and CO for the year 2021 were
collected from ten monitoring stations distributed across five
provinces: ORD (3 stations), GRSN (2 stations), TRB
(2 stations), RZ (2 stations), and ART (1 station). For each
monitoring station, the nearest receptor point within the model
domain was identified, and the corresponding modeled
concentrations from both AQDM systems were subsequently
extracted for analysis. These observational data were provided
by monitoring stations located within the study area and are

operated under the authority of the Ministry of Environment,
Urbanization, and Climate Change of the Republic of Türkiye.

To quantify the agreement between modeled and observed
concentrations, two widely used statistical performance metrics—FB
and NMSE—were employed. These indicators were computed
separately for each pollutant to evaluate model accuracy and to detect
any systematic tendencies toward underestimation or overestimation.

Alongside observational validation, an inter-model comparison
was conducted to evaluate the degree of agreement between the
AQDM systems’ output predictions. For each pollutant and
geographical region, modeled datasets were randomly partitioned
into training (30%) and testing (70%) subsets to ensure robustness in
the evaluation process. The Spearman rank correlation coefficient
(ρ) was then calculated to measure the degree of concordance
between the two models, offering additional insight into their
relative performance under consistent input conditions.

3 Results

3.1 Analysis of concentration dispersion
patterns near highways

The study implemented AQDM to estimate the CO, NOx, and
PM10 concentrations caused by traffic. Subsequently, dispersion maps
were generated, as shown in Figures 2–4. Hourly dispersion maps for
CO and NOx, as well as 24-h dispersion maps for PM10, were acquired.

FIGURE 2
Hourly dispersion maps of CO concentrations [(a) AERMOD, (b) CAL3QHCR].
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Figure 2 illustrates the spatial distribution of hourly CO
concentrations along the highway corridor as predicted by
AERMOD (a) and CAL3QHCR (b). AERMOD results reveal
clearly defined high-concentration zones, particularly in ORD
and TRB, where dense urban traffic and complex terrain appear
to restrict pollutant dispersion. The model generates narrow, well-
aligned plumes along the highway, indicating strong sensitivity to
both topographical and meteorological influences.

In contrast, CAL3QHCR produces a more homogeneous
distribution with generally lower concentration levels across the
study area. The absence of sharply defined peaks suggests that
the model may underrepresent pollutant accumulation near
highways, potentially leading to more conservative exposure
assessments. These differences underscore the structural and
parametric contrasts between the two models, particularly in
their treatment of near-source dispersion dynamics.

Figure 3 presents the spatial distribution of hourly NOx

concentrations as estimated by AERMOD (a) and CAL3QHCR
(b). AERMOD results identify distinct high-concentration zones,
especially in ORD and ART, where concentrations reach or
exceed 0.015 ppm. The pollutant plumes closely follow the
highway alignment, reflecting AERMOD’s ability to capture
near-source dispersion behavior under complex coastal
topography.

By contrast, CAL3QHCR predicts a smoother distribution
pattern with noticeably lower concentration values. The lack of

clearly defined hotspots and the gradual gradients suggest reduced
sensitivity to localized emissions and dispersion processes. These
limitations highlight CAL3QHCR’s structural constraints in
representing microscale variations in NOx concentration.

Overall, AERMOD appears more responsive to highway
proximity and urban traffic intensity, making it a more suitable
tool for high-resolution NOx assessments in regions with complex
terrain and coastal geography.

Figure 4 depicts the daily dispersion patterns of PM10 as
simulated by AERMOD (a) and CAL3QHCR (b). AERMOD
results show prominent high-concentration corridors closely
aligned with the highway, particularly in ORD and RZ, where
urban density and topographic confinement inhibit lateral
dispersion. The presence of sharp concentration gradients
suggests that AERMOD effectively captures fine-scale pollutant
buildup near emission sources.

CAL3QHCR, on the other hand, produces a more diffuse
distribution with generally lower concentration levels. Although
elevated values are observed in certain areas, such as Giresun and
eastern Artvin, the model tends to underrepresent peak
accumulation zones. This discrepancy reflects CAL3QHCR’s
simplified approach to terrain effects and dispersion
mechanisms.

Notably, in comparison to gaseous pollutants such as CO and
NOx, bothmodels predict a broader spatial extent for PM10, consistent
with its lower atmospheric reactivity and longer residence time.

FIGURE 3
Hourly dispersion maps of NOx concentrations [(a) AERMOD, (b) CAL3QHCR].
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3.2 Statistical analyses

3.2.1 Impact of ITVs on concentration dispersion
Statistical analyses were conducted to investigate the

relationships between pollutant concentration estimates derived
from the AQDM and ITV, focusing specifically on the variables
Y, X, RD, ASP, ELEV, SLP, and FR (Table 4). Correlation analysis
was employed to assess the patterns of concentration dispersion
among these variables and to evaluate their potential
interdependencies.

As presented in Table 4, pollutant concentrations estimated
by both models exhibit a decreasing trend along the X
coordinate, indicating a westward decline. With respect to the
Y coordinate, concentrations of CO and PM10 decrease toward
the north, and this spatial pattern is consistently supported by
both models. The ASP variable shows a weak positive correlation
with all pollutants in both models, suggesting that there is no
statistically significant relationship between pollutant
concentration and slope aspect in the study area. Thus, the
influence of ASP can be considered negligible. In contrast, the
DR variable demonstrates a strong negative correlation with all
pollutants, indicating that pollutant concentrations increase as
the distance to the road decreases. This trend is consistently
observed in both model outputs. According to the AQDM
results, the SLP variable exhibits a moderate negative
correlation with pollutant concentrations. This finding implies
that sloped terrains may enhance atmospheric circulation,

thereby facilitating the dispersion of pollutants. Furthermore,
strong negative correlations were observed between the FR
variable and pollutant levels in the AQDM model results. This
suggests that forested areas contribute to pollutant dispersion by
increasing surface roughness and generating structural
turbulence.

The correlation analyses among the ITV variables presented in
Table 5 provide valuable spatial and environmental insights into the
interrelationships of these factors. In particular, the strong positive
correlation observed between ELEV and DR suggests that roads are
typically located in lower elevation areas, and that both settlement
and transportation infrastructure tend to diminish with increasing
altitude. Similarly, the high correlation between ELEV and FR
indicates that higher elevation zones are more densely covered
by forest.

The positive correlations between DR and both FR and SLP
imply that as the distance from roads increases, both slope
steepness and forest coverage also tend to increase. This finding
suggests that areas with preserved natural landscapes are more
likely to be situated in rugged and forested terrains. Additionally,
the high correlation between the longitude and FR reveals an
increasing trend in forest cover toward the eastern parts of
the study area.

On the other hand, the ASP variable exhibited extremely weak or
statistically insignificant correlations with all other variables. This
result indicates that aspect does not display a systematic association
with the other topographic attributes within the study area.

FIGURE 4
Daily dispersion maps of PM10 concentrations [(a) AERMOD, (b) CAL3QHCR].
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3.2.2 Comparison of AQDMs results
To assess the consistency and predictive accuracy of the two

AQDM systems, a comparative analysis was performed using
modeled concentrations of CO, NOx, and PM10. As presented in
Table 6, AERMOD consistently estimated higher pollutant
concentrations than CAL3QHCR across all statistical metrics
(minimum, mean, and maximum), with the most pronounced
differences observed for CO and NOx. In the case of PM10, both
models yielded comparable minimum values; however, AERMOD
produced substantially higher mean and peak concentrations.

Statistical significance was evaluated using the Mann–Whitney
U test, which revealed significant differences across all pollutants
(p < 0.001), indicating that the two models produce markedly
different outputs under equivalent input conditions.

The pronounced discrepancy in concentration estimates is likely
attributable to fundamental structural differences between the two
models. AERMOD’s more advanced representation of atmospheric

boundary layer dynamics and terrain influences tends to produce
steeper concentration gradients in proximity to emission sources. In
contrast, CAL3QHCR, while more conservative in its approach, appears
to smooth local variations and underpredict peak values. This divergence
is particularly evident in urbanized areas such as ORD and TRB, where
AERMOD’s predictions indicate higher pollutant accumulation, likely
due to dense traffic and restricted dispersion conditions.

The variations in traffic-related pollutants with distance from the
source are presented in tabular form in Tables 7–9. These tables
illustrate the trends in pollutant concentrations based on distances
from the source in the northern (N) and southern (S) directions for
each province.

As presented in Table 7, CO concentrations consistently
decrease with increasing distance from the emission source
across all provinces and dispersion models. This pattern is
consistent with fundamental atmospheric dispersion principles,
driven primarily by dilution and turbulent diffusion. AERMOD
consistently predicts higher CO concentrations than CAL3QHCR,

TABLE 4 Correlation of ITVs with pollutant concentrations estimated by
AQDM.

ITV AERMOD CAL3QHCR

CO

X −0.10b −0.37b

Y −0.47b −0.38b

ASP 0.06b 0.07b

DR −0.69b −0.65b

ELEV −0.87b −0.60b

SLP −0.42b −0.37b

FR −0.68b −0.65b

NOx

X −0.49b −0.38b

Y −0.16b −0.36b

ASP 0.07b 0.08b

DR −0.69b −0.65b

ELEV −0.84b −0.59b

SLP −0.44b −0.36b

FR −0.69b −0.65b

PM10

X −0.12b −0.40b

Y −0.44b −0.46b

ASP 0.07b 0.07b

DR −0.69b −0.59b

ELEV −0.84b −0.55b

SLP −0.43b −0.33b

FR −0.68b −0.62b

aCorrelation is significant at the 0.05 level (2-tailed).
bCorrelation is significant at the 0.01 level (2-tailed).

TABLE 5 Correlations between ITVs.

ITVs

ITVs X Y ASP DR ELEV SLP FR

X 0.41a −0.06a 0.14a 0.32a 0.28a 0.52a

Y 0.41a −0.01 −0.14a 0.01 0.13a 0.34a

ASP −0.06a −0.01 −0.05b −0.06b −0.08a −0.20

DR 0.14a −0.14a −0.05b 0.73a 0.30a 0.53a

ELEV 0.32a 0.01 −0.06b 0.73a 0.44a 0.66a

SLP 0.28a 0.13a −0.08a 0.30a 0.44a 0.40a

FR 0.52a 0.34a −0.02 0.53a 0.66a 0.40a

bCorrelation is significant at the 0.05 level (2-tailed).
aCorrelation is significant at the 0.01 level (2-tailed).

TABLE 6 Comparative pollutant concentration estimates from AERMOD
and CAL3QHCR models.

Estimated
concentration

Pollutant Concentration
statistics

AERMOD CAL3QHCR

CO Min (ppm) 2.89e-4 2.00e-4

Mean (ppm) 1.25e-2 4.00e-3

Max (ppm) 0.78 0.20

NOx Min (ppm) 2.80e-4 1.00e-4

Mean (ppm) 0.01 2.00e-3

Max (ppm) 1.48 0.09

PM10 Min (µg/m3) 1.30e-3 1.80e-3

Mean (µg/m3) 0.20 0.05

Max (µg/m3) 26.59 2.71
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particularly within the 100–1000 m range, with the largest discrepancy
observed in Trabzon (1.6 ppm vs. 0.04 ppm at 100 m). The steeper
concentration gradient observed in AERMOD suggests a greater
sensitivity to distance decay, whereas CAL3QHCR displays a more
gradual decline. North–South directional differences are minimal in
both models, indicating largely symmetric dispersion under the
prevailing meteorological conditions.

According to Table 8, NOx concentrations also decline with
increasing distance in both models, aligning with established
dispersion theory. Maximum concentrations are observed at 100 m,
while the lowest values are recorded at 10,000m. AERMOD consistently
yields higher NOx estimates than CAL3QHCR, with marked differences
within the initial 1000 m. After 5000 m, the concentration predictions
from both models begin to converge (approximately 0.001 ppm). The
rate of decrease is more pronounced in AERMOD, whereas
CAL3QHCR generates comparatively lower and more stable
concentration values across distances.

As shown in Table 9, PM10 concentrations diminish with distance
from the source in both models, reflecting greater pollutant
accumulation near the emission point and reduced levels at greater
distances. This trend is more accentuated in AERMOD. Across all
locations and distances, AERMOD reports significantly higher PM10

concentrations than CAL3QHCR, with the most substantial differences
observed at 100 m. While CAL3QHCR provides lower and more

uniform predictions, AERMOD demonstrates a steeper and more
variable decline—characterized by rapid reductions at shorter
distances and minimal concentrations at longer distances. Although
both models exhibit distance-dependent reductions, the rate and
magnitude of decline differ substantially between them.

3.2.3 Model comparison and performance
evaluation

To assess the degree of agreement between the AQDM systems
in predicting traffic-related concentrations of CO, NOx, and PM10, a
Spearman correlation analysis was conducted using the output data
from both models. For each of the eight predefined regions, the
dataset was randomly partitioned into training and testing subsets to
enhance model robustness and mitigate the risk of overfitting. The
resulting correlation coefficients for both subsets across all regions
are summarized in Table 10.

To comprehensively evaluate the predictive performance of the
AQDM systems relative to observed concentrations, statistical
performance indicators were calculated by comparing the
modeled results for the study area with independently measured
concentrations of CO, NOx, and PM10 (Table 11).

The comparison of AQDM outputs revealed that correlation
strength varied in a manner that was both pollutant-specific and
region-dependent. For CO, weak positive correlations were observed

TABLE 7 Changes in CO concentrations according to distance from the source.

Province Distance (m) AERMOD (ppm) CAL3QHCR (ppm)

N S N S

ORD 100 0.17 0.17 0.01 0.01

1000 0.05 0.03 8.00e-3 7.00e-3

5000 0.01 9.00e-3 2.00e-3 2.00e-3

10,000 6.00e-3 5.00e-3 1.00e-3 1.00e-3

GRSN 100 0.13 0.13 0.07 0.03

1000 0.03 0.02 7.00e-3 6.00e-3

5000 0.01 5.00e-3 2.00e-3 2.00e-3

10,000 7.00e-3 6.00e-3 1.00e-3 1.00e-3

TRB 100 1.66 0.08 0.04 0.04

1000 0.58 0.01 0.02 0.01

5000 0.19 3.00e-3 5.00e-3 5.00e-3

10,000 0.06 1.00e-3 3.00e-3 2.00e-3

RZ 100 0.04 0.04 0.01 0.01

1000 0.03 0.02 6.00e-3 6.00e-3

5000 0.01 6.00e-3 2.00e-3 2.00e-3

10,000 5.00e-3 2.00e-3 1.00e-3 1.00e-3

ART 100 0.02 0.02 4.00e-3 4.00e-3

1000 0.01 0.01 2.00e-3 1.00e-3

5000 4.00e-3 1.00e-3 6.00e-4 7.00e-4

10,000 1.00e-3 8.00e-4 3.00e-4 4.00e-4
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in Regions 1, 4, and 5, indicating limited agreement. Region
5 showed a moderate correlation in the training set, which
declined in the testing set. Conversely, Regions 2, 3, 6, 7, and
8 exhibited negative correlations, with Region 8 displaying a
strong and statistically significant negative correlation in the test
data. As shown in Table 10, these findings reflect substantial
divergence between the models in several regions, likely driven
by structural and parametric differences.

For NOx, model agreement was highest in Region 1 (strong
positive correlations) and Region 4 (moderate in both subsets). In
contrast, moderate to weak negative correlations were observed in
Regions 2, 3, 5, 7, and 8, suggesting systematic prediction
differences. Region 6 exhibited only a weak and statistically
insignificant correlation, indicating limited alignment.

In the case of PM10, correlations across all regions are
consistently weak, with no absolute r value exceeding ±0.3.
Additionally, the majority of p-values exceed the 0.05 threshold,
indicating an absence of statistically significant relationships. Region
8 constitutes the only exception, where a weak yet statistically
significant negative correlation appears in the training set;
however, this relationship does not persist in the test subset.
Table 10 presents a comprehensive summary of the generally low
agreement between the AQDM model outputs in predicting PM10

concentrations. Taken together, the results emphasize that while the

models may yield comparable outputs for certain pollutants and
regions, they often diverge—particularly in PM10

estimates—highlighting the importance of pollutant-specific and
region-sensitive model validation.

The results presented in Table 11 demonstrate that model
accuracies vary significantly depending on the pollutant type and
monitoring location. The analysis conducted for the CO pollutant
indicates that the AERMOD model generally exhibits a systematic
tendency to overestimate concentrations, thereby showing a positive
bias. In contrast, the CAL3HQR model tends to produce more
balanced and observation-aligned predictions. However, it has been
observed that the model displays substantial deviations at certain
stations, which limits its generalizability. Notably, at the Karşıyaka
station, the CAL3HQR model achieved the highest accuracy in CO
predictions, as evidenced by its low FB and NMSE values.

In the assessment specific to the NOx pollutant, the AERMOD
model was observed to consistently overestimate concentrations, a
trend confirmed by the corresponding FB values. Conversely, the
CAL3HQR model generally exhibited a tendency to underestimate,
manifesting as a negative bias. The performance of both models
varied significantly across stations; for instance, the CAL3HQR
model outperformed AERMOD at the Meydan and Valilik
stations in the TRB region, as indicated by its lower NMSE
values. In contrast, the AERMOD model showed its weakest

TABLE 8 Changes in NOx concentrations according to distance from the source.

Province Distance (m) AERMOD (ppm) CAL3QHCR (ppm)

N S N S

ORD 100 0.10 0.09 7.00e-3 7.00e-3

1000 0.05 0.04 4.00e-3 3.00e-3

5000 0.01 0.01 1.00e-3 1.00e-3

10,000 7.00e-3 6.00e-3 1.00e-3 1.00e-3

GRSN 100 0.13 0.13 0.01 0.01

1000 0.04 0.02 3.00e-3 3.00e-3

5000 0.02 5.00e-3 1.00e-3 1.00e-3

10,000 8.00e-3 6.00e-3 1.00e-3 1.00e-3

TRB 100 0.17 0.18 0.02 0.02

1000 0.05 0.03 7.00e-3 5.00e-3

5000 0.02 7.00e-3 3.00e-3 2.00e-3

10,000 0.02 4.00e-3 1.00e-3 1.00e-3

RZ 100 0.03 0.03 5.00e-3 5.00e-3

1000 0.03 0.02 3.00e-3 3.00e-3

5000 0.01 5.00e-3 1.00e-3 1.00e-3

10,000 5.00e-3 2.00e-3 1.00e-3 1.00e-3

ART 100 0.03 0.03 2.00e-3 2.00e-3

1000 0.02 0.01 1.00e-3 1.00e-3

5000 4.00e-3 1.00e-3 3.00e-4 4.00e-4

10,000 2.00e-3 1.00e-3 2.00e-4 3.00e-4
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performance at the Ardeşen station, where it exhibited a particularly
high deviation (NMSE: 13.94).

Findings related to the PM10 pollutant reveal that the AERMOD
model consistently underestimated concentrations across all
monitored stations, exhibiting a pronounced negative bias (FB
≈ −1.85). Although the CAL3HQR model produced predictions
closer to observations at certain stations, its high NMSE values
suggest uncontrolled variance and low statistical reliability. The
model yielded relatively better results at the Meydan and Valilik
stations in the TRB region; however, both models demonstrated
weak performance at the Hopa, Stadyum, and Ünye stations.

4 Discussion

4.1 Modeling and relationships between
emissins and ITV

An examination of the maximum pollutant concentrations
predicted by the models reveals that AERMOD consistently
estimates significantly higher values than CAL3QHCR,
particularly for CO, NOx, and PM10. For example, in the ORD
region, AERMOD predicted a maximum CO concentration of
0.78 ppm and 0.47 ppm in TRB, whereas CAL3QHCR estimated

only 0.20 ppm for TRB. Similarly, the highest NOx concentration
predicted by AERMOD was 1.48 ppm, compared to just 0.09 ppm
from CAL3QHCR. For PM10, AERMOD projected a maximum
concentration of 26.59 μg/m3 in TRB, while CAL3QHCR estimated
2.71 μg/m3.

Despite these differences in magnitude, the spatial distribution
of maximum concentrations was similar across both AQDM
models, with peaks occurring in comparable coordinate locations.
This suggests that both models capture the spatial dispersion
patterns of traffic-related emissions in a consistent manner.
These findings align with previous research highlighting the
substantial contribution of vehicular sources to regional air
pollution (Demirarslan and Zeybek, 2021; Tezel et al., 2019;
Tezel et al., 2020).

The comparative analysis of AQDM responses to independent
topographic variables (ITVs) indicates that both models exhibit
broadly consistent dispersion patterns. However, variations in
predicted concentration magnitudes arise from differences in
their underlying algorithms and their respective treatments of
terrain features. Specifically, spatial analyses based on X and Y
coordinates reveal a directional decrease in pollutant concentrations
from west to east and from south to north. This trend is more
pronounced in CAL3QHCR, whereas AERMOD demonstrates
weaker sensitivity to these spatial variables, suggesting a more

TABLE 9 Changes in PM10 concentrations according to distance from the source.

Province Distance (m) AERMOD (µg/m3) CAL3QHCR (µg/m3)

N S N S

ORD 100 6.46 6.22 0.18 0.17

1000 3.10 2.80 0.10 0.09

5000 1.02 0.70 0.03 0.02

10,000 0.51 0.34 0.02 0.02

GRSN 100 6.99 6.81 0.40 0.42

1000 2.18 1.15 0.09 0.08

5000 0.77 0.33 0.03 0.03

10,000 0.41 1.22 0.02 0.02

TRB 100 10.22 10.09 0.64 0.63

1000 2.84 1.20 0.20 0.13

5000 1.22 0.44 0.05 0.05

10,000 0.62 0.13 0.03 0.03

RZ 100 2.05 1.86 0.19 0.19

1000 1.50 0.76 0.09 0.07

5000 0.67 0.27 0.03 0.02

10,000 0.30 0.12 0.02 0.013

ART 100 1.63 1.48 0.06 0.060

1000 0.84 0.43 0.03 0.022

5000 0.24 0.07 6.00e-3 6.00e-3

10,000 0.09 0.05 3.00e-3 4.00e-3
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limited capacity to capture directional trends influenced by
topographic features. In contrast, the ASP variable showed weak
positive correlations with all pollutants in both models, indicating
that sun-facing slopes have little influence on pollutant
concentrations in the study area.

Other ITVs (DR, SLP, ELEV, and FR) demonstrated moderate
to strong negative correlations with pollutant concentrations across
both models. These results suggest that these topographic factors
promote atmospheric mixing and turbulence, thereby facilitating
pollutant dispersion. Notably, AERMOD exhibited greater
sensitivity to these variables, likely due to its more detailed
parameterization of source–receptor distance, land surface
characteristics, and topographic roughness. For instance, the
stronger negative correlation observed between DR and pollutant
concentrations in AERMOD highlights the model’s enhanced

capacity to spatially resolve traffic-related emissions. Similarly,
the pronounced negative correlation with FR underscores the
role of forested areas in promoting dispersion through increased
surface roughness and structural turbulence—an effect to which
AERMOD appears particularly responsive.

These results are consistent with previous findings in the
literature. For example, Yener and Demirarslan (2022) reported
weak negative correlations between PM10 concentrations and X and
Y coordinates, as well as varying degrees of correlation between ITV
variables and concentrations modeled using AERMOD. Similarly,
the strong negative relationship observed between FR and pollutant
concentrations aligns with earlier studies highlighting the mitigating
effect of forested areas on CO, O3, and PM10 levels (Baumgardner
et al., 2012). The inverse relationship between DR and pollutant
concentrations has also been well documented. Numerous studies
have shown that pollutant levels—particularly those associated with
vehicular traffic—decrease with increasing distance from roadways
(Roorda-Knape et al., 1998; Hitchins et al., 2000; Tiitta et al., 2002;
Zhu et al., 2002; Gilbert et al., 2003; Zhou and Levy, 2007;
Beckerman et al., 2008; Padró-Martínez et al., 2012; Barros et al.,
2013; Patton et al., 2014; Pasquier and André, 2017; Huertas et al.,
2017). This trend has also been supported by studies employing
Gaussian dispersion models, which demonstrate that traffic-related
pollutant concentrations decline rapidly with lateral distance from
emission sources (Misra et al., 2013). In accordance with this
principle, the spatial distribution of pollutants in the present
study reveals that the highest concentrations are concentrated
along major highway corridors, with levels decreasing sharply as
the distance from the highway increases.

Additionally, Claggett (2014) demonstrated that AERMOD
tends to predict peak concentrations near roadways, reflecting
the tendency of traffic-related pollutants to accumulate in these
areas. This observation aligns with the findings of the present study,
wherein both models exhibited decreasing pollutant concentrations
with increasing distance from the road. However, the rate and
magnitude of this decline differed between the models. For
example, AERMOD predicted elevated CO concentrations within
the first 1000 m, followed by a sharp decline, whereas CAL3QHCR
displayed amore gradual and continuous decrease. A similar pattern
was observed for PM10: AERMOD showed a steep reduction within
the first 500 m, while CAL3QHCR indicated a slower rate of decline.

These differences reflect not only the influence of input
parameters but also inherent variations in how each model
simulates physical processes such as dispersion dynamics and
surface interactions. In this context, the findings of the present
study emphasize both the regional influence of ITV variables on air
quality and the differing sensitivities of the models to environmental
mechanisms. These structural differences should be carefully
considered during model selection, as they play a critical role in
ensuring the accuracy and reliability of air quality predictions.

4.2 Model comparisons

A comprehensive review of the literature reveals that both
AERMOD and CAL3QHCR have been extensively applied to
assess the spatial distribution of traffic-related air pollutants,
particularly PM10. Zeydan and Öztürk (2021) reported that

TABLE 10 Spearman correlation of AQDMmodel predictions by region and
pollutant.

Region Train (ρ) p Test (ρ) p

CO

1 0.23 >0.001 0.24 <0.001

2 −0.29 <0.001 −0.32 <0.001

3 −0.39 <0.001 −0.36 <0.001

4 0.23 >0.001 0.26 <0.001

5 0.48 <0.001 0.21 <0.001

6 −0.18 >0.001 −0.23 <0.001

7 −0.13 >0.001 −0.25 <0.001

8 −0.48 <0.001 −0.59 <0.001

NOx

1 0.64 <0.001 0.51 <0.001

2 −0.35 <0.001 −0.35 <0.001

3 −0.32 <0.001 −0.23 <0.001

4 0.43 <0.001 0.39 <0.001

5 −0.06 >0.001 −0.23 <0.001

6 0.19 >0.001 0.07 >0.001

7 −0.22 >0.001 −0.12 >0.001

8 −0.43 <0.001 −0.39 <0.001

PM10

1 −0.01 >0.001 0.02 >0.001

2 −0.13 >0.001 −0.09 >0.001

3 −0.09 >0.001 −0.03 >0.001

4 −0.15 >0.001 −0.04 >0.001

5 −0.13 >0.001 −0.003 >0.001

6 −0.06 >0.001 −0.01 >0.001

7 −0.02 >0.001 +0.03 >0.001

8 −0.22 >0.001 −0.03 >0.001
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AERMOD typically produces higher concentration estimates than
CAL3QHCR. This difference is largely attributable to AERMOD’s use
of advanced dispersion algorithms that more accurately represent
atmospheric boundary layer dynamics and complex topographic
conditions. In particular, AERMOD’s realistic treatment of local
meteorology and terrain results in higher predicted concentrations
of CO, NOx, and PM10—especially under low wind speed conditions
(<2 m/s), which are prevalent in the study area.

The observed differences between the two models primarily
stem from their structural frameworks and differing levels of
environmental sensitivity. AERMOD is a more sophisticated
dispersion model, incorporating detailed representations of
boundary layer physics and terrain interactions. As a result, it
produces outputs that are more responsive to local features such
as elevation, slope, and atmospheric stability (Cimorelli et al., 2005).
In contrast, CAL3QHCR is a simplified Gaussian line-source model,
specifically designed for roadway emissions, with limited capacity to

simulate vertical dispersion or account for complex terrain effects
(Claggett, 2014).

These structural distinctions help explain why AERMOD
demonstrates stronger correlations with topographic variables
such as ELEV and SLP. Furthermore, AERMOD relies on
preprocessing systems such as AERMET, which enable the model
to incorporate site-specific meteorological inputs—e.g., wind
direction, speed, and turbulence—more accurately (Tartakovsky
et al., 2013). CAL3QHCR, by contrast, typically operates using
assumed or simplified meteorological profiles, which may limit
its sensitivity to local atmospheric and terrain conditions.

In regions with elevated terrain, pollutants can be transported
along sloped surfaces by wind-driven flow, a process that AERMOD
simulates with greater detail. Specifically, when terrain elevations
exceed stack heights, AERMOD accounts for plume impaction,
resulting in higher predicted surface-level concentrations
(Carruthers et al., 2011).

TABLE 11 FB and NMSE between modeled and observed values for pollutants at monitoring stations in five provinces.

Province Station ID Mean Obs. (µg/m3) AERMOD CAL3HQR

Pred. (µg/m3) FB NMSE Pred. (µg/m3) FB NMSE

CO

ORD Karşıyaka 4.97 18.37 1.18 1.97 4.63 −0.07 0.005

GRSN Gemilercekegi 5.07 41.97 1.57 6.39 7.22 0.35 0.13

TRB Meydan 5.00 7.46 0.39 0.16 7.41 0.39 0.16

TRB Valilik 5.02 7.46 0.39 0.16 21.30 1.24 2.48

NOx

ORD Unye 9.53 49.86 0.29 0.09 3.96 −1.62 7.52

ORD Karşıyaka 17.86 31.23 0.54 0.32 3.46 −1.35 3.36

GRSN Gemilercekegi 21.43 63.42 0.99 1.29 5.40 −1.19 2.22

TRB Meydan 13.37 42.58 1.04 1.49 15.80 0.17 0.03

TRB Valilik 17.03 42.58 0.86 0.90 15.90 −0.07 0.005

RZ Merkez 11.87 29.09 0.84 0.86 3.16 −1.16 2.02

RZ Ardeşen 3.11 49.32 1.76 13.94 6.97 0.77 0.69

ART Hopa 6.38 10.68 0.51 0.27 1.34 −1.31 2.98

PM10

ORD Unye 41.12 1.59 −1.85 23.77 0.15 −1.99 276.03

ORD Stadyum 46.09 0.96 −1.92 46.22 0.14 −1.99 332.09

ORD Karşıyaka 31.71 0.96 −1.88 31.19 0.14 −1.98 227.87

GRSN Merkez 47.34 1.96 −1.84 22.16 0.22 −1.98 218.04

GRSN Gemilercekegi 27.35 0.99 −1.86 25.64 0.22 −1.97 125.15

TRB Meydan 35.18 1.33 −1.85 24.43 0.63 −1.93 53.51

TRB Valilik 26.26 1.33 −1.81 17.75 0.63 −1.90 39.45

RZ Merkez 20.37 0.88 −1.83 21.13 0.13 −1.98 159.75

RZ Ardeşen 37.04 1.47 −1.85 23.19 0.28 −1.97 131.44

ART Hopa 27.06 0.32 −1.95 81.75 0.05 −1.99 505.81
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When comparing model outputs, AERMOD exhibits stronger
correlations with environmental variables such as FR, ELEV, and
DR, reflecting its heightened sensitivity to land cover and
topographic complexity. In particular, the strong negative
correlation between FR and pollutant concentrations supports the
hypothesis that forested areas enhance atmospheric dispersion—an
effect more accurately captured by AERMOD. Sensitivity analyses
by Vallamsundar and Lin (2012) further demonstrate that
AERMOD is more responsive to variations in meteorological
conditions and source configurations.

However, higher predicted concentrations do not necessarily
imply better model performance. Askariyeh et al. (2017) caution that
AERMOD’s accuracy may decrease in scenarios involving area
sources or highly complex terrain, where increasing elevation can
introduce significant prediction errors. Moreover, AERMOD
simulations typically require more extensive data inputs and
preparation time compared to CAL3QHCR (Vallamsundar,
2014), which may limit its practicality for some applications.

CAL3QHCR, on the other hand, is often favored in regulatory
contexts due to its practicality and simplicity in evaluating traffic-
related air pollution. Although it does not incorporate high-
resolution meteorological inputs or produce time-stamped
outputs, it remains a valuable tool for preliminary assessments of
roadway emissions (Farzaneh et al., 2017). Craig et al. (2020)
observed that CAL3QHCR exhibits higher output variability due
to its sensitivity to wind direction, whereas AERMOD generally
provides more stable predictions. Nevertheless, AERMOD has been
shown to overpredict pollutant concentrations under low wind
conditions (<2 m/s), a characteristic meteorological feature of the
present study domain.

The findings of this study reaffirm these tendencies. AERMOD
consistently produced higher concentration estimates across all
pollutants, while CAL3QHCR systematically yielded lower values.
This pattern underscores the limitations of relying solely on
AERMOD, as it may lead to overestimations, whereas
CAL3QHCR’s underestimations pose different challenges,
particularly in the context of public health risk assessments and
policy formulation. Therefore, understanding the directional biases
of both models is essential for informed model selection,
interpretation of results, and air quality management decisions.

To better characterize model behavior, comparative analyses
were conducted, revealing pollutant- and region-specific variations.
For CO and NOx, the strongest positive correlations between models
were observed in Region 1, while statistically significant negative
correlations—such as for CO—were identified in Region 8. In
contrast, correlations for PM10 were consistently weak and
statistically insignificant across all regions, indicating poor inter-
model agreement for this pollutant.

To quantitatively evaluate model performance, FB and NMSE
metrics were calculated for CO, NOx, and PM10 at multiple
monitoring stations. Results indicated that model accuracy varied
by both pollutant type and spatial location. AERMOD generally
exhibited a positive bias for CO and NOx, while CAL3QHCR yielded
estimates that were more closely aligned with observed values at
certain stations. In contrast, AERMOD significantly underestimated
PM10, with FB values ranging from −1.81 to −1.95 and NMSE values
reaching 332.08 at the Stadyum station and 505.81 at Hopa,
highlighting limitations in its particulate matter predictions.

Although CAL3QHCR produced lower FB values (ranging from
0.05 to 0.63), its NMSE values remained high (125–505), indicating a
limited capacity to capture variance despite occasionally matching
observed means. Thus, while CAL3QHCR may offer better central
estimates under certain conditions, its overall predictive reliability is
compromised by its high variability.

Taken together, these findings suggest that AERMOD performs
more robustly when applied to comprehensive emission inventories but
tends to lose accuracy in traffic-only scenarios, leading to substantial
underestimations for certain pollutants. Conversely, while CAL3QHCR
may at times align more closely with observed averages, its elevated
variance reduces its statistical reliability. These results underscore the
importance of pollutant-specific and regionally sensitive model
calibration and support the use of hybrid or comparative modeling
frameworks to enhance accuracy in urban air quality assessments.

5 Conclusion

This study aimed to model traffic-related air pollutants in
Türkiye’s Eastern Black Sea region, generate dispersion maps, and
evaluate their impact on local air quality. By applying two widely used
atmospheric dispersion models—AERMOD and CAL3QHCR—the
research provides critical insights into the spatial variability of
pollutant concentrations and the influence of topographic factors
in a complex terrain setting.

The analysis of maximum concentration estimates identified
Ordu and Trabzon as pollution hotspots for CO, while peak levels of
NOx and PM10 were observed in Trabzon. These findings highlight
the city’s elevated traffic density and restrictive topographical
features as major contributors to pollutant accumulation.

A central contribution of this study lies in its comparative
evaluation of AERMOD and CAL3QHCR. AERMOD consistently
predicted higher concentrations, particularly under low wind
conditions, whereas CAL3QHCR yielded more conservative and
spatially confined estimates. These divergences stem from
fundamental differences in model architecture, treatment of
meteorological inputs, and sensitivity to terrain resolution.
Importantly, neither model proved universally superior. Instead, the
results support the adoption of hybrid or context-specific modeling
approaches tailored to spatial scale, pollutant type, and policy objectives.

The study also confirmed statistically significant inverse
relationships between pollutant concentrations and ITVs—notably
ELEV, DR, and FR. Higher FR were consistently associated with
lower pollutant levels, reinforcing existing evidence of vegetation’s
mitigating role in urban air quality. These outcomes offer empirical
support for targeted interventions, such as planting vegetative buffers
along transportation corridors and limiting the construction of high-
traffic roads in topographically enclosed or densely populated areas.

Looking ahead, the integration of vegetation indices—such as the
Enhanced Vegetation Index (EVI) or the Normalized Difference
Vegetation Index (NDVI)—alongside high-resolution traffic and land-
use datasets, could improve the spatial accuracy of future modeling
efforts. Additionally, localized calibration of dispersion models using
station-specific air quality measurements would help address persistent
over- or underestimation errors, particularly in PM10 predictions.

In conclusion, model selection should be guided not only by data
availability and spatial resolution, but also by the intended scientific or
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regulatory application. AERMOD is better suited for comprehensive,
region-wide assessments involving detailed meteorological and
emissions data, while CAL3QHCR remains a practical alternative for
screening-level and near-roadway analyses. Future research should focus
ondeveloping integratedmodeling frameworks that combine the strengths
of both models, account for terrain complexity, and reflect the dynamic
interactions between urban infrastructure and ecological systems.
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