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Beyond traditional carbon reduction approaches, vegetation carbon sinks play a
critical role in advancing carbon-neutral urban development. This study refines
the evaluation framework for land use efficiency (LUE) by incorporating regional
carbon balance, and applies a global super-efficiency epsilon-based measure
(EBM) model to assess LUE in 69 cities across the urban agglomerations of the
Yangtze River Economic Belt (YREB) from 2005 to 2020. To examine regional
disparities, the Dagum Gini coefficient and kernel density estimation are utilized,
while spatial convergence models are employed to explore the dynamic
evolution of LUE. The results reveal a U-shaped temporal trend in LUE across
the YREB, alongside significant spatial heterogeneity among agglomerations.
Inter-regional disparities and transvariation intensity are the main contributors
to spatial differences, whereas intra-regional disparities have narrowed over time,
particularly in the middle reaches of the Yangtze River—with the exception of the
Chengdu-Chongqing region. Spatial convergence analysis further indicates
significant absolute and conditional convergence within each agglomeration.
These findings suggest that policy efforts to enhance LUE in the YREB should be
tailored to the specific regional contexts of economic development, industrial
structure, fiscal capacity, and business environment.
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1 Introduction

The World Cities Report 2022 by the United Nations Human Settlements Programme
highlights that the global urban population has surged from 25% in 1950 to nearly 50% in
2020. Historically, land use by humans has significantly altered and fragmented ecosystems
(Hong et al., 2021). Urban expansion into low-density agricultural and forested areas has
notably reduced ecological reserves, diminished carbon sequestration capacity, and
increased both energy consumption and carbon emissions (Burchfield et al., 2006;
Zhang and Xu, 2017; DeFries et al., 2022). Native vegetation and soils store substantial
carbon, and their loss—driven by agricultural expansion and emissions from agricultural
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practices—accounts for approximately 20%–25% of total global
greenhouse gas (GHG) emissions (Searchinger et al., 2018).

Urban densification has been proposed to counteract the
negative environmental impacts of sprawl by promoting more
efficient land use and reducing ecological degradation (Haaland
and van den Bosch, 2015). Intensive land use plays a crucial role in
reducing GHG emissions and supporting low-carbon economic
transitions (Xie et al., 2018; Ling et al., 2023). However,
increased efficiency can paradoxically lead to further
development and resource use—an outcome known as the Jevons
paradox—which may exacerbate ecological degradation and carbon
emissions (Alcott, 2005; Heiskanen, 2021; Ceddia and
Zepharovich, 2017).

Urbanization and rural abandonment also disrupt the supply
and demand of ecosystem services (Hasan et al., 2020) and
contribute to increased biodiversity loss (Marques et al., 2019).
Take China, for example, In recent decades, the Yangtze River
Delta Urban Agglomeration has experienced concentrated
expansion of construction land, leading to significant scale effects
and the accelerated loss of previously undisturbed farmland and
forest ecosystems (Zhai et al., 2024). To achieve carbon neutrality,
regional carbon balance objectives must be integrated into land-use
planning—especially at regional scales—given that ecosystem
service flows often transcend municipal boundaries (González-
García et al., 2020). Moreover, climate strategies in the land
sector must be region-specific. Uniform approaches can
exacerbate inequality and inflict economic harm, particularly in
developing regions such as China, India, and African countries (Yu
et al., 2023). Thus, measuring land use efficiency (LUE) under
regional carbon balance constraints—while accounting for spatial
disparities and convergence trends—is critical for sustainable land
governance and equitable carbon neutrality.

Optimizing landmanagement is a promising strategy formitigating
climate change (Sha et al., 2022). As the world’s largest carbon emitter,
China plays a pivotal role in global carbon neutrality efforts. The
Yangtze River Economic Belt (YREB), one of China’s most important
economic zones, contributed 46.7% of national GDP in 2023. However,
rapid urbanization in the YREB has intensified tensions between
environmental sustainability and economic development. Excessive
land expansion and inefficient industrial structures have led to
declining LUE and increased ecological vulnerability, posing serious
challenges to sustainable development. These challenges are further
complicated by significant regional disparities (Yang et al., 2022).

In response, this study refines the LUE evaluation framework by
explicitly incorporating regional carbon balance constraints. Using
data from 69 cities across the three major urban agglomerations in the
YREB from 2005 to 2020, a global super-efficiency epsilon-based
measure (EBM)model is employed to assess LUE. To analyze regional
disparities, we apply the Dagum Gini coefficient and kernel density
estimation. Furthermore, spatial convergence models are introduced
to investigate convergence patterns and identify the driving forces of
LUE dynamics—offering empirical insights for land-use
policymaking aligned with regional and carbon goals.

Extensive research has examined the interrelationship between
land use and carbon emissions. Key topics include the measurement
of carbon emissions and sinks from land use (Zhou et al., 2021; Luo
et al., 2022), the drivers of land-based carbon emissions (Barati et al.,
2023; Hong et al., 2021; Yang et al., 2023), low-carbon land-use

strategies (Wartenberg et al., 2021; Chuai et al., 2015; Huang et al.,
2021), and LUE accounting for carbon emissions (Prisley and Hall,
2024; Kuang et al., 2020; Wu et al., 2022). These studies highlight the
dual role of land use in both carbon mitigation and carbon
sequestration. Influencing factors include economic development,
population growth, energy use, technological advancement,
institutional frameworks, land policies, and openness.

At multiple spatial scales—provincial (Luo et al., 2020) and
municipal (Liu et al., 2024; Chen et al., 2022)—LUE has been
evaluated using diverse methodologies, including stochastic
frontier analysis (Liu et al., 2020), slack-based measures (Tan
et al., 2021; Xiao et al., 2022), and predictive modeling based on
InVEST (Zafar et al., 2024).

Building upon this evaluative foundation, researchers have
explored the spatiotemporal evolution and influencing
mechanisms of LUE under carbon constraints (Zhou and Lu,
2023; Yang and Liu, 2023). Due to variations in geography,
resource endowment, and socioeconomic factors, spatial
imbalances in LUE persist (Liu et al., 2019). Several
methods—such as the Gini coefficient (Zheng et al., 2013), Theil
index (Xue et al., 2022), concentration index (Song et al., 2013;
Wang et al., 2022), Hirschman–Herfindahl index (Song et al., 2013),
and Moran’s I (Wu et al., 2022)—have been used to characterize
these disparities. Even without accounting for carbon sinks,
substantial LUE imbalances have been identified within the
YREB (Liu et al., 2021; Luo et al., 2020).

Despite the breadth of existing studies, several research gaps
remain. First, the integration of carbon balance into LUE assessment
remains insufficient. Second, current studies pay limited attention to
urban agglomerations as focal units. Third, the spatial convergence
of LUE has not been adequately explored using spatial
econometric models.

This study aims to address these gaps with three main
contributions:

(1) It refines the LUE assessment by integrating carbon emissions
and sequestration to construct a more comprehensive carbon
balance framework—responding to the global call for carbon-
neutral land-use strategies.

(2) It focuses on urban agglomerations within the YREB rather
than national or provincial levels, offering insights into the
core engines of China’s urban and economic transformation.

(3) It employs spatial convergence models to uncover dynamic
patterns in regional LUE and enhance understanding of
spatial inequalities over time.

The remainder of this paper is organized as follows: Section 2
presents the materials and methodology. Section 3 reports empirical
results. Section 4 provides discussion and policy implications.
Section 4.2 concludes the study and discusses limitations.

2 Materials and methods

2.1 Study area

We focus on the YREB’s three main urban agglomerations: the
Yangtze River Delta (YRD) with Shanghai at its heart, incorporating
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26 cities across Jiangsu, Zhejiang, and Anhui provinces; the middle
reaches of the Yangtze River (MRYR) with Wuhan at its heart,
which encompasses 31 cities in Hubei, Hunan, and Jiangxi
provinces; and Chengdu–Chongqing, including 16 cities such as
Deyang and Mianyang, as the economic and cultural center in
western China. Notably, Xiantao, Qianjiang, Tianmen, and
Xiangyang were excluded from this analysis due to the absence
of relevant statistics. In the end, we obtained 69 prefecture-level and
above cities in the YREB and used them as the research objects of
this study. A visualization of the study area is shown in Figure 1. The
scope of this study excludes rural areas for two main reasons. First,
the primary objective is to examine LUE dynamics within urban
agglomerations of the YREB, which serve as the core drivers of
regional economic transformation and carbon reduction strategies.
Second, rural areas typically exhibit relatively homogeneous land use
patterns, such as agricultural and ecological land, with limited
variation in intensity and structure. As a result, changes in LUE
within these areas are comparatively marginal and less relevant to
the analytical framework adopted in this study.

2.2 Variable selection and data description

2.2.1 Index system of LUE towards carbon
neutrality

Aligning urban LUE with carbon neutrality goals requires
balancing economic growth with sustainable resource use and
regional carbon balance. In a carbon-neutral city, urban carbon
emissions are offset by equivalent carbon removals. Therefore,
net carbon emissions serve as a critical indicator of urban carbon
neutrality. When considering land use as a dynamic process of
“input and output,” the concept of land use toward carbon
neutrality can be defined as a systematic approach that aims
to steadily increase desired outputs, such as GDP, while
managing production inputs efficiently and minimizing
undesired outputs, particularly net carbon emissions
(Figure 2). This framework focuses specifically on land use
and its role in achieving carbon neutrality, without addressing
other environmental pollutants. Table 1 shows the variable
descriptions of inputs and outputs.

FIGURE 1
Study area.
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2.2.2 Influencing factors of LUE towards carbon
neutrality

The influencing factors of LUE towards carbon neutrality
include financial deepening (Loan), fiscal gap (Gap), industrial
structure (Indus), economic development (Pgdp), and foreign
direct investment (Fdi). Table 2 shows the specific definitions of
control variables.

2.2.3 Data description
This study’s period spans from 2005 to 2020. Due to the

monopoly power of local governments in China over land
(Gyourko et al., 2022), we had to carefully consider the possible
discontinuities caused by planning and policy changes when
clarifying the temporal border of the study. Based on the 11th

Five-Year Plan (2006–2010) and incremental calculations in the
spatial convergence analysis, we set the starting time point as 2005.
To mitigate the discontinuous impact of the COVID-19 epidemic,
we set the end-time point as 2020. Data on provincial carbon
emissions were derived from the China Energy Statistical
Yearbook. Nighttime light observations, including DMSP/OLS
and NPP/VIIRS, were procured from the EOG. The original data
of urban carbon sinks come from the MODIS NPP product
(MOD17A3) released by NASA and the Landsat-derived annual
land cover product of China (CLCD) data provided by Yang and
Huang (2021). The urban built-up area data originated from the
China Urban Construction Statistical Yearbook. Additional
statistics were sourced from the China City Statistical Yearbook
and the National Bureau of Statistics. To address the missing values,

FIGURE 2
Theoretical framework for LUE under net-zero carbon city goals.

TABLE 1 Evaluation index system of urban LUE towards carbon neutrality.

Layer of criteria Layer of factors Layer of indicators Unit

Inputs Labor Number of employees 104 persons

Land Area of built districts km2

Capital Capital stock CNY 108

Outputs Desired outputs GDP CNY 108

Undesired outputs Net carbon emissions million tones (mt)

TABLE 2 Description of influencing factors.

Variable Definition Code Unit

Financial deepening Loan balances of financial institutions at the end of the year/regional GDP Loan %

Fiscal gap (local fiscal expenditure—local fiscal revenue)/local fiscal revenue Gap %

Industrial structure Secondary and tertiary industries’ added value/regional GDP Indus %

Economic development Natural logarithm of GDP per capita Pgdp -

Foreign direct investment Actual amount of foreign capital used/regional GDP Fdi %
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linear interpolation was employed. Furthermore, all price
variables were recalibrated to the 2005 metric to reflect actual
changes. Table A1 in Supplementary Appendix SA1 shows the
specific data description.

2.3 Methods

2.3.1 Carbon budget accounting
Carbon budget accounting requires accurate calculations of both

carbon emissions and carbon sinks. We calculated carbon sinks
using two key data sources: NASA’s MOD17A3 net primary
productivity (NPP) data and the CLCD data (Chen et al., 2020;
Yang and Huang, 2021). First, we processed the MOD17A3 data by
extracting relevant bands and merging the images using the
HEGTool. Then, we applied coordinate transformation, mask
extraction, and zonal statistics to both the MOD17A3 and CLCD
datasets using ArcGIS 10.8. This enabled us to calculate the NPP for
different land use types across various cities, providing annual
estimates for each. For every Gram of dry biomass produced,
approximately 1.62 g of CO2 are sequestered, with this biomass
constituting roughly 45% of the total NPP. Thus, carbon sinks are
calculated using the formula: Carbon Sinks = (NPP/0.45) × 1.62.

Carbon emissions are calculated using the PSO-BP algorithm,
which integrates DMSP/OLS and NPP/VIIRS nighttime light data
with provincial carbon emission statistics (Chen et al., 2020). First, a
relationship is established between provincial carbon emissions and
nighttime light intensity, represented by the sum of DN values.
Urban carbon emissions are then estimated by applying a weighted
average to these DN values. Provincial carbon emissions follow the
IPCC’s inventory guidelines, using energy consumption data
sourced from the energy balance sheets (Shan et al., 2020).

The net carbon emissions are calculated by subtracting carbon
sinks from total carbon emissions, using the following formula: Net
Carbon Emissions = Carbon Emissions - Carbon Sinks.

2.3.2 Global super-efficiency epsilon-based
measure model

Following the research of Tone and Tsutsui (2010) and Wang
et al. (2023), we consider k = (1, 2 . . . K) Decision-Making Units
(DMUs) and construct a global technology production possibility
set. For each DMUk, J types of inputs, denoted as xj (j = 1, 2 . . . J),
generateM desired outputs, represented by ym (m = 1, 2 . . .M), and
N undesired outputs, denoted as bn (n = 1, 2 . . . N). The resulting
production possibility set is defined:

PPS
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where (�x, �y, �b, ) represents the optimal solution of the model. xkj,
ykm, bkn represent the jth input factor, the mth desired output and
the nth undesired output of the kth decision-making unit, and xkj,
ykm, bkn is greater than 0; λk represents the weight. Adding the
constraint of λ = 1 indicates variable returns to scale, and removing
the constraint of λ = 1 indicates constant returns to scale (CRS).

The global super-efficiency epsilon-based measure model is:
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(4)

where γ* indicates the optimal efficiency under constant returns to
scale. s-j , sm

+, and sb-n correspond to non-negative slack variables of the
jth input factor, themth desired output and the nth undesired output,
respectively. Similarly,w-j ,wm

+, andw-n to represent weights of the jth
input factor, the mth desired output and the nth undesired output,
respectively. θ is the radial part planning parameter; φ is the output
expansion ratio; ε represents the importance of the non-radial part.

2.3.3 Dagum gini coefficient decomposition
According to Formulas 5–8, spatial differences (intra-regional and

inter-regional Gini coefficients) are decomposed and analyzed. This
method segments spatial differences into three components, intra-
regional differences, inter-regional differences, and transvariation
intensity (overlap between regions), thereby enabling a more
precise identification of the sources of spatial differences (Dagum,
1997). A larger Gini coefficient indicates more pronounced spatial
imbalances in LUE, whereas a smaller coefficient suggests narrower
spatial gaps. The Dagum Gini coefficient is defined as follows:

G � ∑k
j�1∑k

h�1∑nj
i�1∑nh

r�1 yji − yhr
∣∣∣∣∣ ∣∣∣∣∣

2n2�y
(5)

where G represents the aggregate Gini coefficient, �y denotes the
mean LUE, and yji (yhr) represent the LUE of i (r) city within j (h)
urban agglomeration; k is the number of urban agglomerations
(including the YRD, the MRYR, and Chengdu–Chongqing). The
total count of cities within the YREB is given by n, with nj (nh)
specifying the number of cities in j (h) urban agglomeration. The
overall Gini coefficient encompasses the intra-regional difference
contribution Gw, the inter-regional difference contribution Gnb, and
the transvariation intensity contribution Gt:

G ≡ Gw + Gnb + Gt (6)
whereGw is computed based on the intra-groupGini coefficientGjj, while
Gnb and Gt are calculated using the inter-group Gini coefficient Gjh.

The respective expressions for Gjj and Gjh are presented below:

Gjj �
∑nj

i�1∑nj
r�1 yji − yjr

∣∣∣∣∣ ∣∣∣∣∣
2nj

2�yj
(7)

Gjh �
∑nj

i�1∑nh
r�1 yji − yhr

∣∣∣∣∣ ∣∣∣∣∣
njnh �yj + �yh( ) (8)

where �yj (�yh) is the average LUE of j (h) urban agglomeration. Gw,
Gnb, and Gt can be calculated according to Gjj and Gjh.
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2.3.4 Kernel density estimation
This study used kernel density estimation to describe the

dynamic evolution of the distribution of urban LUE. As an
important nonparametric method, kernel density estimation is
now widely used in the study of imbalanced distributions (Tan
et al., 2021; Zhao et al., 2023). It is mainly used to estimate the
probability density of random variables and describe the
distribution shape of random variables through a smooth and
continuous density curve. Kernel density estimation expression is
as follows:

f x( ) � 1
Nh

∑N
i�1
K

Xi − x
h

( ) (9)

K x( ) � 1���
2π

√ exp −x
2

2
( ) (10)

where f(x) denotes the probability density function of the random
variable x, K(•) represents the Gaussian kernel function, N is the
total number of observations, and X refers to the observed value; h
signifies the bandwidth parameter for the kernel function. Its value
can affect the smoothness of the kernel function distribution curve.
Since the kernel density function is sensitive to the choice of
bandwidth, a smaller bandwidth is usually used to improve the
estimation accuracy (Silverman, 1986). The bandwidth size h used
in this study was 0.1.

2.3.5 Spatial convergence model
The neoclassical growth model uses technological progress to

explain the gap in economic growth levels between countries. It
believes that due to the diminishing marginal returns to capital,
economic development will eventually reach a stable state. Economic
growth theory calls this the convergence of economic growth (Quah,
1996). Widely recognized convergence models encompass σ-
convergence and β-convergence models, which enable the statistical
examination of the evolving trends in spatial differences. σ-Convergence
was quantified using the coefficient of variation, indicative of a
diminishing disparity in LUE over time. Disregarding the
determinants of LUE, lower-efficiency cities within a region tend to
grow at accelerated rates, ultimately achieving parity with higher-
efficiency cities; this process is termed absolute β-convergence. Given
that intensified interactions and mobility of elements between cities
engender spatial effects, in this study, we constructed the spatial
convergence model Durbin model (SDM), spatial autoregressive
model (SAM), and spatial error model (SEM) for analyzing β-
convergence, respectively. Conditional β-convergence was assessed by
incorporating a set of control variables into the absolute β-convergence
model to analyze the con-vergence tendency of LUE. Formulas 11–14
(Spatial α/β-convergence models) are applied to analyze LUE
convergence, confirming absolute and conditional convergence with
spatial spillover effects. The σ-convergence’s formula is presented below:

σ �
���������������∑nj

i�1 yji − �yj( )2/nj

√
�yj

(11)

where yij signifies the LUE of city i within urban agglomeration j.
Similarly, �yj is the average LUE for urban agglomeration j, while nj is
indicative of the total number of cities within urban agglomeration j.

The β-convergence’s formula is presented below:

ln
yi,t+1
yit

( ) � α + ρWij ln
yi,t+1
yit

( ) + β ln yit( ) + θWij ln yit( ) + μi + ηt

+ εit

(12)
ln

yi,t+1
yit

( ) � α + ρWij ln
yi,t+1
yit

( ) + β ln yit( ) + μi + ηt + εit (13)

ln
yi,t+1
yit

( ) � α + β ln yit( ) + μi + ηt + εit εit � λWijεkt + vit (14)

where yi,t+1 denotes the LUE of the city i in period t + 1, while yit
represents the same for period t. The coefficient β, indicative of
convergence when negative, informs the rate of convergence,
expressed as v = −ln(1− |β|)/T. The parameters ρ, θ, μi, ηt, and εit
correspond to the spatial autoregressive coefficient, spatial spillover
effect, city-specific fixed effect, time-specific fixed effect, and the
stochastic disturbance term, respectively.

3 Results

3.1 Measurement results of LUE towards
carbon neutrality

According to Formulas 2–4, the global super-efficiency EBM
model is applied to measure LUE across urban agglomerations,
with robustness checks confirming the results. Figure 3 depicts
the evolution of average net carbon emissions within the YREB.
Between 2005 and 2020, the net carbon emissions within the
YREB as a whole exhibited an increase trend until 2011 but then
changed to a slight downward trend. Figure 4 depicts the
evolution of the average LUE within the YREB. Between
2005 and 2020, the urban LUE within the YREB exhibited a
decrease, followed by an increase since 2013. In a subregional
comparison, the Chengdu–Chongqing demonstrated the
highest LUE with a value of 0.793, followed by the MRYR
and the YRD, with efficiencies of 0.715 and 0.676,
respectively. The LUE of both the YRD and the MRYR
increased rapidly after 2013, and the former was more
significant, surpassing the overall level in 2019. By 2020, the
YRD emerged as the most efficient agglomeration within the
YREB. However, although Chengdu–Chongqing also rose
rapidly after 2013, it experienced a decline after 2017.

The inaugural urbanization conference in Beijing emphasized
the need to heighten urban LUE and optimize urbanization patterns
and structures. In the subsequent year, the National New
Urbanization Plan (2014–2020) was released. As these policies
progressed, LUE showed year-on-year enhancement.
Chengdu–Chongqing’s leading efficiency is predominantly due to
its extensive forest cover. Yet, recent urban sprawl, characterized by
extensive land use and short-term technological stagnation,
impeded improvements in efficiency since 2017. The more
significant rise in the LUE after 2013 in the YRD is largely due
to its success in industrial transformation and institutional
innovation (Zhang and Chen, 2021).

To ensure the validity of the results, we verified them from the
perspective of net carbon emissions and LUE respectively. Referring
to the research of Chen et al. (2020) and Shan et al. (2020), from the
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perspective of carbon emissions and carbon sinks, we fit the data
calculated in this study with the data calculated by them
(Supplementary Appendix Figure A1). The fitting results show
that our measurement results are relatively close to the existing
literature, which illustrates the validity of our results to a certain
extent. To ensure the validity of the global super-efficiency EBM
model, we replaced the model settings of the distance function and
returns to scale (RTS) for further tests (Supplementary Appendix
Figure A2). The fitting results show that our results are still valid
even if the model specification is changed. Supplementary Appendix
Figures A2a,b, respectively, show the fitting results after the setting
of the RTS is changed to CRS, and the setting of the distance
function is changed to the SBM. It is worth noting that although the
fitting effect of Supplementary Appendix Figure A2a is slightly
worse than that of Supplementary Appendix Figure A2b, the
R-squared value still reaches 0.991, and most of the observation
points are on the diagonal line, which also illustrates the validity of
the research results.

3.2 Spatial differences and source
decomposition

3.2.1 Intra-regional differences
According to Model 7 analysis, Figure 5 depicts the intra-

regional differences of the LUE across the YREB. During the
sample period, the differences within the YREB demonstrated a
general downward trend. When comparing urban agglomerations,
theMRYR had the highest average Gini coefficient of 0.134, followed
by the YRD at 0.130 and Chengdu–Chongqing at 0.118. Notably, the
middle reaches experienced a significant reduction. Differences were
pronounced before 2008, followed by an M-shaped pattern that
mirrored the overall trend. In the YRD, two distinct phases were
observed, namely, a stage of high variability around a Gini
coefficient of 0.137 until 2013 and a subsequent decrease to
0.119 post-2014, likely influenced by the YRD Regional Plan,
which facilitated a more uniform development pace. The
Chengdu–Chongqing maintained lower intra-regional differences

FIGURE 3
Trends of urban net carbon emissions in the YREB from 2005 to 2020.

FIGURE 4
Trends of urban LUE in the YREB from 2005 to 2020.
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than the overall area, with a brief rise before 2007 and a stabilization
around 0.116 thereafter.

Waterway transportation has played an increasingly important
role in the context of trade globalization due to its advantages of
strong transportation capacity and low cost. As an important global
Golden Inland Waterway, the Yangtze River’s transportation
demand and carrying capacity have increased significantly since
China’s accession to the WTO in 2001 (Wang et al., 2020). China’s
trade expansion has greatly promoted the development of the three
urban agglomerations in the YREB. As urban agglomerations
continue to develop, urban specialization will undergo a

transformation from sectoral to functional specialization
(Duranton and Puga, 2005). The spatial-functional urban
specialization is reflected in the specialization and collaboration
between cities and the spatial layout of different industries to achieve
optimal efficiency, promoting coordinated development. Also, as
conditions of transportation to central cities continue to improve
and transportation costs continue to decrease (Sun et al., 2019), the
attractiveness of peripheral cities will significantly increase for
manufacturing companies that are more sensitive to cost
increases. Therefore, the intra-regional differences are
generally shrinking.

FIGURE 5
Intra-regional differences of urban LUE in the YREB from 2005 to 2020.

FIGURE 6
Inter-regional differences of urban LUE in the YREB from 2005 to 2020. Note: 1, 2, and three represent the YRD, the MRYR, and
Chengdu–Chongqing, respectively.
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3.2.2 Inter-regional differences
According to Model 8 analysis, Figure 6 reveals a pattern of

expansion–contraction–expansion, signifying a trend of
deterioration–improvement–deterioration in the inter-regional
differences among the three urban agglomerations. The most
minimal differences were observed between the MRYR and
Chengdu–Chongqing, with a modest mean index of 0.096. In
contrast, the YRD exhibited a considerable variance from the
other two agglomerations, with mean differences of 0.123 and
0.121 when compared to the MRYR and Chengdu–Chongqing,
respectively. The YRD’s unique status as a globally recognized
urban agglomeration has been bolstered by its rapid
advancements in urbanization, industrial upgrading, and
successful adoption of green technologies to mitigate pollution
and carbon emissions. This progressive path has led to
pronounced differences with other agglomerations. Over the
sample period, there was an annual decrease of 1.14% in the
differences between the YRD and the MRYR, suggesting a
gradual convergence in the LUE. The 2015 Development
Planning of Urban Agglomeration in the MRYR aimed at
fostering a new type of urbanization in central and western
China and, together with the Special Plan for Reform and
Innovation of Science and Technology Finance in Wuhan
Metropolitan Areas, has significantly impacted technological
innovation within the agglomeration. Conversely, the differences
between the YRD and Chengdu–Chongqing saw a marginal annual
rise of 0.9%, which is due to a downward trend in the latter’s LUE in
recent years. The relative stability in the differences between the
MRYR and Chengdu–Chongqing, with a growth rate of just 0.21%,
indicates a synchronous improvement.

3.2.3 Source decomposition
According to Models 5, 6 analysis, the temporal dynamics of

the magnitude and shares of contributions to regional
differences—decomposed into intra-regional difference
contribution, inter-regional difference contribution and

transvariation intensity contribution—are presented in Figure 7.
Initially, the intra-regional difference within the YREB remained
relatively stable throughout the observed period, commencing at
0.039 and concluding at 0.040. Its proportional share varied between
29.13% and 34.57%. Conversely, the inter-regional difference
contribution demonstrated a general decline, initiating at 0.068,
descending sharply to 0.026 by 2010, and thereafter exhibiting a
fluctuating yet downward trend, ending at 0.016. Its share of the total
contribution started at 50.1%, dropped significantly to 20.29% in
2010, and subsequently wavered, finishing at 13.79% in 2020, with
an average rate of 27.77% across the sample period. Lastly, the
magnitude of the transvariation intensity’s contribution traced an
N-shaped pattern over time, starting at 0.028, peaking at 0.061 in
2012, declining to 0.038 in 2017, and rising again to 0.060 by the end.
Correspondingly, its share exhibited a fluctuation from 20.86% to
51.78%, averaging 39.46% throughout the time period of the study.

To conclude, the analysis reveals that inter-regional differences
and transvariation intensity accounted for an average contribution
rate of 67.23%. This underscores inter-regional differences and
transvariation intensity as the primary contributor. While the
inter-regional difference contribution decreased, the contribution
from transvariation intensity demonstrated an increasing trend,
with the latter being the most impactful at an average rate of
39.46%. These data suggest that the overlapping problem of LUE
across agglomerations is chiefly responsible for the imbalanced
development in the belt.

3.3 Distribution dynamics

Formulas 9, 10 (Kernel density estimation) are applied to
analyze LUE distribution dynamics, revealing shifts, polarization
trends, and extreme values. Table 3 summarizes the key features of
the kernel density curves, and Figure 8 illustrates the specific curves.

Considering the distribution location, the overall and three
urban agglomerations all showed a trend characterized by an

FIGURE 7
Source decomposition of regional LUE differences in the YREB from 2005 to 2020. Note: (a,b) depict the contribution magnitude and contribution
share, respectively.
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initial leftward shift until 2013 and a subsequent rightward shift
from 2013 to 2020. This pattern suggests a decrease in the LUE from
2005 to 2013, with a subsequent increase from 2013 to 2020,
corroborating the findings previously discussed in this paper.
Prior to 2013, the YREB, a hub for industrial development,
experienced a contraction in green space owing to intensive
urbanization, industrialization, and an energy structure
dependent on high consumption and emissions, leading to a
surge in urban carbon emissions (Wang and Wang, 2022). Post-

2013, in response to national policies on emission reduction and
environmental protection, a new urbanization strategy emphasizing
LUE and urban configuration began to yield positive results, as
evidenced by the increasing efficiency in land use.

Upon considering the main peak distribution, it is evident that
the overall peak value initially rises and then declines, while the
bandwidth transitions from narrow to wide. This pattern
demonstrates that the spatial differences first contract and
subsequently expand. In the early sample period, economic

TABLE 3 Distribution dynamic characteristics of LUE in the YREB.

Region Distribution
location

Main peak distribution form Distribution
Ductility

Differentiation
trend

Overall Shifted left first and then
right

The peak value first increases and then decreases, and the
width first decreases and then increases

Left-trailing, broadening
extension

Unipolar or bipolar
differentiation

YRD Shifted left first and then
right

The peak value first increases and then decreases, and the
width first decreases and then increases

Right-trailing, convergent
extension

Unipolar or bipolar
differentiation

MRYR Shifted left first and then
right

The peak value increases and the width decreases Left-trailing, broadening
extension

Unipolar or bipolar
differentiation

Chengdu–Chongqing Shifted left first and then
right

The peak value increases, and the width first decreases and
then in-creases

Left-trailing, broadening
extension

Unipolar or bipolar
differentiation

FIGURE 8
Distribution dynamics of LUE in the YREB from 2005 to 2020. Note: (a–d) depict the kernel density plot of the overall region, the YRD, the MRYR and
Chengdu–Chongqing, respectively.
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development among cities appeared to converge toward a state of
stability. Subsequent to the development of national carbon emission
reduction and new urbanization policies, differing industrial
structures across cities have led to variable challenges in the green
transition, resulting in the divergence of LUE. From a subregional
perspective, themain peak distribution pattern in the YRDwas similar
to the overall trend, with LUE differences initially narrowing and later
widening. Chengdu–Chongqing and the MRYR both exhibited an
upward trend in peak value, yet their bandwidth evolution diverged.
The MRYR’s decreasing bandwidth indicates a reduction in spatial
differences, whereas Chengdu–Chongqing’s increasing bandwidth at
the sample period’s end suggests expanding differences.

When examining the distribution ductility, it can be observed
that the overall region and the three urban agglomerations exhibited
a left-trailing pattern. This suggests that some cities have LUEs
significantly lower than others within urban agglomerations. The
distribution curves broaden, indicating the presence of extremely
low values, with certain cities such as Ezhou and Huangshi in the
MRYR and Suining in Chengdu–Chongqing consistently at low-
efficiency levels. Conversely, the YRD’s distribution curve exhibits a
right-trailing pattern, reflecting high-efficiency outliers in cities like
Shanghai, Jinhua, and Suzhou, among others. Shanghai’s notable
efficiency is attributed to its robust scientific infrastructure and
comprehensive green industry. The converging pattern of the YRD’s
distribution curve suggests a reduction in extreme values, potentially
due to a “trickle-down” or “radiation” effect (Qiu and Yu, 2024).

Upon examining the differentiation trend, it becomes apparent
that the overall region and the three urban agglomerations exhibited
bipolarity in urban LUE. These agglomerations initially displayed a
dual-peak distribution but gradually converged to a single peak,
suggesting a diminishing trend in polarization. Specifically, in the
YRD, bipolarity emerged in 2018, with the left peak being less
pronounced than the right peak. The separation between the peaks
widened, indicating an increasing trend in bipolarity. These data
indicate that while most cities in the YRD sustained high-efficiency
levels, a few cities maintained moderate levels.

3.4 Spatial convergence analysis

3.4.1 σ-Convergence analysis
According to Model 11 analysis, Figure 9 demonstrates the σ-

convergence results, revealing a contraction in the overall coefficient
of variation from 0.238 to 0.207 during the study period. This change
represents an average annual reduction of 0.93%, suggesting a steady
harmonization of new urbanization and industrial upgrading among
cities. Focusing on specific urban agglomerations, the YRD exhibited
a decrease in LUE variation from 0.248 to 0.208, indicative of
systematic convergence. Conversely, neither the MRYR nor
Chengdu–Chongqing displayed significant σ-convergence, with
final variation coefficients surpassing initial figures. However, in
the medium term, the two showed obvious convergence trends.
Particularly, Chengdu–Chongqing maintained a lower level of
variation, presumably due to the uniformity in its industrial and
energy profiles (Zhang et al., 2022).

3.4.2 β-Convergence analysis
According to Models 12-14 analysis, Table 4 presents the results

of the absolute β-convergence. Firstly, the coefficient of β was
significantly negative at the 1% level for both the overall region
and the three urban agglomerations, suggesting the presence of
absolute β-convergence. This implies that cities with initially lower
LUE experience faster growth rates than their counterparts with
initially higher efficiency, regardless of economic and social factors.
Secondly, the speed of convergence varied among the
agglomerations analyzed. The overall convergence rate was 0.022,
with the MRYR exceeding the overall rate at 0.035, indicating that
spatial interactions within this agglomeration fostered a more rapid
convergence. Conversely, the YRD’s convergence rate was below the
overall rate at 0.018, and Chengdu–Chongqing exhibited the slowest
rate at 0.011. Thirdly, spatial effects also differed across the overall
sample and the three urban agglomerations. In the overall region
and the YRD, both the dependent and independent variables showed
spatial lags. This means that there were positive spatial spillover

FIGURE 9
σ-Convergence results of LUE in the YREB from 2005 to 2020.
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effects that affected the rate of change in LUE. A spatial error
correlation was present in the MRYR, while Chengdu–Chongqing
exhibited a spatial lag in the dependent variable. Given that
absolute β-convergence analysis omits several key determinants
of LUE, a subsequent conditional β-convergence analysis
is warranted.

Table 5 presents the findings of the conditional β-
convergence analysis.

Firstly, the conditional β-convergence coefficient is significantly
negative at the 1% level for the overall region and the three urban
agglomerations, suggesting that LUE converges toward its steady-
state level even when accounting for a range of economic and social
factors. Specifically, convergence rates were highest in the MRYR,
followed by the YRD, with the Chengdu–Chongqing region
exhibiting the lowest rate. Second, the conditional β-convergence
coefficients were higher than the absolute β-convergence coefficients

TABLE 4 Absolute β-convergence results.

Region Overall YRD MRYR Chengdu–Chongqing

Model SDM SDM SEM SAR

β −0.282 ***
(0.021)

−0.234 ***
(0.037)

−0.407 ***
(0.030)

−0.157 ***
(0.040)

θ 0.095 **
(0.037)

0.164 **
(0.073)

— —

ρ or λ 0.274 ***
(0.042)

0.092 *
(0.055)<

0.044 *
(0.026)

0.159 *
(0.096)

v 0.022 0.018 0.035 0.011

City-specific fixed effect Yes Yes Yes Yes

Time-specific fixed effect Yes Yes Yes Yes

R2 0.041 0.040 0.023 0.076

Note: *, **, and *** are significant at 10%, 5%, and 1% levels, respectively. Robust standard errors are in parentheses. The econometric model was selected based on the results of the LM, test,

Wald test, and LR, test.

TABLE 5 Conditional β-convergence results.

Region Overall YRD MRYR Chengdu–Chongqing

Model SDM SDM SEM SAR

B −0.354 ***
(0.023)

−0.315 ***
(0.043)

−0.425 ***
(0.029)

−0.198 ***
(0.043)

θ 0.086 **
(0.042)

0.223 **
(0.108)

— —

ρ or λ 0.238 ***
(0.043)

0.105 **
(0.060)

0.018 *
(0.011)

0.120 *
(0.072)

Loan 0.070 ***
(0.026)

0.044
(0.048)

0.114 ***
(0.036)

0.073
(0.050)

Gap −0.624 ***
(0.113)

−0.525 ***
(0.150)

−0.383 *
(0.215)

−0.743 ***
(0.185)

Indus −0.007 ***
(0.002)

−0.004
(0.005)

−0.007 ***
(0.002)

−0.005 *
(0.004)

Pgdp 0.061 **
(0.029)

0.004
(0.047)

0.192 ***
(0.052)

−0.123
(0.076)

Fdi 5.313 ***
(1.778)

5.119 **
(2.44)

12.560 ***
(3.85)

−0.440
(4.53)

v 0.029 0.025 0.037 0.015

City-specific fixed effect Yes Yes Yes Yes

Time-specific fixed effect Yes Yes Yes Yes

R2 0.053 0.051 0.062 0.001
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for the overall region and each urban agglomeration. They increased
the speed of convergence by 0.007, 0.007, 0.002, and 0.004, in that
order. This indicates a more rapid reduction in LUE differences
when controlling for additional factors, affirming the
appropriateness of the selected control variables. Lastly, spatial
effects varied across the overall sample and each urban
agglomeration, yet they aligned with the spatial patterns
identified in the absolute β-convergence analysis.

Economic and social factors demonstrated considerable
heterogeneity. Generally, an active financial sector, higher per
capita GDP, and the adoption of new management methods and
low-carbon technologies driven by foreign direct investment
markedly promote the convergence of LUE toward superior
values. In contrast, an increased fiscal gap and a higher
proportion of secondary and tertiary industries are associated
with convergence toward inferior efficiency levels. In analyzing
specific urban agglomerations, the intensity of foreign direct
investment in the YRD fostered the convergence of LUE toward
higher values, while a widening fiscal gap led to convergence at lower
values. Meanwhile, the effects of financial deepening, industrial
structure, and economic development on this convergence were
statistically insignificant. All factors under consideration influenced
the rate of change in LUE in the MRYR, which was consistent with
the overall trend. In Chengdu–Chongqing, a notable fiscal gap and
industrial structure configuration had a significant detrimental effect
on the rate of change in LUE, but other variables were found to be
statistically insignificant.

4 Conclusion and discussion

4.1 Conclusion

Based on the proposed analytical framework and empirical
findings, the main conclusions and implications of this study are
summarized as follows:

(1) A comprehensive framework was developed to assess land use
efficiency (LUE) under carbon neutrality goals. This
framework integrates spatial analysis with convergence
modeling, offering a practical approach to evaluate urban
LUE in the Yangtze River Economic Belt (YREB) in the
context of sustainable land management and dual
carbon targets.

(2) LUE across the YREB exhibited a U-shaped temporal pattern
with significant regional disparities. The Middle Reaches of
the Yangtze River (MRYR) showed a steady narrowing of
disparities, while Chengdu-Chongqing experienced
increasing inequality in the later stages. In contrast, the
Yangtze River Delta (YRD) revealed a clear trend of
polarization.

(3) Inter-regional differences and transvariation intensity were
key drivers of spatial inequality in LUE. The largest gaps
existed between the YRD and MRYR, with the
MRYR–Chengdu-Chongqing gap being the smallest.
Internally, the MRYR showed the most severe imbalance,
though it improved over time, while Chengdu-Chongqing
remained relatively balanced throughout.

(4) Evidence of convergence was observed among the three urban
agglomerations, albeit at different rates. The MRYR
demonstrated the fastest convergence in LUE, followed by
the YRD and then Chengdu-Chongqing. The heterogeneity in
convergence dynamics reflects the influence of regional
factors such as financial deepening, fiscal imbalance,
industrial restructuring, and foreign direct investment.

(5) Future research should explore the causal mechanisms behind
spatial LUE convergence. Investigating the role of specific
policy instruments, institutional environments, and
technological innovations could offer deeper insights.
Moreover, extending the analysis to the county or
municipal level could further support differentiated policy-
making for carbon-neutral land governance.

4.2 Discussion

4.2.1 Key findings and contributions
This study presents a novel framework for evaluating urban land

use efficiency (LUE) under carbon neutrality constraints by
incorporating carbon sinks into the carbon accounting system.
Unlike many previous studies that focused solely on carbon
emissions and reported a “high in the east, low in the west”
pattern (Zhang et al., 2022; Zhang et al., 2024), our results reveal
a reversal of this trend. By integrating the carbon sequestration
capacity of native vegetation into the LUE evaluation, we observed
that from 2005 to 2020, the western regions of the Yangtze River
Economic Belt (YREB) outperformed the eastern regions in average
LUE. This finding highlights the critical role of vegetation carbon
sinks in shaping low-carbon land use dynamics—an element often
underrepresented in traditional LUE studies.

Our study further contributes to the literature by shifting the
analytical scale from national and provincial levels to urban
agglomerations, which serve as the primary engines of China’s
economic activity and carbon emissions. This focus allows for a
more granular understanding of the spatial heterogeneity of LUE
within the YREB. We identified that the Yangtze River Delta
(YRD) has experienced the most substantial improvement in
LUE over the study period, primarily due to intensified
environmental governance initiatives such as the national
“Action Plans” targeting pollution control between 2013 and
2016. Simultaneously, favorable land supply policies for the
central and western regions (Lu et al., 2015; Lu and Wang,
2020) contributed to the LUE improvements observed in the
Middle Reaches of the Yangtze River (MRYR) and Chengdu-
Chongqing areas.

From a spatial perspective, our results indicate a general decline
in regional disparities in LUE, with convergence occurring across the
three urban agglomerations. However, by the end of the study
period, the YRD exhibited the highest degree of internal
polarization, characterized by multipolar differentiation. The
persistent gap between the YRD and the other two regions
suggests that inter-regional disparities and transvariation
intensity remain dominant sources of inefficiency. These findings
resonate with prior research indicating spatial imbalances in LUE
caused by differences in location, resource endowment, and
development stage (Liu et al., 2019; Ge et al., 2021).
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More importantly, this study introduces the application of
spatial convergence models into LUE analysis—an area that has
been underexplored in the current literature. Our convergence
analysis reveals that although all three urban agglomerations
show signs of LUE convergence, the pace varies significantly. The
MRYR exhibits the fastest rate of convergence, followed by the YRD,
while Chengdu-Chongqing lags behind. The determinants of these
convergence patterns include financial development, fiscal
decentralization, industrial structure, economic growth, and
foreign direct investment—factors widely acknowledged as critical
in shaping land use and carbon emissions trajectories (Barati et al.,
2023; Yang et al., 2023).

4.2.2 Research innovations and advancements
Compared to the existing literature, this study advances the field

in three main aspects:

(1) Conceptual innovation:We establish a comprehensive carbon
accounting-based LUE evaluation framework that balances
emissions and sinks. This approach responds directly to
recent academic calls for integrating carbon neutrality into
sustainable land use metrics (Sha et al., 2022; Searchinger
et al., 2018).

(2) Analytical scale refinement: By concentrating on urban
agglomerations within the YREB, this research captures the
micro-dynamics of spatial inequality that are obscured at
broader geographic scales. The urban scale is particularly
relevant for policymaking, considering cities are both the
primary carbon emitters and the frontlines of low-carbon
innovation.

(3) Methodological extension: The incorporation of the Dagum
Gini coefficient, kernel density analysis, and spatial
convergence models enables a multidimensional
examination of spatiotemporal trends and policy
implications. This expands the empirical tools available for
regional land use-carbon efficiency studies.

4.2.3 Policy implications and future research
directions

The empirical findings underscore the importance of
regionalized strategies for improving LUE under carbon
neutrality goals. To accelerate convergence and promote
efficient, low-carbon land use, the MRYR should continue
strengthening financial infrastructure and economic vitality. In
contrast, the YRD and Chengdu-Chongqing should prioritize
reforms in fiscal governance and industrial upgrading.
Coordinated land-use planning across municipalities is also
essential, as ecosystem service flows and carbon balances often
transcend administrative boundaries (González-García
et al., 2020).

Nonetheless, several limitations warrant attention. While our
study incorporates carbon sinks into LUE assessments, further
research should explore the integration of multidimensional
objectives such as biodiversity conservation, socioeconomic
equity, and green innovation. Future work should also employ
dynamic simulation models and causal inference techniques to
forecast LUE trajectories under various policy scenarios.
Additionally, the impact of climate adaptation policies and

international market dynamics on regional land use practices
deserves further exploration.
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