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Water resources are the lifelines of the agricultural development in Xinjiang.
Currently, the problem of water shortage for agriculture in this region is
becoming increasingly severe. Against this backdrop, predicting the changing
trends of water supply and agricultural water use in Xinjiang and analyzing the
supply and use relationship between them are of great practical significance for
ensuring the sustainable development of regional agriculture. Firstly, we
conducted an in-depth analysis of the water supply and agricultural water use
patterns in Xinjiang over the past two decades. Secondly, we evaluated and
compared several mainstream water resource prediction models, ultimately
developing a novel GM(1,1)-NN essemble model. Validation results
demonstrated that this model exhibits superior accuracy in forecasting water
supply and agricultural water use compared to other existing models. Finally, we
utilized the newly developed GM(1,1)-NN essemble model to predict short-term
water supply and agricultural water use trends in Xinjiang. Based on these
findings, we proposed recommendations for water resource conservation
from both technological and regional planting perspectives. The key results
are as follows: (1) There are significant regional disparities in water resources
in Xinjiang, primarily attributed to uneven precipitation distribution and
imbalanced economic development. (2) The GM(1,1)-NN essemble model
demonstrates high short-term predictive accuracy for both water supply and
agricultural water use in Xinjiang. (3) According to our GM(1,1)-NN essemble
model’s projections, both water supply and agricultural water use in Xinjiang are
expected to exhibit a downward trend in the coming years. The reduction in
agricultural water use will help allocate more water resources to non-agricultural
sectors. (4) Despite these improvements, the contradiction between water
shortage and the high proportion of agricultural water use (approaching to
88%) remains unresolved. Therefore, it is recommended to reduce agricultural
water use through the widespread adoption of water-saving facilities and the
optimization of crop planting structures across different regions.
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1 Introduction

Xinjiang, located in arid and semi-arid regions, serves as China’s
largest grain production and sales equilibrium area and a premier
high-quality cotton production base (Zhang et al., 2021). Water
resources are critical to the development of agriculture in Xinjiang,
and the imbalance between water supply and demand has persisted
for a long period and is intensifying. As economic growth drove
population expansion and accelerated urbanization (Dai et al.,
2024a; Jin et al., 2024), this supply-demand imbalance has
exacerbated the shortage of agricultural water use. This shortage
not only compromises the stability of water use for production, daily
life, and ecological purposes, but also posed significant challenges to
agricultural development. Therefore, it is imperative to forecast
future changes in local water supply and demand.

To address the critical challenges of water resource conflicts in
Xinjiang, scholars have concentrated their research efforts on three
pivotal dimensions: conducting comprehensive analyses of water
scarcity patterns and allocation dynamics in major river basins (Yao
et al., 2022), systematically investigating climate change impacts on
regional water availability (Shen et al., 2020), and meticulously
evaluating the regulatory mechanisms of virtual water flows in
maintaining hydrological equilibrium (Tang and Liu, 2023).
Some scholars have developed integrated modeling frameworks
to project water supply-demand dynamics in Xinjiang under
evolving climatic conditions. From the perspective of ecosystem
services, Li et al. utilized an integrated valuation and trade-off
assessment model to simulate both the production potential and
utilization efficiency of water resources in Xinjiang. This approach
has expanded the dimensions of water resource evaluation research
(Li et al., 2022). Shao et al. utilized a system dynamics model to
assess and found that under the scenario of coordinated economic
and resource development in Xinjiang (Shao et al., 2020), the model
indicates that such planning is conducive to mitigating the water
supply-demand imbalance. Yang et al. also developed an economic
decision support system for the sustainable management of water
resources in arid regions, leveraging this model (Yang et al., 2024).
Scholars such as Duan assessed the balance between water supply
and demand in Xinjiang using multi-source remote sensing data
(Duan et al., 2024). They emphasized that future water resource
allocation strategies should prioritize regions with degraded
ecological health. Therefore, by leveraging widely recognized and
currently applied models in water resources and related fields,
conducting predictive analysis on water supply and demand in
Xinjiang can not only capitalize on their scientific framework
and robust computational capabilities to provide insights into the
dynamic trends of water resource supply and demand, but also holds
significant practical implications for formulating effective water
resource management strategies in the region.

The current mainstream prediction models encompass grey
models (Ding, 2021), neural network models (Yang et al., 2023),
time series models (González et al., 2024), the Holt-Winters
exponential smoothing method (Hayana and Ali, 2022), and their
hybrid models (Jin, 2022). These predictive models have not only
demonstrated excellent performance in fields such as agriculture,
industry, and medicine but have also been extensively applied in
water resource management in arid and semi-arid regions. Their
applications span multiple critical areas, including water quality

assessment (Sang et al., 2024), hydrological monitoring and early
warning systems (Zhang, 2021; Zhan et al., 2023), agricultural
irrigation management (Brenner et al., 2021), urban water
demand forecasting (Iwakin and Moazeni, 2024), and agricultural
water footprint evaluation (Du et al., 2014). Xu et al. achieved
notably high accuracy in predicting agricultural water consumption
using the grey model (Xu et al., 2021). Wu et al. further employed
this model to investigate the grey correlation between water
resources and the economic system, offering well-founded
recommendations for enhancing the interrelationship between
these two systems (Wu et al., 2021). Wael et al. significantly
reduced the computational time required for water level trend
analysis in arid desert oasis regions by employing an improved
grey model, achieving a computational efficiency of up to 99.8%
(Wael and Kunio, 2014). Wang et al. leveraged this model to
evaluate the water resource carrying capacity under semi-arid
climate conditions (Wang et al., 2023). Furthermore, several
scholars have integrated multiple approaches, including the grey
model and linear methods, to forecast China’s future water
resources. Their findings indicate that the grey model exhibits
superior predictive performance, with predicted values closely
aligning with the adjusted water use targets (Bian, 2021). These
studies collectively underscore the scientific validity and rationality
of the grey prediction model. Additionally, numerous scholars have
utilized neural network models to conduct predictive analyses on
irrigation water scheduling in arid regions (Zhe et al., 2021),
adaptation to climate change (Huo et al., 2012), and crop
evapotranspiration estimation (Mohamed et al., 2023), achieving
notably accurate results. Regita et al. applied exponential smoothing
and neural networks to predict the impact of precipitation on water
supply management, finding that the hybrid model combining both
methods achieves higher prediction accuracy (Regita et al., 2023).
Extensive research has demonstrated that utilizing models to
forecast changes and trends in water supply and demand is
essential for enhancing the efficiency of water resource
management and optimizing water resource allocation. However,
each model has its specific application context and distinct
advantages and limitations, and no single model can be
universally applicable across all research scenarios.

Despite extensive research on the water supply and demand
situation in Xinjiang, most studies have primarily focused on
ecological systems (Zhen et al., 2024; Fan et al., 2024) and
economic decision-making (Shi et al., 2024; Mo et al., 2022) with
the objective of enhancing the utilization and allocation of water
resources while offering strategic insights for the sustainable
development of the region. The commonly employed system
dynamics model necessitates setting numerous assumptions (Cui
et al., 2025) to construct complex causal relationships for predictive
purposes, while remote sensing analysis and other methods heavily
depend on the acquisition and processing of extensive spatial data
(Dubovik et al., 2021). To date, no scholars have conducted
predictive analyses of water supply and agricultural water use
issues in Xinjiang using current mainstream prediction models.
Therefore, this study aims to use current mainstream models to
quantitatively forecast the future water supply and agricultural water
use in Xinjiang, with a focus on addressing the following two key
issues: (1) How can we investigate the historical patterns and future
trends of water supply and agricultural water use in Xinjiang from
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the perspective of optimizing water resource allocation? (2) Which
model is more conducive to predicting water supply and demand in
Xinjiang, and lays the foundation for future water resource security,
rational allocation, and scientific regulation?

2 Method and data

2.1 Study area

Xinjiang (73° 20´ −96° 25′ E, 34° 15´ −49° 10′ N) is located in
the northwest of China (Ling et al., 2012; Zhang Y.-L. et al., 2023).
With a land area of 1.6 million km2, it is China’s largest dryland.
Xinjiang is the transportation corridor that connects East Asia with
West Asia (Dai et al., 2024b), Africa, and Europe, making it the
core area of the silk road economic belt. Xinjiang is one of the
crucial grain and cotton production base in China, as well as a
heavily industrialized province (Wang et al., 2020). In recent years,
Xinjiang’s high-tech industries such as monocrystalline silicon and
coal chemical industry have developed rapidly, contributing to the

continuous growth of industrialization and urbanization (Cao
et al., 2018).

Xinjiang is influenced by a continental air mass throughout the
year, resulting in a typical inland arid climate. The average annual
precipitation is 160 mm, while the potential evaporation is
approximately 3,000 mm (Zhang Y.-L. et al., 2023). The Gobi
Desert is among the driest regions in the world (Wang L.-Z.
et al., 2024). Precipitation is concentrated in the mid- and high-
mountain areas, while the low mountain areas and plains are
dominated by arid grasslands, dry shrubs, and deserts, with oases
in the river basins (Zhang Y.-X. et al., 2023). Xinjiang is divided into
northern, southern and eastern parts by the Tianshan Mountain
(Yao et al., 2023). The water resources in three regions exhibit
substantial disparities (Yan and Jia, 2022). The annual total amount
of water resource in Southern Xinjiang, Northern Xinjiang, and
Eastern Xinjiang are 93.82 × 108 m3, 73.92 × 108 m3, and 10.15 ×
108 m3, respectively, with corresponding annual runoff depth per
unit area of 105.73 mm, 46.8 mm, and 7.38 mm. The northwestern
and southeastern separately comprise 95.39% and 4.61% of the total
amount of water resource. The annual per capita water resource

FIGURE 1
The annual total amount ofwater resources and their respective proportions, annualper capitawater resources, and annual runoff depth per unit area in
study region. The total amount of water resources, annual per capitawater resources were according to the Xinjiang Statistical Yearbook (2000–2021), the
annual runoff depth per unit area for each region were according to Xinjiang Water Resources Bulletin (2010–2021) (slt.xinjiang.gov.cn/). The geospatial
remote sensing data is sourced from the Geospatial Data Cloud Network of the Chinese Academy of Sciences. The data can be accessed through the
platform of the Computer Network Information Center of the Chinese Academy of Sciences (https://www.gscloud.cn/).
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ranked from largest to smallest, are as follows: Northern Xinjiang,
Southern Xinjiang and Eastern Xinjiang, with the respective values
being for 8,441.73 m3/person, 4,048.21 m3/person and 2085.75 m3/
person (Figure 1).

In 2021, the total amount of water resources is about 809.04 ×
108 m3. The available surface water is about 767.8 × 108 m3.
Xinjiang’s total water supply was 571.4 × 108 m3, of which
420.1 × 108 m3 of surface water supply, 147.1 × 108 m3 of
groundwater supply, and 4.2 × 108 m3 from other water
resources according to the Xinjiang Water Resources Bulletin
(2010–2021) (slt.xinjiang.gov.cn) (Yao et al., 2023). Agriculture is
a crucial component of Xinjiang’s social and economic development,
and it is the largest sector in terms of water use (Figure 2).

2.2 Data resources and processing

2.2.1 Data resources
The data pertaining to water supply and agricultural water use

employed in this study were obtained from authoritative sources,
namely, the Xinjiang Statistical Yearbooks covering the period from
2000 to 2009, accessible online at http://tjj.xinjiang.gov.cn/, the
Xinjiang Water Resources Bulletins for the years between
2010 and 2021, accessible online at https://slt.xinjiang.gov.cn/,
and the Xinjiang Government Work Reports for 2022 and 2023,
accessible online at https://www.xinjiang.gov.cn/.

Notably, the dataset on water supply is compiled from the
aggregation of water provided to end-users by means of reservoir
diversion schemes, exploitable water quantities from water
treatment facilities, the reuse of treated wastewater, and the
desalination of brackish water, thereby encompassing a
comprehensive overview of water supply mechanisms within the
region (Du et al., 2023). The water supply equals to the gross amount
of water withdrawn by various water users, including agricultural
water, industrial water, domestic water, and artificial ecological
environment compensation water (Qin and Liu, 2024), and water
loss. Among them, agricultural water is mainly used for farmland

irrigation (Yang and Mu, 2022; Wang and Wang, 2022), industrial
water refers to the water used by industrial andmining enterprises in
the production process for manufacturing, processing, cooling, air
conditioning, purification, washing, etc (Wang and Yan, 2017; Ma
et al., 2014). Domestic water includes urban domestic water and
rural domestic water (Cui et al., 2010), and artificial ecological
environment compensation water is urban environmental water
and some rivers, lakes and wetlands are supplied through artificial
measures (Zhang et al., 2023c).

2.2.2 Data processing
Data normalization is essential to resolve the problem of

inconsistent data dimensions among various variables (Deng,
2014). This process can help reduce the training rate, speed up
convergence, and standardize the data within the range from 0 to 1.

The normalization was estimated using the following
Equation 1:

x* � x − xmin

xmax − xmin
(1)

where x* is the normalized data. x, xmax and xmin represent the
original data, the maximum, and minimum values of the original
data, respectively.

In order to obtain the specific predicted value, it is necessary to
denormalize the predicted data (Weiss et al., 2023). The
denormalization process can be estimated using the following
Equation 2:

x � x* xmax − xmin( ) + xmin (2)

2.3 Model description

It is very difficult to accurately predict the water supply and
demand dynamics in Xinjiang. To reduce the uncertainties related
to water supply and use modelling, we compared the performance
of five predictive analysis models including the Holt two-
parameter linear exponential smoothing model, neural network
model, fractional grey GM(1,1) model, fractional grey GM(2,1)
model, and our new GM(1,1)-NN ensemble model which integrate
the fractional grey GM(1,1) model and neural network model
predictions using a linear weighting approach. All the models were
trained by using the data of water supply (unit: 108 m3) and
agricultural water use (unit: 108 m3) in Xinjiang from 2000 to
2023 (see Section 2.2.1.). In the stage of data processing and
validation, the original data are strictly screened and
preprocessed, and the data normalization and K-fold cross
validation methods are used to improve the stability and
prediction accuracy of the model and effectively control the
uncertainty of the data. The model with the best performance
was used to forecast water supply and agricultural water demand
for the next 5 years (2024–2028).

2.3.1 Holt two-parameter linear exponential
smoothing model

The Holt two-parameter linear exponential smoothing model is
a time series prediction method suitable for data with no obvious
seasonality (Kong et al., 2023; Chen et al., 2023). It usually uses a pair

FIGURE 2
The averaged water resources proportion in different sectors
during 2000–2022 in Xinjiang, the agricultural, industrial, domestic
water use and artificial ecological environment water replenishment
were according to the Xinjiang Statistical Yearbook (2000–2009),
Xinjiang Water Resources Bulletin (2010–2021) (https://slt.xinjiang.gov.
cn/), Xinjiang Government Work Reports (2022–2023) (https://www.
xinjiang.gov.cn/).
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of smoothing coefficients, a and b, to estimate the horizontal
demand and growth trend time series (Equation 3), respectively
(Vadim and Vasiliy, 2023).

Lt−1 � aDt + 1 − a( ) Lt − Tt( )
Tt+1 � b Lt+1 − Lt( ) + 1 − b( )Tt

(3)

The prediction formula is as follows Equation 4:

Ft+1 � Lt+1 + Tt+1 (4)
where Dt corresponds to the empirical measurement or observation
taken at time t, whereas Ft+1 is the forecasted value anticipated for
the immediate succeeding time interval (t+1). Moreover, Lt
embodies the notion of average demand at any given time t, and
Tt captures the temporal trend or growth trajectory at the same time
instance. Where a and b was the numbers ranging from 0 to 1. This
framework facilitates the decomposition of complex time series into
their constituent components, thereby enabling more accurate
predictions.

2.3.2 Neural network model
The neural networkmodel is a machine learning model based on

an artificial neural network (Adedoyin and Omotayo, 2024). The
basic structure includes an input layer, hidden layer, and output
layer (Zhang and He, 2023). Let the weights from the input layer to
the hidden layer be denoted as wij, and the biases as aj; the weights
from the hidden layer to the output layer are represented aswjk, with
biases bk, following is a brief description of the model
training procedure:

(1) Initialization of weights and biases, and determination of the
optimal number of hidden layer neurons

Assuming the number of neurons in the input layer is n, in the
hidden layer is l, and in the output layer ism. The optimal number of
hidden layer neurons is determined through trial and error within a
specified range, following the formula: l � �����

m + n
√ + d, where d is a

positive integer ranging from 1 to 10, m and n represent the number
of neurons in the output and input layers, respectively.

(2) Selection of activation functions

Owing to the absence of a straightforward technique to pinpoint
the best activation function, numerous iterations are conducted to
test various activation functions. The selection is guided by
observing the model’s accuracy profile. Among the commonly
adopted activation functions are logsig (logistic sigmoid)
(Equation 5), tansig (hyperbolic tangent sigmoid) (Equation 6),
and purlin (linear activation function) (Equation 7). These
activation functions introduce non-linearity to the network,
enabling it to learn complex patterns and make sophisticated
predictions.

The logsig activation function is mathematically defined as:

f x( ) � log sig x( ) � 1
1 + ex

(5)

The tansig activation function is given by:

f x( ) � tan sig x( ) � 2
1 + e−2x

+ 1 (6)

The purelin activation function is simply as below:

f x( ) � purlin x( ) � x (7)

(3) Calculating the output values of the hidden layer and the
output layer

The output value of the hidden layer Hj is calculated as
Equation 8:

Hj � f ∑n

i�1wijxj + aj( ) (8)

Where f and xj are the activation function of the hidden layer and jth
input signal, respectively.

The output value of the output layer is calculated as Equation 9:

Ok � f ∑l
j�1
wjkHj + bk⎛⎝ ⎞⎠ (9)

where f andHj are the activation function of the hidden layer and the
jth input signal, respectively.

(4) Define the error function

The mean square error is calculated using the following
Equation 10:

E � 1
2
∑m
k�1

yk − Ok( )2 (10)

where yk and Ok are the kth actual value of the output layer and the
kth output value of the output layer.

(5) Update the weights and thresholds of the input layer, hidden
layer, and output layer

The weights are calculated using the following Equation 11:

wij + ηHj 1 −Hj( )xi∑m
k�1wjkek

wjk � wjk + ηHjek
{ (11)

The formula for updating thresholds is Equation 12:

aj � aj + ηHj 1 −Hj( )xi∑m
k�1wjkek

bk � bk + ηHjek
{ (12)

where η is the learning rate, and the general value range is from
0 to 1.

(6) Conditions for judging the end

If the end condition is not reached, then return to step (3) to
continue the training.In this study, the water supply and agricultural
water use data from 2000 to 2020 are set as the training sample. The
measured data from every 3 years is used to predict the data for the
next year. Experimentation with different numbers of hidden layer
nodes is conducted, and the final hidden layer has 10 nodes.
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2.3.3 Fractional grey GM(1,1) model
The fractional grey GM(1,1) model is a model that combines

grey time series data using the grey differential fitting method
(Ouyang et al., 2024). The modeling process is as follows:

Firstly, let the source data set be (Equation 13):

X0 � x0 1( ), x0 2( ),/, x0 n( ){ } (13)

A monotonically increasing sequence can be obtained by
accumulating the source data once (Equation 14).

X1 � x1 1( ), x2 2( ),/, xn n( ){ }
x1 k( ) � x0 1( ) +/ + x0 k( ), k � 1, 2,/, n( ) (14)

Due to the exponential growth trend observed in the previously
accumulated sequence, it conforms to the formula (Equation 15) for
the gray differential model.

dx 1( )

dt
+ a1x

1( ) � b1 (15)

The parameters (a1 and b1) of the grey differential equation are
estimated using the least squares method, with the following
Equation 16:

a1b1[ ] � BT
1B1( )−1BT

1Y1 (16)
which are calculated as Equation 17:

B1 �
−Z 1( )

t2( ) 1

−Z 1( )
t3( ) 1

−Z 1( )
tk( ) 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Z 1( )

tk( ) � 0.5 × x 1( ) n − 1( ) + x 1( ) n( )( )
Y1 � x 0( ) 2( ), x 0( ) 3( ),/, x0 n( )T( )

(17)

The expression of the traditional GM(1,1) model (Equation 18)
can be solved by substituting a1, b1 and initial conditions x(1) (1) =
x(0) (1):

x 1( ) t( ) � x 1( ) 1( ) − b1
a1

[ ]e−a1t + b1
a1

(18)

The predicted value of the original observation sequence can be
obtained by reconstructing the sequence (Equation 19).

x 0( ) t( ) � x 1( ) t( ) � x 1( ) t − 1( ) (19)

2.3.4 Fractional grey GM(2,1) model
The fractional grey GM(2,1) model applies both a first-order

accumulation operation and a first-order reduction operation to the
raw observational data, generating sequences that are subsequently
utilized for enhanced forecasting and analytical purposes within the
framework of grey system theory. These operations facilitate the
extraction of embedded patterns and trends that might not be
immediately apparent in the original dataset.

The model calculation formula is similar to Section 2.3.3. The
main difference between them is the order. The fractional grey
GM(2,1) model is a second-order ordinary differential equation
(Adedoyin and Omotayo, 2024), while the fractional grey GM(1,1)
model is a first-order ordinary differential equation. The fractional
grey GM(2,1) model involves performing a first accumulation

generating sequence and a first diminution sequence on the
original observed values, respectively (Equation 20).

a 1( )x 1( ) t( ) � x 0( ) t( ) − x 0( ) t − 1( ), t � 2, 3,/, n
a 1( )x 1( ) � a 1( )x 1( ) 2( ), a 1( )x 1( ) 3( ),/, a 1( )x 1( ) n( ){ } (20)

The grey differential equation satisfied by the fractional grey
GM(2,1) model is Equation 21:

d2x 1( )

dt2
+ a2

dx 1( )

dt
+ a3x 1( ) � b2 (21)

The parameters can be estimated using the least squares method
(Equation 22).

Where

a2a3b2[ ] � BT
2B2( )−1BT

2Y2

Z 1( ) tk( ) � −0.5 × x 1( ) n − 1( ) + x 1( )n( )Y2

Y2 � a 1( )x 1( ) 2( ), a 1( )x 1( ) 3( ),/, a 1( )x 1( ) n( )( )T (22)

2.3.5 Integrating the fractional grey GM(1,1) model
and neural network model to develop the GM(1,1)-
NN model

The four models selected in this paper are representative and
widely used in the field of water resources prediction. GM(1,1)-NN
model is based on the above single model, and two better models are
obtained according to the posterior error verification, and the
limitations of the two better models were broken to form
GM(1,1)-NN model. This model combined the advantages of
better stability, suitable for small amount of data prediction and
high precision of grey model, as well as the advantages of deep
learning and few parameters of the neural network model. It could
achieve prediction by improving prediction accuracy and reducing
model complexity.

In order to enhance prediction accuracy, an ensemble model
(GM(1,1)-NN) is developed based on a fractional grey GM(1,1)
model and a neural network model, utilizing linear weighting
(Equation 23).

predcombined � a × predNN + b × predGM 1,1( ) (23)
where predcombined is the predicted value of combined model, the
parameters a and b are the weights learned by model training,
predNN and predGM(1,1) are the predicted values of the neural
network model and the fractional grey GM(1,1) model,
respectively. Where a and b are the numbers ranging from 0 to
1, respectively.

To derive the parameters a and b, we first determined the
fractional grey GM(1,1) model. Next, we use the fractional
grey GM(1,1) model to derive the values for each year in the
training dataset. As is already known, the GM(1,1)-NN model
could be considered an extension of the original neural network
model, and its parameters a and b are trained together with the
parameters of the neural network.

2.3.6 Model evaluation by K-fold cross-validation
The concept of K-fold cross-validation involves roughly dividing

the data into K sub-samples. One sample is taken as the validation
data each time, and the remaining K-1 samples are taken as the
training data. After the model is constructed, it is used to analyze the
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verification data and calculate the current error rate. Repeat the
process K times, calculate the average error rate over the K trials, and
determine the overall error rate. The overall error rate can be used to
estimate the error rate of the current dataset for modeling purposes.
Compared with simply dividing the data into a training set and a test
set, this testing method can ensure the completeness of the data.
Possible use to comprehensively evaluate the performance indicators
of the model. S-folder cross validation will randomly divide the
sample data into S parts. Each time, S-1 is randomly selected as the
training set, and the remaining one is used as the test set. When this
round is completed, the S-1 is randomly selected again to train the
data. After several rounds (less than S), the loss function is chosen to
evaluate the optimal model and parameters. The results of cross-
validation are only comparable within the same type of data.

In this study, the posterior error ratio (C) is used as the
benchmark in model evaluation (Equation 24) (Du et al., 2023).

C � S2
S1

(24)

The S2 and S1 values are calculated as follows Equations 25, 26:

S21 �
1
n
∑n
i−1

x 0( ) k( ) − x− 0( )( )2

S22 �
1
n
∑n
k−1

e k( ) − �e( )2
, k � 2, 3,/, n (25)

Where

x− 0( ) � 1
n
∑n
k−1

x 0( ) k( )( ) ÷ �e � ∑n
k−1

e k( ) (26)

The performances of the models can be evaluated based on the C
value (Table 1). According to Table 1., the posterior difference ratio
that is no less than 0.35 indicates high model prediction accuracy,
and the model is set to grade A. When the posterior difference ratio
is greater than 0.65, it indicates that the prediction result of the
model is not good, and the model is set to grade D.

3 Results and analysis

3.1 Agricultural water use and its share in the
total water supply from 2000 to 2023

Water supply is determined by water demand. On the whole, the
temporal distribution of water use in agriculture exhibits a high
degree of non-uniformity. From 2000 to 2018, the volume of water
supply and agricultural water use showed a similar trend in
variation. The lowest values for both occurred in 2002, at 474.6 ×
108 m3 and 448.9 × 108 m3, respectively. They both increased
afterward and reached their highest values in 2012, at 590.1 ×
108 m3 and 561.7 × 108 m3, respectively. After that, both of them
decreased until 2018 (Figure 3). After 2018, the changes in water
supply and agricultural water use were no longer synchronous.

Agricultural water use accounts for the highest proportion of
total water use. The structure of agricultural water use has
undergone significant changes. The proportion of agricultural
water use in water supply was 94% in 2000, but decreased to
only 87% in 2020, and increased to 91% in 2023 (Figure 4) ,
other water use has also changed as a result in these years. The
average proportion of agricultural water use from 2000 to 2023 was

TABLE 1 Criteria for grading model performance (Li, 2021).

Grades The posteriori difference ratio

A C ≤ 0.35

B 0.35 < C ≤ 0.5

C 0.5 < C ≤ 0.65

D 0.65 < C

FIGURE 3
The changes of water supply and agricultural water use in
Xinjiang from 2000 to 2023.

FIGURE 4
The proportions of agricultural water use in the total water supply
from 2000 to 2023.
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92%. In the past 2 decades, there have been three increases and three
decreases in agricultural water use, the three peaks appeared in 2012,
2021 and 2023 respectively, and the three valley values appeared in
2010, 2020 and 2022, respectively. The highest proportion of
agricultural water use was the highest in 2012, reaching to 95%,
the lowest proportion of agricultural water use was the highest in
2020, reaching to 87% (Figure 4).

3.2 Model validation and selection

The posterior error ratios of five models in predicting water
supply range from 0.36 to 0.69, agricultural water use range from
0.47 to 1.2 (Table 2). Our GM(1,1)-NN ensemble model is the only
one that earned a B grade in predicting results. All the models
perform in predicting the water supply, with posterior error ratios
ranging from 0.36 to 0.69, with the grades from B to D. Thus,
excepted the fractional grey GM(2,1) model, other models all receive
the grade B. The GM(1,1)-NN ensemble model has the lowest
posterior error ratio of 0.36. As the GM(1,1)-NN ensemble
model has the highest performance among all models, it means
the model is feasible, so we select it to forecast water supply for the
next 5 years (2024–2028).

From the perspective of agricultural water use values, the
predicted posterior error ratios of the five models are between
0.47 and 1.2, rated from B to D grades, with only the GM(1,1)-NN
ensemble model performing as B grade. Holt exponential
smoothing model and fractional grey GM(1,1) model
performing as grade C, neural network model and fractional
grey GM(2,1) model performing as grade D. Therefore, we intend
to perform a comprehensive integrated analysis of the output
results from five models pertaining to water supply and
agricultural water use. The GM (1,1)-NN ensemble model has
the smallest predicted C value both in water supply and
agriculture water use, while the fractional grey GM(2,1) model
has the largest predicted C value.

Furthermore, to rigorously assess the accuracy of the model
predictions, we employed the widely recognized mean absolute error
(MAE) metric to evaluate the precision of five models (Table 3). The
MAE of five models in predicting agricultural water use ranged from
0.88 to 5.26. The GM(1,1)-NN ensemble model is the minimum, but the
fractional greyGM(2,1)model is themaximum. TheMAEof fivemodels
in predicting water supply ranged from 0.42 to 4.56. The GM(1,1)-NN
ensemblemodel is theminimum, thus the fractional greyGM(2,1)model
is the maximum. Furthermore, it is evident that the GM(1,1)-NN
ensemble model received the lowest MAE both in water supply and
agricultural water use. The MAE of the GM(1,1)-NN ensemble model is
0.42 in water supply and 0.88 in agricultural water use.

3.3 Predictions of future water supply and
agricultural water demand

The GM(1,1)-NN ensemble model predicts that from 2024 to
2028, Xinjiang’s water supply and agricultural water demand will
both exhibit a decreasing trend yearly, with the decline expected to
be less than 1%. As a result of the greater decline in agricultural water
demand, the proportion of agricultural water demand in water
supply will decrease from 90% in 2024 to 88% in 2028. The
projected non-agricultural water demand exhibits a consistent
annual growth trend, increasing from 56.83 × 108 m3 in 2024 to
63.61 × 108 m3 in 2028 (Table 4).

4 Discussion

4.1 The discrepancy between the spatial
distribution of water resources and the
pattern of economic development

The water supply in Xinjiang is closely correlated with
precipitation levels. There are significant differences in the

TABLE 2 Grade the models’ performances based on their posterior error ratio.

Predicted
variables

Indicator Holt exponential
smoothing model

Neural
network
model

Fractional grey
GM(1,1) model

Fractional grey
GM(2,1) model

GM(1,1)-NN
ensemble
model

Agricultural
Water Use

C value 0.60 0.96 0.53 1.20 0.47

Grade C D C D B

Water Supply C value 0.43 0.44 0.37 0.69 0.36

Grade B B B D B

TABLE 3 The performance of the models, as evaluated by its mean absolute error.

Predicted
variables

Indicator Holt exponential
smoothing model

Neural
network
model

Fractional grey
GM(1,1) model

Fractional grey
GM(2,1) model

GM(1,1)-NN
ensemble
model

Agricultural
Water Use

MAE 3.83 3.32 1.34 5.26 0.88

Water Supply MAE 2.12 1.99 0.74 4.56 0.42
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average annual precipitation among different regions in Xinjiang.
Southern Xinjiang has the highest annual precipitation with an
average of 324.02 × 108 m3, followed by Northern Xinjiang with
an average of 184.04 × 108 m3, and Eastern Xinjiang has the
lowest annual precipitation with an average of 63.88 × 108 m3.
There are significant differences in precipitation among different
regions in Northern Xinjiang. Ili Prefecture has the highest
annual precipitation of 599.04 × 108 m3, while Karamay has
the lowest annual precipitation of 7.91 × 108 m3, a difference of
75 times between them. There is not much difference in annual
precipitation among different prefectures in Southern Xinjiang,
ranging from 200 × 108 m3 to 500 × 108 m3. There are significant
regional differences in the average surface water volume and
groundwater volume in different regions of Xinjiang, with the
order as belows: Southern Xinjiang > Northern Xinjiang >
Eastern Xinjiang. Among them, the surface water volume and
groundwater volume in Yili Prefecture of Northern Xinjiang are
the highest, at 260.13 × 108 m3 and 129.77 × 108 m3, respectively.
There is a certain relationship between local precipitation and
surface water and groundwater (Table 5).

Despite the Northern Xinjiang accounting for less than half of
the province’s total precipitation and water resources, it exhibits a
significantly higher level of economic development, contributing
over 60% of the province’s economic output (Zuo et al., 2021). The
Northern Xinjiang is rich in critical mineral resources such as oil and
natural gas and serves as an important industrial base for Xinjiang.
Additionally, it has a substantial population with relatively high
educational attainment and advanced agricultural production
technology, leading to higher water use efficiency in agriculture
(Bao et al., 2024). In contrast, while the Southern Xinjiang
experiences abundant precipitation, its economic development
lags behind. Economic constraints have resulted in limited
adoption and understanding of various agricultural water-saving
technologies among producers, as well as inadequate infrastructure
for basic water conservation measures, thereby contributing to lower
water use efficiency in local agriculture (Wang and Shao, 2021).

Therefore, in light of the significant imbalance between
economic development and water resource distribution, Xinjiang
should focus on building a multi-level and multi-functional water
diversion channel network, and lay out the water system

TABLE 4 Predictions of water supply and agricultural water demand from 2024 to 2028.

Year 2024 2025 2026 2027 2028

Agricultural Water Demand
(×108 m3)

501.92 499.26 496.62 494 491.38

Water Supply (×108 m3) 558.75 557.51 556.69 555.89 554.99

Non-agricultural Water Demand
(×108 m3)

56.83 58.25 60.07 61.89 63.61

Percentage of Non-agricultural Water Demand (%) 10.17% 10.45% 10.79% 11.13% 11.46%

TABLE 5 The average annual precipitation, surface water volume and groundwater volume among different regions in Xinjiang from 2010–2020.

Region Precipitation (×108 m3) Surface water (×108 m3) Groundwater (×108 m3)

Urumqi 34.56 11.35 5.51

Karamay 7.91 0.04 1.03

Changji 134.04 31.86 22.06

Bortala 91.69 25.28 15.47

Ili 599.14 260.13 129.77

Tacheng 298.50 60.43 37.32

Altay 305.43 113.86 49.50

Bayingolin 480.39 128.27 73.80

Aksu 231.19 55.27 69.57

Kyrgyz 245.40 63.79 39.52

Kashgar 259.10 75.92 58.65

Hotan 404.01 108.30 52.15

Turpan 30.28 6.37 6.98

Hami 97.48 11.50 9.27

Northern Xinjiang: Urumqi, Karamay, Changji, Bortala, Ili, Tacheng and Altay.Southern Xinjiang: Bayingolin, Aksu, Kyrgyz, Kashgar and Hotan.Eastern Xinjiang: Turpan and Hami.
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connectivity network from the regional, river basin, and city levels,
so as to achieve cross-regional water transfer and improve Xinjiang’s
water resource allocation capacity.

4.2 The impact of agricultural water use on
the development of other industries

Despite being one of China’s major grain and cotton production
bases, ensuring the development of industry and urbanization in
Xinjiang is crucial. From 2010 to 2020, the industrial and service
sectors significantly contributed to Xinjiang’s economic growth,
accounting for 12% of the increase in gross domestic product
(Zhang et al., 2023c). Correspondingly, the demand for industrial
water has risen. The urbanization rate is also high in Xinjiang. For
example, the urban area of Urumqi, the capital of Xinjiang, expanded
by 6.69 times between 1993 and 2013 (Susu, 2020). This expansion
accelerated after 2013, increasing pressure on residential water
supplies (Zhang, 2023). Moreover, overexploitation of natural
resources (Zhang et al., 2023c) and ecological damage in key
watersheds have increased the need for environmental restoration
water (Li, 2021). For instance, in the Tarim River Basin of Xinjiang’
main watershed, the ecological water deficit has expanded by
1.79 times over the past 2 decades, posing a threat to the
ecological security of the entire basin (Al et al., 2024). However,
our study shows that the average proportion of water allocated to
agriculture has exceeded 90% in Xinjiang more than 20 years. This
high rate of agricultural water consumption rate led to insufficient
water resources for other industries and ecological restoration.

Reducing the proportion of agricultural water use could
conserve valuable water resources to meet the needs of industrial
development, urbanization, and ecological restoration. To analyze
the impact of agricultural water use on other sectors, we examine the
water usage patterns in Xinjiang for the years 2012 and 2019
(Figure 5). Influenced by global warming and extreme weather
conditions, both precipitation and total water resources in
Xinjiang exceeded multi-year averages during these periods. In
2019, the total new water volume was 3.89 × 108 m3, with

agricultural water usage increasing by 2.37 × 108 m3 compared to
2018. This resulted in a surplus of 1.52 × 108 m3 of water available for
industrial, domestic, and ecological restoration purposes, effectively
addressing water shortages in these areas. In contrast, the situation
in 2012 was less favorable. Despite an increase in total water volume
by 6.66 × 108 m3, agricultural water use surged by 7.33 × 108 m3. This
significant rise in agricultural water demand necessitated reductions
in water allocation for other sectors to prioritize agricultural
production. The primary reason for this was the severe drought
experienced in the oasis planting areas of the northern Tianshan
region and parts of the Southern Xinjiang. Harsh climatic conditions
led to a sharp increase in crop water requirements, thereby driving
up agricultural water consumption. As the results, the industrial and
urban developments are severely limited by water supply in the
region, and economic development exceeds the carrying capacity of
water resources, resulting in a decrease in the proportion of irrigated
farmland and ecosystem degradation in some areas in the Northern
Xinjiang (Bao et al., 2024). In contrast, the water resources
utilization in Southern Xinjiang, which is dominated by irrigated
agriculture, is relatively low-efficient, and agriculture is still
dominated by traditional large-scale surface flood irrigation. The
water conservancy facilities in this region are weak, the irrigation
and drainage systems are not matched, and the water resources are
seriously wasted, which restricts the improvement of agricultural
water use efficiency (Li, 2021).

Similar impacts of climate-induced water resource fluctuations
have been observed globally. For instance, Pakistan faced floods in
2010 and 2022 due to climate change, significantly affecting local
water supplies (Javeria et al., 2023). Additionally, compound
disasters such as heatwaves, floods, and debris flows associated
with droughts have severely impacted water availability (Agha
et al., 2023), leading to a 1.9% reduction in wheat production
(Diego et al., 2021). These examples underscore the profound
influence of extreme weather events on both water resource
availability and agricultural productivity.

4.3 Predictions of future water demand and
water supply balance

This study developed a novel GM(1,1)-NN model, which
integrates the results of neural network and fractional grey
GM(1,1) model, performed best, indicating that ensemble
learning can effectively enhance the predictive accuracy of the
water supply-demand relationship in Xinjiang. The findings of
this study align with those of other scholars who have integrated
neural networks and grey models. Xie et al. combined neural
networks with grey prediction models, mathematically reducing
the number of conditions required for gradient descent and
validating the model’s effectiveness (Xie et al., 2023). Ma further
applied this integrated model to predict provincial tourism
population trends, achieving reasonably accurate results (Ma,
2021). In contrast, when Xiong et al. used this model to forecast
the provincial digital economic development index, they found that
its prediction accuracy was lower compared to other models and it
was only suitable for short-term predictions (Xiong et al., 2025).
Therefore, the GM(1,1)-NN model employed in this study
demonstrates similar prediction accuracy to previous studies,

FIGURE 5
Water use by the agriculture and other sectors in 2012 and 2019.
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indicating its suitability for short-term forecasts and higher
precision in such contexts.

Using the GM(1,1)-NNmodel, the interannual changes in water
supply and agricultural water demand for the next 5 years is
predicted to be less than 1%. The available water resources after
deducting agricultural water demand are projected to increase from
56.83 × 108 m3 in 2024 to 63.61 × 108 m3 in 2028, translating into a
non-agricultural water demand increase of approximately 12% over
the next 5 years. This suggests that more water resources will be
available for industrial development, urbanization, and ecological
restoration in the future. However, agriculture is still expected to
consume over 88% of Xinjiang’s water resources. Without further
reduction in agricultural water use through water-saving measures,
the socio-economic and ecological sustainability of Xinjiang will
continue to be constrained by water shortage.

This article used the GM (1,1) -NN model to predict the water
supply-demand relationship that were similar to Aman (Riziya
Aman, 2021). It further confirmed the effectiveness of the model
in predicting water resources in Xinjiang. In terms of water
efficiency and allocation strategies, it was consistent with Zhang’s
research (Zhang, 2023) trend that the proportion of agricultural
water use in arid and semi-arid areas will still dominate (70%),
which greatly limited the development of other industries, especially
industry. In addition, with the support of Xinjiang’s unique coal
resources, from the perspective of investment in Xinjiang’s coal
chemical industry in next 5 years, numerous methanol to olefin
projects have been implemented ceaselessly (Chen, 2024). As an
extremely water consuming industrial production project, the coal
chemical industry would have a certain impact on the future
agricultural and aquatic production in Xinjiang. Therefore, the
rational allocation and utilization of water resources have a
significant impact on the future economic development and
social stability in Xinjiang.

4.4 Countermeasures and suggestions

There is considerable room for improvement in the efficiency of
agricultural water use in Xinjiang. Expanding the scale of water-
saving facilities and developing water-saving irrigation technologies,
such as drip irrigation and low-pressure sprinkler irrigation, can
improve water use efficiency by up to 70% (Wang et al., 2021).
Reducing the area dedicated to high-water-demand crops can also
decrease agricultural water demand. For example, the annual
average water requirement for Xinjiang’s main cash crop, cotton,
is 645 mm, which is 22% higher than that of corn (Wu, 2023).
Relatively water-efficient crops such as corn can be cultivated on a
larger scale to reduce agricultural water consumption. However,
even for the same crop, crop selection is still subject to greater
challenges due to factors such as fertilizer, pesticide, machine
harvesting prices, and land contracting fees (Wang L. et al.,
2024). Taking cotton, for example, there was a significant
difference in planting costs and benefits between northern and
southern Xinjiang. Assuming that the market sales price is the
same and the cotton collection method was excluded, the
planting cost in Southern Xinjiang was about 2,750–3,300 yuan/
Mu, and the planting cost in northern Xinjiang was about
2,950–3,600 yuan/Mu. It could be seen that from a cost

accounting perspective, Southern Xinjiang is more suitable for
large-scale cotton planting, which could save about 10% of
economic investment.From the perspective of income, crop
income was mainly influenced by factors such as market prices,
downstream production enterprise layout, and transportation
distance. There are a large number of cotton midstream and
downstream industries in Southern Xinjiang, such as tie flower
factories, textile enterprises, clothing processing, as well as domestic
and foreign sales and export enterprises. Therefore, considering the
above factors comprehensively, it was recommended that encourage
farmers in Southern Xinjiang to use cotton as their main crop
through government subsidies and other policy support, and to
plant more water-saving crops in Northern Xinjiang to replace
cotton. This approach has also achieved typical results in Israel
(Tal, 2021), which was known for its arid regions. The local
government of Israel implements classified policies, mainly
planting high water consuming crops such as rice and grains in
the northern to meet domestic food demand, and focusing on
planting low water consuming and high value-added economic
crops such as vegetables and fruits in the southern for export to
boost local economic growth.

Additionally, water-saving cultivation management techniques,
such as regulated deficit irrigation, which can stimulate the drought
resistance potential of crops and save 5%–28% of irrigation water
(Wang, 2021), can be employed. Therefore, optimizing and
adjusting the structure of Xinjiang’s agricultural industry,
promoting the investment and construction of water conservancy
facilities, and strengthening the promotion and service of
agricultural water-saving irrigation technology will help improve
the irrigation efficiency of Xinjiang’s agricultural water resources
(Zhuang et al., 2020; Xie et al., 2018).

4.5 Limitations of the study

Although the GM(1,1)-NN model has achieved success in
predicting the supply-demand of water in typical arid areas of
Xinjiang, from a regional perspective, the input data of the
model was based on past water supply and agricultural water use
data in Xinjiang. However, climate change (Fan and Huang, 2023),
policy changes, economic changes, and technological progress
would all have important impacts on the future water supply-
demand relationship in Xinjiang. Under the trend of global
warming, a significant reduction in precipitation poses a severe
challenge to water resource supply. The increase in extreme weather
events, particularly frequent heavy rainfall leading to floods, further
exacerbates the imbalance between water supply and demand (Guo
et al., 2023; Goutam et al., 2020). Policy adjustments also have a
substantial impact on water resource management. Government
policies, such as raising water resource tax rates, can encourage more
efficient water use and conservation, thereby reducing water
demand to some extent (Bai et al., 2021). Industrial restructuring
and upgrading also significantly affect water demand. Traditional
water-intensive industries consume substantial amounts of water,
while the development of low-water-consuming, high-value-added
emerging industries can alleviate pressure on water supply and
demand while promoting sustainable economic growth.
Therefore, comprehensive predictions could be combined from
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the perspectives of climate change, policy drivers, and economic
technological advancements in future.

5 Conclusion

Agricultural water use has long accounted for over 90% of water
resources in the arid region of Xinjiang, severely limiting industrial,
domestic, and ecological water use, and threatening the achievement
of the sustainability of high-quality development in Xinjiang. By
analyzing the trends in water supply and agricultural water use in
Xinjiang over the past 2 decades, it is evident that significant regional
disparities exist in water resources. These disparities are closely
linked to variations in precipitation patterns and the spatial
distribution of economic activities. Accurate prediction of future
water supply and demand balances in this region was essential for
formulating proper water resource management and distribution
policies. This study found that the GM(1,1)-NN model, which
integrates the fractional grey GM(1,1) model and the neural
network model, demonstrated superior predictive accuracy
compared to commonly used water resource prediction models.
Using this model, we forecasted that the interannual changes in
agricultural water use and water resource supply in Xinjiang over the
next 5 years (2024–2028) would be less than 1%. After deducting
agricultural water use, available water resources for non-agricultural
use were expected to increase from 56.8 × 108 m3 in 2024 to 63.6 ×
108 m3 in 2028, implying a 12% increase in non-agricultural water
use over the next 5 years. Even so, agricultural water use will still
account for over 88% of the total water supply.

Therefore, it is suggested that measures such as adopting water-
saving drip irrigation and optimize the allocation of crop planting
areas to further reduce agricultural water demand and increase the
supply of industrial, domestic, and ecological water use.

Firstly, regarding water-saving facilities, drip irrigation remains
the primary method for alleviating agricultural water shortage and
enhancing agricultural water use efficiency. Taking cotton
cultivation as an example, traditional flood irrigation typically
consumes 80–100 m3/Mu for each irrigation event. In contrast,
drip irrigation reduces this to 40–60 m3/Mu, resulting in water
savings of approximately 40 m3/Mu (Ma, 2023). Advanced water-
saving technologies play a pivotal role in enhancing the efficient
utilization of water resources, significantly reducing water wastage
and improving overall water use efficiency.

Furthermore, regarding regional planting, the rational division of
crop planting areas is a critical measure for optimizing the agricultural
production structure, reducing production costs, and enhancing
agricultural productivity. The crop planning experience of
Heilongjiang Province in China serves as an exemplary model
worthy of emulation. Local government departments have
effectively coordinated efforts, establishing collaborative platforms
that integrate the expertise of research institutions and universities,
the premium resources of seed enterprises, and the extensive outreach
capabilities of extension services to jointly evaluate and select high-
quality, efficient crop varieties. Based on this initiative, 298 crop
varieties are scientifically allocated for cultivation across different

agro-climatic zones within the province, taking into account their
unique climatic characteristics and geographical conditions (Du et al.,
2024). This strategic approach has not only significantly reduced
agricultural water consumption and enhanced water resource
efficiency but also provided a robust foundation for sustained grain
yield increases and the overall advancement of agricultural quality.
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