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With the advancement of sustainable development goals, digital technological
innovation has emerged as a critical pathway for mitigating urban carbon
emission intensity. Using balanced panel data from 282 Chinese cities
spanning 2012-2019, this study employs fixed-effect models and mediating
effect analysi to investigate the nonlinear impact of digital technology
innovation on urban carbon intensity. The findings reveal the following. (1)
There exists an inverted U-shaped relationship between digital technological
innovation and carbon intensity. (2) A nonlinear mediation mechanism is
identified, whereby digital technological innovation influences carbon intensity
through its effects on energy intensity and governmental environmental
attention. (3) Substantive digital technological innovation reaches the turning
point more rapidly. (4) The inverted U-shaped relationship holds exclusively for
non-key environmental protection cities, while it is not evident in key
environmental protection cities. (5) This relationship is consistently observed
across both Broadband China pilot cities and non-pilot cities, suggesting that the
findings are robust and applicable to different types of cities. These findings not
only deepen our understanding of the complex interplay between digital
technological innovation and carbon intensity but also provide valuable
theoretical insights and practical guidance for achieving sustainable
development objectives.
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1 Introduction

China’s rapid economic growth has spurred remarkable economic expansion, yet it has
also given rise to substantial carbon emissions (Chang et al., 2023; Peng et al., 2023; Du et al.,
2025; Xu et al., 2024). Particularly, the extensive use of fossil fuels has contributed to
environmental pollution and greenhouse gas emissions (Zhu et al., 2025; Cheng et al., 2018;
Kang et al., 2015; Wang et al., 2020). Moreover, inefficiencies in energy usage and san over-
reliance on heavy industries in the economic structure have made it difficult to effectively
control carbon emissions in the short term (Cui et al., 2022; Lu et al., 2023; Wang et al.,
2022). In response to the critical challenge of carbon emissions, the Chinese government has
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set forth the “dual carbon” objectives (Bai et al., 2023; Ke et al., 2023;
Tang et al., 2023; Jiang et al., 2024). These goals represent not only
China’s commitment to addressing global climate change, but also a
crucial lever for driving the green economic transformation.
Balancing economic growth while effectively reducing carbon
intensity has become a major issue for China’s development (Liu
et al., 2021; Yan et al., 2022). In this context, the application of digital
technologies has emerged as an essential means to enhance energy
efficiency and facilitate the green transition (Pu et al., 2024; Yi et al.,
2024). However, the implementation of digital transformation
requires not only addressing the tension between technological
innovation and environmental protection, but also carefully
considering how effective policies can guide the transition toward
genuine low-carbon and sustainable development (Li and Yue, 2024;
Tang et al., 2024).

In recent years, digital technological innovation has garnered
widespread attention globally and become one of the core drivers of
high-quality economic development (Lu and Li, 2024; Yang et al.,
2025). As a key player in the global digital economy, China has
actively implemented a digital transformation strategy, gradually
establishing a digital technology ecosystem characterized by big
data, cloud computing, and artificial intelligence (Chen and Lu,
2024). These technologies have not only been extensively applied in
industries such as manufacturing, finance, transportation, and
healthcare, but have also fundamentally transformed production
processes and lifestyles (Zhao et al., 2024). The Chinese government
has prioritized digital transformation as a national development
strategy, particularly within the “14th Five-Year Plan” and the
2035 Vision, explicitly advocating for the acceleration of digital
economy development and the construction of a “Digital China.”
However, the rapid development of digital technologies has also
brought forth new challenges, including issues such as the digital
divide, information security, and privacy protection, which remain
pressing concerns (Chen and Li, 2024; Zhu et al., 2024).
Nevertheless, digital technologies, as the driving force behind the
economic and social transformation, are providing significant
momentum for China’s economic restructuring, industrial
upgrading, and green development (Yang et al., 2025). As
technologies such as 5G and artificial intelligence continue to
mature, the digital economy is expected to play an increasingly
critical role in the transition to a low-carbon economy, particularly
in optimizing energy management and improving energy utilization
efficiency (Gupta and Dey, 2024; Wang and Yang, 2024a).

Digital technological innovation holds significant potential in
advancing the development of low-carbon economy. However, it
also presents a “double-edged sword” (Xu et al., 2024). On one
hand, the widespread application of digital technologies can
effectively reduce carbon emissions by enhancing energy
efficiency and minimizing resource waste. Technologies such as
smart grids and big data enable intelligent energy dispatch and
precise management, thus preventing overconsumption and waste
of energy (Shen et al., 2024). For instance, cloud computing and
artificial intelligence can optimize production processes, increase
efficiency, and reduce high-carbon emission production stages,
leading to a greener and more sustainable production model.
Through digital management, firms can monitor emission
sources in real-time and promptly implement corrective
measures, further lowering their carbon footprint.

Furthermore, digital technological innovation may induce a
“rebound effect”. In the short term, cost savings and efficiency
improvements driven by digital technologies could stimulate
increased energy consumption, potentially exacerbating carbon
emissions. As production efficiency improves, firms may
experience higher output, leading to an expansion in production
scale and the creation of new market demands, which can, in turn,
raise energy consumption (Hanelt et al., 2021). For example,
emerging industries such as electric vehicles and shared mobility-
enabled by digital technologies-may reduce carbon emissions from
traditional combustion engines but could also increase electricity
demand on a large scale (Lyytinen, 2022; Trocin et al., 2021). In
particular, in China, where electricity generation is still heavily
reliant on fossil fuels, this surge in demand may contribute to a
rebound in carbon emissions (Liu Y. et al., 2023). Furthermore, the
proliferation and widespread use of digital technologies may spur
the expansion of data centers and server infrastructure, which, by
themselves, represent a significant energy consumption concern.
Thus, while digital technology innovation holds immense promise
in fostering a low-carbon economy, it also introduces challenges that
cannot be overlooked.

There are three possible innovations. First, while substantial
research has explored the relationship between technological
innovation and environmental outcomes, much of the existing
work has focused primarily on how green technologies can
reduce emissions by improving energy efficiency and minimizing
resource waste. In contrast to traditional studies that focus on linear
relationships (e.g., Zor, 2023; Chang et al., 2023), this paper is the
first to reveal an inverted U-shaped nonlinear relationship between
digital technology innovation and carbon emission intensity. The
theoretical framework is expanded through the analysis of a dual
mediating mechanism (energy intensity and government
environmental attention). However, there is a notable gap in the
literature regarding digital technology innovation, particularly in
terms of its specific impact on carbon intensity. By examining the
effect of digital technology innovation on carbon intensity, our
paper not only enriches the literature on technological
innovation and environmental governance, but also provides a
new theoretical framework and empirical support for the role of
digital technologies in low-carbon development. Second, this study
identifies an inverted-U relationship between digital technology
innovation and carbon intensity. This finding provides new
empirical evidence for the long-standing academic discussion on
the “rebound effect,” suggesting that the environmental impacts of
digital technology innovation may vary substantially across different
stages of development. Thus, this paper deepens our understanding
of the complex role of digital technologies in the low-carbon
economic transition and offers a fresh perspective for further
academic exploration of sustainable development pathways
driven by technological innovation. Finally, this paper
demonstrates that digital technology innovation can indirectly
influence urban carbon intensity through the government’s focus
on environmental protection. This finding highlights the crucial role
of digital technologies in enhancing environmental governance and
policy responsiveness, thereby further enriching the theoretical
understanding of how digital technology innovation contributes
to carbon emission reductions. In sum, this study expands the
boundaries of research on digital technology innovation and
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provides a scientific foundation for developing policy frameworks
that promote the synergistic development of digitization and
decarbonization.

The structure of the paper is as follows: the second section
reviews the literature and puts forward research hypotheses, the
third section includes sample selection, identification of variables
andmodel specification, the fourth section presents empirical results
and mechanism analysis, the fifth section discusses heterogeneous
characteristics and policy implications, and the final section
concludes the study with discussions on heterogeneous
characteristics, policy implications and future research directions.

2 Literature review and research
hypothesis

2.1 Literature review

2.1.1 Research related to digital technology
innovation

Digital technology innovation is widely regarded as a key driver
of economic development and social progress, primarily by
leveraging advanced information technologies to optimize
resource allocation and enhance production efficiency (Tortora
et al., 2021). From a theoretical perspective, digital technology
innovation spans several interdisciplinary fields, including
technological innovation theory, information economics, and
organizational change. Schumpeter’s innovation theory provides a
foundational framework for understanding digital innovation,
particularly its emphasis on the “reorganization of production
factors”. In the digital era, this reorganizational power is
exemplified by artificial intelligence-driven energy management
systems, which restructure industrial processes through real-time
data analysis and intelligent scheduling. For instance, smart grids
enabled by digital technologies can optimize energy distribution
across factories, reducing redundant consumption and lowering
carbon emission intensity by reorganizing energy utilization
patterns. Such applications demonstrate how digital technologies
translate Schumpeter’s theoretical insights into practical reductions
in environmental impact.

In recent years, with the rapid development of emerging
technologies such as artificial intelligence, blockchain, the scope
of digital technology innovation has expanded beyond technological
breakthroughs to include transformations in business models and
governance structures (Firk et al., 2022). During the digital
transformation process, profound changes have occurred in the
interactions between enterprises, governments, and consumers,
culminating in a new economic system centered around data as a
core resource. Additionally, research on digital technology
innovation is increasingly focusing on its social and
environmental impacts, including its effects on labor markets,
income distribution, and sustainable development (Huang et al.,
2023b). However, there remains a lack of consensus in the academic
community regarding a unified definition of digital technology
innovation, particularly in distinguishing it from traditional
technological innovation. As such, future research should seek to
develop a more universally applicable theoretical framework by
incorporating diverse technological application scenarios.

The realization of digital technology innovation is influenced by
a range of factors, with three core drivers being technological supply,
market demand, and institutional environment. In terms of
technological supply, research and development investment and a
highly skilled talent pool are direct catalysts for digital technology
innovation. In particular, the intensification of R&D in fields such as
artificial intelligence has significantly enhanced technological
innovation capabilities (Mariani and Nambisan, 2021). Market
demand incentivizes firms to meet consumer needs for intelligent
products and services, thereby driving technological upgrades (Li
et al., 2024). Meanwhile, the institutional environment-such as
intellectual property protection policies, government subsidies,
and regulatory frameworks-provides both the security and
incentives necessary for digital technology innovation. However,
the innovation paths for digital technology vary across countries and
regions. For instance, developed countries tend to focus on basic
research and technological breakthroughs, while developing nations
often rely more heavily on technology imports and localized
innovation (Huang et al., 2023a). Furthermore, globalization and
cross-border cooperation are increasingly important in the
landscape of digital technology innovation, with cross-border
data flows and international R&D collaborations emerging as
dominant trends. Future research should further explore the
differential driving factors of digital technology innovation in
varying contexts, particularly in balancing technological
sovereignty with international cooperation in the
globalized landscape.

The influence of digital innovation on economic development
has become a focal point of research, demonstrating significant
potential in driving economic growth, optimizing resource
allocation, and enhancing production efficiency (Goldfarb and
Tucker, 2019). First, digital technologies reduce information
asymmetry and transaction costs, creating more business
opportunities for firms, thereby stimulating overall economic
growth (Johnson et al., 2022). For example, the development of
e-commerce and financial technology has facilitated the digital
transformation of traditional industries, providing enterprises
with new market access (Corvello et al., 2023). Second, digital
innovation significantly enhances production and distribution
efficiency through intelligent production processes and precise
market analysis. Moreover, it generates new employment
opportunities, although it also leads to the disappearance of
certain traditional jobs. However, research has also shown that
digital technology innovation may exacerbate income inequality,
particularly when there is a mismatch between technology and labor
skills. Furthermore, in some industries, the existence of
technological barriers may reinforce market concentration. As a
result, scholars advocate for a balanced approach to fostering digital
technology innovation, emphasizing fairness and inclusivity to
ensure that its economic benefits extend to a broader segment
of society.

The environmental impact of digital technology innovation is
dual-faceted, with the potential to both promote sustainable
development and introduce new environmental challenges.
Digital technologies have the potential to significantly promote
sustainable development by enhancing energy efficiency and
reducing resource waste. For example, smart grid technologies
optimize energy distribution, while Internet of Things
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technologies enable real-time monitoring to reduce energy
consumption in industrial production. On the other hand, the
rapid advancement of digital technology innovation is
accompanied by increased energy demand. This is particularly
evident in the expansion of data centers and servers, which
consume substantial amounts of electricity (Babilla, 2023).
Furthermore, the widespread adoption of digital technologies
may trigger a rebound effect. In this scenario, efficiency gains are
offset by an overall increase in energy consumption, thereby
undermining some of the emission reduction benefits (Cheng
et al., 2023). As a result, there has been extensive academic
discussion on the environmental effects of digital innovation,
with proposed solutions including policy interventions to
encourage the development of green technologies, optimizing the
energy structure of data centers, and implementing more stringent
environmental standards. However, research in this area remains in
its early stages, and future studies will need to explore the
multidimensional impacts of digital innovation on various
environmental factors, providing a scientific foundation for
achieving a synergistic development of technological
advancement and environmental protection (Shojaei and
Burgess, 2022).

2.1.2 Carbon intensity related studies
Carbon emission intensity is a key indicator for assessing the

carbon efficiency of economic activities, typically defined as the
amount of carbon emissions per unit of economic output (Aryai and
Goldsworthy, 2024; Jiang et al., 2024; Liu et al., 2023). Carbon
intensity is influenced by multiple factors, including economic
conditions, technological advancements, energy structure, and
policy interventions (Lee et al., 2022; Liu et al., 2021; Du et al.,
2022). Among these factors, technological innovation is widely
recognized as a primary driver for reducing carbon emission
intensity, particularly in the contexts of clean energy technologies
and industrial decarbonization (Porter and Linde, 1995). Moreover,
optimizing the energy mix plays a critical role in influencing carbon
emission intensity. For instance, the transition from fossil fuels to
renewable energy sources has been shown to significantly contribute
to reducing carbon emissions (Lin and Teng, 2024; Liu et al., 2022;
Duan et al., 2025). However, research indicates that the effects of
these factors exhibit significant heterogeneity across regions (Zhao
et al., 2023). For instance, in high-income countries, technological
innovation has a more pronounced impact on reducing carbon
emission intensity, whereas in regions with abundant energy
resources, adjustments to the energy structure tend to have a
more substantial effect (Grossman and Krueger, 1995; Wu
et al., 2021).

From a dynamic perspective, changes in carbon intensity not
only reflect the level of economic development and technological
advancements, but are also significantly influenced by policy
interventions (Xu et al., 2023). For instance, carbon taxes and
carbon trading mechanisms are widely regarded as essential
policy tools for driving corporate emissions reductions. By
increasing corporate costs and optimizing resource allocation,
these policies can substantially lower carbon emission intensity
(Ren et al., 2022; Zhang et al., 2023). However, in certain energy-
intensive industries, the rebound effect may undermine the
effectiveness of these policies in reducing emissions (Zhang et al.,

2022). Furthermore, the implementation strength of policies and the
adequacy of complementary measures directly impact their real-
world efficacy (Ali et al., 2022). In developing countries, for example,
the effectiveness of policy implementation is often constrained by
fluctuations in energy prices, government regulatory capacity, and
public participation (Wu et al., 2024; Yan et al., 2022).

Recently, digital technology innovation has become a significant
driver in reducing carbon emission intensity, profoundly impacting
carbon emissions through optimized energy management, enhanced
production efficiency, and the promotion of green technology
transitions (Lian et al., 2024). Technologies such as smart grids
and artificial intelligence enable precise energy scheduling and real-
time monitoring, effectively reducing resource waste and lowering
the carbon intensity per unit of output. However, the widespread
adoption of digital technologies may also give rise to certain negative
effects. For instance, the rapid expansion of digital infrastructure-
such as data centers and servers-could increase carbon emissions,
potentially offsetting some of the gains from technological
advancements (Zhang et al., 2024). Additionally, digital
innovation may lead to a rebound effect, where improved
efficiency triggers higher energy demand, resulting in increased
carbon emissions in the short term (Sun et al., 2024).
Consequently, the academic discourse surrounding the
environmental impacts of digital technology innovation has
become increasingly vigorous, with many scholars suggesting that
its role in reducing carbon emission intensity may exhibit nonlinear
characteristics.

Based on the above literature, this study proposes the following
hypothesis regarding the nonlinear relationship between digital
technology innovation and carbon intensity.

2.2 Basic hypothesis

The rapid development of digital technologies is often
accompanied by significant infrastructure investments, which, in
the short term, may lead to an increase in carbon intensity. For
instance, the deployment of data centers, cloud computing
platforms, and large-scale Internet of Things devices requires
substantial energy and resources to maintain their operations,
with much of the energy consumption typically sourced from
traditional fossil fuels, thereby contributing to higher carbon
emissions (Wang et al., 2024b). This nonlinear pattern aligns
with the Environmental Kuznets Curve (EKC) theory proposed
by Grossman and Krueger (1995), which posits an inverted
U-shaped relationship between economic growth and
environmental degradation. Analogously, digital technology
innovation exhibits a “rebound effect” in its early stages (similar
to EKC’s pollution increase phase), where infrastructure expansion
and productivity growth driven by digitalization may transiently
elevate carbon intensity. However, as digital technologies mature-
characterized by widespread adoption of smart grids, big data
analytics, and AI-driven efficiency tools-their energy-saving
effects dominate, leading to a decline in carbon intensity
(mirroring EKC’s pollution reduction phase) (Pu et al., 2024).

Furthermore, during the initial phase of digital technology
adoption, a “rebound effect” may occur, wherein the resource
savings and efficiency gains brought about by technological
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advancements stimulate increased productivity and consumption
demand, thereby exacerbating carbon intensity. In this stage,
although the application of digital technologies may improve
energy efficiency in certain industries, the associated
infrastructure development and rising market demand could keep
carbon emission intensity at elevated levels or even cause it to rise
(Du et al., 2024). This phenomenon aligns with the early pollution
increase phase described by the Environmental Kuznets Curve
(EKC) theory, suggesting that digital technologies, in their early
stages, may have a negative impact on carbon emissions.

As digital technologies mature, their positive impact on
carbon emissions increasingly becomes more pronounced,
gradually outweighing their initial negative effects. With the
widespread integration of information technologies-
particularly advancements in big data, smart grids, and
artificial intelligence-digital technologies have demonstrated
significant potential in optimizing resource allocation and
improving energy efficiency. These technologies enable precise
data analysis, real-time energy management, and intelligent
production processes, all of which serve to minimize energy
waste and excessive consumption (Geng et al., 2024). For
example, the deployment of smart homes, intelligent buildings,
and the industrial internet allows for precise monitoring and
adjustment of energy usage, thereby supporting energy
conservation and carbon reduction goals. Unlike traditional
technological innovations, which typically exhibit linear or
gradual environmental impacts, digital technologies show
more pronounced nonlinearity due to their inherent network
effects and infrastructure dependencies. For example, the
marginal environmental benefit of digital tools increases
exponentially as more firms and industries adopt
interconnected digital systems, creating synergistic reductions
in energy intensity. This contrasts with incremental innovations
in traditional sectors, which often yield diminishing returns in
emission reduction efficiency over time. For example, as digital
technological innovations continue to evolve, industry supply
chains are progressively shifting toward low-carbon, green
practices, providing a more robust foundation for the green
applications of digital technologies (Xu et al., 2024). These
factors enable digital technologies to increasingly contribute to
emissions reduction in the later stages, resulting in a gradual
decline in carbon intensity. Consequently, over the long term,
digital technology innovations not only play a crucial role in
reducing carbon emissions, but also drive the sustainable
development of urban environments (Wu et al., 2022). So,
we propose:

Hypothesis 1: There is an inverted “U” shaped relationship
between digital technology innovation and urban carbon intensity.

3 Study design

3.1 Data source

In 2012, the construction of ecological civilization was
officially elevated to the core of national governance.
Moreover, considering that the outbreak of the COVID-19

pandemic in 2020 shifted governmental priorities significantly
towards pandemic prevention and control, the study period is
limited to 2012-2019. Digital patent applications are obtained
from CNRDS database, while information on carbon emissions
and energy consumption are sourced from China Urban
Statistical Yearbook, China Energy Statistical Yearbook.
Environmental attention is derived from government work
reports. Additional urban features are sourced from EPS
database. Finally, we construct a balanced panel dataset
covering 282 cities in China.

3.2 Variable metrics

3.2.1 Dependent variable
Urban carbon intensity (Ci). Urban carbon emissions primarily

stem from two sources: direct emissions caused by the consumption
of energy forms such as liquefied petroleum gas and coal, and
indirect emissions linked to energy usage, including electricity
and heat (Lv et al., 2024). Adopting the method proposed by Wu
and Guo (2016), annual carbon emissions are computed by
multiplying the consumption of different energy sources within
cities by their corresponding carbon emission factors and
aggregating the values. For indirect emissions from electricity
consumption, the national average carbon emission factor for
grid electricity (0.6101 kgCO2/kWh) was applied, as stipulated in
the Provincial Greenhouse Gas Inventory Guidelines. The
dependent variable is represented by the ratio of total urban
carbon emissions to GDP. Therefore, the dependent variable is
represented by the ratio of total urban carbon emissions to GDP.

3.2.2 Independent variable
Urban digital innovation (Digi). We employ the volume of

urban digital economy patent applications as the core variable to
measure the level of digital technological innovation at the city level.
This indicator aims to capture both a city’s technological innovation
capacity and its technological reserves within the digital economy
domain. The number of digital economy patent applications reflects
not only the intensity of investment in digital technology, but also
the efficiency of innovation outputs, while simultaneously
highlighting disparities in digital technological advancement
across cities and its implications for regional competitiveness. As
a core indicator of urban digital technology reserves, the number of
digital economy patent applications correlates strongly with national
policy orientations such as “Digital China”, reflecting both
innovation investment and technological readiness in strategic
fields like artificial intelligence and big data (Li and Yue, 2024).
Moreover, this metric provides a direct measure of innovation
activity in critical fields such as information technology, artificial
intelligence, big data, and blockchain. As a key outcome of
technological innovation, patent applications also serve as a
proxy for a city’s ability to attract and support the digital
economy’s industrial chain, revealing its overall strength in
technology development, industrial agglomeration, and resource
allocation. This study focuses on invention patents and utility
model patents, as these categories most effectively capture
technological innovation levels, thereby generating city-level data
on digital economy patent applications.
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3.2.3 Mechanism variables
Energy intensity (Ei). Drawing from references such as Chen et al.

(2019) andChen et al. (2022), this study employs “energy consumption/
GDP” to measure energy intensity. Energy consumption is determined
by converting the annual usage of electricity (measured in 10,000 kWh),
liquefied petroleum gas (in tons), and natural gas (in 10,000 cubic
meters) for each city into equivalent units of “10,000 tons of standard
coal,” and then summing these values.

Government environmental attention (Er). When the
government attaches great importance to environmental
protection, the number of environment-related words in the
government work report will increase accordingly, and the
proportion will also increase (Chen et al., 2018). Similar to Chen
et al. (2018), using the content analysis approach, we assess
government attention to environmental issues by calculating the
percentage of environmental terms to the total number of words in
government work reports.

3.2.4 Control variables
Following the approach outlined by Zhang et al. (2023) and

Zhang et al. (2020), we incorporate the following control variables
into the model. Economic development level (Gdpr) is assessed
using the city’s GDP growth rate. Foreign trade (Fore) is captured by
the proportion of foreign direct investment to GDP. Educational
expenditure (Edu) is proxied by the ratio of a city’s education
investment relative to its GDP. Population density (Pode) is
defined as the ratio of the total year-end population to the
administrative area. Scientific expenditure (Scir) is represented by
the share of a city’s scientific spending in its GDP. Industrial
structure (Sec) is evaluated based on the share of the secondary
sector’s value added in relation to GDP. Lastly, industrial sulfur
dioxide emission intensity (So) is calculated as the proportion of
industrial sulfur dioxide emissions to GDP.

3.3 Model setting

We designed the following model:

Ciit � α + β1Digiit + β2Digiit*Digiit + ΣλConit + μi + υt + εit (1)
in Formula 1, Ciit indicates carbon intensity of city i in time t; Digiit
represents digital technology innovation; Conit denotes a string of
urban features; fixed effects for city and year are captured by μi and
]t, respectively; εit represents the error term, α represents the
constant term; β1 and β2 are the coefficients.

To examine the validity of the energy efficiency pathway and the
environmental attention pathway, following the approach outlined
by Baron (2022), we construct the mediating effects model as
described below:

Mechit � α + β1Digiit + β2Digiit*Digiit + ΣλConit + μi + υt + εit

(2)
in Formula 2, Mechit is the mechanisms, Digiit represents digital
technology innovation; Conit denotes a string of urban features; fixed
effects for city and year are captured by μi and ]t, respectively; εit
represents the error term, α represents the constant term; β1 and β2
are the coefficients.

4 Analysis of results

4.1 Statistical analysis

As shown in Table 1. The average carbon intensity (Ci) exceeds
its median, reflecting a generally right-skewed distribution. The
mean and median of digital technology innovation (Digi) are nearly
identical, coupled with a low standard deviation, indicating that
digital technology innovation levels across cities exhibit an
approximately normal distribution pattern.

4.2 The spatial and temporal evolution of
digital technological innovation and
carbon intensity

As shown in Figure 1, we examine the spatial distribution of
digital technology for 2013, 2015, 2017, and 2019. Overall, cities with
higher innovation capabilities were predominantly concentrated in
the eastern provinces, particularly in the Yangtze River Delta region,
during the period from 2013 to 2019. In contrast, cities with weaker
innovation capabilities were primarily located in the southwestern,
northwestern, and northeastern regions. This disparity can be
attributed to the higher levels of openness, market dynamism,
and a robust culture of innovation in the eastern regions, which
have successfully attracted greater capital investment and corporate
engagement in digital technology innovation. Conversely, the
western and northeastern regions appear to have been
constrained by relatively limited policy support and resource
allocation, contributing to their lagging innovation capabilities.

As shown in Figure 2, we examine the spatial distribution of Ci
in 2013, 2015, 2017, and 2019. Overall, areas with higher carbon
intensity are predominantly located in northern China, particularly
in the Northeast, Northwest, and Beijing-Tianjin-Hebei regions.
Northern regions, especially the Northwest and Northeast, possess
abundant reserves of coal, oil, and natural gas, resulting in energy
consumption that relies heavily on high-carbon fossil fuels and
contributes to elevated emission intensity. Compared to
southeastern coastal areas, northern cities have been slower to
develop and adopt clean energy technologies, such as wind, solar,
and nuclear power, which has further reinforced the dominance of
fossil fuels and exacerbated their carbon emission intensity.

4.3 Benchmark result

The benchmark regression result is presented in Table 2.
Column (1) reports the result without incorporating any urban
features, where the coefficient of the independent variable Digi*Digi
is significantly negative. Column (2) displays the results after
including all control variables, showing that the coefficient of
Digi*Digi and its significance remain largely unchanged. These
findings indicate an inverted U-shaped relationship between
digital technology innovation and carbon emission intensity,
where innovation initially promotes but subsequently suppresses
emission intensity. This result provides evidence of the rebound
effect in the context of China, underscoring the critical role of digital
technology innovation in driving low-carbon transitions and
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TABLE 1 Statistical analysis.

Variables Definitions Average SD Min Median Max

Ci Urban CO2 emissions/GDP 0.3759 0.3395 0.0453 0.2753 2.1794

Digi Natural logarithm of urban digital patent applications 5.7199 1.7998 1.9459 5.5626 10.3836

Ei Urban energy consumption/GDP 0.0925 0.0819 0.0104 0.0741 0.5471

Er Urban environmental attention as measured by government work reports 0.7497 0.2559 0.2700 0.7200 1.5600

Gpdr Growth rate of urban GDP 8.0548 3.4393 −19.3800 8.0500 23.9600

Fore Ratio of FDI to GDP 2.8817 5.0906 0.0141 1.3894 29.2113

Edu Ratio of education expenditure to GDP 0.0350 0.0170 0.0134 0.0305 0.1051

Pode Ratio of total population to regional administrative area at the end of the year 0.0431 0.0304 0.0019 0.0364 0.1358

Sec Value added of the secondary industry/GDP 46.2930 10.2681 19.7600 47.0650 71.4500

So Industrial sulphur dioxide emissions/GDP 0.0026 0.0036 0.0000 0.0014 0.0369

N 2,256

FIGURE 1
Spatial and temporal evolution of digital technological innovation. Note: The base map is from the National Center for Basic Geographic
Information, review number is GS(2024) 0650, and the base map has not been modified. The same below.
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FIGURE 2
Spatial and temporal evolution of carbon intensity.

TABLE 2 Baseline results.

(1) (2)

Digi 0.0828*** 0.0824***

(3.1130) (3.1318)

Digi*Digi −0.0084*** −0.0077***

(-4.1604) (-3.9968)

Control variables No Yes

City_FE Yes Yes

Year_FE Yes Yes

_cons 0.2034* 0.1992

(1.9005) (1.4191)

N 2,256 2,256

R2_a 0.8882 0.8942

Note: T-values for city-level clustering are presented in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. The same below.
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sustainable development. Furthermore, it supports Hypothesis 1,
validating the proposed theoretical framework.

4.4 Robustness checks

First, as reported in column (1) of Table 3, we replace the
independent variable with the number of authorized digital
economy patents at the city level. Second, while numerous
city-level control variables were included in the model,
unobserved macro-level factors at the provincial level might
still bias the findings. To address this issue, we adopted the

method proposed by Yuan and Zhang (2015) by introducing
province-year interaction fixed effects, which account for both
time-varying and time-invariant provincial features. The result is
shown in column (2). Third, we exclude four municipalities from
the analysis to ensure more targeted results. The corresponding
finding is presented in column (3). Finally, recognizing that a
series of carbon reduction and environmental protection policies
between 2012 and 2019 (e.g., the low-carbon city pilot programs),
these policies could significantly influence carbon intensity. To
control for their potential effects, we include these policies as
control variables in the model. The result is reported
in column (4).

4.5 Nonlinear mediating mechanism

4.5.1 Energy efficiency channel
According to the result presented in column (1) of Table 4, the

coefficient of Digi*Digi is significantly negative. This suggests that
lower levels of digital technology innovation are linked to higher
energy consumption. However, once digital innovation exceeds a
certain threshold, it begins to reduce energy consumption. As digital
technology innovation advances, it enables the development and
adoption of more energy-efficient solutions, such as automation,
data analytics, and smart technologies, which optimize energy usage
and reduce consumption. Once digital innovation reaches a critical
threshold, these technologies become widely implemented, leading
to significant energy savings.

4.5.2 Environmental attention channel
Next, we examine the mediating role of government

environmental attention. As reported in column (2) of Table 4.
The coefficient of Digi*Digi is −0.0083, which is significantly
negative at the 1% level. These results suggest that at initial
stages of digital technology innovation, it may worsen
environmental challenges. However, once digital innovation
exceeds a certain threshold, it starts to alleviate environmental

TABLE 3 The robustness tests for carbon emissions intensity.

(1) (2) (3) (4)

Digi 0.0610*** 0.0936*** 0.0814*** 0.0822***

(2.8033) (2.6359) (3.0481) (3.0425)

Digi*Digi −0.0065*** −0.0067** −0.0077*** −0.0075***

(-3.4714) (-2.4632) (-3.9822) (-3.8760)

Control variables Yes Yes Yes Yes

City_FE Yes Yes Yes Yes

Year_FE Yes Yes Yes Yes

Province*Year Fixed
Effects

No Yes No No

Environmental policies No No No Yes

_cons 0.2837** 0.0951 0.2024 0.2116

(2.1898) (0.5661) (1.4312) (1.4667)

N 2,256 2,256 2,224 2,256

R2_a 0.8938 0.9022 0.8944 0.8943

Note: T-values for city-level clustering are presented in parentheses. ***p < 0.01, **p < 0.05,

*p < 0.1.

TABLE 4 The results of mechanism analysis.

(1) Energy efficiency (2) Environmental attention

Digi 0.0448*** 0.1196***

(4.0766) (3.2585)

Digi*Digi −0.0035*** −0.0083**

(-4.0405) (-2.3929)

Control variables Yes Yes

City_FE Yes Yes

Year_FE Yes Yes

_cons −0.0377 0.2716

(-0.6849) (1.1667)

N 2,256 2,256

R2_a 0.7952 0.4205

Note: T-values for city-level clustering are presented in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
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pollution and boosts government focus on environmental
protection. This indicates that government attention to
environmental issues acts as a mediator in the relationship
between digital technology innovation and carbon intensity.

4.6 Heterogeneity analysis

4.6.1 Substantial or symbolic digital technology
innovation

We categorize invention-based digital technology patents as
substantial digital technological innovations and utility model
patents as strategic digital technological innovations. Columns (1)
and (2) of Table 5 present the result for substantial and strategic
digital technological innovations, respectively. In both cases, the
relationship between digital innovation and carbon intensity follows
an inverted U-shape. However, a key distinction emerges: the
turning point for substantial digital technological innovation
occurs at a much earlier stage than for strategic digital
technological innovation. This suggests that innovations with
stronger technological capabilities, such as substantial
innovations, reach the critical threshold more quickly, leading to
a more rapid reduction in carbon intensity. This finding underscores
the transformative potential of substantial digital innovations, which
focus on fundamental changes in products or technologies, and
highlights their greater potential and advantages in promoting
environmental, corporate, and societal benefits.

4.6.2 Key environmental protection cities vs.
other cities

The list of key cities for environmental protection comes from
the 11th Five-Year Plan for National Environmental Protection,
totaling 113 cities (A detailed list can be found in Supplementary
Appendix SA). Column (3) of Table 5 represents these key
environmental protection cities, while column (4) represents
other cities. The results indicate that digital technological

innovation exhibits a significant inverted U-shaped relationship
with carbon intensity in other cities. This may be attributable to
the fact that non-key cities typically face lower environmental
regulatory pressures, which affords firms greater flexibility in
their selection and application of technological innovations.
These cities may be more effective in promoting the application
of digital technologies through market-based mechanisms,
optimizing energy efficiency, and reducing carbon intensity.

4.6.3 Broadband China pilot vs. non-broadband
China pilot

Columns (5)–(6) of Table 5 correspond to the cities included in
the “Broadband China” pilot program and those that are not. In both
categories of cities, the inverted U-shaped relationships all hold.
However, it is evident that in the pilot cities, digital innovation
reaches the turning point more rapidly. This phenomenon may stem
from the advantages that Broadband China pilot cities possess in
terms of digital infrastructure, policy support, and innovation
capacity. These cities typically benefit from greater government
investment, policy backing, and early advantages in digital
technology applications, enabling them to more quickly realize
technological innovations and translate these into tangible carbon
emission reduction effects. As a result, pilot cities are able to reach
the turning point more swiftly, thereby playing a significant role in
reducing carbon intensity.

5 Conclusion and implications

Our analysis reveals a significant inverted U-shaped relationship
between digital technology innovation and carbon intensity.
Specifically, in the early stages of digital technology innovation,
the increased deployment of technology and resource inputs may
lead to a rise in carbon intensity. However, as digital technologies
mature and become more widely adopted, they contribute to a
reduction in carbon intensity. Furthermore, our nonlinear

TABLE 5 Heterogeneity analysis.

(1) (2) (3) (4) (5) (6)

Digi 0.0579** 0.0449* 0.0190 0.0655* 0.0786** 0.0910**

(2.4256) (1.6647) (0.5247) (1.8111) (2.2639) (2.3387)

Digi*Digi −0.0069** −0.0062** −0.0019 −0.0071** −0.0093*** −0.0072***

(-2.4088) (-2.2897) (-0.6674) (-2.5024) (-2.8795) (-2.6555)

Control variables Yes Yes Yes Yes Yes Yes

City_FE Yes Yes Yes Yes Yes Yes

Year_FE Yes Yes Yes Yes Yes Yes

_cons 0.1488 0.4590*** 0.3092 0.2843 0.5160** 0.0152

(0.8937) (3.5857) (1.2751) (1.5518) (2.3319) (0.0936)

N 912 1,344 896 1,360 968 1,288

R2_a 0.8947 0.8908 0.9071 0.8874 0.8939 0.8982

Note: T-values for city-level clustering are presented in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
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mediation analysis indicate that digital technology innovation
influences carbon intensity indirectly through two key channels:
energy intensity and increased government attention to
environmental protection. Notably, substantive digital technology
innovation is observed to reach the turning point more quickly,
yielding more pronounced improvements in carbon intensity. This
underscores the critical role of technology quality in driving green
development. The study also demonstrates that the inverted
U-shaped relationship holds consistently across both broadband
pilot and non-pilot cities but is limited to non-key environmental
protection cities. These findings deepen our understanding of the
relationship between digital technology innovation and carbon
intensity, offering valuable policy recommendations and practical
guidance for advancing urban sustainability objectives.

Based on the conclusions, we propose the following
recommendations. First, during the early stages of digital
technology innovation, it is crucial to enhance policy support,
particularly in the areas of technology research and development
(R&D) and commercialization. This can be achieved through
government subsidies, tax incentives, and venture capital. These
measures will encourage businesses to increase their investments in
digital technologies and accelerate their maturation and application.
Simultaneously, regulatory oversight should be strengthened to
address potential negative effects during the innovation process,
such as high energy consumption or environmental pollution. This
can be done by establishing stringent energy consumption standards
and environmental impact assessment mechanisms. These measures
will ensure that early-stage digital innovation does not exacerbate
carbon intensity.

Second, it is essential to promote the deep integration of digital
technologies in energy management and environmental governance.
For example, the development of intelligent energy systems based on
artificial intelligence and big data should be prioritized to improve
energy efficiency. The government should also enhance its
environmental oversight by establishing regulatory indicators and
regular evaluation mechanisms to integrate environmental
performance into governmental assessments.

Third, substantial innovation projects should be given priority,
concentrating resources on developing efficient and practical digital
technology applications while avoiding the dispersion of resources and
redundant investments. Special funds should be established to support
R&D and application of digital technologies with significant carbon
reduction potential. Additionally, incentive mechanisms should be
created to encourage businesses to prioritize innovation quality
rather than merely pursuing the quantity of technologies. It is
important to acknowledge that patent applications mainly reflect
technological potential rather than actual implementation. Future
research could incorporate micro-level data on corporate digital
transformation to more comprehensively assess the real-world
impact of digital technologies on carbon intensity, bridging the gap
between innovation output and application efficacy.

Fourth, in non-key environmental protection cities, policy
support and special incentives should be leveraged to enhance
investments in digital infrastructure, especially in regions with
technological backwardness. In key environmental protection
cities, it is essential to optimize existing environmental
governance policies and explore the synergy between technology
and policy, with a view to establishing an efficient environmental

technology innovation model that consolidates their existing
environmental governance advantages.

Lastly, the successful practices of Broadband China pilot cities
should be replicated, including increasing investments in digital
infrastructure, refining technology promotion policies, and fostering
digital industry clusters. For non-pilot cities, this study recommends
strengthening policy guidance and financial support, particularly for
small- and medium-sized cities with substantial potential for digital
transformation and resource-based cities. Accelerating the
construction of infrastructure such as broadband networks can
effectively enhance their technological absorption capacity.

While this study offers valuable insights into the impact of
digital innovation on carbon intensity, several limitations merit
acknowledgment. First, the analysis is confined to the city-level
perspective, failing to account for potential spatial effects across
regions. The influence of digital innovation may extend beyond
individual cities, exerting spillover effects on neighboring areas
through spatial interdependencies. Future research could
incorporate spatial econometric models to systematically examine
the intercity relationships. Second, the study relies on macro-level
city-scale data, overlooking micro-level data at the county or firm
level. Future studies may refine the data granularity to reveal intra-
city variations and deliver more precise analytical results.
Additionally, this research does not differentiate between various
types of digital technology innovations. Future studies could
categorize digital innovations into distinct categories and explore
their heterogeneous mechanisms on carbon intensity, which would
provide more targeted policy recommendations for
decision-makers.
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