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Accurate and cost-effective mapping of soil organic carbon (SOC) is critical for
understanding carbon dynamics and informing sustainable land management.
Although deep learning-based methods have demonstrated strong potential in
digital soil mapping, they typically require large amounts of data. However, the
availability of site-level SOC observations is often limited, which poses a
challenge for model performance. To address this, we propose a novel
transfer learning approach based on a Convolutional Neural Network (CNN)
model that does not rely on exogenous data. Specifically, when predicting SOC
for a given soil layer, the model is first pre-trained on data from all layers and then
fine-tuned using data from the target layer. This design enablesmore efficient use
of limited site data. Experimental results show that the proposed transfer model
consistently outperforms other machine learning models, including the Random
Forest (RF), standard CNN, and Multi-Task CNN (MTCNN) models. The transfer
model achieves a coefficient of determination (R2) of 0.374 and a root mean
square error (RMSE) of 2.937%, indicating superior performance. These findings
highlight the effectiveness of the proposed approach for digital soil mapping
under data-scarce conditions and underscore its potential as a robust tool for
accurate SOC estimation.
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1 Introduction

Soil organic carbon (SOC), a key soil property, plays a central role in maintaining
ecosystem health and food security by regulating physical, chemical, and biological soil
processes (Lal, 2004; Lausch et al., 2019; Araujo et al., 2012). It constitutes the largest
terrestrial carbon pool, with approximately 2,400 Pg stored in the top 2 m of soil—3.2 times
the carbon in the atmosphere and 4.4 times that in biomass (Han et al., 2016). Soil is also
regarded as a sink of carbon, which can generate carbon dioxide in the atmosphere and trap
carbon from the atmosphere to help mitigate climate change (Shen et al., 2022). Therefore,
accurate and cost-effective mapping of soil properties is critical for sustainable land
management and policy-making.

Digital soil mapping methods have become popular due to their low cost in time and
money (Kheir et al., 2010). Recently, machine learning models, such as artificial neural
networks (Zhao et al., 2009), k-nearest neighbor (Piikki et al., 2013), support vector
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machines (Wu et al., 2018), and tree-based models (Bian et al., 2019;
Wiesmeier et al., 2011; Zhang et al., 2019), have been widely applied
in digital soil mapping for predicting both horizontal and vertical
variations in various soil properties. Among them, random forest
(RF) is one of the most popular methods. For instance, Sreenivas
et al. (2014) described the potential of the RF model to predict SOC
in southern India. Kim and Grunwald (2016) used RF to map SOC
in an area covering ~418 km2 in the northern part of the Everglades
in Florida and demonstrated that RF provided great confidence in
assessing SOC. Akpa et al. (2016) evaluated three machine learning
models to predict SOC and bulk density in Nigeria and reported that
the RF model performed better than the Cubist and Boosted
regression tree models in most cases. Blanco et al. (2018) applied
the RF model to predict soil water retention at the catchment of the
Quinuas River. Hengl et al. (2021) combined RF and other machine
learning models as an ensemble leaner for mapping African soil
properties and nutrients at a 30 m spatial resolution. Ma used
Quantile RF model to generate the SoilGrids 2.0 which was a set of
global soil maps at 250 m spatial resolution (Ma et al., 2021) (Hengl
et al., 2021). SoilGrids 2.0 was built on the previous SoilGrids 250 m
(Hengl et al., 2017) using more standardized soil profile data and
environmental covariates. Liu et al. (2022) developed a high-
resolution soil information map of China with a 90 m spatial
resolution based on the RF model. The European Space Agency
(https://www.world-soils.com/) also funded a WORLDSOILS
project, which aimed to develop a soil monitoring system for
providing yearly predictions of SOC at the global scale based on
the RF model.

Recently, deep learning (DL) has been successfully applied in
soil science due to its strong nonlinear fitting ability. Previous
studies (Li et al., 2020a; Li et al., 2022a; Li et al., 2022b) used long
short-term memory-based models (LSTM-variant) to predict soil
moisture and temperature. At the same time, DL represented by
the convolutional neural network (CNN), which is closely related
to our work, has gained attention in digital soil mapping research
(Taghizadeh-Mehrjardi et al., 2020; Yang et al., 2020; Yang et al.,
2021). As we know, soil information is generated by the complex
interactions between human activities and natural processes over
time, and many environmental covariates can act as soil-forming
factors (Dobarco et al., 2021). In the meantime, CNN is
particularly prominent in digital soil mapping due to its
ability to extract local features between multi-dimensional
environmental covariates and soil properties. However,
existing methods often treat data from different soil depths
independently, ignoring the potential intrinsic correlation
between depths.

We propose a CNN-based transfer learning method to reveal the
symmetry between soil depths; that is, there is an intrinsic
correlation structure between soil layers, which can be used to
improve the prediction accuracy of SOC at a specific soil depth.
Specifically, we first initialize the model with data from all soil
depths to capture the information characteristics of the overall soil
layer, and then, when predicting the data at a specific depth, we fine-
tune the model parameters to achieve efficient transfer of
information from the whole to the local.

Our contributions include (i) designing a CNN model
suitable for multi-soil depth SOC prediction, (ii) proposing a
transfer learning method that uses all soil depth information to

improve the prediction accuracy of SOC at a specific depth
without the need for external data, (iii) exploring the optimal
model layer that should be frozen during the transfer learning
process to improve prediction performance, and (iv) verifying
whether important covariates selected by RF can further improve
the performance of deep learning models. By explicitly
expressing and using the symmetry between soil depths, this
study provides an innovative approach for accurate soil mapping
and provides new insights for model optimization and soil
science research.

2 Materials and methods

2.1 Soil organic carbon

SOC data in this study were obtained from the Second National
Soil Survey of China. China, one of the largest countries in the
world, is located in central and eastern Asia. The climate types in
China are complex and diverse, ranging from wet and semi-humid
to semi-dry and dry conditions from the southeast to the
northwest. Soil profiles used in this study cover almost all
regions of China, which represent various soil-forming
environments. Soil profiles were described and observed based
on standard field soil survey methods (Zhang and Gong, 2012). As
the depths of soil horizons differ in profiles, equal-area quadratic
splines method was used to fit at six standard soil layers (0–5, 5–15,
15–30, 30–60, 60–100, and 100–200 cm). The detailed process can
be found in Liu et al. (2022). Table 1 shows the statistics of SOC.
SOC values had a wide range due to the complex and diverse
territory in China. For example, SOC values at 0–5 cm soil depth
ranged from 0% to 40.83% by weight, with a mean value of 2.63%
and a standard deviation of 4.33%. SOC values decreased with
increasing soil depth and were normalized before the
training model.

2.2 Environmental covariates

In this study, 134 environmental covariates were considered
(Supplementary Table S1), representing factors related to soil and
encompassing five major categories, namely, climate, organisms,
topography, parent material, and soil types. Climate factors (such as
temperature and precipitation) regulate the input and
decomposition rates of organic matter by influencing plant
growth and microbial activity; biological factors (such as
vegetation type and biomass) directly determine the input of
organic matter; topographic factors (such as elevation and slope)
indirectly affect SOC accumulation by influencing moisture and
temperature distribution; parent material factors (such as soil
texture and parent rock type) determine the physical and
chemical properties of the soil, thereby influencing the stability of
organic matter; and soil types and land use practices further reflect
the distribution patterns of organic carbon under different soil
conditions.

During data processing, covariates with absolute Pearson
coefficient values less than 0.05 relative to the target variable are
first removed, and then redundant environment covariates with
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Pearson correlation coefficients greater than 0.8 with other
covariates are eliminated. We then iterated over the remaining
variables, and 50 covariates were evaluated in batch iterations.
Specifically, the covariates were divided into groups of 10; the
first iteration started with 10 variables, and 10 additional
variables were added in each subsequent iteration until all
50 variables were included. We used the transfer model proposed
in this paper to model six different depths of soil profile layers and
compared the prediction performance between different subsets
according to the RMSE of the predicted results. The results
showed that the best model performance was achieved when
37 covariates were included (Table 2). As a result, these
37 environmental covariates were ultimately selected as model
inputs (marked with superscript “1” in Supplementary Table S1).
To eliminate scale differences among the covariates, the min–max
normalization method was used to scale the covariates to a range of
0–1. Normalization not only helps accelerate the convergence speed
of the model but also enhances its stability and predictive
performance. Through the comprehensive analysis of these
covariates, the model can better capture the spatial variability of
soil organic carbon, thereby improving prediction accuracy. At the
same time, in order to simulate SOC more accurately, the six
standard soil layers at different depths mentioned in Section 2.1
are used as input data and are input into the model along with the
covariate data.

2.3 Climatic type zoning

China has a vast land area and many different climate types.
Different climate types may have different effects on SOC; therefore,
in order to more accurately predict SOC of different climate regions,

we used the Köppen climate classification, which was developed by
German climatologist Wladimir Köppen, to classify the data
proposed at the beginning of the 20th century. This system
divides the world’s climate into several types based on
temperature and precipitation and their annual distribution. The
types of climate used in this paper and the results predicted by the
model are shown in Section 3.4.

2.4 Benchmark models

In this work, a DL model with CNN structures was developed
for SOC prediction. Figure 1 and Supplementary Table S2 illustrate
the details of our CNN structures, which were taken as benchmarks
for our comparisons. The hyperparameters of the CNN-based
model were tuned using soil data from all soil depths. The
framework contained three blocks, namely, convolutional, fully
connected (FC), and output blocks. The convolutional block
consisted of convolutional, max pooling, Swish activation
function, batch normalization, and dropout layers. The
convolutional block was expected to extract spatial features
from environmental covariates; in other words, it was expected
to identify representative features of specific soil properties, such as
how a peak or a steep slope corresponds to SOC ranges. The fully
connected block consisted of fully connected layers, Swish and
ReLU activation functions, batch normalization, and dropout
layers. The convolutional layer only focused on the neurons in
the local field, but the fully connected layer did not. The output of
the convolutional block was first flattened and then input to the
fully connected block. All the neurons were connected in the fully
connected block. The output block was used to predict SOC, which
consisted of one fully connected layer. The hyperparameters
related to the three blocks and training procedure are listed in
Supplementary Table S2.

2.5 Transfer model

A CNN model was developed to extract spatial features from
multivariate environmental covariates, structured as 2D patches,
where each channel represents a specific variable. The architecture
includes stacked convolutional layers with Swish activation,
MaxPooling, and Dropout, followed by fully connected layers
with batch normalization, culminating in a regression output for
soil property prediction. The model was initially trained on data

TABLE 1 Statistical description of soil organic carbon content (% by weight) at multiple depths.

Depth (cm) Number of data Min Max* Mean SD Depth (cm)

0–5 8,453 0.00 40.83 2.36 4.33 0–5

5–15 8,451 0.00 40.35 2.09 3.70 5–15

15–30 8,412 0.02 41.67 1.48 2.79 15–30

30–60 8,098 0.03 45.61 0.97 2.36 30–60

60–100 6,541 0.03 47.99 0.70 2.12 60–100

100–200 2054 0.04 46.88 0.54 2.51 100–200

TABLE 2 RMSE with different variables in six soil layers at different depths.

Depth (cm) 10 20 30 37 40 50

0–5 4.9627 5.0385 5.1104 4.2314 5.1189 5.1648

5–15 4.1838 4.2136 4.1954 3.7097 4.4241 4.6171

15–30 3.0925 3.0925 3.0995 2.8467 3.1053 3.1023

30–60 2.7346 2.6809 2.6697 2.5134 2.8013 2.7038

60–100 2.4324 2.5463 2.5158 1.8692 2.5491 2.4501

100–200 2.4356 2.2203 2.2482 1.4310 2.2355 2.2355
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FIGURE 1
Flowchart for developing the transfer model.

FIGURE 2
Structural diagram of the MTCNN.
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spanning all soil depths (0–200 cm) to learn depth-
invariant features.

To improve depth-specific performance, a transfer learning
strategy was applied. The pre-trained CNN’s early layers were
frozen to retain general feature extraction, while the latter layers
were fine-tuned for each soil depth interval. This approach
allowed adaptation to localized depth patterns while
maintaining shared representations. During inference, depth-
specific models reuse the common backbone and adjust only
the fine-tuned components.

2.6 Multi-task convolutional neural
networks model

In this paper, we also employ a multi-task convolutional
neural network (MTCNN) as a benchmark model. The
structure of the MTCNN model we used is similar to the
model structure described by Taghizadeh-Mehrjardi et al.
(2020), as shown in Figure 2. It is based on the
abovementioned CNN model, which is obtained by modifying
it. Unlike the abovementioned CNN, MTCNN has six branches
after the flatten layer, each dedicated to predicting SOC at a
specific depth. This allows the MTCNN to predict the SOC of
six soil layers at the same time. When predicting the SOC of all six
layers at the same time, the network shares the structure up to the
flatten layer, after which it branches into six independent paths.

2.7 Evaluation experiments and metrics

During the experiment, we used four models (namely, CNN
model, transfer model, RF model, and MTCNN model) for soil
mapping. The spatial distribution of the site data used in the
experiments is shown in Figure 3. Figure 3A shows the spatial
distribution of all 8,453 sites used in the experiments using the
CNN model, transfer model, and RF model. Figure 3B shows the
distribution of 6,541 sites used in the experiments using the
MTCNN model. Because MTCNN is characterized by
predicting multiple soil layers of data at the same time, we
selected sites with complete data in the first five layers for the
experiments, and there were 6,541 eligible sites. We did not pick
all six layers with complete data for the experiment because the
number of sites with complete data for the six layers was too small;
it was only 2,054. The datasets were divided into 90% samples for
training and 10% samples for testing. The optimized CNN model
with a lower root-mean-squared error was selected based on 10-
fold cross-validation with 600 epochs. All predictive models were
conducted in Python using the PyTorch and Sklearn tools. RF was
used as an additional benchmark for comparison. In the RF
model, the hyperparameters max_features and min_samples_
leaf were selected from a range [5, 100] with five intervals and
[10,100] with 10 intervals, respectively, via the grid search method
for preventing the RF model’s over-fitting. Other
hyperparameters, such as the number of trees (n_estimators),
were not tuned but simply determined based on RF’s own

FIGURE 3
Study area in China and the spatial distribution of soil profiles over the study area. (A) CNN model, RF model, and the transfer model experiment
setting. (B)MTCNNmodel experiment setting. The red points are for training, the blue points are for testing, and the number at each depth are the number
of observations.
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training. Accuracy was evaluated based on five common metrics,
namely, the Pearson correlation coefficient (R), R2, RMSE, mean
absolute error (MAE), and Kling–Gupta efficiency (KGE). R and
R2 were applied to test the fluctuation pattern and percentage of
variance explained by predictive models, respectively. RMSE and
MAE denoted the ability to estimate volatility and fluctuation
amplitude, respectively. KGE was used to observe the goodness of
fit according to the correlation, conditional, and systematic biases.
The five metrics were computed as follows:

RMSE �
������������∑N

i�1 xi − yi( )2
N

√
,

MAE � ∑N
i�1 xi − yi

∣∣∣∣ ∣∣∣∣
N

,

R � ∑N
i�1 xi − �X( ) yi − �Y( )������������∑n

i�1 xi − �X( )2√ �����������∑n
i�1 yi − �Y( )2√ ,

R2 � 1 − ∑N
i�1 yi − xi( )2

N∑N
i�1 yi − �Y( )2,

KGE � 1 −
������������������������
R − 1( )2 + α − 1( )2 + β − 1( )2√

,

where yi and xi denote observed and predicted values in the ith soil
profile, respectively. �Y and �X are the mean values of the observed
and predicted values, respectively. α � σx/σy,where σx and σy
denote the standard deviation of predicted and observed values,
respectively. β � μx/μy,where μx and μy represent the mean of
predicted and observed values, respectively.

3 Results

3.1 Evaluation of the productive models

We show the distribution of values for the test set of the four
models in a scatterplot to visualize the correlation between the
predicted and observed values. The scatter plots between predictions
and observations from the whole soil profiles are shown in Figure 4.
Figure 4 shows that the transfer model, CNN, and RF achieve
relatively accurate prediction results compared to the MTCNN,

FIGURE 4
Comparisons between the observed and predicted SOC values from all soil depths.
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which has significantly worse prediction results. The transfer model
could achieve better performance than other models in mapping
SOC at unseen profiles, which had reductions of 9.38% and 13.70%
for the RF model and 2% and 9.12% for the CNN model, according
to the RMSE and MAE metrics and yielded higher R2 (0.374), R
(0.618), and KGE (0.373). Meanwhile, similar to previous studies
(Sanderman et al., 2018; Sothe et al., 2022; Keskin et al. (2019)),
lower SOC values were slightly overestimated and higher SOC values
were generally underestimated. To overcome this problem, we also
applied the logarithmic transformation before the training process,
as suggested by other studies (Guevara et al., 2020; Hengl et al.,
2017), but it had little impact on the model performance. Hence, the
original SOC values were retained in our study.

3.2 Comparison of the productive model at
each soil depth

Due to the characteristics of the MTCNN model, we selected a
different test set than the other three models used in the experiments
with the MTCNN in order to ensure that there are no missing values
in the first five layers of each test site. Therefore, we discuss the
MTCNN separately from the other three models.

As an additional visual analysis, the statistical results of three
models (transfer model, CNN model, and RF model) with all soil
depths and the best-performing figure are illustrated in
Supplementary Table S3; Figure 5. In most cases, the transfer
model showed superior performance compared to other models.
The RF model had lower RMSE at 30–60 cm soil depth. Meanwhile,
according to the R2 (less than 0.1) and KGE (negative scores)
metrics, poor performance was achieved by all models from
30 to 200 cm soil depths. Figure 6 shows the predicted maps of
SOC using the proposed transfer model. In general, the spatial

distribution of SOC was similar for all soil depths. It could be
observed that SOC in northeast China, southwest China, and some
regions of northwest China was relatively higher than that in other
regions. Meanwhile, SOC across China started to decrease as the soil
depth increased. The distribution of the predicted SOC maps using
the proposed transfer model was also consistent with the findings of
a recent study (Liu et al., 2022). Overall, the transfer model
outperformed the state-of-the-art models (RF and CNN) in terms
of statistical metrics and provided a reasonable spatial pattern for
SOC mapping.

3.3 Predictive performance of the
MTCNN model

Figure 7 shows the spatial distribution of soil organic carbon
predicted by the transfer and MTCNN models. The overall spatial
distribution of soil organic carbon predicted by the transfer model is
consistent with the results of Liu et al. (2022), so we believe that the
results of the transfer model are more credible. Compared with the
results of the transfer model, the overall spatial distribution of the
results of the MTCNN model is consistent with the results of the
transfer model, but there is a big gap in the details. For example, in
places with high soil carbon content, such as the Tibetan Plateau and
northeast China, the prediction results of the MTCNN model are
significantly lower. The statistical results of the MTCNNmodel with
all soil depths are illustrated in Supplementary Table S4.

3.4 Modeling of different climate zones

Figure 8 presents the RMSE performance of the CNN model
and the proposed transfer learning model across different Köppen

FIGURE 5
Best-performing model at each depth.
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climate zones. The RMSE values of the transfer model are generally
closer to those of the CNNmodel across all climate zones. Notably,
the transfer model shows more substantial improvements in
tropical and dry climates, suggesting that transfer learning can
effectively leverage knowledge from other regions to enhance
prediction performance in areas with limited or
heterogeneous data.

However, in polar climates, both models still exhibit relatively high
prediction errors. This may be attributed to the inherent challenges of
modeling SOC in such regions. Existing studies have shown that SOC
sequestration is closely related to soil microbial activity (Dubeux et al.,
2024); large animals, such as earthworms, ants, and termites, form
burrows, where SOC accumulates and transfers from the top layer
(Nielsen and Hole, 1964; Lorenz and Lal, 2005), which may be
significantly inhibited under extremely low temperatures. As a result,
conventional environmental covariates—such as temperature and

vegetation indices—may lack representativeness and explanatory
power in polar environments, thus limiting the overall model
performance.

3.5 Effect of the transfer model on different
properties

To further illustrate the effectiveness of the transfer model,
we simulated another soil texture property—clay—alongside
SOC for different soil layers. The method of filtering the data
is the same as described in Section 2.2; after the final iteration,
37 covariates related to clay and the corresponding soil layer are
selected as inputs, and some of the noisy data are removed.
Figure 9 shows the comparison of the performance (measured as
RMSE) of the models with and without transfer learning for

FIGURE 6
Spatial distribution of soil organic carbon predicted by the transfer model at (A) 0–5 cm, (B) 5–15 cm, (C) 15–30 cm, (D) 30–60 cm, (E) 60–100 cm,
and (F) 100–200 cm.
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predicting SOC and clay at different soil depths. Compared to the
model without transfer, the transfer model reduced RMSE values
substantially when predicting SOC, particularly at shallow soil
layers (layers 1–3), indicating that the transfer method captures
the spatial distribution of SOC more effectively, thus enhancing

the model’s generalization capability. Additionally, the transfer
model also demonstrated noticeable improvements in predicting
the clay content, especially in soil layers 1, 3, and 5. This also
shows that the transfer model proposed in this paper can achieve
more accurate predictions.

FIGURE 7
Spatial distribution of soil organic carbon predicted by the transfer model (A) and MTCNN model (B) at 0–5 cm.

FIGURE 8
Prediction effect of the CNN model and the transfer model in different climate regions.
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3.6 Effect of the model at different
SOC levels

Figure 10 shows the comparison of the probability density
distributions of the predicted and observed SOC values under
different SOC levels for four models, namely, the transfer model,
CNN, MTCNN, and RF. It is evident that the transfer model yields a
predicted distribution that most closely aligns with the true
distribution in the high-density region (0–2.5), with remarkable
consistency in both peak position and overall curve shape. This
suggests that the transfer model possesses a stronger capability in
learning SOC distribution characteristics and exhibits superior
generalization performance. In contrast, the CNN and MTCNN
show noticeable shifts in the main peak positions, indicating
systematic errors in the core SOC range. In other regions, the
predictions of the transfer model also remain closer to the
observed values. Moreover, the predicted mean of the transfer
model nearly coincides with the true mean, highlighting its
advantage in controlling overall bias. These findings demonstrate
that the transfer model not only outperforms the other models in

fitting the overall distribution but also more accurately captures the
distribution of low SOC regions, which constitute the majority of
the dataset.

4 Discussion

4.1 Transfer learning’s impact on
subsoil modeling

The results (Figure 6; Supplementary Tables S3, S4) show that
the performance of all models decreased as the soil depth increased.
This was also consistent with most previous studies (Akpa et al.,
2016; Kempen et al., 2011; Mulder et al., 2016; Padarian et al., 2017).
The reason may be that the used covariates depict the variations in
the surface soil layer and are not sensitive to the variations in subsoil.
Another reason may be that there are few samples at deeper layers,
especially for the deepest layer (100–200 cm). However, we found
that for deeper soil layers, the transfer model improved more
significantly than the CNN model. We could see that R2 values

FIGURE 9
The effects of the transfer model and the non-transfer model on different variables, where (a) represents the effects of the twomodels in simulating
SOC and (b) represents the effects of the two models in simulating CLAY.
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achieved by the transfer model were 0.230, −0.041, and −0.052,
compared to 0.175, −0.131, and −0.411 (CNN) at 15–30, 60–100,
and 100–200 cm soil depths, respectively. This enormous
improvement should be attributed to the adjacent layers. Since
we used all six layers of data to initialize the transfer model, the
model contains the information on the adjacent soil layers.

4.2 Comparisons of predictive models in
different regions

This section aimed at analyzing the performance of different
models in different regions in China. Hence, the relative bias of the
tested profiles is represented in Figures 11, 12. Figure 11 shows the
relative bias of all models at 0–5 cm soil depth. From Figure 8, we
can see that a larger relative bias existed in northeast, northern
Xinjiang, and southern Tibet for all models, and a smaller relative
bias appeared in south China. Furthermore, the relative bias in some
regions started to get smaller as the soil depth increased, such as in
Jilin province and Tibet (not shown in figures). In order to reduce
the relative bias in some specific regions, such as east and west Tibet,
we tried to perform a new testing method, applying different
covariates (adding 43 new covariates selected by RF with a
superscript “2” in Table 2), and the results are shown in
Figure 12. Even though the overall performance of the new
model was no better than that of the original model, the relative

bias began to decrease in the rectangular regions. This indicates that
the relative bias in local regions can be reduced by exploring more
useful covariates. The reason may be that different covariates had
different sensitivities to soil data in different regions (Wang
et al., 2021).

4.3 Evaluations of frozen layers in the deep
learning model

DL-based models have been successfully applied in digital soil
mapping. Different layers in DL models presented different roles.
Hence, we tried to freeze the different layers for evaluating the
performance of the transfer model. Supplementary Figure S1
illustrates the performance of the transfer model when fine-
tuning different layers, where ID represents the identification
number of the layers, and layers denote their names in the
model. For example, when ID is “1,” the layer denotes the ‘first
convolutional layer’; when ID is “2,” layers denote the “second
convolutional layer”; when ID is “3,” layers denote the “third
convolutional layer”; when ID is “4,” layers denote the “first fully
connected layer”; when ID is “5,” layers denote the “second fully
connected layer,” and when ID was “6,” layers denote the ‘third fully
connected layer.’ In this process, all layers before and including the
selected layer were frozen, and the remaining layers were fine-tuned.
According to Supplementary Figure S1, although the best

FIGURE 10
The density curves of models with different SOC contents, (A–D) represent the density curves of four models, namely, Transfer Model, CNN,
MTCNN and RF.
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performance was not obtained when the convolutional block was
frozen, it could achieve the relatively excellent performance across to
all metrics. Hence, the convolutional block (the first two convolution

layers) was chosen to be frozen in our experiment. The reason is
discussed by comparing the practice of image processing and digital
soil mapping as follows. Specifically, for CNN-based models in

FIGURE 11
Relative bias at 0–5 cm soil depth for the transfer model, CNN model, and RF model. In the figure, (A) stands for transfer mode, (B) stands for CNN
and (C) stands for RF. The size of the three geometric figures indicates the relative bias, which is computed as follows: y � (x −max(x))p103, where y is
the relative bias, x is the predictions, and max(x) is the maximum of predictions.
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image processing, each layer held the hierarchical nature of the
features in the model. For instance, the visualization of features in a
fully trained 5-layered model denoted that the initial layers usually
described the macroscopic properties of objects (e.g., edge/color
conjunctions and mesh patterns) and the last layers could describe
the minor and detailed features of objects (e.g., dog faces and bird’s
legs). Hence, in our testing, the initial layers may represent the
macroscopic conditions of soil-forming factors, which denoted the
features between environmental covariates and soil profiles, and we
could freeze the convolutional block to save the general features
learned from all soil layers. The remaining layers may represent the
detailed conditions of soil-forming factors, which denoted the
features between environmental covariates and each soil layer,
and we could fine-tune them to establish a specific model from a
“big knowledge base” (the general features learned from all soil
layers) for localizing to a specific soil depth, which could help the
model to improve predictive performance.

4.4 Analysis of predictive models with
important covariates

As shown in Figure 13, we investigated the predictions of the
transfer model and observed SOC values along with most related
covariates (mean long-term surface temperature in June/July) and
land surface elevation (DEM). For three representative soil depths in
training sets, it can be observed that most soil data with relatively
low SOC (less than 7%) were located in the blue rectangle, where the
mean long-term surface temperature in June/July was more than
25°C, while the values of SOC more than 10% are usually distributed
in regions that had lowmean long-term surface temperature in June/
July and higher elevations (more than 3,000 m). Meanwhile, in the
topsoil from 0 to 30 cm soil depth, the soil with high SOC had a
larger quantity than other soil depths, which is denoted in a red
rectangle in Figure 10. This resulted in the predictions having similar
distributions.

With SOC in the training sets (red and blue rectangles in the
second column), however, two cases in Figure 13 are worth noting.
The first is that the proportion of relatively higher SOC values
gradually decreased as the soil depth increased; this made predicting

higher SOC values challenging, and poor predictions for higher SOC
were noticeable at soil depths ranging from 30 to 200 cm. The
second case is that some individual cases from the observed SOC in
the testing sets were always unpredictable (yellow circle regions).
Several reasons may cause these two problems, and the major one
among them may be the unbalanced nature of the SOC dataset,
which made individual case prediction challenging. The cost-
sensitive-based DL model (Telikani et al., 2022) could be
explored in the future and may penalize prediction errors for the
abovementioned cases.

4.5 Effect of covariates on SOC

In this study, climate, soil types, and texture-related
environmental covariates were used as model inputs. Previous
research has demonstrated that these factors have a significant
impact on SOC content, which is also reflected in several
experimental results of this study. In terms of climatic variables,
increases in precipitation and clay content promote SOC
accumulation, while higher temperatures accelerate its
decomposition (Jobbágy and Jackson, 2000; Singh et al., 2017),
with deep-layer SOC being more sensitive to temperature
changes (Li et al., 2020b). These findings help explain the higher
prediction errors observed in warm and humid regions and the
superior performance of the transfer learning model in deeper soil
layers (60–200 cm).

Regarding soil texture, the proportions of silt and clay play a
crucial role in SOC stabilization and vary significantly with depth
(Bauer et al., 1987; Button et al., 2022; Six et al., 2000; Chivenge et al.,
2007). This supports our variable iteration experiments, which
showed improved model performance when texture-related
variables were included, and it also validates the use of soil depth
as an input covariate.

Furthermore, SOC distribution is highly uneven across soil
profiles, with up to 80% of total SOC stored below 90 cm depth
(Jobbágy and Jackson, 2000; Rolando et al., 2021; Gross and
Harrison, 2019). Therefore, modeling full-profile information
using transfer learning enhances the model’s ability to capture
deep SOC patterns, demonstrating that incorporating all soil

FIGURE 12
Relative bias of the transfer model with different covariates with (A) the selected 37 covariates in this study, and (B) after adding an additional
43 covariates selected by RF.
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depths and applying transfer learning effectively improves the
overall prediction accuracy.

5 Conclusion

With the development of computational power in recent years,
deep learning techniques have begun to be widely used across various

industries, including the field of soil mapping. Although deep learning
models have been successfully applied in digital soil mapping,
localizing to a specific soil depth for deep learning-based models is
challenging as the training method using gradient descent may not
directly relate to the specific depth model. We designed a transfer
learning method based on the CNNmodel to improve the specific soil
depth model. Without relying on external data, we developed a
transfer learning scheme according to the characteristics of soil

FIGURE 13
Performance of the transfer model for fine-tuning the different layers. (A–C) 0–5 cm, (D–F) 15–30 cm, and (G–I) 60–100 cm soil depths. The first
column denotes SOC data in the training set, the second column shows predictions by the transfer model in the testing set, and the last column
represents the observed SOC in the testing set.
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data, which makes more effective use of limited data. This transfer
method uses information from all soil depths to more accurately
predict SOC at each specific depth. This method outperforms state-of-
the-artmodels (RF, CNN, andMTCNN) in terms of statistical metrics
for SOC mapping. We recommend freezing the first few layers in the
transfer deep learning model during fine-tuning.

Meanwhile, according to comparisons of predictive models in
different regions, the larger relative bias existed in the east and west
parts of Tibet, and more useful covariates should be explored due to
the different impacts of covariates on soil data in different regions.
Through analysis of predictive models with important covariates,
some individual cases were always found to be unpredictable, and
the cost-sensitive-based DL models were advocated to be designed
for penalizing prediction errors of individual cases.
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