
The impact of rainfall and slope on
hillslope runoff and erosion
depending on machine learning

Naichang Zhang1, Zhaohui Xia1, Peng Li2*, Qitao Chen2,
Ganggang Ke2, Fan Yue1,3, Yaotao Xu2 and Tian Wang2

1Power China Northwest Engineering Corporation Limited, Xi’an, China, 2State Key Laboratory of Eco-
Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an, China, 3Shaanxi
Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and
Restoration, Xi’an, China

Introduction: Soil erosion is a critical issue faced by many regions around the
world, especially in the purple soil hilly areas. Rainfall and slope, as major
driving factors of soil erosion, pose a significant challenge in quantifying their
impact on hillslope runoff and sediment yield. While existing studies have
revealed the effects of rainfall intensity and slope on soil erosion, a
comprehensive analysis of the interactions between different rainfall types
and slope is still lacking. To address this gap, this study, based on machine
learning methods, explores the effects of rainfall type, rainfall amount,
maximum 30-min rainfall intensity (I30), and slope on hillslope runoff
depth (H) and erosion-induced sediment yield (S), and unveils the
interactions among these factors.

Methods: The K-means clustering algorithm was used to classify 43 rainfall
events into three types: A-type, B-type, and C-type. A-type is characterized
by long duration, large rainfall amounts, and moderate intensity; B-type by short
duration, small rainfall amounts, and high intensity; and C-type is intermediate
between A-type and B-type. The Random Forest (RF) algorithm was employed to
assess the impacts of these factors on runoff and sediment yield, along with a
feature importance analysis.

Results: The results show that rainfall amount has the most significant impact on
runoff and sediment yield. Under different rainfall types, the ranking of the effects
of rainfall amount and I30 on H and S is as follows: rainfall amount (C>A>B), I30
(A>B>C). The impact of slope follows a trend of first increasing and then
decreasing, with varying degrees of influence on H and S depending on the
rainfall type.

Discussion: The novelty of this study lies in combining machine learning
techniques to systematically evaluate, for the first time, the interactions
between rainfall type and slope and their impact on hillslope runoff and
sediment yield in purple soil hilly areas. This research not only provides a
theoretical basis for soil erosion control but also offers scientific support for
the precise prediction and management of soil conservation measures in purple
soil regions.
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1 Introduction

Purple soil was formed from purple rocks of the Jurassic and
Cretaceous periods (Xiao et al., 2024), and is widely distributed in
the middle and lower reaches of the Yangtze River in China (Zhang
et al., 2004). It is rich in mineral nutrients, making it an important
agricultural natural resource in the region (Chen et al., 2024). Purple
soil is the main soil type in the sloping farmland of the Sichuan
Basin, characterized by thin soil layers, low permeability, high
hydrophobicity, and susceptibility to weathering (Zhang et al.,
2023). Additionally, purple soil has low resistance to soil erosion,
leading to severe soil erosion and nutrient loss in the area (Chu et al.,
2020). Sediment deposition reduces reservoir storage capacity and
increases the risk of flooding. Additionally, nutrient transfer leads to
eutrophication of water bodies in the upper and middle reaches of
the Yangtze River, exacerbating regional water environmental
pressures (Gao et al., 2023; Xiao et al., 2024).

Slope is one of the primary contributors to hydraulic erosion,
dynamic transport, and sediment transfer (Sun et al., 2022; Yan et al.,
2024), and surface runoff plays a decisive role in the soil erosion
process (Admas et al., 2022). Surface runoff is the driving force and
carrier for sediment, nitrogen and phosphorus transport (Tapas et al.,
2024), which on one hand leads to substantial loss of topsoil, and on
the other, causes the loss of soluble and readily available nutrients
during vegetation growth (Jia et al., 2007), reducing soil fertility. The
purple soil distribution area receives abundant rainfall year-round, and
most of the sloping farmlands in this region have steep slopes (≥10°),
which causes severe soil and water loss. Yan et al. (2023) quantified the
effects of five different crop types and rainfall conditions on slope
runoff and soil erosion, and the results indicated that rainfall and
runoff characteristics have a greater impact on runoff depth and soil
loss rate than crop coverage. Chen et al. (2022) evaluated the impact of
slope on runoff and sediment yield based on simulated rainfall
methods and terrain models, revealing that slope gradient has a
significant effect on both runoff and sediment yield. Therefore,
rainfall and slope are two key factors influencing the soil erosion
process in purple soil distribution areas. Based on a study of
microtopographic dynamics in response to erosion processes on
cultivated slopes in China’s Shaanxi Loess Region, Rao et al. (2024)
revealed critical findings: Erosion and deposition predominantly
occurred in the middle-lower slope segments, with 70% of the slope
surface exhibiting elevation fluctuations below 10 mm, while
topographic alterations reached 25 mm in remaining areas.
Investigations on purple soil slopes demonstrated that soil profile
thickness significantly modulates hydrological processes. The soil’s
elevated clay fraction and permeability, combined with effective crop
canopy coverage during rainy seasons, synergistically suppressed
surface runoff generation (Liu et al., 2024). Notably, vegetation
systems exert dual mechanisms in soil-water conservation: Canopy
architecture enhances rainfall interception and dissipates raindrop
kinetic energy, while root networks optimize soil porosity
(particularly non-capillary pore development), thereby improving
infiltration capacity, attenuating flow intensity, and intercepting
sediment transport (Zhang et al., 2025).

For a long time, scholars have studied the mechanisms of runoff
and sediment yield on purple soil slopes by adopting methods such
as field monitoring, laboratory experiments, or a combination of
both (Wang et al., 2024). Ma et al. (2017) analyzed the effects of

different rain types on runoff and sediment yield on sloping
farmland with different gradients, and the results showed that
short-duration, high-intensity rainfall is the main type
responsible for soil erosion. Sun et al. (2018) analyzed the impact
of different rainfall intensities on runoff and sediment yield on
purple soil slopes, pointing out that rainfall intensity and slope
runoff were significantly positively correlated. Han et al. (2021)
assessed the impact of slope gradient and rainfall intensity on runoff
and sediment yield, and the results showed that, under the same
rainfall intensity, the reduction in runoff decreases as slope
increases, while soil erosion rates increase with steeper slopes.

Rainfall intensity and slope are key factors influencing soil erosion
on hillslopes. The characteristics of rainfall, variations in slope, and their
interactions play a decisive role in runoff, erosion, and sediment
transport processes. While previous studies have explored the
individual effects of rainfall intensity and slope on soil erosion, most
have not thoroughly examined the complex interactions between
rainfall type and slope, particularly under different rainfall types,
where the impact of slope on runoff and sediment yield remains
unclear. Furthermore, machine learning algorithms have been
proven to be highly effective in spatial modeling analysis (Ahmed
et al., 2024), yet their application in assessing the impact of soil erosion
factors on soil erosion remains scarce. As such, existing research has yet
to provide an effective framework for uncovering the specific
mechanisms of the interaction between rainfall and slope in hillslope
soil erosion, limiting our comprehensive understanding of the erosion
process. At the same time, although machine learning methods can
offer high prediction accuracy, especially in “black-box” systems, they
lack transparent explanations of themodel outcomes, making it difficult
for researchers to understand the contribution of each predictor variable
to the model output. Explaining model results is crucial for enhancing
the model’s credibility and applicability (Abdollahi et al., 2024).

To fill this research gap, this study employs machine learning
methods, combining the K-means clustering algorithm for rainfall
type classification and the Random Forest (RF) algorithm to assess
the effects of rainfall and slope on hillslope runoff and sediment
yield. We propose that machine learning-based analytical methods
can effectively reveal the interactions between rainfall type and
slope, providing more precise scientific support for soil erosion
control in purple soil hilly areas. This study aims to provide scientific
data to support soil erosion control under different rainfall types and
slope conditions, ultimately offering more targeted management
measures for regional soil conservation.

2 Materials and methods

2.1 Research area

The Wanan small watershed is located in Wanan Village, Yunxi
Township, Yanting County, Sichuan Province (Figure 1A), with a
total area of about 12.36 km2, situated in the fourth tributary area of
the Jialing River in the central Sichuan hilly region (Liu et al., 2022).
The region has a mid-subtropical humid monsoon climate (Li et al.,
2020), with an average annual temperature of 17.3°C, an annual
precipitation of 836 mm, an annual evaporation of 604 mm, and an
annual sunshine duration of 1,104 h (Chen et al., 2024). The main
soil types include calcaric regosols, cumulic anthrosols, and calcaric
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fluvisols (Figure 1D). The soil profile typically extends to depths of
20–70 cm, with exceptional cases demonstrating thickness
exceeding 100 cm in localized areas. Particle size analysis
revealed a granulometric composition dominated by silt
(86.91%), followed by clay (11.56%) and sand (1.51%). The
pedochemical characteristics showed alkaline conditions (mean
pH 8.2), moderate organic matter content (20.12 g kg−1), and
favorable water retention properties with field capacity measured
at 28.3%. Land use is mainly composed of cropland and forestland
(Figure 1C). The primary crops are corn, wheat (Li et al., 2020). The
main tree species are alder and cypress, which are gradually
succeeded by pure cypress stands (Chen et al., 2024).

2.2 Data source

The data for this study were obtained from the Wanan Small
Watershed Comprehensive Observation Station in Yanting County,
Sichuan Province (Figure 2), covering meteorological and
hydrological measurements from 2015 to 2019, including key
indicators such as rainfall, runoff, and sediment yield. The Yanting
Station established runoff plots with different slope gradients of 6.5°,
10°, 15°, 20°, and 25°. All runoff plots used a crop rotation system of

winter wheat and summer maize to simulate local agricultural
practices. In terms of cultivation management, sowing and
fertilization followed traditional local practices, and no additional
irrigation or fertilization was applied during the crop sowing
period. Each runoff plot consists of three subplots, each with an
area of 20 m × 5 m. To ensure the hydrological independence of
the runoff systems, the plots are enclosed by concrete embankments to
prevent lateral leakage. Additionally, in accordance with the structural
characteristics of purple soil, a 60 cm thick concrete layer is poured at
the lower end of the soil profile to simulate an impermeable interface
between the soil and underlying rock. The backfilled soil follows the
natural stratification of the original soil profile. At the base of each
subplot, a collection trough is installed, and runoff from the trough is
directed through a drainage pipe into a connected runoff pool for the
collection of both runoff and sediment. The outlets and collection pools
are kept fully independent to maintain hydrological independence.
Furthermore, the plots are designed with varying slopes and soil types
to simulate the spatial variability of soil and terrain in real-world
conditions, enabling an in-depth investigation of the effects of these
factors on slope runoff and erosion. The soil type, soil depth, farming
practices, and fertilization methods were generally consistent across all
runoff plots (Table 1). In total, 43 rainfall events with precipitation,
runoff, and sediment during 2015–2019 were recorded.

FIGURE 1
Map of the geographical location of the study area, (a) The location of the Wan’an small watershed in Sichuan Province, China; (b) The location of
Yanting Hydrological Station in theWan’an small watershed and the elevationmap of theWan’an small watershed; (c) The land covermap ofWan’an small
watershed; (d) The soil type map of the Wan’an small watershed.

Frontiers in Environmental Science frontiersin.org03

Zhang et al. 10.3389/fenvs.2025.1580149

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1580149


2.3 Methods

2.3.1 Clustering algorithm
The K-means clustering algorithm is a hard clustering algorithm

under unsupervised learning (Mondal et al., 2016), which measures
data object similarity using Euclidean distance, assuming that the
smaller the distance, the greater the similarity (Guan et al., 2024).
Before clustering, the number of clusters k is pre-set, and k initial
cluster objects are then randomly selected from the dataset, with
each representing the mean or center of a cluster. The remaining
objects are then calculated based on their distances from all cluster
centers and assigned to the nearest cluster, after which the mean of

all clusters is recalculated as the new cluster center. This process is
repeated until the cluster centers no longer change. The sum of
squared errors is as follows (Guan et al., 2024):

E � ∑k
i�1

∑
x∈Ci

x-�xi| |2 (1)

Here, E represents the sum of squared errors within the cluster,
and �xi represents the mean value of the cluster Ci. The clustering
result should ensure that the data objects within the same cluster are
as close as possible, while the data objects in different clusters are as
distant as possible. This study used the R language for data analysis

FIGURE 2
Runoff plot, in which wheat is planted.

TABLE 1 2015–2019 overview of runoff plot.

Plot
number

Slope/° Slope
length/m

Slope
width/m

Soil
type

Soil
thickness/m

Soil conservation
measure

Crops Plant
density/hm2

1, 2, 3 6.5 20 5 Purple
soil

50 Crop rotation Wheat 22,770

Corn 500

4, 5, 6 10 20 5 Purple
soil

50 Crop rotation Wheat 22,770

Corn 500

7, 8, 9 15 20 5 Purple
soil

50 Crop rotation Wheat 22,770

Corn 500

10, 11, 12 20 20 5 Purple
soil

50 Crop rotation Wheat 22,770

Corn 500

13, 4, 15 25 20 5 Purple
soil

50 Crop rotation Wheat 22,770

Corn 500
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and applied unsupervised machine learning clustering algorithms to
perform clustering analysis on 43 rainfall events.

2.3.2 Mann-Kendall rank order correlation
trend test

H.B. Mann and M.G. Kendall introduced the Mann-Kendall
test, commonly referred to as the M-K test (Mann, 1945; Kendall,
1948). Due to its robustness in handling extreme values, the Mann-
Kendall test is widely adopted in hydrological studies (Chen and
Grasby, 2009; Liu et al., 2021). In the MK test, the statistical variable
S is:

S � ∑n−1
k�1

∑n
j�k�1

Sgn xj − xk( ) (2)

where xj and xk are the values of the tested factor in years k and j,
respectively; n is the year of the study series.

When n ≥ 10, the statistical variable S follows a normal
distribution with variance Var(S):

Var s( ) � n n − 1( ) 2n + 5( )/18 (3)

The standardized statistic Z is calculated by the
following equation:

Z �

S − 1�������
Var S( )√ S> 0

0 S � 0
S + 1�������
Var S( )√ S< 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4)

If the value of Z is greater than 0, the time series shows an
upward trend; if the value of Z is less than 0, the time series shows a
downward trend. Meanwhile, the significance of the upward or
downward trend is categorized into three categories according to the
ab-solute value of the statistic Z value: when |Z| > 1.65, i.e., P < 0.05;
when |Z| > 1.96, i.e., P < 0.01; and when |Z| > 2.58, i.e., P < 0.001.

2.3.3 Random forest algorithm
Random Forest is an ensemble learning method that improves

model accuracy and robustness by constructing multiple decision trees
(Breiman, 2001). Each tree is generated using the Bootstrap Sampling
method, which involves randomly selecting samples from the original
dataset with replacement (Li et al., 2024). This means that each tree is
trained on a different sub-set of samples, reducing the risk of model
overfitting. During training, Random Forest us-es the Bootstrap
Sampling method to generate training sets for each decision tree,
and the unselected samples are referred to as Out Of Bag (OOB) data
(Nie et al., 2022). OOB data is used to assess model error, providing an
unbiased estimate of the model’s generalization ability.

Random Forest provides a method to evaluate feature
importance. By calculating the contribution of each feature to the
classification performance of the decision tree ensemble, its
importance in the model is quantified. The Feature Importance
Measures (FIM) represent the contribution of each feature, and the
Out Of Bag (OOB) Error Rate is used as an evaluation metric to
more accurately reflect the feature’s impact on the overall model
(Zhao et al., 2022). The indicator function is defined as (Zhao
et al., 2022):

I x, y( ) � 1, x � y
0, x ≠ y

{ (5)

The FIM(OOB)
km of the mth feature Fm in the k-th tree is

represented as (Zhao et al., 2022):

FIM OOB( )
km � ∑nk0

p�1I Yp,Yk
p( )

nk
0

− ∑nk0
p�1I Yp,Yk

p,πm( )
nk
0

(6)

Here, nk0 is the number of observation samples for the k-th tree;
Yp is the true classification label for the p-th sample. Yk

p is the
predicted classification result for the p-th observation of the OOB
data by the k-th tree before the random permutation of Fm. Yk

p,πm
is

the classification result of the k-th decision tree for the p-th sample
after the random permutation of Fm, during which the k-th decision
tree needs to be retrained after permuting Fm. When feature Fm does
not appear in the k-th tree, FIM(OOB)

km = 0. The importance score of
feature Fm in the entire random forest is defined as (Zhao
et al., 2022):

FIM OOB( )
km � ∑K

k�1FIM
OOB( )

km

Kσ
(7)

Here, K represents the number of decision trees in the random
forest; σ is the standard deviation of the FIM(OOB)

km . The importance
score FIM(OOB)

km of feature Fm represents its contribution to
classification accuracy. The feature importance score is evaluated
by calculating the mean and standard deviation of the Out Of Bag
(OOB) error rate, which reflects each feature’s contribution to model
performance. The number of decision trees is dynamically adjusted
based on the training results, with the number of split nodes set to 3.
The calculations were conducted using R programming.

2.3.4 Model performance evaluation
To assess the predictive capability of the model, this study

employed various evaluation metrics, including Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), and Nash-
Sutcliffe Efficiency (NSE). Among them, smaller MAE and RMSE
values indicate lower prediction errors and higher accuracy, while a
NSE value closer to 1 suggests a higher degree of agreement between
the predicted and observed values, reflecting a stronger predictive
ability of the model. The formulas are as follows:

MAE � 1
n
∑n
i�1

yo,i − ys,i
∣∣∣∣ ∣∣∣∣ (8)

NSE � 1 − ∑n
i�1 yo,i − ys,i( )2∑n
i�1 yo,i − yo( )2 (9)

RMSE �
���������������
1
n
∑n

i�1 yo,i − ys,i( )2√
(10)

where yo,i and ys,i represent the observed and predicted values,
respectively; n represents the total number of samples; and i
indicates the i sample, ranging from 1 to n.

2.3.5 Statistical analysis
In this study, the Random Forest (RF) algorithm was

implemented using the random Forest package in the R software
environment. A regression tree-based RF approach was chosen, as
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the objective was to predict continuous variables, specifically runoff
depth and sediment yield, rather than to address classification
problems. In the Random Forest model, each decision tree
independently generates a prediction, and the final result is
obtained by averaging the predictions of all trees. This ensemble
technique effectively reduces the risk of overfitting and enhances the
overall predictive accuracy of the model. To prevent overfitting or
underfitting, 5-fold cross-validation was used in this study to
evaluate the model’s performance. Graphical outputs were
generated using Origin 2021.

3 Results

3.1 Determination and classification of
erosive rainfall

3.1.1 Determination of erosive rainfall
A total of 43 erosive rainfall events (>12.7 mm) were selected

during the 2015–2019 study period (Yang et al., 2025). Erosive
rainfall mainly occurred from May to September each year
(Figure 3), with average monthly occurrences of 1.5, 2.5, 2.75, 2,
and 1.6 events, respectively. The average annual erosive rainfall was
493 mm, accounting for 57.57% of the average annual total rainfall
of 856 mm. Erosive rainfall in the study area was mainly
concentrated in the rainy season.

3.1.2 Classification and characteristics of erosive
rainfall types

The K-means clustering algorithm was used to perform cluster
analysis on 43 erosive rainfall events, and the results were evaluated
using a discriminant clustering method. In the analysis, rainfall
amount (P), rainfall duration (D), and maximum 30-min rainfall
intensity (I30) were selected as rainfall characteristic indicators. The
study results categorized these 43 rainfall events into three
rainfall types.

The scatter plots of the clustering functions for the three rainfall
types are concentrated in different regions (Figure 4). The

significance test value of the clustering function for Type B
rainfall is P < 0.05, indicating that the group centroids of this
type show significant differences, with clear clustering boundaries.
Type B and Type C rainfall show greater dispersion along function
2 and function 1, while Type A rainfall is more concentrated. Type C
rainfall shows the most significant variation in rainfall
characteristics, while Type B has strong independent
characteristics, and Type A is relatively stable in its rainfall features.

Table 2 shows the clustering results of the 43 rainfall events. The
results show that the distribution of rainfall types is as follows: Type
A accounts for 8.84%, Type B accounts for 68.7% (the main type),
and Type C accounts for 37.2%. Type A rainfall has the longest
average duration (46.29 h), the highest average rainfall amount
(94.38 mm), and the lowest average maximum 30-min rainfall
intensity (19.48 mm/h). Its individual event erosion intensity (S)
ranges from 0.092 to 0.882 t/hm2, and the runoff depth (H) ranges
from 1.99 to 21.61 mm. Type B rainfall has the shortest average
duration (0.65 h), the lowest average rainfall amount (37.94 mm),
and the highest average maximum 30-min rainfall intensity
(39.01 mm/h). Its individual event erosion intensity (S) ranges
from 0.0095 to 0.361 t/hm2, and the runoff depth (H) ranges
from 0.782 to 4.846 mm. The Type C rainfall pattern exhibited
intermediate characteristics between Type A and Type B, with mean
values of rainfall duration (26.28 h), maximum 30-min intensity
(24.78 mm/h), and total precipitation (63.08 mm) falling between
those of the two established rainfall types.

3.2 The relationship between rainfall
characteristic indicators and runoff depth,
erosion and sediment yield

3.2.1 Importance analysis of rainfall factors on
runoff depth and erosion sediment yield

The clustering results identified three rainfall patterns: A, B, and
C. Combined with the data from the 15 selected runoff plots, a total
of 645 data points were obtained. This data will be consolidated
according to different slopes (6.5°, 10°, 15°, 20°, and 25°) and used as
input for the Random Forest model, with 75% randomly selected as
the training set and 25% as the testing set.

We predicted runoff depth and sediment yield under different
slope conditions and assessed the model’s performance accordingly
(Table 3). At a 6.5° slope, the model’s prediction of runoff depth was
less than ideal, with a Nash-Sutcliffe Efficiency (NSE) of only 0.58.
However, under other slope conditions, the model demonstrated
high accuracy in predicting both runoff depth and sediment yield,
with NSE values exceeding 0.75.

Based on the model we developed, the feature importance scores
from the Random Forest model were used in this study to identify
the contributions of various rainfall factors and slope conditions to
runoff depth and sediment yield. Rainfall characteristics are the
main driving factors of runoff and erosion (Dos Santos et al., 2017).
In this study, five rainfall factors were selected: rainfall duration (D),
rainfall amount (P), maximum 30-min rainfall intensity (I30),
average rainfall intensity (Im), and rainfall erosivity (F).
Additionally, two compound rainfall factors were considered: the
product of rainfall amount and average rainfall intensity (PIm), and
the product of rainfall amount and maximum 30-min rainfall

FIGURE 3
Statistics of erosive rainfall in months with frequent rainfall from
2015 to 2019.
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intensity (PI30), to comprehensively analyze the impact of rainfall
on soil erosion. The importance of each factor on runoff depth (H)
and sediment yield (S) was evaluated using the Random Forest (RF)
algorithm (Zhu et al., 2020). For runoff generation, the number of
decision trees for each slope was 380, 200, 400, 250, and 600; for
sediment production, the number of decision trees for each slope
was 500, 800, 400, 460, and 500. The number of split nodes for all
models was set to 3.

As shown in Figure 5, PI30 has the highest importance for
runoff generation, reaching a maximum of 40.85% at a slope of 5°,
with P accounting for a large proportion, while I30 is less
important and D has the lowest impact on runoff generation
(2%). P has the greatest impact on sediment yield, reaching
41.87% at a slope of 20°. The importance of Im and I30 for
sediment yield is as low as 5% and 3%, respectively, at their
lowest. It can be concluded that P is the primary factor

FIGURE 4
Scatter plot of erosive rainfall discrimination classification.

TABLE 2 Rainfall characteristics of different types of rain.

Type of rainfall Number of events Characteristic indexes

I30/mm/h P/mm D/h Im/mm/h S/t/hm2 H/mm

A 6 Mean 19.48 94.38 46.30 3.10 0.55 17.65

V25 5.60 42.50 39.42 1.20 0.09 1.98

V75 38.4 185.8 52.12 4.70 0.88 21.61

B 21 Mean 39.01 37.94 0.65 6.90 0.24 6.51

V25 7.20 14.80 1.00 4.60 0.01 0.78

V75 89.50 102.00 11.00 8.00 0.36 4.85

C 16 Mean 24.78 63.08 26.28 1.90 0.27 2.69

V25 1.20 17.40 16.83 1.40 0.01 0.61

V75 64.9 185.8 35.67 2.80 0.08 2.59

Note: V25 and V75 represent the 25% quantile value and 75% quantile value respectively; I30, P, D, Im, S and H represent the maximum 30 min rainfall intensity, rainfall, duration, average

rainfall intensity, runoff depth, and soil loss.
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affecting runoff and sediment yield on slopes, and Type A rainfall
with high rainfall and low intensity has the greatest erosive impact
on corn slopes, which is consistent with previous findings.

3.2.2 The influence of rainfall on slope runoff depth
and erosion sediment yield

The Random Forest calculation results show that P has a
significant influence on H and S. Under different rainfall types,
the effect of P on H and S shows a linear increasing trend
(Figure 6). Linear fitting results indicate that the slope of H
with increasing P is 0.23, 0.22, and 0.33 for Type A, B, and C
rainfalls, respectively, while the slope of S with increasing P is 0.08,
0.04, and 0.1, respectively. The results indicate that the erosive
effect of rainfall on purple soil slopes varies across the three rainfall
types. Based on the overall trend and fitting results, the order is
Type C > Type A > Type B.

3.2.3 The impact of maximum 30 min rainfall
intensity on slope runoff depth and erosion
sediment yield

As shown in Figure 7, there is a clear correlation between
I30 and H, S. As I30 increases, a breakpoint is observed in the
relationship for all three rainfall types. Before I30 reaches
17.3 mm/h and 23.4 mm/h, H and S increase slowly with I30,
and the slope of the fitted line is close to zero. After I30 exceeds
17.3 mm/h and 23.4 mm/h, H and S increase rapidly, with a
noticeable rise in the slope of the fitted line. To further confirm
these critical points of I30, the Mann-Kendall test was used to
evaluate the significance of the changes in slope. This test is
particularly useful for detecting monotonic trends and was
applied here to assess whether the slopes of H and S with
increasing I30 are significantly different across the three
rainfall types. The Mann-Kendall test identified the

TABLE 3 Prediction evaluation of random forest model for hillslope runoff depth and sediment yield under different rainfall patterns.

Predictor variables Slope classification MAE NSE RMSE

Runoff depth 6.5° 3.69 0.58 5.27

10° 1.23 0.94 1.17

15° 0.7 0.82 1.32

20° 1.21 0.99 2.06

25° 0.91 0.87 2.13

Sediment yield 6.5° 0.11 0.76 0.22

10° 0.15 0.92 0.25

15° 0.11 0.81 0.29

20° 0.15 0.91 0.24

25° 0.21 0.87 0.23

FIGURE 5
Rainfall factor to H, S importance score.
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intersection points for runoff and sediment yield at 17.3 mm/h
and 23.4 mm/h, respectively. Furthermore, to evaluate whether
the slopes were significantly different, the confidence intervals
for the slopes of H and S with increasing I30 for each rainfall
type were compared. The slopes of H with increasing I30 for
Type A, B, and C rainfall were 1.91, 0.32, and 0.064 mm,
respectively, while the slopes of S with increasing I30 were
0.13, 0.036, and 0.004 t/km2, respectively. If the confidence
intervals for two slopes did not overlap, it was concluded that
the slopes were significantly different. Based on this analysis, the
impact of I30 on runoff and sediment yield follows the order:
Type A > Type B > Type C.

3.3 The impact of rainfall and slope on runoff
and sediment production on slope surfaces

3.3.1 The influence of different rainfall types on
slope runoff and sediment yield

Slope has a significant effect on soil erosion on purple soil slopes
(Yang et al., 2023). The relation-ship between runoff depth,
sediment yield, slope, and rainfall in the study area is shown
in Figure 8.

With changes in slope, the variation pattern of runoff depth on
the slopes of runoff plots shows certain differences. Under Type A
rainfall, H increases with the slope initially, reaches a peak at a slope

FIGURE 6
The relationship between P and H and S, (a) The impact of rainfall on slope runoff for different types of rainfall; (b) The effect of rainfall of different
rainfall types on slope erosion and sediment yield.

FIGURE 7
The relationship between I30 and H and S, (a) The effect of maximum 30minute rainfall intensity on slope runoff depth under different rainfall types;
(b) The effect of maximum 30 minute rainfall intensity on slope erosion and sediment yield under different rainfall types.
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of 15°, and then gradually decreases, forming a convex shape. Under
Type B rainfall, H peaks at 15°, then decreases, and rises back to the
peak at 25°. Based on Figure 9, this occurs because, under low
rainfall, the influence of slope and rainfall on runoff generation is
similar, causing fluctuations in runoff at 25°. Under the influence of
Type C rainfall, the trend of H increasing with slope is similar to that
under Type A rainfall, peaking at 15° with an increase of 8.57%, and
then gradually decreasing.

The variation pattern of S with slope differs under each rainfall
type, but overall, it shows an initial increase followed by a decrease as
the slope increases. Under Type A rainfall, S increases with the slope
and reaches a peak at 20°. Under Type B rainfall, S continues to
increase with the slope, reaching its maximum at 25°. Under Type C
rainfall, the erosion amount peaks at a slope of 15°, with an increase
of 37.95%, and then gradually decreases, forming a convex shape.

3.3.2 The influence of slope and important rainfall
factors on slope runoff depth and erosion
sediment yield

As shown in Figure 9, when rainfall is between 45.1 and
54.2 mm, the impact of rainfall on runoff generation increases
significantly, with the maximum growth rate reaching 97.8%, and
the influence of slope on runoff also increases simultaneously. When
rainfall is between 54.2 and 102 mm, the influence of rainfall begins
to decrease, while the influence of slope on runoff increases rapidly
and reaches its maximum. At 100–185.8 mm, the effects of both
rainfall and slope on runoff generation begin to decrease. When
I30 is between 20.95 and 71.62, the impact of I30 and slope on runoff
generation is minimal, but beyond this range, the influence increases
significantly, with the maximum growth rates reaching 136.52% and
1498.14%, respectively. The larger the I30, the greater the impact of
slope on sediment yield.

When rainfall is between 17.4 and 52.7 mm, the impact of
rainfall and slope on sediment yield is relatively small. Between
52.7 and 54.2 mm, the impact of slope on sediment yield starts to
increase and continues to rise, becoming significant when rainfall
reaches 102 mm, and peaking at 185.5 mm. When the I30 value
exceeds the critical threshold, the impact of slope on sediment yield

is considerable in the range of 17.7–51.4. When I30 reaches 89.5, the
effect of slope on sediment yield decreases significantly, while the
effect of I30 on sediment yield increases substantially.

4 Discussion

The main goal of this research is to utilize machine learning
methods to investigate the effects of different rainfall types and slope
conditions on hillslope runoff and sediment yield. By employing
techniques such as the K-means clustering algorithm for rainfall
classification and the Random Forest algorithm for impact
assessment, this study aims to provide a comprehensive analysis
of how rainfall characteristics and slope interact to in-fluence soil
erosion processes in purple soil hilly areas. This approach not only
addresses existing gaps in the literature regarding the complex
interactions between these factors but also offers valuable insights
for effective soil erosion control and management strategies.

According to this study, Type A rainfall is characterized by low
frequency, long duration, high rainfall amount, and low rainfall
intensity. Despite the low intensity, its large rainfall amount and
extended duration result in higher soil erosion intensity. Type B
rainfall, with high frequency, short duration, small rainfall amount,
and high intensity, has a moderate erosion effect on soil and should
be a priority for soil and water conservation measures. Type C
rainfall has a duration and rainfall amount between those of Type A
and Type B, and its impact on soil erosion is the smallest. The
erosion capacity of these rainfall events is ranked as: Type A > Type
B ≥ Type C. This result emphasizes that there are differences in the
impact of different types of rainfall on soil erosion. From this
perspective, rainfall is an important factor in predicting or
indicating the degree of soil erosion in the research area. Other
previous studies have also confirmed that rainfall plays a crucial role
in the process of soil erosion (Berndtsson and Larson, 1987; Dunne
et al., 1991; Fang et al., 2012).

It is noteworthy that the sediment yield caused by B rainfall type
is at a moderate level, but as the main rainfall type in the study area,
characterized by short-duration heavy rainfall, its impact on soil

FIGURE 8
Characteristics of H and S under different rain patterns and slopes, (a) The influence of different rainfall patterns on slope runoff depth at different
slopes; (b) The impact of different rainfall patterns on slope erosion and sediment yield at different slopes.
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erosion cannot be underestimated. Previous studies have shown that
rainfall intensity is closely related to soil erosion. Cao et al. (Cao
et al., 2020) have pointed out that rainfall intensity has a significant
impact on surface soil erosion. During the interaction process
between rainfall and the soil surface, high-intensity rainfall
facilitates the formation of surface crusting and sealing, which
can reduce infiltration and increase surface runoff (Vandervaere
et al., 1997). The development of surface sealing promotes soil
erosion because it increases sediment transport by accelerating
surface flow (Assouline, 2004). The research results differ from
those of the indoor simulated rainfall experiments (Geng et al.,
2010). The study found that the canopy of corn plants can effectively
buffer the kinetic energy of rainfall, reducing its ability to convert
into erosive energy. As a result, rainfall mainly turns into stemflow

and throughfall, which have less erosive energy, thereby mitigating
soil erosion (Shou et al., 2016). However, the tall stalks of corn plants
also have negative effects. Raindrops regain erosive energy at the
edges and tips of corn leaves, intensifying splash erosion under the
canopy and in-creasing the turbulence of slope runoff (Ma
et al., 2015).

The influence of rainfall factors varies across plots with different
slopes. For example, as the slope increases from 20° to 25°, the
influence of P on runoff and sediment yield de-creases to 28.47% and
21.32%, while PI30 increases to 39.23% and 29.48%. The main rea-
son is that the rainfall-receiving area of the 25° slope decreases,
reducing the amount of rainfall on the slope, which causes the
influence of I30 and Im on runoff to increase rap-idly. This result is
consistent with the study by Chen et al. (2022), which found that

FIGURE 9
Under different slope changes, (a) The effect of rainfall on slope runoff depth; (b) The effect of maximum 30minute rainfall intensity on slope runoff
depth; (c) The effect of rainfall on slope sediment yield; (d) The effect of maximum 30 minute rainfall intensity on slope sediment yield.
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under fixed conditions of terrain height and rainfall intensity, the
total amount of slope runoff continuously decreases with an increase
in slope gradient.

Overall, rainfall amount and compound rainfall factors have a
significant impact on runoff and sediment yield, consistent with the
statistical analysis results of other scholars on the relationship
between rainfall characteristics and sediment yield (Foster et al.,
1982; Zhang et al., 2021). As the slope increases, the importance of
I30, average rainfall intensity, and duration decreases, but their
importance gradually increases again beyond 20°. In general, most
factors show significant changes in importance around a slope of 20°,
indicating the presence of a critical slope at approximately 20° (Hu
and Jin, 1999).

The importance of slope for runoff generation under each rainfall
type is ranked as follows: Type B > Type C > Type A. For sediment
yield, the effect of slope change is ranked as Type C >TypeA>Type B
across the three rainfall types. Under different rainfall types, H reaches
its peak at a slope of 15°, while sediment yield peaks between 20° and
25°, de-pending on the rainfall type. This may be related to the critical
slope in the erosion process (Jin, 1995). Figure 8 confirms that slope
significantly influences runoff generation across the three rainfall
types, and the peak runoff depth at corresponding slopes further
validates the existence of a critical slope effect. The influence of slope
on runoff generation first in-creases and then decreases with
increasing rainfall, while it increases with I30 after reaching the
critical values. The impact of slope on sediment yield also shows a
trend of first increasing and then decreasing with rising I30, which is
similar to the conclusion of Geng et al. (2010). The influence gradually
increases as rainfall increases.

Although this study effectively analyzes the impact of rainfall
and slope on surface runoff and sediment transport, we also
recognize that erosive rainfall and sediment transport are
complex processes influenced by multiple interacting factors,
including soil properties, land use, vegetation cover, and other
climatic variables. Therefore, this study simplifies erosive rainfall
into three types (Type A, Type B, and Type C rainfall), without
considering the potential interactions between these factors or the
broader climatic context. For example, soil permeability, soil
moisture content, and land use patterns can all significantly
affect surface runoff and sediment processes, yet these factors
were not individually considered in this study. Although we
effectively classified rainfall types using the K-means clustering
algorithm, the simplicity of this method may not have captured
the complex nonlinear relationships between rainfall variables,
especially the interactions between rainfall amount, duration, and
intensity. Thus, the K-means clustering method may, in some cases,
limit the accuracy of rainfall type classification. To improve
classification accuracy, future research could consider using more
advanced clustering methods, such as spectral clustering or deep
learning models, which are better equipped to capture nonlinear
relationships and patterns within rainfall data. Finally, this study
primarily focuses on surface runoff and sediment transport processes
in the purple soil hilly region. The applicability of the results and
conclusions may be limited in other geographical are-as or under
different soil types. Therefore, we recommend that future work
incorporate field data from different regions to conduct broader
validation and expansion studies, providing more comprehensive
soil and water conservation management recommendations.

5 Conclusion

1) In the southwestern purple soil hilly region, erosive rainfall can
be classified into three types: Type A (long duration, large
rainfall, moderate intensity), Type B (short duration, high
intensity, small rainfall), and Type C (moderate duration and
rainfall, moderate intensity). Type B rainfall occurs frequently
and with high intensity, contributing the most to slope erosion,
while Type A rainfall significantly impacts slope erosion,
despite its lower frequency. Type C rainfall has a relatively
small effect on slope erosion.

2) Rainfall amount is the primary factor affecting slope water
and sediment dis-charge, and the composite rainfall factor
PI30 plays the most important role in runoff and sediment
production. Under different rainfall types, the influence of
rainfall amount on runoff depth and sediment discharge is
as follows: Type C > Type A > Type B. With in-creasing
slope, the impact of rainfall characteristics on water
and sediment shows an initial increase followed by
a decrease.

3) Slope significantly affects the water and sediment discharge of
purple soil slopes. Under different rainfall types, the impact of
slope on runoff and sediment varies, but generally shows an
increasing-then-decreasing trend. The influence of slope on
water and sediment is strongest under Type B rainfall, while
the impact on sediment discharge is most significant under
Type C rainfall.

Developing a model to explain the complexity and abrupt
variations in observed trends remains an important challenge,
but the current research has provided substantial insights into
the relationship between rainfall characteristics and slope
response. While numerous unanswered questions persist in this
field, the findings significantly advance our understanding of these
complex interactions.

The significance of this study lies in revealing the impact of
rainfall and slope on slope water and sediment processes,
particularly providing scientific support for soil and water
conservation management and ecological protection. The findings
can offer decision-making assistance to urban planners, land use
managers, and hydrological designers, helping them develop more
effective soil and water conservation measures, reduce soil erosion,
and promote regional sustainable development.
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