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Introduction: Ecosystem stability confers more abundant and comprehensive
ecosystem service values. However, current valuation methods often simplify
these ecosystems as undisturbed, ideal, and standardized—neglecting inherent
variations in structure and quality—and thereby risk skewing service valuations.
Methods: We propose a coupled calculation model based on patch stability that
integrates land cover dynamics with transitions in the Remote Sensing-based
Ecological Index (RSEI). From this model, we derive a novel valuation metric, the
Effective Forest Area (EFA). We validate both the model and the metric using
Heshan City—a coal mining city facing resource depletion—as a case study.
Results: Between 2010 and 2020, despite a net increase in total forest area,
management practices driven by fast-growing forestry industries degraded the
quality of stable forests and resulted in a persistent decline in their extent. Evenin
regions with intensive ecological compensation, achieving desired restoration
outcomes proved challenging, a situation that ultimately reduced the overall
function and service value of the regional forest ecosystem. The results show
that, compared to the EFA model, traditional calculation methods overestimated
the forest ecosystem service value in all regions, with the overestimation being
highest in the Spontaneously Developed Rural Area (35%), followed by the
Industrial Heritage Tourism Area (29%), and the Urbanization Area (26%).
Discussion: The EFA model underscores the critical impact of structural and
quality changes on ecosystem service value, thereby enabling more
comprehensive evaluations—assessments that are essential for developing
nature-based solutions and strategies to enhance ecosystem quality.

KEYWORDS

anthropic disturbances, ecosystem service values(ESV), remote sensing-based
ecological index (RSEI), stable forest, effective forest area(EFA)

1 Introduction

Ecosystems deliver a wide and diverse array of functions and services—that is, the
natural environmental conditions and derivative products (in terms of materials, energy,
and information) generated and sustained through ecological processes, for humans, the
value derived from an ecosystem’s cultural, provisioning, regulating, and supporting
services is referred to as its ecosystem service values (Costanza et al., 1997). In terms of
volume, diversity, and supply stability, forest ecosystems play a critical role in delivering
ecosystem service values (Costanza et al., 2014; Grassi et al., 2017; Houghton and Nassikas,
2017; Li C. et al,, 2023). However, global forest systems are threatened by degradation
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resulting from pests, diseases, extreme weather events (including
forest fires), and human disturbances (Van Lierop et al., 2015). To
confront these challenges, initiatives such as afforestation (Feng
et al,, 2022), forest restoration (Guerra et al., 2020), improved forest
management (Tolessa et al, 2017), deforestation prevention
(Chazdon et al,, 2016), and measures to enhance forest system
stability (including the contribution of growth associated with
aging) (Daigneault et al,, 2022), along with other afforestation-
related efforts, are essential for maintaining and boosting the
value of ecological services.

To evaluate the effectiveness of these management actions and the
value of ecosystem services, various assessment models have been
developed, including market-based, non-market, and modeling
approaches (e.g., InVEST) (Tanner et al,, 2019; Obeng et al., 2020;
Borger et al,, 2018; Bai et al., 2020). While useful for fostering social
consensus, these methods often simplify ecosystem complexity,
critically neglecting the influence of disturbance history and
management practices on the actual ecological quality and
functionality of forests. For instance, many assessments assume
forests exist in an idealized, homogeneous, stable state (Popp et al,
2017), or simply multiply physical area changes by a fixed unit value.
This oversimplification fails to capture the inherent heterogeneity and
dynamics of forest ecosystems (Barreiro-Lostres et al., 2015; Pinna
etal, 2019; Paz et al,, 2022; Maurice et al.,, 2024), leading to significant
discrepancies between estimated and actual ecosystem service values,
particularly in areas with high human activity (Shen and Zeng, 2022).

Anthropic disturbances affect ecosystem service functionality
through complex ecological processes (Barreiro-Lostres et al., 2015;
Pinna et al., 2019; Li Z. et al., 2023; Paz et al., 2022; Maurice et al.,
2024). Yet many assessments of forest ecosystem service values
assume that forests exist in an ideal, stable state—yielding high
valuations—while failing to distinguish plantation forests from
natural forests (Birhane et al, 2024). This implicit assumption
can lead to systematic overestimation of service values.

Moreover, unfavorable forest management practices—such as
mono-culture plantations, site disturbance by heavy machinery, and
herbicide application—can exacerbate disturbances and degrade
ecosystem quality. (Watson et al,, 2018; Sun et al,, 2022; Jardim et al,
2022), thereby diminishing their true value (Wang et al, 2021). The
theory of patch stability in landscape ecology further supports this view
by highlighting how spatial continuity and patch integrity underpin
ecosystem resilience (Yan et al., 2021; Galia and Mdcka, 2023). Therefore,
before assessing ecosystem service values, it is crucial to accurately
identify the “effective” forest area—i.e., the portion of forest that
remains relatively undisturbed and capable of delivering expected
than relying solely on gross physical area
measurements. This study focuses on a resource-depleted coal-

services—rather

mining city that exemplifies the urgent need for industrial and land-
management adjustments. Field investigations reveal that the area’s rapid
economic transformation depends on reshaping local forestry to support
the timber and related sectors, making it a representative case (Figure 1).
As economic recovery increasingly relies on commercial forestry, large-
scale plantations of fast-growing species such as eucalyptus have been
established. While this practice has boosted overall forest cover, the
intense  anthropic  disturbances  associated ~with  plantation
establishment—such as heavy machinery operations and herbicide
application—are progressively threatening the continuous patch

structure and diverse understory characteristic of formerly stable
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natural forests, thereby undermining their capacity to deliver
expected ecosystem services (Cao, 2011; Descheemaeker et al., 2006;
Jaleta et al., 2017; Liu and Li, 2010; Lu et al., 2018; Moges et al., 2020).

Existing methods for valuing forest ecosystem services typically
overlook the structural characteristics and quality of the forests under
assessment. To optimize these widely used approaches, our objective is to
propose an enhanced valuation metric—termed the Effective Forest Area
(EFA). This metric refines traditional, area-based ecosystem service
assessments by quantifying the status of both forest quality and
structure in the region under assessment using remote sensing
techniques.

This paper, grounded in the context of Heshan, a resource-depleted
city, proposes a calculation model and technical workflow for
calculating Effective Forest Area (EFA). The results present the
changes in EFA during the decade before the implementation of
mine ecological restoration projects (2000-2010) and the decade
after (2010-2020) in Heshan. Furthermore, the study discusses the
differential impacts of mine ecological restoration on EFA changes
across three distinct zones: the Urbanization Area, the Industrial
Heritage Tourism Area, and the Spontaneously Developed Rural Area.

2 Materials and methods

2.1 Study area

Heshan City, located in the central part of Guangxi in southwestern
China, has a coal mining history spanning nearly 120 years, dating back
to 1905. It exemplifies urban development driven primarily by coal
mining activities. Coal extraction and pithead power generation once
formed the backbone of the city’s economy. However, by 2009, the
exploitable coal resources in the Heshan coalfield were essentially
exhausted, and in March of that year, Heshan City was designated as
one of the nation’s second batch of resource-depleted cities (Tang et al,,
2013). The study area lies within a subtropical monsoon climate, with a
long-term mean annual temperature of 21.2 °C (extreme maximum
39.0 °G; extreme minimum -1.8 °C). Mean annual precipitation is
1 282 mm, unevenly distributed: 77.5% falls between April and
September, with the wettest month receiving up to 705 mm and the
single highest daily total reaching 263 mm. Mean annual evaporation is
1 2444 mm, peaking from May to October. A vegetation survey
recorded 87 species across 39 families and 61 genera. Major tree
species include weeping fig (Ficus benjamina), camphor tree
(Cinnamomum  camphora), Hong Kong orchid tree (Bauhinia
variegata L.), Chinese fan palm (Livistona chinensis), and bamboo
(Dendrocalamus latiflorus). Dominant shrubs are oleander (Nerium
oleander), bougainvillea (Bougainvillea spectabilis), and purple-leaf
sand cherry (Padus virginiana ‘Canada Red’). Common ligneous
plants and herbaceous plants include sago palm (Cycas revoluta), and
ramie (Boehmeria nivea) artificial afforestation is dominated by the
planting of fast-growing tree species with economic value, such as
eucalyptus.

Mining-induced goafs now cover 32.9% of the city’s administrative
area. Disorganized piles of coal gangue, severely damaged topography
and landscapes, and devastated surface vegetation vividly illustrate the
extensive impact of mining activities. Moreover, geological challenges
such as soil erosion and water pollution have become increasingly
prominent (Li et al,, 2023). Over the years, in an effort to mitigate these
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FIGURE 1

Field investigation of stable natural forest and regenerated forest patches. ((A) Located adjacent to farmland, this patch is highly susceptible to
disturbances and non-point source pollution. (B) Experiences significant mechanical disturbance from heavy machinery. (C) Receives herbicide
applications. (D) Exhibits a high degree of rewilding. (E) Possesses a more developed understory structure. (F) Displays high above-ground biomass,
Figures A-C show regenerated commercial forests, while Figures D-F depict stable forests).

issues and promote the transformation of this resource-depleted city,
the Heshan municipal government has implemented various policies
and allocated funds to restore and manage the local ecological
environment.

The study area for this research is defined as the core region
during Heshan City’s historical coal mining period and comprises
five interconnected mining zones (The five mining areas all
commenced coal mining operations at the same time and were
declared closed simultaneously, with coordinated restoration
planning initiated at that point.): (1) Lilan (~27 km?®), (2)
Shangtang (~6 km?), (3) Suhe (~24 km?), (4) Dong (~57 km?),
and (5) Livhua (~19 km?) (Figure 2). According to Heshan City’s
mine geological environmental restoration planning, the Lilan,
Shangtang, and Suhe areas are designated as the Urbanization
Area, these areas have implemented specialized ecological
restoration designs and projects tailored to the needs of urban
development. As the primary zone for industrial tourism
development utilizing its preserved mining heritage, the Dong
District belongs to the Industrial Heritage Tourism Area, which
involved specially designed ecological restoration projects around
the industrial sites. In contrast, the remaining areas are characterized
primarily by spontaneous restoration. The Liuhua mining area
serves as a key example. Located in a rural township, it has not
undergone specially designed ecological restoration projects;
instead, activities there are dominated by spontaneous restoration
and forestry management initiated by local residents.

2.2 Data sources and pre-processing
In this study, the Google Earth Engine (GEE) was employed to

retrieve and process post-atmospheric correction imagery from
Landsat (Landsat 5 and Landsat 8) and Sentinel-2 for the period
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from April to October during 2000-2020, ensuring a cloud cover of
less than 4% (Gorelick et al., 2017). To minimize information loss
due to cloud removal, a linear interpolation method was applied to
interpolate missing spectral data in the time-series curves. Using
GEE algorithms, multispectral bands—including blue, green, red,
near-infrared (NIR), shortwave infrared 1 (SWIR 1), and shortwave
infrared 2 (SWIR 2)—were extracted to calculate various indices,
such as the Bare Soil Index (BSI), Impervious Building Index (IBI),
Normalized Difference Built-up and Bare Soil Index (NDBSI),
Wetness Index (WET), Normalized Difference Vegetation Index
(NDVI), and Land Surface Temperature (LST).

Furthermore, the study utilized the Global Canopy Height Model
based on Sentinel-2 imagery (Lang et al., 2023) to obtain information on
carbon storage within canopy patches. This model is available at:
https://nlang.users.earthengine.app/view/global-canopy-height-2020.
Finally, the Normalized Difference Water Index (NDWI) (Xu, 2008)
was used to mask water bodies, effectively eliminating their interference
in the RSEI analysis.

2.3 Calculation model of effective
forest area

A region’s stable forest (SF)—defined here as those patches that
remain classified as forest across two consecutive land-use maps—most
closely approximates a reference ecosystem. Typically, this forest exhibits
the highest average ecological quality measured by the RSEI, and it
maintains a stable, continuous spatial distribution, thereby providing the
best ecosystem services within the region (Li X. et al., 2023).

For the baseline year we record the mean RSEI of the stable
forest (SFpg) and its mean patch size (SFg4). For the evaluation year
we obtain the corresponding values SFr (mean RSEI), SF4 (mean
patch size), and the physical extent of stable forest A. Combining
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FIGURE 2
The study area location and primary mining area.
the relative change in ecological quality (SFx/SFpg) and the The following is an example of a practical application using data

relative change in structural stability (SF4/SFp4) yields the

stable-forest quality coefficient (optimization coefficient)
SF, SF
(57 + 57)

2

= (1a)
so that a-A represents the quality-adjusted area of the evaluation-
year stable forest (Equation la).

The quality of regenerated forest (RF)—patches that first appear as
forest in the to the
contemporaneous stable forest. This assessment is based on a
comparison of its mean RSEI (RFp) and mean patch size (RF,)
against the corresponding values of the stable forest (SFr and SFy,
respectively). The resulting quality coefficient, f3, captures the ecological
and structural quality of RF relative to the SF reference (Equation 1b).

evaluation year—is assessed relative

(552 + §52)
ﬂ _ \SFx : SF4 (1b)
SF. SF RF RF
pra [Gmram) L [GRS) | o
2 2
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from the Shang mining area:
Calculate the stable forest quality coefficient:

SF  SF .
_ (e o) (BE 8D _ 0899 +0759) o
2 2 2 '
and its contribution:
0.829 x A = 0.829 x 549, 649 = 455,659 m*
Calculate the regenerated forest quality coefficient:
RF RF .
g (Er) (i) ©wsvoso) o

2
and its contribution:
0.713 x B=0.713 x 1,531,692 = 1,092,096 m>

2 2

Thus,
EFA = 455,659 + 1,092,096 = 1,547, 755 m>

Although the raw physical forest area in the evaluation year is

approximately 2 x 10° m? the quality-adjusted Effective Forest Area
is reduced to about 1.55 x 10° m* (Equations la, b).
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FIGURE 3

Overall technical workflow of this study.
2.4 Workflow of EFA 2.4.1 Remote sensing interpretation and transfer

matrix of land use

The following are the specific prerequisite materials and Based on multi-temporal and multi-variable remote sensing

preparation steps for calculating the EFA (Figure 3). data obtained from GEE (Table 1), we classified land cover using
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TABLE 1 GEE datasets and associated sensor information.

Satellite/Sensor Product level

GEE image

collection

10.3389/fenvs.2025.1580169

Spectral bands (m) Nominal revisit ~ Temporal

coverage

USGS Landsat 5 Level-2,
Collection 2, Tier 1

Landsat-5 TM (Thematic
Mapper)

Surface Reflectance

USGS Landsat 8 Level-2,
Collection 2, Tier 1

Landsat-8 OLI/TIRS
(Operational Land Imager/
Thermal Infrared Sensor)

Surface Reflectance

30 m (Bands 1-5, 7) 16 days (8 days with 1984-2013

adjacent path overlap)
30 m (OLI Bands 1-7, 9)

16 days 2013 - present

Sentinel-2A/2B MSI
(MultiSpectral Instrument)

Surface Reflectance
(atmospherically
corrected)

Harmonized Sentinel-2
MSI (Level-2A SR)

the random forest algorithm (Duro et al., 2012). The classification
delineated six categories: farmland, forest, grassland, water bodies
(including rivers and lakes), impervious surfaces (encompassing
roads, construction sites, and mining areas), and bare land
(Kaufman and Didier, 1992; Skakun et al., 2017; Tucker, 1979;
Xu, 2008). The accuracy of these classified maps was assessed using
300 random points against high-resolution Google Earth imagery,
consistently yielding an average Kappa coefficient above 0.8. To
analyze the temporal dynamics of these classified land uses, this
study employs the conceptual framework of a baseline year and an
evaluation year. The baseline year serves as the reference point,
typically representing either a year with a relatively optimal
ecosystem state or one selected for specific comparative
objectives. The evaluation year is the time point for assessing the
impacts of subsequent policies, measures, or disturbances. For this
research, we established a 10-year interval, setting 2010 as the
baseline and 2020 as the evaluation year. This specific timeframe
was chosen primarily to assess the effectiveness of ecological
restoration measures implemented during this decade, while also
aligning with the typical harvesting cycle of local eucalyptus
commercial forests, as determined through policy analysis and
field surveys.

2.4.2 Remote sensing-based ecological
index (RSEI)

Incorporates four objective indicators closely linked to human
survival (Xu, 2013): Wetness, Greenness, Dryness, and Heat. In this
research, image data acquired from GEE were used to characterize
these indicators via the NDVI for Greenness, the wetness
component from the Tasseled Cap Transformation (TCW) for
Wetness, the Normalized Difference Built-up Index (NDBSI) for
Dryness, and Land Surface Temperature (LST) for Heat.
Additionally, (PCA)
performed to reduce dimensionality while retaining maximum

Principal Component Analysis was
information and ensuring objectivity in weight distribution. As a
result, the RSEI index for the study area was obtained for the period

2000-2020 (calculation methods are shown in Table 2).

2.4.3 Extraction of stable forests and RSEI value
assignment

In this study, land-use transition matrices are employed to
quantify stable forests, a process that requires defining a baseline
year and an evaluation year. This method allows us to extract a set of
“stable forest” patches—those that remained classified as forest and
occupied the same geographic location throughout the 10-year

Frontiers in Environmental Science 06

10 m (Bands 2, 3, 4, 8); 20 m
(Bands 5, 6, 7, 8A, 11, 12); 60 m
(Bands 1, 9, 10)

5 days at equator
(combined A+ B)

2017 - present
(SR)

period. Patches that transitioned from other land cover types into
forest during this interval were designated as “Regenerated Forests.”
Subsequently, RSEI values from the evaluation year were assigned to
their corresponding patches, yielding a distinct set of RSEI values for
each patch type (i.e, Stable Forest and Regenerated Forest)
for that year.

3 Results

3.1 Evolutionary trends of patch structure
based on the transition matrix

Figure 4 displays the evolution trends of the forest and grassland
ecosystems in the study area from 2000 to 2020. Overall, over the
course of these 20 years, the study area has experienced varying
degrees of degradation in both stable forests and stable grasslands,
showing a tendency to be increasingly encroached upon by other
land cover types.

From 2000 to 2010, overall forest area declined from 53.99 km?
to 38.34 km?; nonetheless, the retention rate of stable forest patches
generally remained high. By 2020, even though the total forest area
in the study region had expanded—reaching 107% of its 2000 level
(compared to only 71% in 2010)—the loss rate of stable forest and
grassland patches steadily increased. Among the stable forest
patches that existed in 2000, only 47% remained within the study
area’s total forest cover by 2020. This indicates that nearly 50% of
these patches were lost over the 20-year period (Table 4).

3.2 RSEl-based ecological quality
characterization

Based on the RSEI definition combined with LULC data, the
types the
indicators—namely forests and grasslands—were identified for

patch most  representative  of two  positive
ecological quality analysis. A box plot with individual data points
and a kernel density estimation plot on a single vertical axis to
display the Remote Sensing-based Ecological Index (RSEI) values for
four patch types. Each point represents an individual pixel sample,
collectively illustrating the full data distribution. The dashed outline
indicates the kernel density, while the box plot summarizes key
statistics such as the median, interquartile range, and outliers.
Analysis of the data’s central tendency, dispersion, and

distributional shape shows that Stable Forest has the highest
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TABLE 2 Calculation formula, and explanation.

Calculation methods

10.3389/fenvs.2025.1580169

Explanation and reference

(2) NDWI NDWI = (GREEN - NIR) while Green is band 2 for Landsat-5 TM and band 3 for Landsat-8 and
" (GREEN + NIR) band 3 for Sentinel-2, while NIR is Band 4 for Landsat-5 TM and
Band 5 for Landsat-8 and Band 8A for Sentinel-2. (McFEETERS,
1996)
3) EVI EVI=Cx NIR - RED Where G is the gain factor, which typically has a value of 2.5, C1 and
NIR+C1 x RED-C2 x BLUE+L C2 are coefficients that represent aerosol resistance terms. L is the
canopy background adjustment that corrects for soil and vegetation
reflectance dynamics. (Huete et al., 2002)
4) IBI 18I TRl — (iR + G ) Where SWIR1 is Band 5 for Landsat-5 TM and band 6 for Landsat-8
- WZISI;/V%W + (ﬁ_d + %) and band 11 for Sentinel-2, while Red is Band 3 for Landsat-5 TM and
+ +. reent.
“ o Band 4 for Landsat-8 and Band 5 for Sentinel-2. (Xu, 2008)
(5) BSI BSI = (RED + SWIR1) — (NIR + BLUE) ‘Where Blue is band 1 for Landsat-5 TM and band 2 for Landsat 8 and
" (RED + SWIR1) + (NIR + BLUE) band 2 for Sentinel-2. (Rikimaru et al., 2002)
(6) NDVI NDVI = (NIR - RED) where NIR and Red are the amounts of near-infrared and red light,
" (NIR + RED) respectively. (Rouse et al., 1974)
(7) Wetness TCWrp = 0.0315pBlue + 0.2012pGreen + 0.3102pRed + 0.1594pNIR — where the pi is the reflectance of each band in the TM and OLI
0.6806pSWIRI — 0.6109pSWIR2 sensors, respectively. (Crist, 1985)
TCWg = 0.1511pBlue + 0.1973pGreen + 0.3283pRed + 0.3407pNIR —
0.7117pSWIRI — 0.4559pSWIR2
(87) NDBSI NDBSI = (IBI + SI)/2 where the pi is the reflectance of each band in the TM and OLI
sensors, respectively. (Y. Liu et al,, 2022)
IBI = {2pSWIR1/(pSWIRI + pNIR) - [pNIR/(pNIR + pRed) + pGreen/
(pGreen + pSWIR1)]}/{2pSWIR1/(pSWIRI
+ pNIR) + [pNIR/(pNIR + pRed) + pGreen/(pGreen + pSWIRI)]}
SI = [(pSWIRI+pRed) - (pNIR+pBlue)]/[(pSWIRI+pRed)+(pNIR+pBlue)]
LST = TM[1 + (AT/p) Ine]
) LST LA = Grescale x Qcal + Brescale where Gscale is the band-specific rescaling gain factor, Qcal is
TA = K2/In(K1/LA + 1) quantized calibrated pixel value (DN), and Brescale is the band-
specific rescaling bias factor. The at-sensor spectral radiance (LA) can
be converted into effective at-sensor brightness temperature
where T\ is the effective at-sensor brightness temperature, and K1
(607.76 W/(m2-sr-um) for TM band 6 and 774.89 W/(m2-sr-um) for
TIR band 10) and K2 (260.56K for TM band 6 and 1321.08K for
landsat 8 band 10) are the calibration constant 1 and 2, respectively
where A is the wavelength of the emitted radiance (11.435 um for TM
band 6 and 10.9 um for TIR band 10); p is a contant (1.438 x
107* mK); € is the surface emissivity, which can be estimated by NDVI
using Sobrino’s model. (Xu et al., 2009)
(10) RSEI RSEIgoo-2020 = f (Wetness, Greenness, Dr yness, Heat) Xu (2013)
RSEIyitia = 1 = PCy [ f (NDVI,WET,NDSI, LST)]
(11) Transfer Py Py, - Py, where P represents the area of a particular land cover patch; I and j
Matrix Py Py - Py respectively represent the land cover types in 2010 and 2020; n is the
Pyj = . number of land use patterns (n = 6) (Bell, 1974)
Py Py oo Py

mean and median RSEI values, which indicates that these forests
provide the most consistent and highest-quality ecosystem services
in the region (Figure 5).

In addition, regenerated forests show significant differences
from regenerated grasslands in terms of RSEI (p < 0.05).

According to the results from Table 3, there is a significant
difference (p < 0.05) when comparing the overall data of SF
(Stable Forest) with the other three categories. This indicates
that stable forest ecosystems achieve the highest efficiency and
ecological service value in the RSEI evaluation, which is
consistent with established knowledge
environmental science.

in ecology and
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3.3 EFA model calculation results

The optimization coefficients and the results from the optimized
model show a significant discrepancy with the simple growth in
area (Table 4, 5).

Specifically, despite an increase in forest area, the quality of the
forest ecosystem at Liuhua Mine has declined—primarily due to the
deterioration of its stable forest ecosystem. In contrast, although
Dong Mine has implemented the most robust and intensive
ecological compensation measures aimed at ecological restoration
and tourism development, the overall quality of its forest ecosystem
has only slightly improved compared to 2010, even though the forest
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Evolution trend of Heshan's stable forest and stable grassland systems from 2000 to 2020.

area has expanded by 1.5 times. In the Shangtang and Suhe mining
areas, extensive planting of regenerated forests coupled with effective
protection of the region’s stable forests has led to a significant
improvement in forest ecosystem quality. On the other hand, Li
Mine, located at the heart of Heshan City’s urban development, has
experienced a decrease in forest area since 2010 and a more severe
degradation of its stable forest ecosystem, resulting in a substantial
overall decline in forest ecological quality (Table 5).

4 Discussion

The land use transition matrix indicates the impact of different
policies on ecosystem stability. In this study, ecosystem stability is
defined by whether land cover patch types changed during the 10-
year period. Specifically, the six basic land use categories are
subdivided (reflecting  differences in
ecosystem functions and stability) in the outer circle, which are

into nine categories

then grouped into a middle circle (representing human disturbance

intensity) and an inner circle (representing policy and management)
for statistical analysis. This approach illustrates the differences in

Frontiers in Environmental Science

ecosystem substructures and conditions brought about by varying
policy orientations and management methods.

As shown in Figure 6, land use and cover (LULC) patterns, as
well as the stability of ecological patches, are influenced by the
delineation of functional areas and the varying intensities of human
disturbances within these zones. In this study, the Urbanization
Areas (Li, Shang, and Su mines) exhibit the densest grey
infrastructure at 6.2%. Their land use is primarily characterized
by semi-natural ecosystems, consisting mainly of farmland (13.6%),
regenerated forest land (6.6%), and regenerated grassland (3.8%).
However, these areas retain only minimal amounts of stable forest
(2.7%) and stable grassland (3.4%).

In contrast, the Industrial Heritage Tourism Area designated for
ecological tourism development (Dong mine) possesses the most
stable ecosystem at 18.72%, with the largest retained areas of stable
forest (14.6%) and stable grassland (3.7%). Additionally, within its
semi-natural ecosystem, the proportion of regenerated forest is the
highest at 12.8%, indicating that the management policies in this
mining area are more oriented toward ecological compensation.
Meanwhile, the Spontaneously Developed Rural Area, which focuses
primarily on natural restoration (Liu mine), displays a more
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TABLE 3 Kruskal—Wallis test conducted on stable and regenerate patches.

Kruskal—wallis test

Patch type Mean Rank \|
SF 3301.61 443 210.72 3
RF 2473.29 811
SG 2208.35 1295
RG 2360.03 2299

“Notes: SF, Stable Forest; SG, Stable Grassland; RF, Regenerated Forest; RG, Regenerated Grassland.

balanced composition of land classes, with no clear policy-
driven trend.

The period from 2000 to 2010 was characterized by a decline
in overall forest area, yet the retention rate of stable forest
patches remained high. This trend shifted dramatically after
2010, as Heshan City industrial
transformation centered on agriculture and forestry. Driven

embarked on an

by social and industrial demand, this new phase promoted the
rapid establishment of fast-growing commercial forests. The
consequences of this policy shift are stark. By 2020, while the
total forest area in the study region had significantly
expanded—rebounding to 107% of its 2000 level from a low
of 71% in 2010—the loss rate of stable forest patches
simultaneously accelerated. Crucially, only 47% of the stable
forest patches that existed in 2000 remained by 2020. This means
nearly half of these high-quality habitats were lost over the two-
decade period, leading to a significant reduction in the ecosystem
service value they provided (Figure 7).

Frontiers in Environmental Science

A Grouped Marginal Plot with Distribution Curves (Figure 8)
was used to statistically illustrate the forest patch ecosystem quality
in 2010 and 2020, with areas scaled using the natural logarithm.
to 2010—before the
transformation policies—the RSEI values for forest ecosystems

Prior implementation of industrial
across various mining areas in Heshan City were generally high,
with points clustering on the right side of the x-axis. Moreover, the
shapes of the marginal curves indicated an almost normal
distribution for both axes’ data, suggesting minimal human
disturbance and a predominance of natural succession. However,
by 2020, the data distribution had undergone significant
deformation. Compared to 2010, the points were more dispersed
and shifted noticeably toward the third quadrant (as evidenced by
comparing the data centroids between the two periods).
Additionally, the marginal curves transitioned from a near-
normal to a non-normal distribution, accompanied by a marked
reduction in peak heights. These changes indicate that, in 2020, the
forest ecosystems across all mining areas in Heshan City

frontiersin.org


mailto:Image of FENVS_fenvs-2025-1580169_wc_f5|tif
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1580169

Luo et al. 10.3389/fenvs.2025.1580169

TABLE 4 The parameters related to the EFA valuation model for the mining areas in Heshan City in the years 2010 and 2020.

Indictors
2010 (Baseline year) SFgr — 0.917 0.895 0.899 0.886 0.896
RFgg — 0.915 0.895 0.898 0.884 0.894
SFg, m’ 6086 5890 4165 30762 36592
RFp, m? 1037 1318 908 1845 1468
Total Area of SF m? 432138 2567914 1103783 21010673 6586578
Total Area of RF m? 322465 1331107 853259 3378737 751395
Total Forest Area m? 754603 3899021 1957042 24389411 7337973
2020 (Evaluation year) SFg — 0.824 0.846 0.800 0.864 0.874
RFy — 0.821 0.839 0.811 0.853 0.826
SF, m? 4619 4525 2416 14352 12313
RE, m’ 1984 2447 755 5941 3978
A m? 549649 2484160 628116 19619757 5454550
B m? 1531692 6110837 1209927 17175530 3226448
Total Forest Area m? 2081341 8594997 1838043 36795287 8680998
« — 0.828 0.856 0.7351 0.721 0.655
B — 0.713 0.765 0.663 0.7 0.634

Where a represents the optimization coefficient for the EFA valuation model of Stable Forest (SF) in the evaluation year.  represents the optimization coefficient for the EFA valuation model of
Regenerated Forest (RF) in the evaluation year (a and f are optimization coefficients that are directly multiplied by the forest area for the evaluation year), BR and BA (subscript) denote the
mean RSEI and mean forest patch size in the baseline year, respectively; while R and A (subscript) denote those same metrics for the evaluation year. A and B represent the total physical area of
Stable Forest and Regenerated Forest in the evaluation year, respectively.

TABLE 5 Optimization model and verification of the EFA in the primary mining areas of Heshan City.

Mining Area 2020 vs. 2010 2020EFA vs. 2010
Forest physical area ratio Forest area ratio

Shang 0.828 0713 2.758 2.05

Su 0.856 0.765 2204 1.744

Li 0.7351 0.663 0.939 0.645

Dong 0.721 0.7 1.508 1.072

Liu 0.655 0.634 1.183 0.765

experienced stronger human disturbances, resulting in a decrease in
the overall average ecosystem quality. Furthermore, the forest
ecosystems in the first column mining areas—Shang, Su, and Li
(Urbanization Area)—exhibited more severe degradation (as seen
by centroid offset distances and changes in marginal curve shapes),
whereas Dong Mine (Industrial Heritage Tourism Area) maintained
a better overall condition, and Liu Mine (Spontaneously Developed
Rural Area) fell between the two.

Compared to stable forests, newly established forests
underperform on several key indicators, making it difficult for
them to consistently deliver ecosystem services. If policymakers
do not intensify efforts to safeguard stable forests, this ongoing
neglect may eventually result in a long-term decline in the overall
ecosystem service value of forest systems (Hua et al.,, 2022).

Our observations indicate that stable forests generally exhibit
greater average tree height, diameter at breast height (DBH), above-

Frontiers in Environmental Science

ground biomass, and a more complex understory structure
compared to regenerated forests—findings that are consistent
with recent research (Feng et al, 2022). Moreover, most
regenerated forest patches are dominated by fast-growing
commercial species.

The case of Heshan City (2010-2020) starkly illustrates the
limits of relying solely on aggregate indicators such as region-wide
RSEI or total forest area, which can suggest ecological improvement
despite underlying degradation (Table 5). This pattern aligns with
critiques of ecosystem-service valuation approaches that depend
heavily on coarse land-use categories (Deng and Wu, 2012; Hu and
Xu, 2018; Firozjaei et al., 2019; Wang et al., 2023), because such
methods mask important within-class variation in ecosystem
structure, condition, and quality. The blind spot is amplified
when decision-makers—pressed by urgent economic-development
objectives—favor these simplistic, often area-based metrics. Such
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Impacts of different management strategies on ecosystem stability and structural composition.

reliance fosters the belief that expanding green cover alone can
resolve complex ecological and socio-economic challenges (Funk
et al,, 2019; Zhang et al,, 2023). Ultimately, this approach fails to
capture how dynamic changes in forest composition and
configuration affect ecosystem-service provision under evolving
policies and environmental conditions. These issues appear in
some studies of ecosystem service valuation, which often apply
idealized estimates to quantify the total ecological value of all
forest patches within a given area without distinguishing between
forest condition or management regime. Even if these estimates are
adjusted slightly to suit the study region or objectives, they can still
overstate the region’s ecosystem resources and misguide future
management strategies.

A comparison between the EFA model and conventional
calculations shows that, in 2020, the forest ecosystem service
value of Heshan City amounted to only about 71 percent of the
traditional valuation (Table 6).
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In Heshan City, this disconnect between superficial metrics and
ecological reality manifested significantly between 2010 and 2020.
While conventional assessments might indicate progress, our
analysis reveals a gradual loss of “ideal” or stable forests due to
prevailing management practices and policies favoring rapid
afforestation, often neglecting the intrinsic condition of the
ecosystem. Although tree planting increased overall forest area
and potentially influenced RSEI positively in some locations, this
apparent gain masked the substantial ecological cost: the erosion of
original, high-quality forests that delivered stable ecosystem services
(Costanza et al., 2014; Wang et al., 2021). We contend that this focus
on quantity over quality results in a “pseudo-valuation,” effectively
creating a value bubble where reported gains in ecological assets do
not reflect genuine functional improvement or may even conceal
functional decline.

Importantly, our findings provide quantitative support for this
quality distinction: we observed a positive correlation between patch
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stability (associated with larger patch sizes typical of stable forests)  importance of habitat configuration and quality beyond mere
and higher ecological quality indicators (RSEI) (Figure 8). This  area (Fan et al, 2019; Masoudi and Tan, 2019; Yan et al, 2021;
aligns with related landscape ecology research emphasizing the  Galia and Mécka, 2023).
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TABLE 6 Global coefficients (SUSD ha™* year™), from Costanza and Birhane.

Cultural
service

Ecosystem

Provisioning

service service services

Regulating

10.3389/fenvs.2025.1580169

Natural forest 114 396 566

Plantation forest 114 396 566

Supporting Total Traditional EFA model
service calculation calculation
932 2008 5768984 4168980
932 2008 5874290 4144011

5 Conclusion

Accurately assessing ecosystem service values is essential for
developing effective resource management and ecological
restoration strategies. Unlike valuation models that rely solely on
changes in ecosystem area, this study integrates patch stability
theory with an RSEI-land use change approach to propose an
optimized ecosystem service valuation model known as Effective
Forest Area (EFA). The results show that combining a land-use
transition matrix with RSEI can effectively track long-term
ecosystem quality over large areas; comparative analysis indicates
that traditional ecosystem value estimation methods overestimate
Heshan City’s forest ecosystem service value by nearly 30%.
Integrating forest structure, quality, and stability information,
the Effective Forest Area (EFA) model and its research method
clarify the actual impact of anthropogenic disturbances and
management practices on ecosystem quality. By quantifying the
real ecological quality and health condition, this approach uncovers
potential underlying degradation issues within ecosystems.
(Boongaling et al., 2018; Ouyang et al., 2010; Zong et al., 2020).
EFA thus offers a more precise and comprehensive assessment
framework than traditional area-based metrics, thereby deepening
understanding of forest-quality dynamics. Further research on how
forest quality and structure should inform the weighting of
ecosystem-service functions would provide a more rigorous
scientific basis for improving ecosystem-service valuation and for
formulating eco-compensation strategies and management policies.
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