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Enhancing data elements to support environmental governance is a key initiative
for promoting digital transformation and ecological development. This study
constructs a quasi-natural experiment based on panel data of Chinese cities from
2010 to 2021, using the staggered rollout of open government data (OGD)
platforms to evaluate their impact on air pollution (AP) and the underlying
mechanisms. The results show that OGD significantly reduces annual average
PM2.5 concentrations by approximately 1.55 units (p < 0.01), indicating a notable
improvement in air quality. Mechanism analysis suggests that government data
disclosure affects AP through three pathways: enhancing environmental
regulation, stimulating green innovation, and optimizing industrial structure. A
one-unit increase in these mediating variables reduces PM2.5 by approximately
0.02, 15.3, and 11.75 units, respectively (all p < 0.01). In addition, market size and
market openness positively moderate the environmental effect of OGD.
Heterogeneity analysis reveals regional variation. In Western China, OGD
reduces PM2.5 by about 5.61 units (p < 0.01); in Eastern China, the reduction is
1.11 units (p < 0.05), while the effect is not significant in Central China. In the
Yangtze River Economic Zone, OGD leads to a reduction of 1.42 units (p < 0.01),
and 1.3 units (p < 0.01) in the non-Yangtze region. These findings provide
theoretical and empirical support for improving open data policies and
leveraging data elements in environmental governance.
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1 Introduction

The ecological construction is an important cornerstone of sustainable development
and a basic path to achieving harmonious coexistence between human beings and nature. In
recent years, with the rapid development of big data, artificial intelligence, the Internet of
Things, and other technologies, the public governance paradigm has realized a magnificent
transformation, and the digital governance theory has increasingly gained prominence in
public management scholarship. Digital governance theory emphasizes digital technology
and public sector reform, and proposes to combine information systems with social
governance (Wang et al., 2023). Digital technology provides a platform for
governments and societies to understand each other, enabling governments and civil
societies to act in concert with consistent goals and facilitating the formulation and
implementation of relevant policy rules (Castro and Lopes, 2022). Data openness, as
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one such platform medium, can not only accelerate the integration
of data elements into the production process and become a key
driver of economic growth but also promote environmental
protection and improve the effectiveness of ecological governance
(Goldfarb and Tucker, 2019; Mahajan et al., 2021). Especially in the
field of air pollution (AP), where governance is highly complex and
dynamic, the data-driven governance model has emerged as a
benchmark for effective policy implementation (Zhang et al., 2024).

In the current digital age, the potential of data as a factor of
production has made it crucial (Oliveira et al., 2023). Existing studies
focusing on comprehensive big data pilot zones have offered
important guidance for understanding the environmental
implications of data-driven policies (Lin, 2024; Shen et al., 2024).
In contrast, open government data (OGD), as a key component of
digital governance, emphasizes the practical implementation of data
governance and ensures the accessibility of public data across diverse
social actors. Therefore, assessing the impact of OGD on
environmental governance from the perspective of data openness
not only complements prior research but also contributes to a more
holistic understanding of the role of data-driven approaches in
advancing ecological civilization. OGD refers to the provision of
necessary data by the government to society at no cost, which are
unclassified data derived from public operations and are not subject
to privacy restrictions (Janssen et al., 2012). To date, although no
studies have directly examined the relationship between OGD and
environmental governance, a growing body of research has
produced in-depth theoretical and empirical work in areas closely
related to OGD. Existing studies confirm that factors such as
information disclosure, government attention, public
participation, and digital technology all have positive effects on
promoting environmental protection (Feng and He, 2020; Li et al.,
2020; Zhou and Ding, 2023; Lin and Zhang, 2023). For instance,
environmental information disclosure helps reduce carbon
emissions and lowers pollutant concentrations (Shi et al., 2021;
Tian et al., 2016); increased government environmental attention
contributes to lowering regional emissions and enhancing air quality
(Liu et al., 2023; Bao and Liu, 2022); and public participation in the
environment has shifted from a formal to a substantive approach to
environmental protection, which is significant in improving
environmental governance (Tu et al., 2019; Zhang et al., 2019);
digital technology can optimize industrial structure and promote the
use of clean energy to reduce pollution emissions (Zeng and Yang,
2023). Without exception, these factors are all related to OGD,
which is fundamentally driven by digital technology and aims to
activate the ability of data resources to circulate in the market and
further attract broad participation from society. Moreover, the
opening up of environmental information datasets represents a
further focus on government oversight and attention to the
environment, increasing the tendency of companies to avoid
polluting emissions. In this process, OGD demonstrates its
potential ability to optimize environmental governance and its
advantageous effects. There is a growing body of research
evaluating the effects of OGD, with a primary focus on its
internal processes, data quality, and institutional limitations
(Parycek et al., 2014; Nikiforova and McBride, 2021; Wang and
Shepherd, 2020). However, these studies tend to concentrate on the
procedural aspects of data disclosure, while largely overlooking the
broader economic and social implications of OGD. In particular,

there is a notable lack of empirical research examining how the
development and use of data elements affect ambient air quality. So,
can OGD actually improve the effectiveness of environmental
governance, especially ambient air quality? This question has a
solid foundation at the level of theoretical analysis and
construction, which requires empirical validation through
rigorous scientific methods. In addition, research on OGD is
mainly focused on North America and Europe (more than 65%),
and there is a lack of research on Asia, especially China. Moreover,
scholars tend to use qualitative methods (77.45%) and lack
quantitative analysis and experimental research (Tai, 2021).
Building on these gaps, this study adopts OGD as an analytical
lens and constructs a quasi-natural experimental setting based on
the launch of OGD platforms across Chinese cities. Using panel data
from 2010 to 2021, it examines the impact of OGD on AP,
investigates the underlying mechanisms that enhance pollution
control effectiveness, and explores the broader ecological value of
OGD at the macro level.

Compared with previous studies, this paper makes several
potential marginal contributions: (1) It constitutes one of the first
empirical efforts to evaluate the policy effects of OGD in the field of
environmental governance, establishing a link between OGD
initiatives and AP control, and providing exploratory evidence on
the environmental value of data-driven governance. (2) It employs
rigorous empirical identification strategies to assess the causal effects
of OGD, thereby shedding light on its policy advantages and
addressing existing theoretical gaps. (3) It further analyzes the
underlying mechanisms and regional heterogeneity associated
with OGD impacts, offering policy-relevant insights to improve
data governance and promote ecological protection across different
local contexts.

2 Institutional background and
hypothesis

2.1 Institutional background

In 2012, Shanghai, China, took the lead in launching the trial
operation of the Government Data Service Network, and Beijing
launched the test of the Government Data Service Network in the
same year. Subsequently, local governments in Tianjin and
Guangdong launched OGD platforms to share public data and
improve data utilization efficiency. China has also launched a
series of policy measures to promote the OGD to society. For
example, in 2017, General Office of the State Council issued the
Implementation Plan for the Integration and Sharing of
Government Information Systems, stating that a unified,
standardized, interconnected, secure, and controllable data open
website should be constructed relying on the national e-government
extranet and the central government portal.

According to the China Local Government Data Openness
Report, as of October 2020, 66% of China’s provincial-level
administrative divisions (excluding Hong Kong, Macao, and
Taiwan), 73% of sub-provincial-level jurisdictions, and 35% of
prefecture-level governments had launched OGD platforms.
Based on city-level statistics—including municipalities, provincial
capitals, and prefecture-level cities—the total number of
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participating cities reached 138 (Figure 1). Among the various
sectors represented on the platform, datasets related to resources,
the environment, and ecological protection exhibit a medium to
high degree of openness. Notably, environmental monitoring and
impact assessment data are identified as standard datasets in
official reports.

As the relevant policy continue to promote and land, the
progressive OGD platform online in various places provides a
good experimental opportunity to carry out empirical assessment.
Based on the multi-temporal characteristics of the platform launch,
this paper intends to utilize the staggered difference-in-differences
(DID) method to assess the actual effect of OGD by taking PM2.5

FIGURE 1
Number of cities implementing OGD (count).

FIGURE 2
Temporal trend of annual mean PM2.5 concentration.
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concentration as the object of examination of the effect of AP in
ecological environment protection. Before carrying out the empirical
test, this paper draws a time trend graph to generally show the
annual average PM2.5 concentration trends of regions that are online
with the OGD platform at different time points and regions that are
not online, and compares them at the macro level (Figure 2).

The average PM2.5 concentrations show a decreasing trend in
longitudinal time. Although PM2.5 concentrations in some reformed
areas were initially higher than those in non-reformed areas, a
significant divergence in their reduction trajectories emerged as
the reform advanced. Specifically, reformed areas experienced a
markedly faster decline in PM2.5 levels compared to non-reformed
areas. Before the platform online node, the changing trend of PM2.5

in the two types of areas basically remains the same, while after the
node, the declining trend of PM2.5 in the reformed areas accelerates
significantly. Therefore, from the results presented in Figure 2, there
is indeed a specific improvement effect on AP management by the
online OGD platform.

2.2 Hypotheses

2.2.1 OGD and AP
The positive impacts of digital technology on AP have been

widely acknowledged in the academic literature (Chen and Yan,
2020; Che and Wang, 2022). Applied to social governance, digital
technology can also significantly enhance the ability of
environmental regulation and pollution control, optimize the
government’s approach to environmental governance, and
improve the efficiency of air pollutant emissions (He et al., 2024;
Ren et al., 2023). Established studies qualitatively focus on the
concept, advantages, and future challenges of environmental
information governance with the help of specific cases and
generally agree that information governance has a decisive role in
improving environmental governance (Tan and Eguavoen, 2017;
Kloppenburg et al., 2022). OGD involves many types of datasets,
such as social security, healthcare, ecological environment, etc. The
purpose of opening up information and data in related fields is not
only to provide information to the public but also to break the “black
box” of social operation by releasing important databases that have
not been transparent in the past, enabling multiple stakeholders to
gain new insights from open data, and providing new opportunities
for the country’s future development. Data allows multiple
stakeholders to gain new insights and contribute to national
governance activities (Hardy and Manrushat, 2017). In particular,
environmental civil society organizations dedicated to climate and
environmental protection frequently leverage open data to monitor
government and corporate behavior, and serve as key platforms for
facilitating citizen participation in environmental governance.
Environmental governance often necessitates the construction of
a multi-actor mechanism to support sustainable development. OGD
can enhance interactions between civil society and government
(Yang and Rho, 2007; Evans and Campos, 2013), while also
fostering civic engagement in environmental governance
initiatives. OGD involves the processes of big data collection, big
data analysis, and big data visualization, all of which cannot be
separated from the support and drive of digital technology.
Compared with traditional on-site environmental enforcement,

intelligent detection systems, sensors, and large-scale algorithms
powered by digital technologies can more efficiently acquire,
process, and analyze airborne environmental data. Through open
data platforms, these technologies enable intelligent interaction and
information sharing, thereby contributing to more accurate
monitoring and regulation of environmental conditions, and
ultimately enhancing the effectiveness of AP control (Shen and
Zhang, 2024). Based on the above logical inference, the central
hypothesis of this paper can be proposed:

H1: OGD can reduce AP.

2.2.2 Mechanisms of OGD impacts on AP
First of all, the data in OGD is derived from public operations

and is inevitably applied to public operations. It is data that can be
accessed, used, or shared by any individual. OGD breaks down the
information barriers between the government and innovation
subjects such as enterprises, research institutions, universities,
etc., so that innovation resources can be allocated more
efficiently, which in turn helps social subjects to exert their
subjective initiative and actively innovate under the national
ecological and environmental protection policy. At present, data
elements have been widely applied to enterprise-level innovations,
including product and service development, business model
restructuring, and technological advancement (Bresciani et al.,
2021). These applications significantly enhance firms’ green
innovation capabilities and improve the overall efficiency of
urban green innovation (Song et al., 2019). Moreover, extensive
evidence has confirmed the positive impact of green innovation on
environmental governance outcomes (Albort-Morant et al., 2018;
Takal and Tooranloo, 2021). Second, open data enhances
transparency and accountability in related areas (e.g.,
transportation, environment, public services, etc.) (Attard et al.,
2015). The government’s use of datasets to track environmental
information such as the state of natural resources, the extent of
pollution, and waste collection, and to make this information
available to society in the form of a platform has dramatically
increased civil society’s awareness of environmental monitoring
(Lim, 2021), which in turn has helped to improve the efficiency
of environmental policy implementation and the quality of
environmental regulation (Huong and Thanh, 2022). Improved
environmental regulation is also bound to reduce pollution
emissions from heavy industrial enterprises and optimize the
efficiency of environmental pollutant emissions, including air
pollutants (Zhang et al., 2021). Finally, OGD can also bring
considerable economic benefits and provide innovative solutions
for social development (Bakıcı et al., 2013). OGD holds substantial
economic potential for both firms and individual users. It can offer
new opportunities for social entrepreneurs, particularly those
aiming to develop innovative products and services based on
data provided by public sector organizations (Yang et al., 2020).
In other words, the data factor-driven model facilitates the optimal
allocation of production factors, fosters the emergence of new
business service models and formats, promotes technological
advancement and product innovation, and enables the provision
of personalized and customized offerings (Stylos et al., 2021; Ladeira
et al., 2024). These mechanisms collectively inject momentum into
the development of the tertiary sector, thereby supporting industrial
transformation and upgrading while contributing to the reduction of
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environmental pollution (Zhou et al., 2013; Zhao et al., 2022). In
summary, the hypothesis is proposed:

H2-1: OGD can reduce AP by promoting green innovation.
H2-2: OGD can reduce AP by improving the quality of

environmental regulation.
H2-3: OGD can reduce AP by optimizing industrial structure.
Another critical dimension of OGD lies in its capacity to

empower citizens by reducing information asymmetry and
enhancing government transparency (Attard et al., 2015). By
opening up public data, OGD facilitates broader stakeholder
participation, enabling citizens not only to provide feedback on
government performance but also to take part in policy formulation
processes. In other words, the OGD implies the cession of
government power, which reduces the government’s own
intervention and provides the society with greater freedom and
capacity space to participate more in the governance of economic
life. Neoclassical theory suggests that too much government
intervention will distort markets, leading to inefficient resource
allocation and possible corruption. Particularly in terms of
environmental governance, Fredriksson and Svensson (2003)
argue that as the world’s largest developing country, in the
context of pursuing economic growth, local governments in
China have greater administrative approval powers and are
vulnerable to “regulatory capture” by high-polluting firms, which
in turn can reap economic. This can lead to corruption and influence
the formulation of regional environmental policies. Existing
government policies, such as command-and-control regulation
and tendentious technological inputs, can increase industrial SO2

emissions and aggravate environmental pollution (Liu et al., 2019).
Therefore, freer and more expansive markets tend to generate
greater demand for data and facilitate more efficient data
utilization (Gandomi and Haider, 2015), thereby contributing to
improved outcomes in environmental governance. Accordingly, the
following hypotheses can be formulated:

H3-1: The expansion of market size can enhance the effect of
OGD on AP.

H3-2: Increased levels of market openness can enhance the
impact of OGD on AP.

3 Methodology

3.1 Empirical model

DID is one of the most widely used research tools in social
science research. It is very clear, intuitive, and easy to operate, and
thus popular among policy effect evaluators (Baker et al., 2022).
Local data openness has strong local characteristics and does not
involve datasets from other cities. Therefore, the scope of the effect
of government data openness on PM2.5 is strictly limited to the
policy implementation area, and it is difficult to affect PM2.5 in
neighboring areas through mechanisms such as cross-regional
collaboration, pollution diffusion, or information spillovers.
Depending on whether the treatment occurs simultaneously or at
varying time points across units, DID models can be classified into
single-period and staggered (or multiple-period) designs. This paper
employs the latter to accommodate the variation in policy timing
across cities. In order to accurately test the environmental effects of

OGD, the study focuses on cities and constructs policy dummy
variables: individuals who have implemented OGD policies at the
city level are regarded as the “experimental group”, and those who
have not implemented OGD policies are regarded as the
“control group”:

PM25it � β0 + β1OGDit + γxit + αi + δt + εit (1)
OGDit � treatedit × timeit (2)

First, in Equation 1, PM25it represents the PM2.5 concentration
(μg/m3) of the city i in the year, which is the core explanatory
variable of this paper. Second, OGDit is a dummy variable for OGD
at the municipal level, which is formed by Equation 2. OGDit =
1 indicates that the city i implemented OGD at the municipal level in
t in the year, while OGDit = 0 indicates that it did not implement it.
treatedit and timeit are the policy dummy and time dummy of
OGD, respectively; xit is a set of control variables that may have an
impact on the effectiveness of AP control; αi and δt represent
individual fixed effects and time fixed effects, respectively; and εit
is a residual disturbance term. It should be noted that PM25it is a
negative variable. When β1 is negative, it indicates that the OGD
reduces the concentration of PM2.5 and improves the effectiveness of
AP control.

3.2 Variables

Explained variable. The explained variables used geographic
mean PM2.5 concentration (μg/m3) to measure the AP status,
which is one of the commonly used environmental indicators in
related fields (Wang and Ogawa, 2015; Qi et al., 2022).

Explanatory variables. This paper takes OGD construct dummy
variables as the explanatory variables of the study, the specific
meaning of which has been described in detail above.

Control variables. Education plays a vital role in enhancing
citizens’ environmental awareness and fostering scientific and
technological innovation, both of which are essential for
advancing a green economy (Ma and Zhu, 2022). Government
capacity, as a key institutional determinant, not only influences
the level of OGD implementation but also serves as a major driver of
environmental intervention intensity. Technological change
promotes the adoption of environmentally friendly practices and
green technologies, thereby enhancing environmental protection
capacity (Chen et al., 2024). In addition, foreign direct investment
and the level of economic development are closely associated with
environmental quality and are frequently adopted as control
variables in empirical studies. Therefore, in order to improve the
accuracy and credibility of the estimation results and reduce
potential bias, this study draws on the measurement strategies of
Liu and Lin (2019), Yu et al. (2019), and Gu et al. (2022), and
incorporates five control variables into the DID model: education
investment (Edu), government self-sufficiency (Gov), economic
development level (GDPP), science and technology input (Sci),
and foreign investment level (FDI). Specifically, education and
science investment are measured by the proportion of
corresponding expenditures in the general government budget.
Government self-sufficiency is calculated as the ratio of local
fiscal revenue to expenditure. Economic development is proxied
by the logarithm of GDP per capita. Foreign investment is
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represented by the ratio of actual utilized foreign capital to
regional GDP.

Mediating variable. The rationality and scientificity of green
innovation, environmental regulation quality, and industrial
structure optimization as the mediating mechanisms of OGD and
AP are proposed in the theoretical foundation section. Referring to
the research practices of Dong et al. (2023), Yang et al. (2018), and
Gu and Chen (2020), green innovation is measured by the total
number of green invention patent grants and applications, the
quality of environmental regulation is based on the
comprehensive utilization rate of general industrial solid waste
and the optimization of industrial structure is selected as the
measurement of the value added of the tertiary industry.

Moderating variable. Drawing on previous studies (e.g., Ho
et al., 2013; Niroomand et al., 2014), we further examine the
underlying mechanism between OGD and AP by incorporating
market size (MSize) and market openness (MOpen) as moderating
variables. Market size is measured as the logarithm of total retail
sales of consumer goods, while market openness is proxied by the
logarithm of actual foreign capital utilization. We then center the
moderating variables to reduce potential multicollinearity in the
interaction terms.

3.3 Data and sample

Following the principles of availability, validity, and consistency
of data selection, the detailed scheme of data selection is as follows:
the time data of OGD is derived from the China Local Open
Government Data Report released by the Digital and Mobile
Governance Laboratory of Fudan University, which is China’s
first and currently the most authoritative assessment report on
OGD. The PM2.5 data used in this study are sourced from the
global dataset released by the Atmospheric Composition Analysis
Group at Washington University in St. Louis. The raw gridded data

were first spatially cropped to the boundary of China and then
averaged across raster cells within each city. The resulting values
represent geographic mean PM2.5 concentrations, expressed in
micrograms per cubic meter (μg/m3). The data related to urban
economic and social development were obtained from China
Industrial Statistical Yearbook, China Statistical Yearbook, and
China Urban Statistical Yearbook. After processing, this paper
extracts from them the relevant panel data of all Chinese cities
(excluding Hong Kong and Macao Special Administrative Regions
and Taiwan Province) from 2010–2021. In order to ensure the
scientific validity of the study, the raw data in this paper were
processed as follows: (1) Cities with serious missing data were
excluded, and those with less missing data were linearly
interpolated. (2) The DID method needs to ensure that there are
at least two observation periods, so cities that first implemented
OGD in 2021 were deleted. (3) To avoid the adverse effects of
extreme values, a 1% winsorization was applied to all continuous
variables. Finally, we obtain a total of 235 city data, 2,820 samples.

The study presents descriptive statistics comparing cities that
have implemented OGD with those that have not (Table 1). First,
regarding the control variables, only slight differences are observed
between the treatment and control groups in terms of economic
development, government self-sufficiency, science and education
expenditure, and foreign investment, with similar standard
deviations, minimums, and maximums. Second, for the
mediating and moderating variables, cities that have implemented
OGD exhibit slightly higher values in the comprehensive utilization
rate of general industrial solid waste, value-added of the tertiary
industry, the number of green patent authorizations, as well as
greater market openness and larger market size—likely reflecting
policy-driven incentives. Third, the sample sizes of the treatment
and control groups are relatively balanced and sufficiently large,
ensuring robustness in estimation. Overall, the differences in key
variables are minor and the groups are generally comparable,
validating the use of the staggered DID strategy.

TABLE 1 Descriptive statistics.

Variable Control group Treatment group

Obs Mean SD Min Max Obs Mean SD Min Max

PM25 1,495 41.430 14.287 18.046 87.287 1,325 42.190 16.195 18.045 87.297

GDPP 1,495 10.507 0.634 8.933 12.050 1,325 10.608 0.724 8.934 12.046

Gov 1,495 0.400 0.236 0.087 1.022 1,325 0.546 0.193 0.088 0.970

Sci 1,495 0.011 0.018 0.001 0.080 1,325 0.024 0.010 0.001 0.079

Edu 1,495 0.172 0.037 0.088 0.284 1,325 0.181 0.040 0.089 0.285

FDI 1,495 0.020 0.024 0 0.126 1,325 0.021 0.022 0 0.127

ERQ 1,495 72.901 17.736 10.412 100 1,325 86.285 24.324 10.411 100

LThird 1,495 0.080 0.275 0.008 1.350 1,325 0.194 0.092 0.008 0.747

GPAuth 1,495 0.018 0.123 0 0.631 1,325 0.064 0.040 0 0.545

MOpen 1,495 −0.369 1.844 −7.062 4.797 1,324 0.417 2.303 −8.049 11.420

MSize 1,492 −0.325 1.079 −3.036 3.376 1,320 0.368 1.022 −10.165 2.242
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4 Results and findings

4.1 Benchmark regression

In this paper, the environmental effects of OGD are evaluated by
using staggered DID based on the introduction of city-fixed effects
and time-fixed effects, and the results are shown in Table 2. First, the
effects of explanatory variables on the explained variables are
examined through Column (1) in Table 2, where the regression
analysis directly uses the OGD shock with the annual average of
PM2.5 concentration. It was found that the OGD led to a decrease of
1.566 units in PM2.5 concentration, which is significant at the 1%
level. After that, control variables are added gradually in Column
(2)-Column (6). Obviously, comparing Column (1) and Column (6),
the absolute values of the coefficients of the core explanatory
variables are relatively reduced, which indicates that the model
absorbs some unobservable influences on the explanatory
variables after adding control variables, and the model estimation
results are more robust. With the gradual addition of control
variables in the model, the coefficients and significance of OGD
change less, indicating the robustness of the negative impact of OGD
policy. Column (6) of Table 2 further controls for all city economic
and social characteristics category variables on the basis of
controlling for year and individual effects and finds that the
coefficient of OGD is still significantly negative at the 1% level,
resulting in a reduction of about 1.545 units in PM2.5 concentration.
In conclusion, the benchmark regression results show that OGD
helps to reduce PM2.5 concentration, optimize the AP control

situation, and promote the improvement of regional air
environment quality. Hypothesis H1 of this paper can be verified.

4.2 Parallel trend test

Due to the long observation window and the staggered timing of
policy implementation across cities, this study groups together the
5 years before and after the policy intervention. To further mitigate
concerns regarding multicollinearity, the ex-ante period is set as the
baseline, and the policy effects of OGD are estimated using the de-
meaned staggered DID method proposed by Beck et al. (2010). The
results are illustrated in Figure 3, with 95% confidence intervals. As
shown in Figure 3, none of the coefficients in the pre-treatment
periods are statistically significant, suggesting no systematic difference
in AP trends between the treatment and control groups prior to the
implementation of the policy. This finding supports the validity of the
parallel trends assumption underlying the DID design. By contrast,
the coefficients for the policy implementation year and the post-
treatment periods are significantly negative, indicating that OGD has
a suppressive effect on AP.

4.3 Robustness check

4.3.1 Placebo test
Unlike the placebo test method for the classical DID model, for

the staggered DID model, it is necessary to randomly generate both

TABLE 2 Benchmark results.

Variables (1) (2) (3) (4) (5) (6)

OGD −1.566*** −1.253*** −1.271*** −1.271*** −1.545*** −1.545***

(0.332) (0.335) (0.337) (0.337) (0.331) (0.331)

Sci −75.555*** −76.194*** −76.227*** −64.875*** −64.886***

(13.460) (13.618) (13.609) (13.486) (13.483)

Edu 3.818 3.743 10.191** 10.190**

(5.026) (5.031) (4.858) (4.859)

GDPP 0.108 0.068 0.066

(0.177) (0.173) (0.178)

Gov −11.732*** −11.734***

(1.537) (1.539)

FDI 0.130

(3.951)

Constant 42.009*** 43.271*** 42.612*** 41.487*** 46.116*** 46.129***

(0.096) (0.239) (0.886) (2.057) (2.111) (2.145)

City fixed effects Yes Yes Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes Yes Yes

Observations 2,820 2,820 2,820 2,820 2,820 2,820

R-square 0.932 0.933 0.933 0.933 0.935 0.935

Notes: *, **, and *** denote significance levels of 10%, 5%, and 1%, respectively, with robust standard errors in parentheses (the same as below).
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the experimental group dummy variable and the pseudo-policy
shock dummy variable at the same time to randomize the
interaction term formed by the two to simulate the estimation
results under the null hypothesis. Afterward, the study reruns the
simulated regression of the staggered DID model for each new
variable generated. The simulated regression results generated after
the above process were repeated 500 times, as shown in Figure 4. As
illustrated in Figure 4, the estimated coefficients from the placebo

simulations are mostly centered around zero, which deviates
substantially from the actual estimate of −1.545. Additionally, the
majority of these simulated coefficients have p-values exceeding 0.1,
indicating they are statistically insignificant at the 10% level.
Therefore, the baseline estimates of OGD policy effects are by no
means obtained by chance, and the possibility that the baseline
estimates are influenced by other policies or omitted variables can be
basically ruled out.

FIGURE 3
Parallel trend test.

FIGURE 4
Placebo test.
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4.3.2 PSM-DID
For the application of propensity score matching in DID

modeling, the existing studies broadly follow two paths: one is to
consider panel data as cross-sectional data and directly construct
PSM for matching (Fan and Zhang, 2021), and the other is to refer to
the period-by-period matching of Böckerman and Ilmakunnas
(2009), where propensity score matching is carried out period-
by-period at each time point to capture the differences between
different time points. This study uses nearest neighbor matching to
capture the changing characteristics of policy effects at different time
points. In order to maximize the credibility and scientific validity of
the study, this paper adopts the panel data transformation method
and period-by-period matching method for propensity score
matching. The specific steps of the panel data transformation
method are as follows: Edu, Gov, GDPP, Sci, and FDI are set as
covariates, the propensity scores of the treatment groups are
estimated by logit regression model, and nearest-neighbor
matching is performed according to the scores (Luo et al., 2023),
the control group samples that meet the common support
conditions with the cities implementing OGD are selected, and
the samples that cannot support the standard conditions are
eliminated. After that, we check whether the distribution of
covariates is balanced after matching, analyze the matching
effect, and re-estimate the effect of OGD policy on AP by using
the staggered DID method, and the results are presented in Column
(1) of Table 3. The specific steps of the year-by-year matching
method are: also set Edu, Gov, GDPP, Sci, and FDI as covariates,
match the urban samples year by year according to the year of the
policy experiment, and check the balance of covariate distributions
after matching in each year, to ensure that the differences in
covariates between the treatment group and the control group
are significantly reduced. Afterward, the matched data for each
year are merged vertically into one dataset in order to perform a
staggered DID test, the results of which are shown in Column (2)
of Table 3.

Figures 5,6, display the kernel density plots of the treatment and
control groups before and after matching, based on cross-sectional
PSM and year-by-year PSM methods, respectively. In both cases,
substantial deviation is observed between the two groups prior to

matching, while post-matching curves exhibit closer alignment and
reduced distance between mean lines. This indicates that both
matching strategies effectively mitigate sample selection bias.
Furthermore, the OGD coefficients reported in columns (1) and
(2) of Table 3 remain significantly negative, consistent with the
benchmark regression results presented in Table 2. These findings
reinforce the robustness of the estimated treatment effects and
suggest that OGD plays a significant role in enhancing AP control.

4.3.3 Adjust the regression sample
First, considering that the COVID-19 pandemic may cause more

significant fluctuations in policy implementation, the data for the
year 2020–2021 are removed and regressed again, and although the
absolute value of the coefficient of OGD is reduced, it is still
significant at the 1% level. Secondly, municipalities are equivalent
to provincial-level administrative regions and have a higher
administrative level than other cities. Therefore, the data after
deleting the municipality directly under the central government
are regressed again, and it is found that the coefficient of OGD is still
significant at the 1% level, and the coefficient change is relatively
small. Lastly, the provincial capital city is a sub-provincial
administrative region, which has a different administrative level
compared with the ordinary prefectural-level cities, and the result of
deleting the municipality directly under the central government, and
then further deleting the provincial capital city, shows that the
absolute value of the coefficient of OGD increases slightly and is
significantly negative at the 1% level. Regardless of deleting special
years or removing cities of higher administrative levels, OGD
improves air quality and cuts AP. The above results are shown in
columns (3), (4), and (5) of Table 3, respectively.

4.3.4 Lagging effect
In the era of global information explosion, the transmission and

reception of information are not instantaneous but subject to
specific time lags. After a government’s open data platform goes
online, it takes time for social actors—such as the public, businesses,
and research institutions—to access, understand, and apply the
datasets. This asymmetry in information dissemination can result
in a lagged impact of OGD on environmental improvement. Even

TABLE 3 PSM-DID and adjusted sample.

Variables (1) (2) (3) (4) (5)

Cross-section PSM Year-by-year PSM PM25 PM25 PM25

OGD −1.545*** −0.980** −0.866** −1.528*** −1.496***

(0.331) (0.429) (0.392) (0.333) (0.347)

Constant 46.129*** 53.098*** 48.208*** 45.703*** 43.961***

(2.145) (2.629) (2.074) (2.153) (2.242)

Control variable Yes Yes Yes Yes Yes

City fixed effects Yes Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes Yes

Observed value 2,820 1897 2,350 2,784 2,544

R-square 0.935 0.766 0.949 0.935 0.937
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when data are publicly available, their practical application may be
delayed due to the cognitive and processing capacity limitations of
users. With the ongoing introduction and implementation of top-
level guidelines on open data, the management mechanisms of
global OGD platforms have gradually improved, enriched by
feedback from various stakeholders to enhance the efficiency of
public data utilization. To analyze the policy’s lagged effects, while
also testing the robustness of the benchmark regression results and
reducing estimation error, this study constructs three interaction
terms: OGD+1, OGD+2, and OGD+3, representing one-, two-, and
three-year lags in policy implementation, respectively. The
corresponding regression results are presented in Table 4. As
shown in columns (1)–(4) of Table 4, the coefficients of OGD
increase gradually in absolute value and are statistically significant at
the 1% level. Notably, the environmental effect of OGD appears
slightly weaker in the first lagged period (OGD+1) compared to the
current phase. This may reflect adaptive friction in the initial stage of
policy implementation—although the data have been made open,

institutional integration, technological adoption, and public
awareness are still at a formative stage (Janssen et al., 2012). As
the institutional mechanisms mature and behavioral responses
strengthen over time, the actual environmental performance of
OGD becomes more pronounced in the second and third lagged
periods. In particular, in the third lag year (OGD+3), the cities that
implemented OGD policies experienced a reduction of 2.38 units in
PM2.5 concentrations—approximately 0.84 units more than in the
implementation year. This clearly indicates the existence of a time
lag in the environmental effects of OGD and suggests that the
improvement in air quality becomes more substantial in later years
of policy implementation.

4.3.5 Instrumental variable method
To further address potential endogeneity in the regression

analysis, this study follows the approach of Li et al. (2024),
Cheng (2023) by constructing an instrumental variable (SlopeX),
defined as the interaction between the inverse of terrain slope and

FIGURE 5
Kernel Density Plot before and after PSM of cross-sectional.

FIGURE 6
Kernel Density Plot before and after PSM of year-by-year.
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the number of Internet ports. The rationale is that regions with
gentler terrain and more developed Internet infrastructure tend to
have better information flow and more concentrated technological
resources, making them more likely to launch OGD platforms.

Importantly, neither topography nor Internet access directly
affects AP, ensuring the exogeneity of the instrument.

A two-stage least squares estimation was employed to test for
endogeneity, and the results are reported in Table 5. In the first-stage

TABLE 4 Lag effect test.

Variables (1) (2) (3) (4)

The current phase One phase lag Two phase lag Three phase lag

OGD −1.545***

(0.326)

OGD+1 −1.411***

(0.379)

OGD+2 −1.667***

(0.453)

OGD+3 −2.381***

(0.587)

Constant 46.129*** 46.134*** 46.267*** 46.254***

(2.207) (2.149) (2.143) (2.148)

Control variable Yes Yes Yes Yes

City fixed effects Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes

Observations 2,820 2,820 2,820 2,820

R-square 0.935 0.935 0.935 0.935

TABLE 5 IV estimation result.

Variables (1) (2)

OGD PM25

OGD −7.075***

(1.954)

SlopeX 0.002***

(0.000)

Constant −0.191 46.424**

(0.128) (20.648)

Control variable Yes Yes

City fixed effects Yes Yes

Year fixed effects Yes Yes

Observations 2,820 2,820

P-value of Kleibergen-Paap rk LM statistic 0.000

Kleibergen-Paap rk Wald F statistic 30.500

{16.38}

Notes: *, **, and *** denote significance levels of 10%, 5%, and 1%, respectively, with robust standard errors in parentheses. The number in curly brackets refers to the Stock-Yogo critical value

for a 10% maximal IV, size.
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regression, the coefficient of SlopeX is 0.002 and is statistically
significant at the 1% level, indicating a strong correlation with
the endogenous variable OGD. The F-statistic of 30.50 (p < 0.01)
further supports this conclusion. In addition, the Kleibergen-Paap rk

LM statistic (38.54, p < 0.01) confirms that the model passes the
under-identification test, while the Kleibergen-Paap rk Wald
F-statistic (30.55) exceeds the Stock-Yogo critical value at the
10% threshold, ruling out weak instrument concerns. In the

TABLE 6 Mechanism test.

Variables (1) (2) (3) (4) (5) (6)

ERQ PM25 GPAuth PM25 LThird PM25

OGD 3.221*** −1.480*** 0.034*** −1.021*** 0.050*** −0.963***

(0.902) (0.333) (0.004) (0.331) (0.007) (0.337)

ERQ −0.020***

(0.007)

GPAuth −15.295***

(1.921)

LThird −11.752***

(1.479)

Constant 72.592*** 47.600*** 0.026 46.528*** 0.041 46.616***

(6.171) (2.210) (0.022) (2.124) (0.031) (2.113)

Control variable Yes Yes Yes Yes Yes Yes

City fixed effects Yes Yes Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes Yes Yes

Observations 2,820 2,820 2,820 2,820 2,820 2,820

R-square 0.725 0.935 0.813 0.936 0.938 0.936

Variables (1) (2) (3) (4)

PM25 PM25 PM25 PM25

OGD −1.545*** −0.646* −1.545*** −1.304***

(0.326) (0.372) (0.326) (0.339)

MSize −0.257

(0.272)

OGD × MSize −1.144***

(0.236)

MOpen −0.543***

(0.100)

OGD × Mopen −0.253*

(0.129)

Constant 46.129*** 45.906*** 46.129*** 45.061***

(2.207) (2.128) (2.207) (2.157)

Control variable Yes Yes Yes Yes

City fixed effects Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes

Observations 2,820 2,812 2,820 2,819

R-square 0.935 0.935 0.935 0.936
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second stage, the estimated coefficient of OGD is −7.075, which is
significantly negative at the 1% level and consistent with the baseline
regression results. Moreover, both the Anderson-Rubin Wald test
and the Stock-Wright LM S test significantly reject the null
hypothesis (p < 0.01), further validating the strength and
robustness of the instrumental variable approach.

5 Further discussion

5.1 Mechanism analysis

5.1.1 Mediation effect
The previous part reveals the improvement effect of OGD on AP

through empirical tests. Theoretically, it identifies that OGD reduces
AP through three aspects: stimulating the vitality of green
innovation, improving the quality of environmental regulation,
and promoting the optimization of industrial structure. Is the
mechanism valid? To verify Hypothesis H2, the study employs a
stepwise regression approach to test the mediating effect.
Specifically, it first examines the significance of the relationship
between OGD and the mediating variable, followed by testing the
effect of the mediating variable on AP while controlling for OGD.
Based on this logic, the model is extended from Equation 1 to
formally test the mediating effect, as shown in the specifications
below (Equations 3, 4):

Medit � α0 + α1OGDit + γxit + αi + δt + εit (3)
PM25it � θ0 + θ1OGDit + θ2Medit + γxit + αi + δt + εit (4)

where Medit is the mediator variable including ERQ, GPAuth,
LThird, γxit , αi , δt and εit are the same as in Equation 1,
representing the control variables, individual and time fixed
effects, and residual perturbation terms, respectively.

First, from the presentation of the results in Columns (1)-(2) of
Table 6, it can be seen that OGD in Column (1) has a significant
contribution to improving the ERQ, which improves the ERQ by
3.22% (p < 0.01); the coefficients of the ERQ and the OGD in
Column (2) are both negatively significant at 1% confidence level,
indicating that ERQ plays a partially mediating role in the
relationship between OGD and AP. Second, Columns (3)-(4) of
Table 6 show that the regression coefficient of OGD with GPAuth is
0.034 (p < 0.01), and the regression coefficient of GPAuth with
PM25 is −15.295 (p < 0.01), suggesting that OGD significantly
inhibits AP by stimulating green innovation. Finally, a regression
analysis was conducted to examine the relationship between OGD
and the value added in the tertiary sector. The results show that
OGD significantly increases the output of the tertiary industry by
approximately 0.05 units (p < 0.01). Furthermore, tertiary industry
value added is associated with a reduction in PM2.5 concentrations
by approximately 0.963 units (p < 0.01), suggesting that OGD
contributes to AP mitigation by promoting industrial
restructuring and upgrading.

5.1.2 Moderation effect
To test Hypothesis 3, this study develops the following model to

examine the moderating effect of market factors in the relationship
between OGD and AP, as formulated in Equations 5, 6:

PM25it � μ0 + μ1OGDit + μ2MSizeit + μ3 OGDit× MSizeit( ) + γxit

+ αi + δt + εit

(5)
PM25it � φ0 + φ1OGDit + φ2MOpenit + φ3 OGDit× MOpenit( )

+ γxit + αi + δt + εit

(6)
Among them, MSizeit and MOpenit are two moderating

variables, and OGDit× MSizeit and OGDit× MOpenit are the
interaction terms of the independent variables and the
moderating variables. γxit , αi , δt and εit are the same as in
Equation 1, representing the control variables, individual and
time fixed effects, and residual perturbation terms,
respectively.

Table 6 reports the results of the analysis of the moderating
effects. Column (2) shows that OGD × MSize is negatively
significant at the 1% level, which indicates that the larger the
market size, the stronger the weakening effect of OGD on AP.
Column (4) shows that OGD × MOpen is negatively significant at
1% level, which indicates that the higher the market openness, the
better the inhibiting effect of OGD on AP.

5.2 Heterogeneity analysis

The results of the regional heterogeneity analysis are shown
in Table 7. The policy effect of OGD is significant only in the
eastern and western regions—at the 5% level in the east and the
1% level in the west. The eastern region, as the frontier of reform
and opening-up, benefits from advanced digital infrastructure,
strong innovation capacity, and widespread network coverage,
enabling more effective implementation of OGD, which
partially supports the hypothesis. In contrast, the western
region, despite weaker economic and digital foundations,
exhibits a significant reduction in PM2.5 concentrations (by
approximately 5.61 units), likely due to the “low-hanging fruit”
effect. The prevalence of high-emission industries and a single
energy mix allows environmental gains to be realized more
easily, and OGD offers tools to quickly target such
opportunities. The central region, situated between the east
and west, holds intermediate levels of economic development
and digital capacity, with fewer readily available gains and less
policy differentiation. These factors jointly explain the weaker
policy effect of OGD in that region. In short, the effect of OGD
on AP is most significant in the western region, relatively
significant in the eastern region, and not significant in the
central region. This challenges traditional perceptions and
has important policy implications.

Observing Columns (4) and (5) in Table 7, the coefficient of
OGD is significant at the 1% confidence level in both the Yangtze
River Economic Belt and the non-Yangtze River Economic Belt.
However, the absolute value of the coefficient in the Yangtze River
Economic Belt is larger than that in the non-Yangtze River
Economic Belt. The Yangtze River Economic Belt is one of the
important engines of China’s economic development, which not
only possesses a higher level of innovation and technology but also
has a higher implementation of ecological quality, environmental

Frontiers in Environmental Science frontiersin.org13

Zhou et al. 10.3389/fenvs.2025.1580362

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1580362


governance and protection, and green development and ecological
civilization than the non-Yangtze River Economic Belt.

6 Conclusion and discussion

Eco-environmental protection has been elevated to a national
strategy, and the relationship between environmental governance
and multiple factors has been extensively studied. Using OGD as an
entry point, this paper applies a staggered DIDmodel based on panel
data from 235 Chinese cities (2010–2021) and reaches three key
findings: (1) OGD helps to reduce AP and improve urban air quality,
and this result passes a variety of robustness tests. (2) OGD improves
AP governance through three key mechanisms: promoting green
innovation, enhancing environmental regulation, and optimizing
industrial structure. By making environmental impact assessment
data widely available, it reduces information asymmetry, supports
data-driven decision-making, and increases regulatory efficiency.
Larger market size and greater openness further strengthen the effect
of OGD. Expanding markets generate more data and demand for its
use, while openness encourages competition, prompting firms to
adopt cleaner and more efficient technologies. (3) The positive effect
of OGD on AP control is significant in the eastern and western
regions of China, and the significant effect in the western region is
better than that in the eastern region. OGD is significant in both the
Yangtze River Economic Belt and the non-Yangtze River Economic
Belt, but pollution control is better in the Yangtze River Economic
Belt than in the non-Yangtze River Economic Belt.

Protecting the ecological environment is important for China to
realize sustainable development. Based on the above findings, this
paper proposes three policy recommendations to amplify the
advantageous effects of open data on environmental governance:
(1) To enhance the role of OGD in environmental governance, the
government should further expand the scope, depth, and quality of
data openness while managing data security risks. Priority should be
given to collecting and disclosing more environmental resource
datasets, applying desensitization and visualization technologies

to improve data accessibility and interpretation for both market
participants and civil society. (2) Efforts should be made to stimulate
green innovation, improve the precision and efficiency of
environmental regulation, and optimize the industrial structure.
This can be achieved by establishing green innovation funds,
promoting the use of open data in regulatory practices, and
supporting the growth of green industries, particularly within the
service sector. Reducing government intervention, lowering market
entry barriers, and fostering openness to foreign capital will further
amplify these effects. (3) Open data strategies should be tailored to
regional characteristics, especially in the central region, where
current policy effects are limited. Introducing third-party
institutions to regularly evaluate implementation outcomes will
enable dynamic monitoring and feedback. As the “low-hanging
fruit” of pollution control diminishes, continued improvement of
data interoperability and platform functionality will be essential to
sustain the long-term impact of OGD.

This study also has certain limitations. On the one hand, due to
the problem of data unavailability, the core variables of the study are
relatively single, and a complex indicator system has not been
constructed. On the other hand, different countries have different
administrative systems, geographic regions, and development
patterns, and the quasi-experimental analysis of the study is
mainly centered on Chinese cities, which can provide practical
references for other developing countries with similar scenarios.
However, the extrapolation of the experimental conclusions may be
insufficient for non-developing economies. Future studies could
incorporate more diversified and extensive data to refine variable
and indicator design, expand the experimental sample, and conduct
deeper, category-specific analyses of influencing mechanisms and
heterogeneity.
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TABLE 7 Heterogeneity test.

Variables (1) (2) (3) (4) (5)

Eastern
regions

Central
regions

Western
regions

Yangtze River economic
belt

Non-yangtze River
economic belt

OGD −1.108** 0.407 −5.608*** −1.423*** −1.300***

(0.505) (0.598) (0.613) (0.501) (0.462)

Constant 44.051*** 60.663*** 32.262*** 40.696*** 46.170***

(3.329) (3.155) (3.723) (2.760) (2.817)

Control variable Yes Yes Yes Yes Yes

City fixed effects Yes Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes Yes

Observations 1,152 924 744 960 1860

R-square 0.950 0.940 0.904 0.936 0.937
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